xref: /openbmc/qemu/target/arm/cpu.c (revision 6d17020a)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 #ifdef CONFIG_TCG
64 void arm_cpu_synchronize_from_tb(CPUState *cs,
65                                  const TranslationBlock *tb)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     /*
71      * It's OK to look at env for the current mode here, because it's
72      * never possible for an AArch64 TB to chain to an AArch32 TB.
73      */
74     if (is_a64(env)) {
75         env->pc = tb->pc;
76     } else {
77         env->regs[15] = tb->pc;
78     }
79 }
80 #endif /* CONFIG_TCG */
81 
82 static bool arm_cpu_has_work(CPUState *cs)
83 {
84     ARMCPU *cpu = ARM_CPU(cs);
85 
86     return (cpu->power_state != PSCI_OFF)
87         && cs->interrupt_request &
88         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
89          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
90          | CPU_INTERRUPT_EXITTB);
91 }
92 
93 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94                                  void *opaque)
95 {
96     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 
98     entry->hook = hook;
99     entry->opaque = opaque;
100 
101     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
102 }
103 
104 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
105                                  void *opaque)
106 {
107     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
108 
109     entry->hook = hook;
110     entry->opaque = opaque;
111 
112     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
113 }
114 
115 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
116 {
117     /* Reset a single ARMCPRegInfo register */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120 
121     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
122         return;
123     }
124 
125     if (ri->resetfn) {
126         ri->resetfn(&cpu->env, ri);
127         return;
128     }
129 
130     /* A zero offset is never possible as it would be regs[0]
131      * so we use it to indicate that reset is being handled elsewhere.
132      * This is basically only used for fields in non-core coprocessors
133      * (like the pxa2xx ones).
134      */
135     if (!ri->fieldoffset) {
136         return;
137     }
138 
139     if (cpreg_field_is_64bit(ri)) {
140         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
141     } else {
142         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
143     }
144 }
145 
146 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
147 {
148     /* Purely an assertion check: we've already done reset once,
149      * so now check that running the reset for the cpreg doesn't
150      * change its value. This traps bugs where two different cpregs
151      * both try to reset the same state field but to different values.
152      */
153     ARMCPRegInfo *ri = value;
154     ARMCPU *cpu = opaque;
155     uint64_t oldvalue, newvalue;
156 
157     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
158         return;
159     }
160 
161     oldvalue = read_raw_cp_reg(&cpu->env, ri);
162     cp_reg_reset(key, value, opaque);
163     newvalue = read_raw_cp_reg(&cpu->env, ri);
164     assert(oldvalue == newvalue);
165 }
166 
167 static void arm_cpu_reset(DeviceState *dev)
168 {
169     CPUState *s = CPU(dev);
170     ARMCPU *cpu = ARM_CPU(s);
171     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
172     CPUARMState *env = &cpu->env;
173 
174     acc->parent_reset(dev);
175 
176     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
177 
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
179     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
180 
181     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
182     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
183     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
184     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
185 
186     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
187 
188     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
189         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
190     }
191 
192     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
193         /* 64 bit CPUs always start in 64 bit mode */
194         env->aarch64 = true;
195 #if defined(CONFIG_USER_ONLY)
196         env->pstate = PSTATE_MODE_EL0t;
197         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
198         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
199         /* Enable all PAC keys.  */
200         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
201                                   SCTLR_EnDA | SCTLR_EnDB);
202         /* Trap on btype=3 for PACIxSP. */
203         env->cp15.sctlr_el[1] |= SCTLR_BT0;
204         /* and to the FP/Neon instructions */
205         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
206                                          CPACR_EL1, FPEN, 3);
207         /* and to the SVE instructions */
208         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
209                                          CPACR_EL1, ZEN, 3);
210         /* with reasonable vector length */
211         if (cpu_isar_feature(aa64_sve, cpu)) {
212             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
213         }
214         /*
215          * Enable 48-bit address space (TODO: take reserved_va into account).
216          * Enable TBI0 but not TBI1.
217          * Note that this must match useronly_clean_ptr.
218          */
219         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
220 
221         /* Enable MTE */
222         if (cpu_isar_feature(aa64_mte, cpu)) {
223             /* Enable tag access, but leave TCF0 as No Effect (0). */
224             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
225             /*
226              * Exclude all tags, so that tag 0 is always used.
227              * This corresponds to Linux current->thread.gcr_incl = 0.
228              *
229              * Set RRND, so that helper_irg() will generate a seed later.
230              * Here in cpu_reset(), the crypto subsystem has not yet been
231              * initialized.
232              */
233             env->cp15.gcr_el1 = 0x1ffff;
234         }
235         /*
236          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
237          * This is not yet exposed from the Linux kernel in any way.
238          */
239         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
240 #else
241         /* Reset into the highest available EL */
242         if (arm_feature(env, ARM_FEATURE_EL3)) {
243             env->pstate = PSTATE_MODE_EL3h;
244         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
245             env->pstate = PSTATE_MODE_EL2h;
246         } else {
247             env->pstate = PSTATE_MODE_EL1h;
248         }
249 
250         /* Sample rvbar at reset.  */
251         env->cp15.rvbar = cpu->rvbar_prop;
252         env->pc = env->cp15.rvbar;
253 #endif
254     } else {
255 #if defined(CONFIG_USER_ONLY)
256         /* Userspace expects access to cp10 and cp11 for FP/Neon */
257         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
258                                          CPACR, CP10, 3);
259         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260                                          CPACR, CP11, 3);
261 #endif
262     }
263 
264 #if defined(CONFIG_USER_ONLY)
265     env->uncached_cpsr = ARM_CPU_MODE_USR;
266     /* For user mode we must enable access to coprocessors */
267     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
268     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
269         env->cp15.c15_cpar = 3;
270     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
271         env->cp15.c15_cpar = 1;
272     }
273 #else
274 
275     /*
276      * If the highest available EL is EL2, AArch32 will start in Hyp
277      * mode; otherwise it starts in SVC. Note that if we start in
278      * AArch64 then these values in the uncached_cpsr will be ignored.
279      */
280     if (arm_feature(env, ARM_FEATURE_EL2) &&
281         !arm_feature(env, ARM_FEATURE_EL3)) {
282         env->uncached_cpsr = ARM_CPU_MODE_HYP;
283     } else {
284         env->uncached_cpsr = ARM_CPU_MODE_SVC;
285     }
286     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
287 
288     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
289      * executing as AArch32 then check if highvecs are enabled and
290      * adjust the PC accordingly.
291      */
292     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
293         env->regs[15] = 0xFFFF0000;
294     }
295 
296     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
297 #endif
298 
299     if (arm_feature(env, ARM_FEATURE_M)) {
300 #ifndef CONFIG_USER_ONLY
301         uint32_t initial_msp; /* Loaded from 0x0 */
302         uint32_t initial_pc; /* Loaded from 0x4 */
303         uint8_t *rom;
304         uint32_t vecbase;
305 #endif
306 
307         if (cpu_isar_feature(aa32_lob, cpu)) {
308             /*
309              * LTPSIZE is constant 4 if MVE not implemented, and resets
310              * to an UNKNOWN value if MVE is implemented. We choose to
311              * always reset to 4.
312              */
313             env->v7m.ltpsize = 4;
314             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
315             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
316             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
317         }
318 
319         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
320             env->v7m.secure = true;
321         } else {
322             /* This bit resets to 0 if security is supported, but 1 if
323              * it is not. The bit is not present in v7M, but we set it
324              * here so we can avoid having to make checks on it conditional
325              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
326              */
327             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
328             /*
329              * Set NSACR to indicate "NS access permitted to everything";
330              * this avoids having to have all the tests of it being
331              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
332              * v8.1M the guest-visible value of NSACR in a CPU without the
333              * Security Extension is 0xcff.
334              */
335             env->v7m.nsacr = 0xcff;
336         }
337 
338         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
339          * that it resets to 1, so QEMU always does that rather than making
340          * it dependent on CPU model. In v8M it is RES1.
341          */
342         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
343         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
344         if (arm_feature(env, ARM_FEATURE_V8)) {
345             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
346             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
347             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
348         }
349         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
350             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
351             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
352         }
353 
354         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
355             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
356             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
357                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
358         }
359 
360 #ifndef CONFIG_USER_ONLY
361         /* Unlike A/R profile, M profile defines the reset LR value */
362         env->regs[14] = 0xffffffff;
363 
364         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
365         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
366 
367         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
368         vecbase = env->v7m.vecbase[env->v7m.secure];
369         rom = rom_ptr_for_as(s->as, vecbase, 8);
370         if (rom) {
371             /* Address zero is covered by ROM which hasn't yet been
372              * copied into physical memory.
373              */
374             initial_msp = ldl_p(rom);
375             initial_pc = ldl_p(rom + 4);
376         } else {
377             /* Address zero not covered by a ROM blob, or the ROM blob
378              * is in non-modifiable memory and this is a second reset after
379              * it got copied into memory. In the latter case, rom_ptr
380              * will return a NULL pointer and we should use ldl_phys instead.
381              */
382             initial_msp = ldl_phys(s->as, vecbase);
383             initial_pc = ldl_phys(s->as, vecbase + 4);
384         }
385 
386         qemu_log_mask(CPU_LOG_INT,
387                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
388                       initial_msp, initial_pc);
389 
390         env->regs[13] = initial_msp & 0xFFFFFFFC;
391         env->regs[15] = initial_pc & ~1;
392         env->thumb = initial_pc & 1;
393 #else
394         /*
395          * For user mode we run non-secure and with access to the FPU.
396          * The FPU context is active (ie does not need further setup)
397          * and is owned by non-secure.
398          */
399         env->v7m.secure = false;
400         env->v7m.nsacr = 0xcff;
401         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
402         env->v7m.fpccr[M_REG_S] &=
403             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
404         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
405 #endif
406     }
407 
408     /* M profile requires that reset clears the exclusive monitor;
409      * A profile does not, but clearing it makes more sense than having it
410      * set with an exclusive access on address zero.
411      */
412     arm_clear_exclusive(env);
413 
414     if (arm_feature(env, ARM_FEATURE_PMSA)) {
415         if (cpu->pmsav7_dregion > 0) {
416             if (arm_feature(env, ARM_FEATURE_V8)) {
417                 memset(env->pmsav8.rbar[M_REG_NS], 0,
418                        sizeof(*env->pmsav8.rbar[M_REG_NS])
419                        * cpu->pmsav7_dregion);
420                 memset(env->pmsav8.rlar[M_REG_NS], 0,
421                        sizeof(*env->pmsav8.rlar[M_REG_NS])
422                        * cpu->pmsav7_dregion);
423                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
424                     memset(env->pmsav8.rbar[M_REG_S], 0,
425                            sizeof(*env->pmsav8.rbar[M_REG_S])
426                            * cpu->pmsav7_dregion);
427                     memset(env->pmsav8.rlar[M_REG_S], 0,
428                            sizeof(*env->pmsav8.rlar[M_REG_S])
429                            * cpu->pmsav7_dregion);
430                 }
431             } else if (arm_feature(env, ARM_FEATURE_V7)) {
432                 memset(env->pmsav7.drbar, 0,
433                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
434                 memset(env->pmsav7.drsr, 0,
435                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
436                 memset(env->pmsav7.dracr, 0,
437                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
438             }
439         }
440         env->pmsav7.rnr[M_REG_NS] = 0;
441         env->pmsav7.rnr[M_REG_S] = 0;
442         env->pmsav8.mair0[M_REG_NS] = 0;
443         env->pmsav8.mair0[M_REG_S] = 0;
444         env->pmsav8.mair1[M_REG_NS] = 0;
445         env->pmsav8.mair1[M_REG_S] = 0;
446     }
447 
448     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
449         if (cpu->sau_sregion > 0) {
450             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
451             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
452         }
453         env->sau.rnr = 0;
454         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
455          * the Cortex-M33 does.
456          */
457         env->sau.ctrl = 0;
458     }
459 
460     set_flush_to_zero(1, &env->vfp.standard_fp_status);
461     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
462     set_default_nan_mode(1, &env->vfp.standard_fp_status);
463     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
464     set_float_detect_tininess(float_tininess_before_rounding,
465                               &env->vfp.fp_status);
466     set_float_detect_tininess(float_tininess_before_rounding,
467                               &env->vfp.standard_fp_status);
468     set_float_detect_tininess(float_tininess_before_rounding,
469                               &env->vfp.fp_status_f16);
470     set_float_detect_tininess(float_tininess_before_rounding,
471                               &env->vfp.standard_fp_status_f16);
472 #ifndef CONFIG_USER_ONLY
473     if (kvm_enabled()) {
474         kvm_arm_reset_vcpu(cpu);
475     }
476 #endif
477 
478     hw_breakpoint_update_all(cpu);
479     hw_watchpoint_update_all(cpu);
480     arm_rebuild_hflags(env);
481 }
482 
483 #ifndef CONFIG_USER_ONLY
484 
485 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
486                                      unsigned int target_el,
487                                      unsigned int cur_el, bool secure,
488                                      uint64_t hcr_el2)
489 {
490     CPUARMState *env = cs->env_ptr;
491     bool pstate_unmasked;
492     bool unmasked = false;
493 
494     /*
495      * Don't take exceptions if they target a lower EL.
496      * This check should catch any exceptions that would not be taken
497      * but left pending.
498      */
499     if (cur_el > target_el) {
500         return false;
501     }
502 
503     switch (excp_idx) {
504     case EXCP_FIQ:
505         pstate_unmasked = !(env->daif & PSTATE_F);
506         break;
507 
508     case EXCP_IRQ:
509         pstate_unmasked = !(env->daif & PSTATE_I);
510         break;
511 
512     case EXCP_VFIQ:
513         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
514             /* VFIQs are only taken when hypervized.  */
515             return false;
516         }
517         return !(env->daif & PSTATE_F);
518     case EXCP_VIRQ:
519         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
520             /* VIRQs are only taken when hypervized.  */
521             return false;
522         }
523         return !(env->daif & PSTATE_I);
524     case EXCP_VSERR:
525         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
526             /* VIRQs are only taken when hypervized.  */
527             return false;
528         }
529         return !(env->daif & PSTATE_A);
530     default:
531         g_assert_not_reached();
532     }
533 
534     /*
535      * Use the target EL, current execution state and SCR/HCR settings to
536      * determine whether the corresponding CPSR bit is used to mask the
537      * interrupt.
538      */
539     if ((target_el > cur_el) && (target_el != 1)) {
540         /* Exceptions targeting a higher EL may not be maskable */
541         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
542             /*
543              * 64-bit masking rules are simple: exceptions to EL3
544              * can't be masked, and exceptions to EL2 can only be
545              * masked from Secure state. The HCR and SCR settings
546              * don't affect the masking logic, only the interrupt routing.
547              */
548             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
549                 unmasked = true;
550             }
551         } else {
552             /*
553              * The old 32-bit-only environment has a more complicated
554              * masking setup. HCR and SCR bits not only affect interrupt
555              * routing but also change the behaviour of masking.
556              */
557             bool hcr, scr;
558 
559             switch (excp_idx) {
560             case EXCP_FIQ:
561                 /*
562                  * If FIQs are routed to EL3 or EL2 then there are cases where
563                  * we override the CPSR.F in determining if the exception is
564                  * masked or not. If neither of these are set then we fall back
565                  * to the CPSR.F setting otherwise we further assess the state
566                  * below.
567                  */
568                 hcr = hcr_el2 & HCR_FMO;
569                 scr = (env->cp15.scr_el3 & SCR_FIQ);
570 
571                 /*
572                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
573                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
574                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
575                  * when non-secure but only when FIQs are only routed to EL3.
576                  */
577                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
578                 break;
579             case EXCP_IRQ:
580                 /*
581                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
582                  * we may override the CPSR.I masking when in non-secure state.
583                  * The SCR.IRQ setting has already been taken into consideration
584                  * when setting the target EL, so it does not have a further
585                  * affect here.
586                  */
587                 hcr = hcr_el2 & HCR_IMO;
588                 scr = false;
589                 break;
590             default:
591                 g_assert_not_reached();
592             }
593 
594             if ((scr || hcr) && !secure) {
595                 unmasked = true;
596             }
597         }
598     }
599 
600     /*
601      * The PSTATE bits only mask the interrupt if we have not overriden the
602      * ability above.
603      */
604     return unmasked || pstate_unmasked;
605 }
606 
607 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
608 {
609     CPUClass *cc = CPU_GET_CLASS(cs);
610     CPUARMState *env = cs->env_ptr;
611     uint32_t cur_el = arm_current_el(env);
612     bool secure = arm_is_secure(env);
613     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
614     uint32_t target_el;
615     uint32_t excp_idx;
616 
617     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
618 
619     if (interrupt_request & CPU_INTERRUPT_FIQ) {
620         excp_idx = EXCP_FIQ;
621         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
622         if (arm_excp_unmasked(cs, excp_idx, target_el,
623                               cur_el, secure, hcr_el2)) {
624             goto found;
625         }
626     }
627     if (interrupt_request & CPU_INTERRUPT_HARD) {
628         excp_idx = EXCP_IRQ;
629         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
630         if (arm_excp_unmasked(cs, excp_idx, target_el,
631                               cur_el, secure, hcr_el2)) {
632             goto found;
633         }
634     }
635     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
636         excp_idx = EXCP_VIRQ;
637         target_el = 1;
638         if (arm_excp_unmasked(cs, excp_idx, target_el,
639                               cur_el, secure, hcr_el2)) {
640             goto found;
641         }
642     }
643     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
644         excp_idx = EXCP_VFIQ;
645         target_el = 1;
646         if (arm_excp_unmasked(cs, excp_idx, target_el,
647                               cur_el, secure, hcr_el2)) {
648             goto found;
649         }
650     }
651     if (interrupt_request & CPU_INTERRUPT_VSERR) {
652         excp_idx = EXCP_VSERR;
653         target_el = 1;
654         if (arm_excp_unmasked(cs, excp_idx, target_el,
655                               cur_el, secure, hcr_el2)) {
656             /* Taking a virtual abort clears HCR_EL2.VSE */
657             env->cp15.hcr_el2 &= ~HCR_VSE;
658             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
659             goto found;
660         }
661     }
662     return false;
663 
664  found:
665     cs->exception_index = excp_idx;
666     env->exception.target_el = target_el;
667     cc->tcg_ops->do_interrupt(cs);
668     return true;
669 }
670 #endif /* !CONFIG_USER_ONLY */
671 
672 void arm_cpu_update_virq(ARMCPU *cpu)
673 {
674     /*
675      * Update the interrupt level for VIRQ, which is the logical OR of
676      * the HCR_EL2.VI bit and the input line level from the GIC.
677      */
678     CPUARMState *env = &cpu->env;
679     CPUState *cs = CPU(cpu);
680 
681     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
682         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
683 
684     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
685         if (new_state) {
686             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
687         } else {
688             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
689         }
690     }
691 }
692 
693 void arm_cpu_update_vfiq(ARMCPU *cpu)
694 {
695     /*
696      * Update the interrupt level for VFIQ, which is the logical OR of
697      * the HCR_EL2.VF bit and the input line level from the GIC.
698      */
699     CPUARMState *env = &cpu->env;
700     CPUState *cs = CPU(cpu);
701 
702     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
703         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
704 
705     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
706         if (new_state) {
707             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
708         } else {
709             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
710         }
711     }
712 }
713 
714 void arm_cpu_update_vserr(ARMCPU *cpu)
715 {
716     /*
717      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
718      */
719     CPUARMState *env = &cpu->env;
720     CPUState *cs = CPU(cpu);
721 
722     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
723 
724     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
725         if (new_state) {
726             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
727         } else {
728             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
729         }
730     }
731 }
732 
733 #ifndef CONFIG_USER_ONLY
734 static void arm_cpu_set_irq(void *opaque, int irq, int level)
735 {
736     ARMCPU *cpu = opaque;
737     CPUARMState *env = &cpu->env;
738     CPUState *cs = CPU(cpu);
739     static const int mask[] = {
740         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
741         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
742         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
743         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
744     };
745 
746     if (!arm_feature(env, ARM_FEATURE_EL2) &&
747         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
748         /*
749          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
750          * have EL2 support we don't care. (Unless the guest is doing something
751          * silly this will only be calls saying "level is still 0".)
752          */
753         return;
754     }
755 
756     if (level) {
757         env->irq_line_state |= mask[irq];
758     } else {
759         env->irq_line_state &= ~mask[irq];
760     }
761 
762     switch (irq) {
763     case ARM_CPU_VIRQ:
764         arm_cpu_update_virq(cpu);
765         break;
766     case ARM_CPU_VFIQ:
767         arm_cpu_update_vfiq(cpu);
768         break;
769     case ARM_CPU_IRQ:
770     case ARM_CPU_FIQ:
771         if (level) {
772             cpu_interrupt(cs, mask[irq]);
773         } else {
774             cpu_reset_interrupt(cs, mask[irq]);
775         }
776         break;
777     default:
778         g_assert_not_reached();
779     }
780 }
781 
782 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
783 {
784 #ifdef CONFIG_KVM
785     ARMCPU *cpu = opaque;
786     CPUARMState *env = &cpu->env;
787     CPUState *cs = CPU(cpu);
788     uint32_t linestate_bit;
789     int irq_id;
790 
791     switch (irq) {
792     case ARM_CPU_IRQ:
793         irq_id = KVM_ARM_IRQ_CPU_IRQ;
794         linestate_bit = CPU_INTERRUPT_HARD;
795         break;
796     case ARM_CPU_FIQ:
797         irq_id = KVM_ARM_IRQ_CPU_FIQ;
798         linestate_bit = CPU_INTERRUPT_FIQ;
799         break;
800     default:
801         g_assert_not_reached();
802     }
803 
804     if (level) {
805         env->irq_line_state |= linestate_bit;
806     } else {
807         env->irq_line_state &= ~linestate_bit;
808     }
809     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
810 #endif
811 }
812 
813 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
814 {
815     ARMCPU *cpu = ARM_CPU(cs);
816     CPUARMState *env = &cpu->env;
817 
818     cpu_synchronize_state(cs);
819     return arm_cpu_data_is_big_endian(env);
820 }
821 
822 #endif
823 
824 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
825 {
826     ARMCPU *ac = ARM_CPU(cpu);
827     CPUARMState *env = &ac->env;
828     bool sctlr_b;
829 
830     if (is_a64(env)) {
831         info->cap_arch = CS_ARCH_ARM64;
832         info->cap_insn_unit = 4;
833         info->cap_insn_split = 4;
834     } else {
835         int cap_mode;
836         if (env->thumb) {
837             info->cap_insn_unit = 2;
838             info->cap_insn_split = 4;
839             cap_mode = CS_MODE_THUMB;
840         } else {
841             info->cap_insn_unit = 4;
842             info->cap_insn_split = 4;
843             cap_mode = CS_MODE_ARM;
844         }
845         if (arm_feature(env, ARM_FEATURE_V8)) {
846             cap_mode |= CS_MODE_V8;
847         }
848         if (arm_feature(env, ARM_FEATURE_M)) {
849             cap_mode |= CS_MODE_MCLASS;
850         }
851         info->cap_arch = CS_ARCH_ARM;
852         info->cap_mode = cap_mode;
853     }
854 
855     sctlr_b = arm_sctlr_b(env);
856     if (bswap_code(sctlr_b)) {
857 #if TARGET_BIG_ENDIAN
858         info->endian = BFD_ENDIAN_LITTLE;
859 #else
860         info->endian = BFD_ENDIAN_BIG;
861 #endif
862     }
863     info->flags &= ~INSN_ARM_BE32;
864 #ifndef CONFIG_USER_ONLY
865     if (sctlr_b) {
866         info->flags |= INSN_ARM_BE32;
867     }
868 #endif
869 }
870 
871 #ifdef TARGET_AARCH64
872 
873 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
874 {
875     ARMCPU *cpu = ARM_CPU(cs);
876     CPUARMState *env = &cpu->env;
877     uint32_t psr = pstate_read(env);
878     int i;
879     int el = arm_current_el(env);
880     const char *ns_status;
881 
882     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
883     for (i = 0; i < 32; i++) {
884         if (i == 31) {
885             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
886         } else {
887             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
888                          (i + 2) % 3 ? " " : "\n");
889         }
890     }
891 
892     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
893         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
894     } else {
895         ns_status = "";
896     }
897     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
898                  psr,
899                  psr & PSTATE_N ? 'N' : '-',
900                  psr & PSTATE_Z ? 'Z' : '-',
901                  psr & PSTATE_C ? 'C' : '-',
902                  psr & PSTATE_V ? 'V' : '-',
903                  ns_status,
904                  el,
905                  psr & PSTATE_SP ? 'h' : 't');
906 
907     if (cpu_isar_feature(aa64_bti, cpu)) {
908         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
909     }
910     if (!(flags & CPU_DUMP_FPU)) {
911         qemu_fprintf(f, "\n");
912         return;
913     }
914     if (fp_exception_el(env, el) != 0) {
915         qemu_fprintf(f, "    FPU disabled\n");
916         return;
917     }
918     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
919                  vfp_get_fpcr(env), vfp_get_fpsr(env));
920 
921     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
922         int j, zcr_len = sve_vqm1_for_el(env, el);
923 
924         for (i = 0; i <= FFR_PRED_NUM; i++) {
925             bool eol;
926             if (i == FFR_PRED_NUM) {
927                 qemu_fprintf(f, "FFR=");
928                 /* It's last, so end the line.  */
929                 eol = true;
930             } else {
931                 qemu_fprintf(f, "P%02d=", i);
932                 switch (zcr_len) {
933                 case 0:
934                     eol = i % 8 == 7;
935                     break;
936                 case 1:
937                     eol = i % 6 == 5;
938                     break;
939                 case 2:
940                 case 3:
941                     eol = i % 3 == 2;
942                     break;
943                 default:
944                     /* More than one quadword per predicate.  */
945                     eol = true;
946                     break;
947                 }
948             }
949             for (j = zcr_len / 4; j >= 0; j--) {
950                 int digits;
951                 if (j * 4 + 4 <= zcr_len + 1) {
952                     digits = 16;
953                 } else {
954                     digits = (zcr_len % 4 + 1) * 4;
955                 }
956                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
957                              env->vfp.pregs[i].p[j],
958                              j ? ":" : eol ? "\n" : " ");
959             }
960         }
961 
962         for (i = 0; i < 32; i++) {
963             if (zcr_len == 0) {
964                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
965                              i, env->vfp.zregs[i].d[1],
966                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
967             } else if (zcr_len == 1) {
968                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
969                              ":%016" PRIx64 ":%016" PRIx64 "\n",
970                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
971                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
972             } else {
973                 for (j = zcr_len; j >= 0; j--) {
974                     bool odd = (zcr_len - j) % 2 != 0;
975                     if (j == zcr_len) {
976                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
977                     } else if (!odd) {
978                         if (j > 0) {
979                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
980                         } else {
981                             qemu_fprintf(f, "     [%x]=", j);
982                         }
983                     }
984                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
985                                  env->vfp.zregs[i].d[j * 2 + 1],
986                                  env->vfp.zregs[i].d[j * 2],
987                                  odd || j == 0 ? "\n" : ":");
988                 }
989             }
990         }
991     } else {
992         for (i = 0; i < 32; i++) {
993             uint64_t *q = aa64_vfp_qreg(env, i);
994             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
995                          i, q[1], q[0], (i & 1 ? "\n" : " "));
996         }
997     }
998 }
999 
1000 #else
1001 
1002 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1003 {
1004     g_assert_not_reached();
1005 }
1006 
1007 #endif
1008 
1009 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1010 {
1011     ARMCPU *cpu = ARM_CPU(cs);
1012     CPUARMState *env = &cpu->env;
1013     int i;
1014 
1015     if (is_a64(env)) {
1016         aarch64_cpu_dump_state(cs, f, flags);
1017         return;
1018     }
1019 
1020     for (i = 0; i < 16; i++) {
1021         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1022         if ((i % 4) == 3) {
1023             qemu_fprintf(f, "\n");
1024         } else {
1025             qemu_fprintf(f, " ");
1026         }
1027     }
1028 
1029     if (arm_feature(env, ARM_FEATURE_M)) {
1030         uint32_t xpsr = xpsr_read(env);
1031         const char *mode;
1032         const char *ns_status = "";
1033 
1034         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1035             ns_status = env->v7m.secure ? "S " : "NS ";
1036         }
1037 
1038         if (xpsr & XPSR_EXCP) {
1039             mode = "handler";
1040         } else {
1041             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1042                 mode = "unpriv-thread";
1043             } else {
1044                 mode = "priv-thread";
1045             }
1046         }
1047 
1048         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1049                      xpsr,
1050                      xpsr & XPSR_N ? 'N' : '-',
1051                      xpsr & XPSR_Z ? 'Z' : '-',
1052                      xpsr & XPSR_C ? 'C' : '-',
1053                      xpsr & XPSR_V ? 'V' : '-',
1054                      xpsr & XPSR_T ? 'T' : 'A',
1055                      ns_status,
1056                      mode);
1057     } else {
1058         uint32_t psr = cpsr_read(env);
1059         const char *ns_status = "";
1060 
1061         if (arm_feature(env, ARM_FEATURE_EL3) &&
1062             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1063             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1064         }
1065 
1066         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1067                      psr,
1068                      psr & CPSR_N ? 'N' : '-',
1069                      psr & CPSR_Z ? 'Z' : '-',
1070                      psr & CPSR_C ? 'C' : '-',
1071                      psr & CPSR_V ? 'V' : '-',
1072                      psr & CPSR_T ? 'T' : 'A',
1073                      ns_status,
1074                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1075     }
1076 
1077     if (flags & CPU_DUMP_FPU) {
1078         int numvfpregs = 0;
1079         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1080             numvfpregs = 32;
1081         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1082             numvfpregs = 16;
1083         }
1084         for (i = 0; i < numvfpregs; i++) {
1085             uint64_t v = *aa32_vfp_dreg(env, i);
1086             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1087                          i * 2, (uint32_t)v,
1088                          i * 2 + 1, (uint32_t)(v >> 32),
1089                          i, v);
1090         }
1091         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1092         if (cpu_isar_feature(aa32_mve, cpu)) {
1093             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1094         }
1095     }
1096 }
1097 
1098 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1099 {
1100     uint32_t Aff1 = idx / clustersz;
1101     uint32_t Aff0 = idx % clustersz;
1102     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1103 }
1104 
1105 static void arm_cpu_initfn(Object *obj)
1106 {
1107     ARMCPU *cpu = ARM_CPU(obj);
1108 
1109     cpu_set_cpustate_pointers(cpu);
1110     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1111                                          NULL, g_free);
1112 
1113     QLIST_INIT(&cpu->pre_el_change_hooks);
1114     QLIST_INIT(&cpu->el_change_hooks);
1115 
1116 #ifdef CONFIG_USER_ONLY
1117 # ifdef TARGET_AARCH64
1118     /*
1119      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1120      * These values were chosen to fit within the default signal frame.
1121      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1122      * and our corresponding cpu property.
1123      */
1124     cpu->sve_default_vq = 4;
1125     cpu->sme_default_vq = 2;
1126 # endif
1127 #else
1128     /* Our inbound IRQ and FIQ lines */
1129     if (kvm_enabled()) {
1130         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1131          * the same interface as non-KVM CPUs.
1132          */
1133         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1134     } else {
1135         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1136     }
1137 
1138     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1139                        ARRAY_SIZE(cpu->gt_timer_outputs));
1140 
1141     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1142                              "gicv3-maintenance-interrupt", 1);
1143     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1144                              "pmu-interrupt", 1);
1145 #endif
1146 
1147     /* DTB consumers generally don't in fact care what the 'compatible'
1148      * string is, so always provide some string and trust that a hypothetical
1149      * picky DTB consumer will also provide a helpful error message.
1150      */
1151     cpu->dtb_compatible = "qemu,unknown";
1152     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1153     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1154 
1155     if (tcg_enabled() || hvf_enabled()) {
1156         /* TCG and HVF implement PSCI 1.1 */
1157         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1158     }
1159 }
1160 
1161 static Property arm_cpu_gt_cntfrq_property =
1162             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1163                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1164 
1165 static Property arm_cpu_reset_cbar_property =
1166             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1167 
1168 static Property arm_cpu_reset_hivecs_property =
1169             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1170 
1171 #ifndef CONFIG_USER_ONLY
1172 static Property arm_cpu_has_el2_property =
1173             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1174 
1175 static Property arm_cpu_has_el3_property =
1176             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1177 #endif
1178 
1179 static Property arm_cpu_cfgend_property =
1180             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1181 
1182 static Property arm_cpu_has_vfp_property =
1183             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1184 
1185 static Property arm_cpu_has_neon_property =
1186             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1187 
1188 static Property arm_cpu_has_dsp_property =
1189             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1190 
1191 static Property arm_cpu_has_mpu_property =
1192             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1193 
1194 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1195  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1196  * the right value for that particular CPU type, and we don't want
1197  * to override that with an incorrect constant value.
1198  */
1199 static Property arm_cpu_pmsav7_dregion_property =
1200             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1201                                            pmsav7_dregion,
1202                                            qdev_prop_uint32, uint32_t);
1203 
1204 static bool arm_get_pmu(Object *obj, Error **errp)
1205 {
1206     ARMCPU *cpu = ARM_CPU(obj);
1207 
1208     return cpu->has_pmu;
1209 }
1210 
1211 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1212 {
1213     ARMCPU *cpu = ARM_CPU(obj);
1214 
1215     if (value) {
1216         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1217             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1218             return;
1219         }
1220         set_feature(&cpu->env, ARM_FEATURE_PMU);
1221     } else {
1222         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1223     }
1224     cpu->has_pmu = value;
1225 }
1226 
1227 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1228 {
1229     /*
1230      * The exact approach to calculating guest ticks is:
1231      *
1232      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1233      *              NANOSECONDS_PER_SECOND);
1234      *
1235      * We don't do that. Rather we intentionally use integer division
1236      * truncation below and in the caller for the conversion of host monotonic
1237      * time to guest ticks to provide the exact inverse for the semantics of
1238      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1239      * it loses precision when representing frequencies where
1240      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1241      * provide an exact inverse leads to scheduling timers with negative
1242      * periods, which in turn leads to sticky behaviour in the guest.
1243      *
1244      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1245      * cannot become zero.
1246      */
1247     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1248       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1249 }
1250 
1251 void arm_cpu_post_init(Object *obj)
1252 {
1253     ARMCPU *cpu = ARM_CPU(obj);
1254 
1255     /* M profile implies PMSA. We have to do this here rather than
1256      * in realize with the other feature-implication checks because
1257      * we look at the PMSA bit to see if we should add some properties.
1258      */
1259     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1260         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1261     }
1262 
1263     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1264         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1265         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1266     }
1267 
1268     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1269         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1270     }
1271 
1272     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1273         object_property_add_uint64_ptr(obj, "rvbar",
1274                                        &cpu->rvbar_prop,
1275                                        OBJ_PROP_FLAG_READWRITE);
1276     }
1277 
1278 #ifndef CONFIG_USER_ONLY
1279     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1280         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1281          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1282          */
1283         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1284 
1285         object_property_add_link(obj, "secure-memory",
1286                                  TYPE_MEMORY_REGION,
1287                                  (Object **)&cpu->secure_memory,
1288                                  qdev_prop_allow_set_link_before_realize,
1289                                  OBJ_PROP_LINK_STRONG);
1290     }
1291 
1292     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1293         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1294     }
1295 #endif
1296 
1297     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1298         cpu->has_pmu = true;
1299         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1300     }
1301 
1302     /*
1303      * Allow user to turn off VFP and Neon support, but only for TCG --
1304      * KVM does not currently allow us to lie to the guest about its
1305      * ID/feature registers, so the guest always sees what the host has.
1306      */
1307     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1308         ? cpu_isar_feature(aa64_fp_simd, cpu)
1309         : cpu_isar_feature(aa32_vfp, cpu)) {
1310         cpu->has_vfp = true;
1311         if (!kvm_enabled()) {
1312             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1313         }
1314     }
1315 
1316     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1317         cpu->has_neon = true;
1318         if (!kvm_enabled()) {
1319             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1320         }
1321     }
1322 
1323     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1324         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1325         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1326     }
1327 
1328     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1329         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1330         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1331             qdev_property_add_static(DEVICE(obj),
1332                                      &arm_cpu_pmsav7_dregion_property);
1333         }
1334     }
1335 
1336     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1337         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1338                                  qdev_prop_allow_set_link_before_realize,
1339                                  OBJ_PROP_LINK_STRONG);
1340         /*
1341          * M profile: initial value of the Secure VTOR. We can't just use
1342          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1343          * the property to be set after realize.
1344          */
1345         object_property_add_uint32_ptr(obj, "init-svtor",
1346                                        &cpu->init_svtor,
1347                                        OBJ_PROP_FLAG_READWRITE);
1348     }
1349     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1350         /*
1351          * Initial value of the NS VTOR (for cores without the Security
1352          * extension, this is the only VTOR)
1353          */
1354         object_property_add_uint32_ptr(obj, "init-nsvtor",
1355                                        &cpu->init_nsvtor,
1356                                        OBJ_PROP_FLAG_READWRITE);
1357     }
1358 
1359     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1360     object_property_add_uint32_ptr(obj, "psci-conduit",
1361                                    &cpu->psci_conduit,
1362                                    OBJ_PROP_FLAG_READWRITE);
1363 
1364     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1365 
1366     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1367         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1368     }
1369 
1370     if (kvm_enabled()) {
1371         kvm_arm_add_vcpu_properties(obj);
1372     }
1373 
1374 #ifndef CONFIG_USER_ONLY
1375     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1376         cpu_isar_feature(aa64_mte, cpu)) {
1377         object_property_add_link(obj, "tag-memory",
1378                                  TYPE_MEMORY_REGION,
1379                                  (Object **)&cpu->tag_memory,
1380                                  qdev_prop_allow_set_link_before_realize,
1381                                  OBJ_PROP_LINK_STRONG);
1382 
1383         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1384             object_property_add_link(obj, "secure-tag-memory",
1385                                      TYPE_MEMORY_REGION,
1386                                      (Object **)&cpu->secure_tag_memory,
1387                                      qdev_prop_allow_set_link_before_realize,
1388                                      OBJ_PROP_LINK_STRONG);
1389         }
1390     }
1391 #endif
1392 }
1393 
1394 static void arm_cpu_finalizefn(Object *obj)
1395 {
1396     ARMCPU *cpu = ARM_CPU(obj);
1397     ARMELChangeHook *hook, *next;
1398 
1399     g_hash_table_destroy(cpu->cp_regs);
1400 
1401     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1402         QLIST_REMOVE(hook, node);
1403         g_free(hook);
1404     }
1405     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1406         QLIST_REMOVE(hook, node);
1407         g_free(hook);
1408     }
1409 #ifndef CONFIG_USER_ONLY
1410     if (cpu->pmu_timer) {
1411         timer_free(cpu->pmu_timer);
1412     }
1413 #endif
1414 }
1415 
1416 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1417 {
1418     Error *local_err = NULL;
1419 
1420 #ifdef TARGET_AARCH64
1421     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1422         arm_cpu_sve_finalize(cpu, &local_err);
1423         if (local_err != NULL) {
1424             error_propagate(errp, local_err);
1425             return;
1426         }
1427 
1428         arm_cpu_sme_finalize(cpu, &local_err);
1429         if (local_err != NULL) {
1430             error_propagate(errp, local_err);
1431             return;
1432         }
1433 
1434         arm_cpu_pauth_finalize(cpu, &local_err);
1435         if (local_err != NULL) {
1436             error_propagate(errp, local_err);
1437             return;
1438         }
1439 
1440         arm_cpu_lpa2_finalize(cpu, &local_err);
1441         if (local_err != NULL) {
1442             error_propagate(errp, local_err);
1443             return;
1444         }
1445     }
1446 #endif
1447 
1448     if (kvm_enabled()) {
1449         kvm_arm_steal_time_finalize(cpu, &local_err);
1450         if (local_err != NULL) {
1451             error_propagate(errp, local_err);
1452             return;
1453         }
1454     }
1455 }
1456 
1457 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1458 {
1459     CPUState *cs = CPU(dev);
1460     ARMCPU *cpu = ARM_CPU(dev);
1461     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1462     CPUARMState *env = &cpu->env;
1463     int pagebits;
1464     Error *local_err = NULL;
1465     bool no_aa32 = false;
1466 
1467     /* If we needed to query the host kernel for the CPU features
1468      * then it's possible that might have failed in the initfn, but
1469      * this is the first point where we can report it.
1470      */
1471     if (cpu->host_cpu_probe_failed) {
1472         if (!kvm_enabled() && !hvf_enabled()) {
1473             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1474         } else {
1475             error_setg(errp, "Failed to retrieve host CPU features");
1476         }
1477         return;
1478     }
1479 
1480 #ifndef CONFIG_USER_ONLY
1481     /* The NVIC and M-profile CPU are two halves of a single piece of
1482      * hardware; trying to use one without the other is a command line
1483      * error and will result in segfaults if not caught here.
1484      */
1485     if (arm_feature(env, ARM_FEATURE_M)) {
1486         if (!env->nvic) {
1487             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1488             return;
1489         }
1490     } else {
1491         if (env->nvic) {
1492             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1493             return;
1494         }
1495     }
1496 
1497     if (!tcg_enabled() && !qtest_enabled()) {
1498         /*
1499          * We assume that no accelerator except TCG (and the "not really an
1500          * accelerator" qtest) can handle these features, because Arm hardware
1501          * virtualization can't virtualize them.
1502          *
1503          * Catch all the cases which might cause us to create more than one
1504          * address space for the CPU (otherwise we will assert() later in
1505          * cpu_address_space_init()).
1506          */
1507         if (arm_feature(env, ARM_FEATURE_M)) {
1508             error_setg(errp,
1509                        "Cannot enable %s when using an M-profile guest CPU",
1510                        current_accel_name());
1511             return;
1512         }
1513         if (cpu->has_el3) {
1514             error_setg(errp,
1515                        "Cannot enable %s when guest CPU has EL3 enabled",
1516                        current_accel_name());
1517             return;
1518         }
1519         if (cpu->tag_memory) {
1520             error_setg(errp,
1521                        "Cannot enable %s when guest CPUs has MTE enabled",
1522                        current_accel_name());
1523             return;
1524         }
1525     }
1526 
1527     {
1528         uint64_t scale;
1529 
1530         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1531             if (!cpu->gt_cntfrq_hz) {
1532                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1533                            cpu->gt_cntfrq_hz);
1534                 return;
1535             }
1536             scale = gt_cntfrq_period_ns(cpu);
1537         } else {
1538             scale = GTIMER_SCALE;
1539         }
1540 
1541         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1542                                                arm_gt_ptimer_cb, cpu);
1543         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1544                                                arm_gt_vtimer_cb, cpu);
1545         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1546                                               arm_gt_htimer_cb, cpu);
1547         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1548                                               arm_gt_stimer_cb, cpu);
1549         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1550                                                   arm_gt_hvtimer_cb, cpu);
1551     }
1552 #endif
1553 
1554     cpu_exec_realizefn(cs, &local_err);
1555     if (local_err != NULL) {
1556         error_propagate(errp, local_err);
1557         return;
1558     }
1559 
1560     arm_cpu_finalize_features(cpu, &local_err);
1561     if (local_err != NULL) {
1562         error_propagate(errp, local_err);
1563         return;
1564     }
1565 
1566     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1567         cpu->has_vfp != cpu->has_neon) {
1568         /*
1569          * This is an architectural requirement for AArch64; AArch32 is
1570          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1571          */
1572         error_setg(errp,
1573                    "AArch64 CPUs must have both VFP and Neon or neither");
1574         return;
1575     }
1576 
1577     if (!cpu->has_vfp) {
1578         uint64_t t;
1579         uint32_t u;
1580 
1581         t = cpu->isar.id_aa64isar1;
1582         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1583         cpu->isar.id_aa64isar1 = t;
1584 
1585         t = cpu->isar.id_aa64pfr0;
1586         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1587         cpu->isar.id_aa64pfr0 = t;
1588 
1589         u = cpu->isar.id_isar6;
1590         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1591         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1592         cpu->isar.id_isar6 = u;
1593 
1594         u = cpu->isar.mvfr0;
1595         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1596         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1597         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1598         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1599         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1600         if (!arm_feature(env, ARM_FEATURE_M)) {
1601             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1602             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1603         }
1604         cpu->isar.mvfr0 = u;
1605 
1606         u = cpu->isar.mvfr1;
1607         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1608         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1609         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1610         if (arm_feature(env, ARM_FEATURE_M)) {
1611             u = FIELD_DP32(u, MVFR1, FP16, 0);
1612         }
1613         cpu->isar.mvfr1 = u;
1614 
1615         u = cpu->isar.mvfr2;
1616         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1617         cpu->isar.mvfr2 = u;
1618     }
1619 
1620     if (!cpu->has_neon) {
1621         uint64_t t;
1622         uint32_t u;
1623 
1624         unset_feature(env, ARM_FEATURE_NEON);
1625 
1626         t = cpu->isar.id_aa64isar0;
1627         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1628         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1629         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1630         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1631         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1632         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1633         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1634         cpu->isar.id_aa64isar0 = t;
1635 
1636         t = cpu->isar.id_aa64isar1;
1637         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1638         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1639         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1640         cpu->isar.id_aa64isar1 = t;
1641 
1642         t = cpu->isar.id_aa64pfr0;
1643         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1644         cpu->isar.id_aa64pfr0 = t;
1645 
1646         u = cpu->isar.id_isar5;
1647         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1648         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1649         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1650         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1651         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1652         cpu->isar.id_isar5 = u;
1653 
1654         u = cpu->isar.id_isar6;
1655         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1656         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1657         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1658         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1659         cpu->isar.id_isar6 = u;
1660 
1661         if (!arm_feature(env, ARM_FEATURE_M)) {
1662             u = cpu->isar.mvfr1;
1663             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1664             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1665             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1666             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1667             cpu->isar.mvfr1 = u;
1668 
1669             u = cpu->isar.mvfr2;
1670             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1671             cpu->isar.mvfr2 = u;
1672         }
1673     }
1674 
1675     if (!cpu->has_neon && !cpu->has_vfp) {
1676         uint64_t t;
1677         uint32_t u;
1678 
1679         t = cpu->isar.id_aa64isar0;
1680         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1681         cpu->isar.id_aa64isar0 = t;
1682 
1683         t = cpu->isar.id_aa64isar1;
1684         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1685         cpu->isar.id_aa64isar1 = t;
1686 
1687         u = cpu->isar.mvfr0;
1688         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1689         cpu->isar.mvfr0 = u;
1690 
1691         /* Despite the name, this field covers both VFP and Neon */
1692         u = cpu->isar.mvfr1;
1693         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1694         cpu->isar.mvfr1 = u;
1695     }
1696 
1697     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1698         uint32_t u;
1699 
1700         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1701 
1702         u = cpu->isar.id_isar1;
1703         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1704         cpu->isar.id_isar1 = u;
1705 
1706         u = cpu->isar.id_isar2;
1707         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1708         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1709         cpu->isar.id_isar2 = u;
1710 
1711         u = cpu->isar.id_isar3;
1712         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1713         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1714         cpu->isar.id_isar3 = u;
1715     }
1716 
1717     /* Some features automatically imply others: */
1718     if (arm_feature(env, ARM_FEATURE_V8)) {
1719         if (arm_feature(env, ARM_FEATURE_M)) {
1720             set_feature(env, ARM_FEATURE_V7);
1721         } else {
1722             set_feature(env, ARM_FEATURE_V7VE);
1723         }
1724     }
1725 
1726     /*
1727      * There exist AArch64 cpus without AArch32 support.  When KVM
1728      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1729      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1730      * As a general principle, we also do not make ID register
1731      * consistency checks anywhere unless using TCG, because only
1732      * for TCG would a consistency-check failure be a QEMU bug.
1733      */
1734     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1735         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1736     }
1737 
1738     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1739         /* v7 Virtualization Extensions. In real hardware this implies
1740          * EL2 and also the presence of the Security Extensions.
1741          * For QEMU, for backwards-compatibility we implement some
1742          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1743          * include the various other features that V7VE implies.
1744          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1745          * Security Extensions is ARM_FEATURE_EL3.
1746          */
1747         assert(!tcg_enabled() || no_aa32 ||
1748                cpu_isar_feature(aa32_arm_div, cpu));
1749         set_feature(env, ARM_FEATURE_LPAE);
1750         set_feature(env, ARM_FEATURE_V7);
1751     }
1752     if (arm_feature(env, ARM_FEATURE_V7)) {
1753         set_feature(env, ARM_FEATURE_VAPA);
1754         set_feature(env, ARM_FEATURE_THUMB2);
1755         set_feature(env, ARM_FEATURE_MPIDR);
1756         if (!arm_feature(env, ARM_FEATURE_M)) {
1757             set_feature(env, ARM_FEATURE_V6K);
1758         } else {
1759             set_feature(env, ARM_FEATURE_V6);
1760         }
1761 
1762         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1763          * non-EL3 configs. This is needed by some legacy boards.
1764          */
1765         set_feature(env, ARM_FEATURE_VBAR);
1766     }
1767     if (arm_feature(env, ARM_FEATURE_V6K)) {
1768         set_feature(env, ARM_FEATURE_V6);
1769         set_feature(env, ARM_FEATURE_MVFR);
1770     }
1771     if (arm_feature(env, ARM_FEATURE_V6)) {
1772         set_feature(env, ARM_FEATURE_V5);
1773         if (!arm_feature(env, ARM_FEATURE_M)) {
1774             assert(!tcg_enabled() || no_aa32 ||
1775                    cpu_isar_feature(aa32_jazelle, cpu));
1776             set_feature(env, ARM_FEATURE_AUXCR);
1777         }
1778     }
1779     if (arm_feature(env, ARM_FEATURE_V5)) {
1780         set_feature(env, ARM_FEATURE_V4T);
1781     }
1782     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1783         set_feature(env, ARM_FEATURE_V7MP);
1784     }
1785     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1786         set_feature(env, ARM_FEATURE_CBAR);
1787     }
1788     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1789         !arm_feature(env, ARM_FEATURE_M)) {
1790         set_feature(env, ARM_FEATURE_THUMB_DSP);
1791     }
1792 
1793     /*
1794      * We rely on no XScale CPU having VFP so we can use the same bits in the
1795      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1796      */
1797     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1798            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1799            !arm_feature(env, ARM_FEATURE_XSCALE));
1800 
1801     if (arm_feature(env, ARM_FEATURE_V7) &&
1802         !arm_feature(env, ARM_FEATURE_M) &&
1803         !arm_feature(env, ARM_FEATURE_PMSA)) {
1804         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1805          * can use 4K pages.
1806          */
1807         pagebits = 12;
1808     } else {
1809         /* For CPUs which might have tiny 1K pages, or which have an
1810          * MPU and might have small region sizes, stick with 1K pages.
1811          */
1812         pagebits = 10;
1813     }
1814     if (!set_preferred_target_page_bits(pagebits)) {
1815         /* This can only ever happen for hotplugging a CPU, or if
1816          * the board code incorrectly creates a CPU which it has
1817          * promised via minimum_page_size that it will not.
1818          */
1819         error_setg(errp, "This CPU requires a smaller page size than the "
1820                    "system is using");
1821         return;
1822     }
1823 
1824     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1825      * We don't support setting cluster ID ([16..23]) (known as Aff2
1826      * in later ARM ARM versions), or any of the higher affinity level fields,
1827      * so these bits always RAZ.
1828      */
1829     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1830         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1831                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1832     }
1833 
1834     if (cpu->reset_hivecs) {
1835             cpu->reset_sctlr |= (1 << 13);
1836     }
1837 
1838     if (cpu->cfgend) {
1839         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1840             cpu->reset_sctlr |= SCTLR_EE;
1841         } else {
1842             cpu->reset_sctlr |= SCTLR_B;
1843         }
1844     }
1845 
1846     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1847         /* If the has_el3 CPU property is disabled then we need to disable the
1848          * feature.
1849          */
1850         unset_feature(env, ARM_FEATURE_EL3);
1851 
1852         /*
1853          * Disable the security extension feature bits in the processor
1854          * feature registers as well.
1855          */
1856         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1857         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1858         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1859                                            ID_AA64PFR0, EL3, 0);
1860     }
1861 
1862     if (!cpu->has_el2) {
1863         unset_feature(env, ARM_FEATURE_EL2);
1864     }
1865 
1866     if (!cpu->has_pmu) {
1867         unset_feature(env, ARM_FEATURE_PMU);
1868     }
1869     if (arm_feature(env, ARM_FEATURE_PMU)) {
1870         pmu_init(cpu);
1871 
1872         if (!kvm_enabled()) {
1873             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1874             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1875         }
1876 
1877 #ifndef CONFIG_USER_ONLY
1878         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1879                 cpu);
1880 #endif
1881     } else {
1882         cpu->isar.id_aa64dfr0 =
1883             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1884         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1885         cpu->pmceid0 = 0;
1886         cpu->pmceid1 = 0;
1887     }
1888 
1889     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1890         /*
1891          * Disable the hypervisor feature bits in the processor feature
1892          * registers if we don't have EL2.
1893          */
1894         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1895                                            ID_AA64PFR0, EL2, 0);
1896         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1897                                        ID_PFR1, VIRTUALIZATION, 0);
1898     }
1899 
1900 #ifndef CONFIG_USER_ONLY
1901     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1902         /*
1903          * Disable the MTE feature bits if we do not have tag-memory
1904          * provided by the machine.
1905          */
1906         cpu->isar.id_aa64pfr1 =
1907             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1908     }
1909 #endif
1910 
1911     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1912      * to false or by setting pmsav7-dregion to 0.
1913      */
1914     if (!cpu->has_mpu) {
1915         cpu->pmsav7_dregion = 0;
1916     }
1917     if (cpu->pmsav7_dregion == 0) {
1918         cpu->has_mpu = false;
1919     }
1920 
1921     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1922         arm_feature(env, ARM_FEATURE_V7)) {
1923         uint32_t nr = cpu->pmsav7_dregion;
1924 
1925         if (nr > 0xff) {
1926             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1927             return;
1928         }
1929 
1930         if (nr) {
1931             if (arm_feature(env, ARM_FEATURE_V8)) {
1932                 /* PMSAv8 */
1933                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1934                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1935                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1936                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1937                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1938                 }
1939             } else {
1940                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1941                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1942                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1943             }
1944         }
1945     }
1946 
1947     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1948         uint32_t nr = cpu->sau_sregion;
1949 
1950         if (nr > 0xff) {
1951             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1952             return;
1953         }
1954 
1955         if (nr) {
1956             env->sau.rbar = g_new0(uint32_t, nr);
1957             env->sau.rlar = g_new0(uint32_t, nr);
1958         }
1959     }
1960 
1961     if (arm_feature(env, ARM_FEATURE_EL3)) {
1962         set_feature(env, ARM_FEATURE_VBAR);
1963     }
1964 
1965     register_cp_regs_for_features(cpu);
1966     arm_cpu_register_gdb_regs_for_features(cpu);
1967 
1968     init_cpreg_list(cpu);
1969 
1970 #ifndef CONFIG_USER_ONLY
1971     MachineState *ms = MACHINE(qdev_get_machine());
1972     unsigned int smp_cpus = ms->smp.cpus;
1973     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1974 
1975     /*
1976      * We must set cs->num_ases to the final value before
1977      * the first call to cpu_address_space_init.
1978      */
1979     if (cpu->tag_memory != NULL) {
1980         cs->num_ases = 3 + has_secure;
1981     } else {
1982         cs->num_ases = 1 + has_secure;
1983     }
1984 
1985     if (has_secure) {
1986         if (!cpu->secure_memory) {
1987             cpu->secure_memory = cs->memory;
1988         }
1989         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1990                                cpu->secure_memory);
1991     }
1992 
1993     if (cpu->tag_memory != NULL) {
1994         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1995                                cpu->tag_memory);
1996         if (has_secure) {
1997             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1998                                    cpu->secure_tag_memory);
1999         }
2000     }
2001 
2002     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2003 
2004     /* No core_count specified, default to smp_cpus. */
2005     if (cpu->core_count == -1) {
2006         cpu->core_count = smp_cpus;
2007     }
2008 #endif
2009 
2010     if (tcg_enabled()) {
2011         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2012 
2013         /*
2014          * We only support DCZ blocklen that fits on one page.
2015          *
2016          * Architectually this is always true.  However TARGET_PAGE_SIZE
2017          * is variable and, for compatibility with -machine virt-2.7,
2018          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2019          * But even then, while the largest architectural DCZ blocklen
2020          * is 2KiB, no cpu actually uses such a large blocklen.
2021          */
2022         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2023 
2024         /*
2025          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2026          * both nibbles of each byte storing tag data may be written at once.
2027          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2028          */
2029         if (cpu_isar_feature(aa64_mte, cpu)) {
2030             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2031         }
2032     }
2033 
2034     qemu_init_vcpu(cs);
2035     cpu_reset(cs);
2036 
2037     acc->parent_realize(dev, errp);
2038 }
2039 
2040 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2041 {
2042     ObjectClass *oc;
2043     char *typename;
2044     char **cpuname;
2045     const char *cpunamestr;
2046 
2047     cpuname = g_strsplit(cpu_model, ",", 1);
2048     cpunamestr = cpuname[0];
2049 #ifdef CONFIG_USER_ONLY
2050     /* For backwards compatibility usermode emulation allows "-cpu any",
2051      * which has the same semantics as "-cpu max".
2052      */
2053     if (!strcmp(cpunamestr, "any")) {
2054         cpunamestr = "max";
2055     }
2056 #endif
2057     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2058     oc = object_class_by_name(typename);
2059     g_strfreev(cpuname);
2060     g_free(typename);
2061     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2062         object_class_is_abstract(oc)) {
2063         return NULL;
2064     }
2065     return oc;
2066 }
2067 
2068 static Property arm_cpu_properties[] = {
2069     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2070     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2071                         mp_affinity, ARM64_AFFINITY_INVALID),
2072     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2073     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2074     DEFINE_PROP_END_OF_LIST()
2075 };
2076 
2077 static gchar *arm_gdb_arch_name(CPUState *cs)
2078 {
2079     ARMCPU *cpu = ARM_CPU(cs);
2080     CPUARMState *env = &cpu->env;
2081 
2082     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2083         return g_strdup("iwmmxt");
2084     }
2085     return g_strdup("arm");
2086 }
2087 
2088 #ifndef CONFIG_USER_ONLY
2089 #include "hw/core/sysemu-cpu-ops.h"
2090 
2091 static const struct SysemuCPUOps arm_sysemu_ops = {
2092     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2093     .asidx_from_attrs = arm_asidx_from_attrs,
2094     .write_elf32_note = arm_cpu_write_elf32_note,
2095     .write_elf64_note = arm_cpu_write_elf64_note,
2096     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2097     .legacy_vmsd = &vmstate_arm_cpu,
2098 };
2099 #endif
2100 
2101 #ifdef CONFIG_TCG
2102 static const struct TCGCPUOps arm_tcg_ops = {
2103     .initialize = arm_translate_init,
2104     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2105     .debug_excp_handler = arm_debug_excp_handler,
2106 
2107 #ifdef CONFIG_USER_ONLY
2108     .record_sigsegv = arm_cpu_record_sigsegv,
2109     .record_sigbus = arm_cpu_record_sigbus,
2110 #else
2111     .tlb_fill = arm_cpu_tlb_fill,
2112     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2113     .do_interrupt = arm_cpu_do_interrupt,
2114     .do_transaction_failed = arm_cpu_do_transaction_failed,
2115     .do_unaligned_access = arm_cpu_do_unaligned_access,
2116     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2117     .debug_check_watchpoint = arm_debug_check_watchpoint,
2118     .debug_check_breakpoint = arm_debug_check_breakpoint,
2119 #endif /* !CONFIG_USER_ONLY */
2120 };
2121 #endif /* CONFIG_TCG */
2122 
2123 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2124 {
2125     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2126     CPUClass *cc = CPU_CLASS(acc);
2127     DeviceClass *dc = DEVICE_CLASS(oc);
2128 
2129     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2130                                     &acc->parent_realize);
2131 
2132     device_class_set_props(dc, arm_cpu_properties);
2133     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2134 
2135     cc->class_by_name = arm_cpu_class_by_name;
2136     cc->has_work = arm_cpu_has_work;
2137     cc->dump_state = arm_cpu_dump_state;
2138     cc->set_pc = arm_cpu_set_pc;
2139     cc->gdb_read_register = arm_cpu_gdb_read_register;
2140     cc->gdb_write_register = arm_cpu_gdb_write_register;
2141 #ifndef CONFIG_USER_ONLY
2142     cc->sysemu_ops = &arm_sysemu_ops;
2143 #endif
2144     cc->gdb_num_core_regs = 26;
2145     cc->gdb_core_xml_file = "arm-core.xml";
2146     cc->gdb_arch_name = arm_gdb_arch_name;
2147     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2148     cc->gdb_stop_before_watchpoint = true;
2149     cc->disas_set_info = arm_disas_set_info;
2150 
2151 #ifdef CONFIG_TCG
2152     cc->tcg_ops = &arm_tcg_ops;
2153 #endif /* CONFIG_TCG */
2154 }
2155 
2156 static void arm_cpu_instance_init(Object *obj)
2157 {
2158     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2159 
2160     acc->info->initfn(obj);
2161     arm_cpu_post_init(obj);
2162 }
2163 
2164 static void cpu_register_class_init(ObjectClass *oc, void *data)
2165 {
2166     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2167 
2168     acc->info = data;
2169 }
2170 
2171 void arm_cpu_register(const ARMCPUInfo *info)
2172 {
2173     TypeInfo type_info = {
2174         .parent = TYPE_ARM_CPU,
2175         .instance_size = sizeof(ARMCPU),
2176         .instance_align = __alignof__(ARMCPU),
2177         .instance_init = arm_cpu_instance_init,
2178         .class_size = sizeof(ARMCPUClass),
2179         .class_init = info->class_init ?: cpu_register_class_init,
2180         .class_data = (void *)info,
2181     };
2182 
2183     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2184     type_register(&type_info);
2185     g_free((void *)type_info.name);
2186 }
2187 
2188 static const TypeInfo arm_cpu_type_info = {
2189     .name = TYPE_ARM_CPU,
2190     .parent = TYPE_CPU,
2191     .instance_size = sizeof(ARMCPU),
2192     .instance_align = __alignof__(ARMCPU),
2193     .instance_init = arm_cpu_initfn,
2194     .instance_finalize = arm_cpu_finalizefn,
2195     .abstract = true,
2196     .class_size = sizeof(ARMCPUClass),
2197     .class_init = arm_cpu_class_init,
2198 };
2199 
2200 static void arm_cpu_register_types(void)
2201 {
2202     type_register_static(&arm_cpu_type_info);
2203 }
2204 
2205 type_init(arm_cpu_register_types)
2206