1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu/timer.h" 24 #include "qemu/log.h" 25 #include "exec/page-vary.h" 26 #include "target/arm/idau.h" 27 #include "qemu/module.h" 28 #include "qapi/error.h" 29 #include "cpu.h" 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 #include "internals.h" 34 #include "exec/exec-all.h" 35 #include "hw/qdev-properties.h" 36 #if !defined(CONFIG_USER_ONLY) 37 #include "hw/loader.h" 38 #include "hw/boards.h" 39 #ifdef CONFIG_TCG 40 #include "hw/intc/armv7m_nvic.h" 41 #endif /* CONFIG_TCG */ 42 #endif /* !CONFIG_USER_ONLY */ 43 #include "sysemu/tcg.h" 44 #include "sysemu/qtest.h" 45 #include "sysemu/hw_accel.h" 46 #include "kvm_arm.h" 47 #include "disas/capstone.h" 48 #include "fpu/softfloat.h" 49 #include "cpregs.h" 50 51 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 52 { 53 ARMCPU *cpu = ARM_CPU(cs); 54 CPUARMState *env = &cpu->env; 55 56 if (is_a64(env)) { 57 env->pc = value; 58 env->thumb = false; 59 } else { 60 env->regs[15] = value & ~1; 61 env->thumb = value & 1; 62 } 63 } 64 65 static vaddr arm_cpu_get_pc(CPUState *cs) 66 { 67 ARMCPU *cpu = ARM_CPU(cs); 68 CPUARMState *env = &cpu->env; 69 70 if (is_a64(env)) { 71 return env->pc; 72 } else { 73 return env->regs[15]; 74 } 75 } 76 77 #ifdef CONFIG_TCG 78 void arm_cpu_synchronize_from_tb(CPUState *cs, 79 const TranslationBlock *tb) 80 { 81 /* The program counter is always up to date with TARGET_TB_PCREL. */ 82 if (!TARGET_TB_PCREL) { 83 CPUARMState *env = cs->env_ptr; 84 /* 85 * It's OK to look at env for the current mode here, because it's 86 * never possible for an AArch64 TB to chain to an AArch32 TB. 87 */ 88 if (is_a64(env)) { 89 env->pc = tb_pc(tb); 90 } else { 91 env->regs[15] = tb_pc(tb); 92 } 93 } 94 } 95 96 void arm_restore_state_to_opc(CPUState *cs, 97 const TranslationBlock *tb, 98 const uint64_t *data) 99 { 100 CPUARMState *env = cs->env_ptr; 101 102 if (is_a64(env)) { 103 if (TARGET_TB_PCREL) { 104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; 105 } else { 106 env->pc = data[0]; 107 } 108 env->condexec_bits = 0; 109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; 110 } else { 111 if (TARGET_TB_PCREL) { 112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0]; 113 } else { 114 env->regs[15] = data[0]; 115 } 116 env->condexec_bits = data[1]; 117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; 118 } 119 } 120 #endif /* CONFIG_TCG */ 121 122 static bool arm_cpu_has_work(CPUState *cs) 123 { 124 ARMCPU *cpu = ARM_CPU(cs); 125 126 return (cpu->power_state != PSCI_OFF) 127 && cs->interrupt_request & 128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR 130 | CPU_INTERRUPT_EXITTB); 131 } 132 133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 134 void *opaque) 135 { 136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 137 138 entry->hook = hook; 139 entry->opaque = opaque; 140 141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 142 } 143 144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 145 void *opaque) 146 { 147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 148 149 entry->hook = hook; 150 entry->opaque = opaque; 151 152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 153 } 154 155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 156 { 157 /* Reset a single ARMCPRegInfo register */ 158 ARMCPRegInfo *ri = value; 159 ARMCPU *cpu = opaque; 160 161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { 162 return; 163 } 164 165 if (ri->resetfn) { 166 ri->resetfn(&cpu->env, ri); 167 return; 168 } 169 170 /* A zero offset is never possible as it would be regs[0] 171 * so we use it to indicate that reset is being handled elsewhere. 172 * This is basically only used for fields in non-core coprocessors 173 * (like the pxa2xx ones). 174 */ 175 if (!ri->fieldoffset) { 176 return; 177 } 178 179 if (cpreg_field_is_64bit(ri)) { 180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 181 } else { 182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 183 } 184 } 185 186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 187 { 188 /* Purely an assertion check: we've already done reset once, 189 * so now check that running the reset for the cpreg doesn't 190 * change its value. This traps bugs where two different cpregs 191 * both try to reset the same state field but to different values. 192 */ 193 ARMCPRegInfo *ri = value; 194 ARMCPU *cpu = opaque; 195 uint64_t oldvalue, newvalue; 196 197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 198 return; 199 } 200 201 oldvalue = read_raw_cp_reg(&cpu->env, ri); 202 cp_reg_reset(key, value, opaque); 203 newvalue = read_raw_cp_reg(&cpu->env, ri); 204 assert(oldvalue == newvalue); 205 } 206 207 static void arm_cpu_reset_hold(Object *obj) 208 { 209 CPUState *s = CPU(obj); 210 ARMCPU *cpu = ARM_CPU(s); 211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 212 CPUARMState *env = &cpu->env; 213 214 if (acc->parent_phases.hold) { 215 acc->parent_phases.hold(obj); 216 } 217 218 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 219 220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 222 223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 227 228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; 229 230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 232 } 233 234 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 235 /* 64 bit CPUs always start in 64 bit mode */ 236 env->aarch64 = true; 237 #if defined(CONFIG_USER_ONLY) 238 env->pstate = PSTATE_MODE_EL0t; 239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 241 /* Enable all PAC keys. */ 242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 243 SCTLR_EnDA | SCTLR_EnDB); 244 /* Trap on btype=3 for PACIxSP. */ 245 env->cp15.sctlr_el[1] |= SCTLR_BT0; 246 /* and to the FP/Neon instructions */ 247 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 248 CPACR_EL1, FPEN, 3); 249 /* and to the SVE instructions, with default vector length */ 250 if (cpu_isar_feature(aa64_sve, cpu)) { 251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 252 CPACR_EL1, ZEN, 3); 253 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; 254 } 255 /* and for SME instructions, with default vector length, and TPIDR2 */ 256 if (cpu_isar_feature(aa64_sme, cpu)) { 257 env->cp15.sctlr_el[1] |= SCTLR_EnTP2; 258 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 259 CPACR_EL1, SMEN, 3); 260 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; 261 if (cpu_isar_feature(aa64_sme_fa64, cpu)) { 262 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], 263 SMCR, FA64, 1); 264 } 265 } 266 /* 267 * Enable 48-bit address space (TODO: take reserved_va into account). 268 * Enable TBI0 but not TBI1. 269 * Note that this must match useronly_clean_ptr. 270 */ 271 env->cp15.tcr_el[1] = 5 | (1ULL << 37); 272 273 /* Enable MTE */ 274 if (cpu_isar_feature(aa64_mte, cpu)) { 275 /* Enable tag access, but leave TCF0 as No Effect (0). */ 276 env->cp15.sctlr_el[1] |= SCTLR_ATA0; 277 /* 278 * Exclude all tags, so that tag 0 is always used. 279 * This corresponds to Linux current->thread.gcr_incl = 0. 280 * 281 * Set RRND, so that helper_irg() will generate a seed later. 282 * Here in cpu_reset(), the crypto subsystem has not yet been 283 * initialized. 284 */ 285 env->cp15.gcr_el1 = 0x1ffff; 286 } 287 /* 288 * Disable access to SCXTNUM_EL0 from CSV2_1p2. 289 * This is not yet exposed from the Linux kernel in any way. 290 */ 291 env->cp15.sctlr_el[1] |= SCTLR_TSCXT; 292 #else 293 /* Reset into the highest available EL */ 294 if (arm_feature(env, ARM_FEATURE_EL3)) { 295 env->pstate = PSTATE_MODE_EL3h; 296 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 297 env->pstate = PSTATE_MODE_EL2h; 298 } else { 299 env->pstate = PSTATE_MODE_EL1h; 300 } 301 302 /* Sample rvbar at reset. */ 303 env->cp15.rvbar = cpu->rvbar_prop; 304 env->pc = env->cp15.rvbar; 305 #endif 306 } else { 307 #if defined(CONFIG_USER_ONLY) 308 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 309 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 310 CPACR, CP10, 3); 311 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 312 CPACR, CP11, 3); 313 #endif 314 if (arm_feature(env, ARM_FEATURE_V8)) { 315 env->cp15.rvbar = cpu->rvbar_prop; 316 env->regs[15] = cpu->rvbar_prop; 317 } 318 } 319 320 #if defined(CONFIG_USER_ONLY) 321 env->uncached_cpsr = ARM_CPU_MODE_USR; 322 /* For user mode we must enable access to coprocessors */ 323 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 324 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 325 env->cp15.c15_cpar = 3; 326 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 327 env->cp15.c15_cpar = 1; 328 } 329 #else 330 331 /* 332 * If the highest available EL is EL2, AArch32 will start in Hyp 333 * mode; otherwise it starts in SVC. Note that if we start in 334 * AArch64 then these values in the uncached_cpsr will be ignored. 335 */ 336 if (arm_feature(env, ARM_FEATURE_EL2) && 337 !arm_feature(env, ARM_FEATURE_EL3)) { 338 env->uncached_cpsr = ARM_CPU_MODE_HYP; 339 } else { 340 env->uncached_cpsr = ARM_CPU_MODE_SVC; 341 } 342 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 343 344 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 345 * executing as AArch32 then check if highvecs are enabled and 346 * adjust the PC accordingly. 347 */ 348 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 349 env->regs[15] = 0xFFFF0000; 350 } 351 352 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 353 #endif 354 355 if (arm_feature(env, ARM_FEATURE_M)) { 356 #ifndef CONFIG_USER_ONLY 357 uint32_t initial_msp; /* Loaded from 0x0 */ 358 uint32_t initial_pc; /* Loaded from 0x4 */ 359 uint8_t *rom; 360 uint32_t vecbase; 361 #endif 362 363 if (cpu_isar_feature(aa32_lob, cpu)) { 364 /* 365 * LTPSIZE is constant 4 if MVE not implemented, and resets 366 * to an UNKNOWN value if MVE is implemented. We choose to 367 * always reset to 4. 368 */ 369 env->v7m.ltpsize = 4; 370 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ 371 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; 372 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; 373 } 374 375 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 376 env->v7m.secure = true; 377 } else { 378 /* This bit resets to 0 if security is supported, but 1 if 379 * it is not. The bit is not present in v7M, but we set it 380 * here so we can avoid having to make checks on it conditional 381 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 382 */ 383 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 384 /* 385 * Set NSACR to indicate "NS access permitted to everything"; 386 * this avoids having to have all the tests of it being 387 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 388 * v8.1M the guest-visible value of NSACR in a CPU without the 389 * Security Extension is 0xcff. 390 */ 391 env->v7m.nsacr = 0xcff; 392 } 393 394 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 395 * that it resets to 1, so QEMU always does that rather than making 396 * it dependent on CPU model. In v8M it is RES1. 397 */ 398 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 399 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 400 if (arm_feature(env, ARM_FEATURE_V8)) { 401 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 402 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 403 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 404 } 405 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 406 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 407 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 408 } 409 410 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 411 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 412 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 413 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 414 } 415 416 #ifndef CONFIG_USER_ONLY 417 /* Unlike A/R profile, M profile defines the reset LR value */ 418 env->regs[14] = 0xffffffff; 419 420 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 421 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; 422 423 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 424 vecbase = env->v7m.vecbase[env->v7m.secure]; 425 rom = rom_ptr_for_as(s->as, vecbase, 8); 426 if (rom) { 427 /* Address zero is covered by ROM which hasn't yet been 428 * copied into physical memory. 429 */ 430 initial_msp = ldl_p(rom); 431 initial_pc = ldl_p(rom + 4); 432 } else { 433 /* Address zero not covered by a ROM blob, or the ROM blob 434 * is in non-modifiable memory and this is a second reset after 435 * it got copied into memory. In the latter case, rom_ptr 436 * will return a NULL pointer and we should use ldl_phys instead. 437 */ 438 initial_msp = ldl_phys(s->as, vecbase); 439 initial_pc = ldl_phys(s->as, vecbase + 4); 440 } 441 442 qemu_log_mask(CPU_LOG_INT, 443 "Loaded reset SP 0x%x PC 0x%x from vector table\n", 444 initial_msp, initial_pc); 445 446 env->regs[13] = initial_msp & 0xFFFFFFFC; 447 env->regs[15] = initial_pc & ~1; 448 env->thumb = initial_pc & 1; 449 #else 450 /* 451 * For user mode we run non-secure and with access to the FPU. 452 * The FPU context is active (ie does not need further setup) 453 * and is owned by non-secure. 454 */ 455 env->v7m.secure = false; 456 env->v7m.nsacr = 0xcff; 457 env->v7m.cpacr[M_REG_NS] = 0xf0ffff; 458 env->v7m.fpccr[M_REG_S] &= 459 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); 460 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 461 #endif 462 } 463 464 /* M profile requires that reset clears the exclusive monitor; 465 * A profile does not, but clearing it makes more sense than having it 466 * set with an exclusive access on address zero. 467 */ 468 arm_clear_exclusive(env); 469 470 if (arm_feature(env, ARM_FEATURE_PMSA)) { 471 if (cpu->pmsav7_dregion > 0) { 472 if (arm_feature(env, ARM_FEATURE_V8)) { 473 memset(env->pmsav8.rbar[M_REG_NS], 0, 474 sizeof(*env->pmsav8.rbar[M_REG_NS]) 475 * cpu->pmsav7_dregion); 476 memset(env->pmsav8.rlar[M_REG_NS], 0, 477 sizeof(*env->pmsav8.rlar[M_REG_NS]) 478 * cpu->pmsav7_dregion); 479 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 480 memset(env->pmsav8.rbar[M_REG_S], 0, 481 sizeof(*env->pmsav8.rbar[M_REG_S]) 482 * cpu->pmsav7_dregion); 483 memset(env->pmsav8.rlar[M_REG_S], 0, 484 sizeof(*env->pmsav8.rlar[M_REG_S]) 485 * cpu->pmsav7_dregion); 486 } 487 } else if (arm_feature(env, ARM_FEATURE_V7)) { 488 memset(env->pmsav7.drbar, 0, 489 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 490 memset(env->pmsav7.drsr, 0, 491 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 492 memset(env->pmsav7.dracr, 0, 493 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 494 } 495 } 496 497 if (cpu->pmsav8r_hdregion > 0) { 498 memset(env->pmsav8.hprbar, 0, 499 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion); 500 memset(env->pmsav8.hprlar, 0, 501 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion); 502 } 503 504 env->pmsav7.rnr[M_REG_NS] = 0; 505 env->pmsav7.rnr[M_REG_S] = 0; 506 env->pmsav8.mair0[M_REG_NS] = 0; 507 env->pmsav8.mair0[M_REG_S] = 0; 508 env->pmsav8.mair1[M_REG_NS] = 0; 509 env->pmsav8.mair1[M_REG_S] = 0; 510 } 511 512 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 513 if (cpu->sau_sregion > 0) { 514 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 515 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 516 } 517 env->sau.rnr = 0; 518 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 519 * the Cortex-M33 does. 520 */ 521 env->sau.ctrl = 0; 522 } 523 524 set_flush_to_zero(1, &env->vfp.standard_fp_status); 525 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 526 set_default_nan_mode(1, &env->vfp.standard_fp_status); 527 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 528 set_float_detect_tininess(float_tininess_before_rounding, 529 &env->vfp.fp_status); 530 set_float_detect_tininess(float_tininess_before_rounding, 531 &env->vfp.standard_fp_status); 532 set_float_detect_tininess(float_tininess_before_rounding, 533 &env->vfp.fp_status_f16); 534 set_float_detect_tininess(float_tininess_before_rounding, 535 &env->vfp.standard_fp_status_f16); 536 #ifndef CONFIG_USER_ONLY 537 if (kvm_enabled()) { 538 kvm_arm_reset_vcpu(cpu); 539 } 540 #endif 541 542 if (tcg_enabled()) { 543 hw_breakpoint_update_all(cpu); 544 hw_watchpoint_update_all(cpu); 545 546 arm_rebuild_hflags(env); 547 } 548 } 549 550 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) 551 552 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 553 unsigned int target_el, 554 unsigned int cur_el, bool secure, 555 uint64_t hcr_el2) 556 { 557 CPUARMState *env = cs->env_ptr; 558 bool pstate_unmasked; 559 bool unmasked = false; 560 561 /* 562 * Don't take exceptions if they target a lower EL. 563 * This check should catch any exceptions that would not be taken 564 * but left pending. 565 */ 566 if (cur_el > target_el) { 567 return false; 568 } 569 570 switch (excp_idx) { 571 case EXCP_FIQ: 572 pstate_unmasked = !(env->daif & PSTATE_F); 573 break; 574 575 case EXCP_IRQ: 576 pstate_unmasked = !(env->daif & PSTATE_I); 577 break; 578 579 case EXCP_VFIQ: 580 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 581 /* VFIQs are only taken when hypervized. */ 582 return false; 583 } 584 return !(env->daif & PSTATE_F); 585 case EXCP_VIRQ: 586 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 587 /* VIRQs are only taken when hypervized. */ 588 return false; 589 } 590 return !(env->daif & PSTATE_I); 591 case EXCP_VSERR: 592 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { 593 /* VIRQs are only taken when hypervized. */ 594 return false; 595 } 596 return !(env->daif & PSTATE_A); 597 default: 598 g_assert_not_reached(); 599 } 600 601 /* 602 * Use the target EL, current execution state and SCR/HCR settings to 603 * determine whether the corresponding CPSR bit is used to mask the 604 * interrupt. 605 */ 606 if ((target_el > cur_el) && (target_el != 1)) { 607 /* Exceptions targeting a higher EL may not be maskable */ 608 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 609 switch (target_el) { 610 case 2: 611 /* 612 * According to ARM DDI 0487H.a, an interrupt can be masked 613 * when HCR_E2H and HCR_TGE are both set regardless of the 614 * current Security state. Note that we need to revisit this 615 * part again once we need to support NMI. 616 */ 617 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 618 unmasked = true; 619 } 620 break; 621 case 3: 622 /* Interrupt cannot be masked when the target EL is 3 */ 623 unmasked = true; 624 break; 625 default: 626 g_assert_not_reached(); 627 } 628 } else { 629 /* 630 * The old 32-bit-only environment has a more complicated 631 * masking setup. HCR and SCR bits not only affect interrupt 632 * routing but also change the behaviour of masking. 633 */ 634 bool hcr, scr; 635 636 switch (excp_idx) { 637 case EXCP_FIQ: 638 /* 639 * If FIQs are routed to EL3 or EL2 then there are cases where 640 * we override the CPSR.F in determining if the exception is 641 * masked or not. If neither of these are set then we fall back 642 * to the CPSR.F setting otherwise we further assess the state 643 * below. 644 */ 645 hcr = hcr_el2 & HCR_FMO; 646 scr = (env->cp15.scr_el3 & SCR_FIQ); 647 648 /* 649 * When EL3 is 32-bit, the SCR.FW bit controls whether the 650 * CPSR.F bit masks FIQ interrupts when taken in non-secure 651 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 652 * when non-secure but only when FIQs are only routed to EL3. 653 */ 654 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 655 break; 656 case EXCP_IRQ: 657 /* 658 * When EL3 execution state is 32-bit, if HCR.IMO is set then 659 * we may override the CPSR.I masking when in non-secure state. 660 * The SCR.IRQ setting has already been taken into consideration 661 * when setting the target EL, so it does not have a further 662 * affect here. 663 */ 664 hcr = hcr_el2 & HCR_IMO; 665 scr = false; 666 break; 667 default: 668 g_assert_not_reached(); 669 } 670 671 if ((scr || hcr) && !secure) { 672 unmasked = true; 673 } 674 } 675 } 676 677 /* 678 * The PSTATE bits only mask the interrupt if we have not overriden the 679 * ability above. 680 */ 681 return unmasked || pstate_unmasked; 682 } 683 684 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 685 { 686 CPUClass *cc = CPU_GET_CLASS(cs); 687 CPUARMState *env = cs->env_ptr; 688 uint32_t cur_el = arm_current_el(env); 689 bool secure = arm_is_secure(env); 690 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 691 uint32_t target_el; 692 uint32_t excp_idx; 693 694 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 695 696 if (interrupt_request & CPU_INTERRUPT_FIQ) { 697 excp_idx = EXCP_FIQ; 698 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 699 if (arm_excp_unmasked(cs, excp_idx, target_el, 700 cur_el, secure, hcr_el2)) { 701 goto found; 702 } 703 } 704 if (interrupt_request & CPU_INTERRUPT_HARD) { 705 excp_idx = EXCP_IRQ; 706 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 707 if (arm_excp_unmasked(cs, excp_idx, target_el, 708 cur_el, secure, hcr_el2)) { 709 goto found; 710 } 711 } 712 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 713 excp_idx = EXCP_VIRQ; 714 target_el = 1; 715 if (arm_excp_unmasked(cs, excp_idx, target_el, 716 cur_el, secure, hcr_el2)) { 717 goto found; 718 } 719 } 720 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 721 excp_idx = EXCP_VFIQ; 722 target_el = 1; 723 if (arm_excp_unmasked(cs, excp_idx, target_el, 724 cur_el, secure, hcr_el2)) { 725 goto found; 726 } 727 } 728 if (interrupt_request & CPU_INTERRUPT_VSERR) { 729 excp_idx = EXCP_VSERR; 730 target_el = 1; 731 if (arm_excp_unmasked(cs, excp_idx, target_el, 732 cur_el, secure, hcr_el2)) { 733 /* Taking a virtual abort clears HCR_EL2.VSE */ 734 env->cp15.hcr_el2 &= ~HCR_VSE; 735 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 736 goto found; 737 } 738 } 739 return false; 740 741 found: 742 cs->exception_index = excp_idx; 743 env->exception.target_el = target_el; 744 cc->tcg_ops->do_interrupt(cs); 745 return true; 746 } 747 748 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 749 750 void arm_cpu_update_virq(ARMCPU *cpu) 751 { 752 /* 753 * Update the interrupt level for VIRQ, which is the logical OR of 754 * the HCR_EL2.VI bit and the input line level from the GIC. 755 */ 756 CPUARMState *env = &cpu->env; 757 CPUState *cs = CPU(cpu); 758 759 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 760 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 761 762 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 763 if (new_state) { 764 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 765 } else { 766 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 767 } 768 } 769 } 770 771 void arm_cpu_update_vfiq(ARMCPU *cpu) 772 { 773 /* 774 * Update the interrupt level for VFIQ, which is the logical OR of 775 * the HCR_EL2.VF bit and the input line level from the GIC. 776 */ 777 CPUARMState *env = &cpu->env; 778 CPUState *cs = CPU(cpu); 779 780 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 781 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 782 783 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 784 if (new_state) { 785 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 786 } else { 787 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 788 } 789 } 790 } 791 792 void arm_cpu_update_vserr(ARMCPU *cpu) 793 { 794 /* 795 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. 796 */ 797 CPUARMState *env = &cpu->env; 798 CPUState *cs = CPU(cpu); 799 800 bool new_state = env->cp15.hcr_el2 & HCR_VSE; 801 802 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { 803 if (new_state) { 804 cpu_interrupt(cs, CPU_INTERRUPT_VSERR); 805 } else { 806 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 807 } 808 } 809 } 810 811 #ifndef CONFIG_USER_ONLY 812 static void arm_cpu_set_irq(void *opaque, int irq, int level) 813 { 814 ARMCPU *cpu = opaque; 815 CPUARMState *env = &cpu->env; 816 CPUState *cs = CPU(cpu); 817 static const int mask[] = { 818 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 819 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 820 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 821 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 822 }; 823 824 if (!arm_feature(env, ARM_FEATURE_EL2) && 825 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { 826 /* 827 * The GIC might tell us about VIRQ and VFIQ state, but if we don't 828 * have EL2 support we don't care. (Unless the guest is doing something 829 * silly this will only be calls saying "level is still 0".) 830 */ 831 return; 832 } 833 834 if (level) { 835 env->irq_line_state |= mask[irq]; 836 } else { 837 env->irq_line_state &= ~mask[irq]; 838 } 839 840 switch (irq) { 841 case ARM_CPU_VIRQ: 842 arm_cpu_update_virq(cpu); 843 break; 844 case ARM_CPU_VFIQ: 845 arm_cpu_update_vfiq(cpu); 846 break; 847 case ARM_CPU_IRQ: 848 case ARM_CPU_FIQ: 849 if (level) { 850 cpu_interrupt(cs, mask[irq]); 851 } else { 852 cpu_reset_interrupt(cs, mask[irq]); 853 } 854 break; 855 default: 856 g_assert_not_reached(); 857 } 858 } 859 860 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 861 { 862 #ifdef CONFIG_KVM 863 ARMCPU *cpu = opaque; 864 CPUARMState *env = &cpu->env; 865 CPUState *cs = CPU(cpu); 866 uint32_t linestate_bit; 867 int irq_id; 868 869 switch (irq) { 870 case ARM_CPU_IRQ: 871 irq_id = KVM_ARM_IRQ_CPU_IRQ; 872 linestate_bit = CPU_INTERRUPT_HARD; 873 break; 874 case ARM_CPU_FIQ: 875 irq_id = KVM_ARM_IRQ_CPU_FIQ; 876 linestate_bit = CPU_INTERRUPT_FIQ; 877 break; 878 default: 879 g_assert_not_reached(); 880 } 881 882 if (level) { 883 env->irq_line_state |= linestate_bit; 884 } else { 885 env->irq_line_state &= ~linestate_bit; 886 } 887 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 888 #endif 889 } 890 891 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 892 { 893 ARMCPU *cpu = ARM_CPU(cs); 894 CPUARMState *env = &cpu->env; 895 896 cpu_synchronize_state(cs); 897 return arm_cpu_data_is_big_endian(env); 898 } 899 900 #endif 901 902 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 903 { 904 ARMCPU *ac = ARM_CPU(cpu); 905 CPUARMState *env = &ac->env; 906 bool sctlr_b; 907 908 if (is_a64(env)) { 909 info->cap_arch = CS_ARCH_ARM64; 910 info->cap_insn_unit = 4; 911 info->cap_insn_split = 4; 912 } else { 913 int cap_mode; 914 if (env->thumb) { 915 info->cap_insn_unit = 2; 916 info->cap_insn_split = 4; 917 cap_mode = CS_MODE_THUMB; 918 } else { 919 info->cap_insn_unit = 4; 920 info->cap_insn_split = 4; 921 cap_mode = CS_MODE_ARM; 922 } 923 if (arm_feature(env, ARM_FEATURE_V8)) { 924 cap_mode |= CS_MODE_V8; 925 } 926 if (arm_feature(env, ARM_FEATURE_M)) { 927 cap_mode |= CS_MODE_MCLASS; 928 } 929 info->cap_arch = CS_ARCH_ARM; 930 info->cap_mode = cap_mode; 931 } 932 933 sctlr_b = arm_sctlr_b(env); 934 if (bswap_code(sctlr_b)) { 935 #if TARGET_BIG_ENDIAN 936 info->endian = BFD_ENDIAN_LITTLE; 937 #else 938 info->endian = BFD_ENDIAN_BIG; 939 #endif 940 } 941 info->flags &= ~INSN_ARM_BE32; 942 #ifndef CONFIG_USER_ONLY 943 if (sctlr_b) { 944 info->flags |= INSN_ARM_BE32; 945 } 946 #endif 947 } 948 949 #ifdef TARGET_AARCH64 950 951 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 952 { 953 ARMCPU *cpu = ARM_CPU(cs); 954 CPUARMState *env = &cpu->env; 955 uint32_t psr = pstate_read(env); 956 int i; 957 int el = arm_current_el(env); 958 const char *ns_status; 959 bool sve; 960 961 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 962 for (i = 0; i < 32; i++) { 963 if (i == 31) { 964 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 965 } else { 966 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 967 (i + 2) % 3 ? " " : "\n"); 968 } 969 } 970 971 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 972 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 973 } else { 974 ns_status = ""; 975 } 976 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 977 psr, 978 psr & PSTATE_N ? 'N' : '-', 979 psr & PSTATE_Z ? 'Z' : '-', 980 psr & PSTATE_C ? 'C' : '-', 981 psr & PSTATE_V ? 'V' : '-', 982 ns_status, 983 el, 984 psr & PSTATE_SP ? 'h' : 't'); 985 986 if (cpu_isar_feature(aa64_sme, cpu)) { 987 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", 988 env->svcr, 989 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), 990 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); 991 } 992 if (cpu_isar_feature(aa64_bti, cpu)) { 993 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 994 } 995 if (!(flags & CPU_DUMP_FPU)) { 996 qemu_fprintf(f, "\n"); 997 return; 998 } 999 if (fp_exception_el(env, el) != 0) { 1000 qemu_fprintf(f, " FPU disabled\n"); 1001 return; 1002 } 1003 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 1004 vfp_get_fpcr(env), vfp_get_fpsr(env)); 1005 1006 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { 1007 sve = sme_exception_el(env, el) == 0; 1008 } else if (cpu_isar_feature(aa64_sve, cpu)) { 1009 sve = sve_exception_el(env, el) == 0; 1010 } else { 1011 sve = false; 1012 } 1013 1014 if (sve) { 1015 int j, zcr_len = sve_vqm1_for_el(env, el); 1016 1017 for (i = 0; i <= FFR_PRED_NUM; i++) { 1018 bool eol; 1019 if (i == FFR_PRED_NUM) { 1020 qemu_fprintf(f, "FFR="); 1021 /* It's last, so end the line. */ 1022 eol = true; 1023 } else { 1024 qemu_fprintf(f, "P%02d=", i); 1025 switch (zcr_len) { 1026 case 0: 1027 eol = i % 8 == 7; 1028 break; 1029 case 1: 1030 eol = i % 6 == 5; 1031 break; 1032 case 2: 1033 case 3: 1034 eol = i % 3 == 2; 1035 break; 1036 default: 1037 /* More than one quadword per predicate. */ 1038 eol = true; 1039 break; 1040 } 1041 } 1042 for (j = zcr_len / 4; j >= 0; j--) { 1043 int digits; 1044 if (j * 4 + 4 <= zcr_len + 1) { 1045 digits = 16; 1046 } else { 1047 digits = (zcr_len % 4 + 1) * 4; 1048 } 1049 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 1050 env->vfp.pregs[i].p[j], 1051 j ? ":" : eol ? "\n" : " "); 1052 } 1053 } 1054 1055 for (i = 0; i < 32; i++) { 1056 if (zcr_len == 0) { 1057 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1058 i, env->vfp.zregs[i].d[1], 1059 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 1060 } else if (zcr_len == 1) { 1061 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 1062 ":%016" PRIx64 ":%016" PRIx64 "\n", 1063 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 1064 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 1065 } else { 1066 for (j = zcr_len; j >= 0; j--) { 1067 bool odd = (zcr_len - j) % 2 != 0; 1068 if (j == zcr_len) { 1069 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 1070 } else if (!odd) { 1071 if (j > 0) { 1072 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 1073 } else { 1074 qemu_fprintf(f, " [%x]=", j); 1075 } 1076 } 1077 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 1078 env->vfp.zregs[i].d[j * 2 + 1], 1079 env->vfp.zregs[i].d[j * 2], 1080 odd || j == 0 ? "\n" : ":"); 1081 } 1082 } 1083 } 1084 } else { 1085 for (i = 0; i < 32; i++) { 1086 uint64_t *q = aa64_vfp_qreg(env, i); 1087 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1088 i, q[1], q[0], (i & 1 ? "\n" : " ")); 1089 } 1090 } 1091 } 1092 1093 #else 1094 1095 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1096 { 1097 g_assert_not_reached(); 1098 } 1099 1100 #endif 1101 1102 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1103 { 1104 ARMCPU *cpu = ARM_CPU(cs); 1105 CPUARMState *env = &cpu->env; 1106 int i; 1107 1108 if (is_a64(env)) { 1109 aarch64_cpu_dump_state(cs, f, flags); 1110 return; 1111 } 1112 1113 for (i = 0; i < 16; i++) { 1114 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 1115 if ((i % 4) == 3) { 1116 qemu_fprintf(f, "\n"); 1117 } else { 1118 qemu_fprintf(f, " "); 1119 } 1120 } 1121 1122 if (arm_feature(env, ARM_FEATURE_M)) { 1123 uint32_t xpsr = xpsr_read(env); 1124 const char *mode; 1125 const char *ns_status = ""; 1126 1127 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1128 ns_status = env->v7m.secure ? "S " : "NS "; 1129 } 1130 1131 if (xpsr & XPSR_EXCP) { 1132 mode = "handler"; 1133 } else { 1134 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 1135 mode = "unpriv-thread"; 1136 } else { 1137 mode = "priv-thread"; 1138 } 1139 } 1140 1141 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 1142 xpsr, 1143 xpsr & XPSR_N ? 'N' : '-', 1144 xpsr & XPSR_Z ? 'Z' : '-', 1145 xpsr & XPSR_C ? 'C' : '-', 1146 xpsr & XPSR_V ? 'V' : '-', 1147 xpsr & XPSR_T ? 'T' : 'A', 1148 ns_status, 1149 mode); 1150 } else { 1151 uint32_t psr = cpsr_read(env); 1152 const char *ns_status = ""; 1153 1154 if (arm_feature(env, ARM_FEATURE_EL3) && 1155 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 1156 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1157 } 1158 1159 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 1160 psr, 1161 psr & CPSR_N ? 'N' : '-', 1162 psr & CPSR_Z ? 'Z' : '-', 1163 psr & CPSR_C ? 'C' : '-', 1164 psr & CPSR_V ? 'V' : '-', 1165 psr & CPSR_T ? 'T' : 'A', 1166 ns_status, 1167 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 1168 } 1169 1170 if (flags & CPU_DUMP_FPU) { 1171 int numvfpregs = 0; 1172 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1173 numvfpregs = 32; 1174 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1175 numvfpregs = 16; 1176 } 1177 for (i = 0; i < numvfpregs; i++) { 1178 uint64_t v = *aa32_vfp_dreg(env, i); 1179 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1180 i * 2, (uint32_t)v, 1181 i * 2 + 1, (uint32_t)(v >> 32), 1182 i, v); 1183 } 1184 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1185 if (cpu_isar_feature(aa32_mve, cpu)) { 1186 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); 1187 } 1188 } 1189 } 1190 1191 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 1192 { 1193 uint32_t Aff1 = idx / clustersz; 1194 uint32_t Aff0 = idx % clustersz; 1195 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1196 } 1197 1198 static void arm_cpu_initfn(Object *obj) 1199 { 1200 ARMCPU *cpu = ARM_CPU(obj); 1201 1202 cpu_set_cpustate_pointers(cpu); 1203 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, 1204 NULL, g_free); 1205 1206 QLIST_INIT(&cpu->pre_el_change_hooks); 1207 QLIST_INIT(&cpu->el_change_hooks); 1208 1209 #ifdef CONFIG_USER_ONLY 1210 # ifdef TARGET_AARCH64 1211 /* 1212 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. 1213 * These values were chosen to fit within the default signal frame. 1214 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, 1215 * and our corresponding cpu property. 1216 */ 1217 cpu->sve_default_vq = 4; 1218 cpu->sme_default_vq = 2; 1219 # endif 1220 #else 1221 /* Our inbound IRQ and FIQ lines */ 1222 if (kvm_enabled()) { 1223 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1224 * the same interface as non-KVM CPUs. 1225 */ 1226 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1227 } else { 1228 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1229 } 1230 1231 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1232 ARRAY_SIZE(cpu->gt_timer_outputs)); 1233 1234 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1235 "gicv3-maintenance-interrupt", 1); 1236 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1237 "pmu-interrupt", 1); 1238 #endif 1239 1240 /* DTB consumers generally don't in fact care what the 'compatible' 1241 * string is, so always provide some string and trust that a hypothetical 1242 * picky DTB consumer will also provide a helpful error message. 1243 */ 1244 cpu->dtb_compatible = "qemu,unknown"; 1245 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ 1246 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1247 1248 if (tcg_enabled() || hvf_enabled()) { 1249 /* TCG and HVF implement PSCI 1.1 */ 1250 cpu->psci_version = QEMU_PSCI_VERSION_1_1; 1251 } 1252 } 1253 1254 static Property arm_cpu_gt_cntfrq_property = 1255 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1256 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1257 1258 static Property arm_cpu_reset_cbar_property = 1259 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1260 1261 static Property arm_cpu_reset_hivecs_property = 1262 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1263 1264 #ifndef CONFIG_USER_ONLY 1265 static Property arm_cpu_has_el2_property = 1266 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1267 1268 static Property arm_cpu_has_el3_property = 1269 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1270 #endif 1271 1272 static Property arm_cpu_cfgend_property = 1273 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1274 1275 static Property arm_cpu_has_vfp_property = 1276 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1277 1278 static Property arm_cpu_has_neon_property = 1279 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1280 1281 static Property arm_cpu_has_dsp_property = 1282 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1283 1284 static Property arm_cpu_has_mpu_property = 1285 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1286 1287 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1288 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1289 * the right value for that particular CPU type, and we don't want 1290 * to override that with an incorrect constant value. 1291 */ 1292 static Property arm_cpu_pmsav7_dregion_property = 1293 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1294 pmsav7_dregion, 1295 qdev_prop_uint32, uint32_t); 1296 1297 static bool arm_get_pmu(Object *obj, Error **errp) 1298 { 1299 ARMCPU *cpu = ARM_CPU(obj); 1300 1301 return cpu->has_pmu; 1302 } 1303 1304 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1305 { 1306 ARMCPU *cpu = ARM_CPU(obj); 1307 1308 if (value) { 1309 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1310 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1311 return; 1312 } 1313 set_feature(&cpu->env, ARM_FEATURE_PMU); 1314 } else { 1315 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1316 } 1317 cpu->has_pmu = value; 1318 } 1319 1320 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1321 { 1322 /* 1323 * The exact approach to calculating guest ticks is: 1324 * 1325 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1326 * NANOSECONDS_PER_SECOND); 1327 * 1328 * We don't do that. Rather we intentionally use integer division 1329 * truncation below and in the caller for the conversion of host monotonic 1330 * time to guest ticks to provide the exact inverse for the semantics of 1331 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1332 * it loses precision when representing frequencies where 1333 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1334 * provide an exact inverse leads to scheduling timers with negative 1335 * periods, which in turn leads to sticky behaviour in the guest. 1336 * 1337 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1338 * cannot become zero. 1339 */ 1340 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1341 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1342 } 1343 1344 void arm_cpu_post_init(Object *obj) 1345 { 1346 ARMCPU *cpu = ARM_CPU(obj); 1347 1348 /* M profile implies PMSA. We have to do this here rather than 1349 * in realize with the other feature-implication checks because 1350 * we look at the PMSA bit to see if we should add some properties. 1351 */ 1352 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1353 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1354 } 1355 1356 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1357 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1358 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1359 } 1360 1361 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1362 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1363 } 1364 1365 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1366 object_property_add_uint64_ptr(obj, "rvbar", 1367 &cpu->rvbar_prop, 1368 OBJ_PROP_FLAG_READWRITE); 1369 } 1370 1371 #ifndef CONFIG_USER_ONLY 1372 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1373 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1374 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1375 */ 1376 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1377 1378 object_property_add_link(obj, "secure-memory", 1379 TYPE_MEMORY_REGION, 1380 (Object **)&cpu->secure_memory, 1381 qdev_prop_allow_set_link_before_realize, 1382 OBJ_PROP_LINK_STRONG); 1383 } 1384 1385 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1386 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1387 } 1388 #endif 1389 1390 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1391 cpu->has_pmu = true; 1392 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1393 } 1394 1395 /* 1396 * Allow user to turn off VFP and Neon support, but only for TCG -- 1397 * KVM does not currently allow us to lie to the guest about its 1398 * ID/feature registers, so the guest always sees what the host has. 1399 */ 1400 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 1401 ? cpu_isar_feature(aa64_fp_simd, cpu) 1402 : cpu_isar_feature(aa32_vfp, cpu)) { 1403 cpu->has_vfp = true; 1404 if (!kvm_enabled()) { 1405 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); 1406 } 1407 } 1408 1409 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1410 cpu->has_neon = true; 1411 if (!kvm_enabled()) { 1412 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1413 } 1414 } 1415 1416 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1417 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1418 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1419 } 1420 1421 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1422 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1423 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1424 qdev_property_add_static(DEVICE(obj), 1425 &arm_cpu_pmsav7_dregion_property); 1426 } 1427 } 1428 1429 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1430 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1431 qdev_prop_allow_set_link_before_realize, 1432 OBJ_PROP_LINK_STRONG); 1433 /* 1434 * M profile: initial value of the Secure VTOR. We can't just use 1435 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1436 * the property to be set after realize. 1437 */ 1438 object_property_add_uint32_ptr(obj, "init-svtor", 1439 &cpu->init_svtor, 1440 OBJ_PROP_FLAG_READWRITE); 1441 } 1442 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1443 /* 1444 * Initial value of the NS VTOR (for cores without the Security 1445 * extension, this is the only VTOR) 1446 */ 1447 object_property_add_uint32_ptr(obj, "init-nsvtor", 1448 &cpu->init_nsvtor, 1449 OBJ_PROP_FLAG_READWRITE); 1450 } 1451 1452 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ 1453 object_property_add_uint32_ptr(obj, "psci-conduit", 1454 &cpu->psci_conduit, 1455 OBJ_PROP_FLAG_READWRITE); 1456 1457 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1458 1459 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1460 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1461 } 1462 1463 if (kvm_enabled()) { 1464 kvm_arm_add_vcpu_properties(obj); 1465 } 1466 1467 #ifndef CONFIG_USER_ONLY 1468 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1469 cpu_isar_feature(aa64_mte, cpu)) { 1470 object_property_add_link(obj, "tag-memory", 1471 TYPE_MEMORY_REGION, 1472 (Object **)&cpu->tag_memory, 1473 qdev_prop_allow_set_link_before_realize, 1474 OBJ_PROP_LINK_STRONG); 1475 1476 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1477 object_property_add_link(obj, "secure-tag-memory", 1478 TYPE_MEMORY_REGION, 1479 (Object **)&cpu->secure_tag_memory, 1480 qdev_prop_allow_set_link_before_realize, 1481 OBJ_PROP_LINK_STRONG); 1482 } 1483 } 1484 #endif 1485 } 1486 1487 static void arm_cpu_finalizefn(Object *obj) 1488 { 1489 ARMCPU *cpu = ARM_CPU(obj); 1490 ARMELChangeHook *hook, *next; 1491 1492 g_hash_table_destroy(cpu->cp_regs); 1493 1494 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1495 QLIST_REMOVE(hook, node); 1496 g_free(hook); 1497 } 1498 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1499 QLIST_REMOVE(hook, node); 1500 g_free(hook); 1501 } 1502 #ifndef CONFIG_USER_ONLY 1503 if (cpu->pmu_timer) { 1504 timer_free(cpu->pmu_timer); 1505 } 1506 #endif 1507 } 1508 1509 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1510 { 1511 Error *local_err = NULL; 1512 1513 #ifdef TARGET_AARCH64 1514 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1515 arm_cpu_sve_finalize(cpu, &local_err); 1516 if (local_err != NULL) { 1517 error_propagate(errp, local_err); 1518 return; 1519 } 1520 1521 arm_cpu_sme_finalize(cpu, &local_err); 1522 if (local_err != NULL) { 1523 error_propagate(errp, local_err); 1524 return; 1525 } 1526 1527 arm_cpu_pauth_finalize(cpu, &local_err); 1528 if (local_err != NULL) { 1529 error_propagate(errp, local_err); 1530 return; 1531 } 1532 1533 arm_cpu_lpa2_finalize(cpu, &local_err); 1534 if (local_err != NULL) { 1535 error_propagate(errp, local_err); 1536 return; 1537 } 1538 } 1539 #endif 1540 1541 if (kvm_enabled()) { 1542 kvm_arm_steal_time_finalize(cpu, &local_err); 1543 if (local_err != NULL) { 1544 error_propagate(errp, local_err); 1545 return; 1546 } 1547 } 1548 } 1549 1550 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1551 { 1552 CPUState *cs = CPU(dev); 1553 ARMCPU *cpu = ARM_CPU(dev); 1554 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1555 CPUARMState *env = &cpu->env; 1556 int pagebits; 1557 Error *local_err = NULL; 1558 bool no_aa32 = false; 1559 1560 /* If we needed to query the host kernel for the CPU features 1561 * then it's possible that might have failed in the initfn, but 1562 * this is the first point where we can report it. 1563 */ 1564 if (cpu->host_cpu_probe_failed) { 1565 if (!kvm_enabled() && !hvf_enabled()) { 1566 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); 1567 } else { 1568 error_setg(errp, "Failed to retrieve host CPU features"); 1569 } 1570 return; 1571 } 1572 1573 #ifndef CONFIG_USER_ONLY 1574 /* The NVIC and M-profile CPU are two halves of a single piece of 1575 * hardware; trying to use one without the other is a command line 1576 * error and will result in segfaults if not caught here. 1577 */ 1578 if (arm_feature(env, ARM_FEATURE_M)) { 1579 if (!env->nvic) { 1580 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1581 return; 1582 } 1583 } else { 1584 if (env->nvic) { 1585 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1586 return; 1587 } 1588 } 1589 1590 if (!tcg_enabled() && !qtest_enabled()) { 1591 /* 1592 * We assume that no accelerator except TCG (and the "not really an 1593 * accelerator" qtest) can handle these features, because Arm hardware 1594 * virtualization can't virtualize them. 1595 * 1596 * Catch all the cases which might cause us to create more than one 1597 * address space for the CPU (otherwise we will assert() later in 1598 * cpu_address_space_init()). 1599 */ 1600 if (arm_feature(env, ARM_FEATURE_M)) { 1601 error_setg(errp, 1602 "Cannot enable %s when using an M-profile guest CPU", 1603 current_accel_name()); 1604 return; 1605 } 1606 if (cpu->has_el3) { 1607 error_setg(errp, 1608 "Cannot enable %s when guest CPU has EL3 enabled", 1609 current_accel_name()); 1610 return; 1611 } 1612 if (cpu->tag_memory) { 1613 error_setg(errp, 1614 "Cannot enable %s when guest CPUs has MTE enabled", 1615 current_accel_name()); 1616 return; 1617 } 1618 } 1619 1620 { 1621 uint64_t scale; 1622 1623 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1624 if (!cpu->gt_cntfrq_hz) { 1625 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1626 cpu->gt_cntfrq_hz); 1627 return; 1628 } 1629 scale = gt_cntfrq_period_ns(cpu); 1630 } else { 1631 scale = GTIMER_SCALE; 1632 } 1633 1634 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1635 arm_gt_ptimer_cb, cpu); 1636 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1637 arm_gt_vtimer_cb, cpu); 1638 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1639 arm_gt_htimer_cb, cpu); 1640 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1641 arm_gt_stimer_cb, cpu); 1642 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1643 arm_gt_hvtimer_cb, cpu); 1644 } 1645 #endif 1646 1647 cpu_exec_realizefn(cs, &local_err); 1648 if (local_err != NULL) { 1649 error_propagate(errp, local_err); 1650 return; 1651 } 1652 1653 arm_cpu_finalize_features(cpu, &local_err); 1654 if (local_err != NULL) { 1655 error_propagate(errp, local_err); 1656 return; 1657 } 1658 1659 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1660 cpu->has_vfp != cpu->has_neon) { 1661 /* 1662 * This is an architectural requirement for AArch64; AArch32 is 1663 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1664 */ 1665 error_setg(errp, 1666 "AArch64 CPUs must have both VFP and Neon or neither"); 1667 return; 1668 } 1669 1670 if (!cpu->has_vfp) { 1671 uint64_t t; 1672 uint32_t u; 1673 1674 t = cpu->isar.id_aa64isar1; 1675 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1676 cpu->isar.id_aa64isar1 = t; 1677 1678 t = cpu->isar.id_aa64pfr0; 1679 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1680 cpu->isar.id_aa64pfr0 = t; 1681 1682 u = cpu->isar.id_isar6; 1683 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1684 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1685 cpu->isar.id_isar6 = u; 1686 1687 u = cpu->isar.mvfr0; 1688 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1689 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1690 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1691 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1692 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1693 if (!arm_feature(env, ARM_FEATURE_M)) { 1694 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1695 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1696 } 1697 cpu->isar.mvfr0 = u; 1698 1699 u = cpu->isar.mvfr1; 1700 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1701 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1702 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1703 if (arm_feature(env, ARM_FEATURE_M)) { 1704 u = FIELD_DP32(u, MVFR1, FP16, 0); 1705 } 1706 cpu->isar.mvfr1 = u; 1707 1708 u = cpu->isar.mvfr2; 1709 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1710 cpu->isar.mvfr2 = u; 1711 } 1712 1713 if (!cpu->has_neon) { 1714 uint64_t t; 1715 uint32_t u; 1716 1717 unset_feature(env, ARM_FEATURE_NEON); 1718 1719 t = cpu->isar.id_aa64isar0; 1720 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); 1721 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); 1722 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); 1723 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); 1724 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); 1725 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); 1726 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1727 cpu->isar.id_aa64isar0 = t; 1728 1729 t = cpu->isar.id_aa64isar1; 1730 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1731 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); 1732 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); 1733 cpu->isar.id_aa64isar1 = t; 1734 1735 t = cpu->isar.id_aa64pfr0; 1736 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1737 cpu->isar.id_aa64pfr0 = t; 1738 1739 u = cpu->isar.id_isar5; 1740 u = FIELD_DP32(u, ID_ISAR5, AES, 0); 1741 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); 1742 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); 1743 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1744 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1745 cpu->isar.id_isar5 = u; 1746 1747 u = cpu->isar.id_isar6; 1748 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1749 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1750 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1751 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); 1752 cpu->isar.id_isar6 = u; 1753 1754 if (!arm_feature(env, ARM_FEATURE_M)) { 1755 u = cpu->isar.mvfr1; 1756 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1757 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1758 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1759 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1760 cpu->isar.mvfr1 = u; 1761 1762 u = cpu->isar.mvfr2; 1763 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1764 cpu->isar.mvfr2 = u; 1765 } 1766 } 1767 1768 if (!cpu->has_neon && !cpu->has_vfp) { 1769 uint64_t t; 1770 uint32_t u; 1771 1772 t = cpu->isar.id_aa64isar0; 1773 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1774 cpu->isar.id_aa64isar0 = t; 1775 1776 t = cpu->isar.id_aa64isar1; 1777 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1778 cpu->isar.id_aa64isar1 = t; 1779 1780 u = cpu->isar.mvfr0; 1781 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1782 cpu->isar.mvfr0 = u; 1783 1784 /* Despite the name, this field covers both VFP and Neon */ 1785 u = cpu->isar.mvfr1; 1786 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1787 cpu->isar.mvfr1 = u; 1788 } 1789 1790 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1791 uint32_t u; 1792 1793 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1794 1795 u = cpu->isar.id_isar1; 1796 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1797 cpu->isar.id_isar1 = u; 1798 1799 u = cpu->isar.id_isar2; 1800 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1801 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1802 cpu->isar.id_isar2 = u; 1803 1804 u = cpu->isar.id_isar3; 1805 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1806 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1807 cpu->isar.id_isar3 = u; 1808 } 1809 1810 /* Some features automatically imply others: */ 1811 if (arm_feature(env, ARM_FEATURE_V8)) { 1812 if (arm_feature(env, ARM_FEATURE_M)) { 1813 set_feature(env, ARM_FEATURE_V7); 1814 } else { 1815 set_feature(env, ARM_FEATURE_V7VE); 1816 } 1817 } 1818 1819 /* 1820 * There exist AArch64 cpus without AArch32 support. When KVM 1821 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1822 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1823 * As a general principle, we also do not make ID register 1824 * consistency checks anywhere unless using TCG, because only 1825 * for TCG would a consistency-check failure be a QEMU bug. 1826 */ 1827 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1828 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1829 } 1830 1831 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1832 /* v7 Virtualization Extensions. In real hardware this implies 1833 * EL2 and also the presence of the Security Extensions. 1834 * For QEMU, for backwards-compatibility we implement some 1835 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1836 * include the various other features that V7VE implies. 1837 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1838 * Security Extensions is ARM_FEATURE_EL3. 1839 */ 1840 assert(!tcg_enabled() || no_aa32 || 1841 cpu_isar_feature(aa32_arm_div, cpu)); 1842 set_feature(env, ARM_FEATURE_LPAE); 1843 set_feature(env, ARM_FEATURE_V7); 1844 } 1845 if (arm_feature(env, ARM_FEATURE_V7)) { 1846 set_feature(env, ARM_FEATURE_VAPA); 1847 set_feature(env, ARM_FEATURE_THUMB2); 1848 set_feature(env, ARM_FEATURE_MPIDR); 1849 if (!arm_feature(env, ARM_FEATURE_M)) { 1850 set_feature(env, ARM_FEATURE_V6K); 1851 } else { 1852 set_feature(env, ARM_FEATURE_V6); 1853 } 1854 1855 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1856 * non-EL3 configs. This is needed by some legacy boards. 1857 */ 1858 set_feature(env, ARM_FEATURE_VBAR); 1859 } 1860 if (arm_feature(env, ARM_FEATURE_V6K)) { 1861 set_feature(env, ARM_FEATURE_V6); 1862 set_feature(env, ARM_FEATURE_MVFR); 1863 } 1864 if (arm_feature(env, ARM_FEATURE_V6)) { 1865 set_feature(env, ARM_FEATURE_V5); 1866 if (!arm_feature(env, ARM_FEATURE_M)) { 1867 assert(!tcg_enabled() || no_aa32 || 1868 cpu_isar_feature(aa32_jazelle, cpu)); 1869 set_feature(env, ARM_FEATURE_AUXCR); 1870 } 1871 } 1872 if (arm_feature(env, ARM_FEATURE_V5)) { 1873 set_feature(env, ARM_FEATURE_V4T); 1874 } 1875 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1876 set_feature(env, ARM_FEATURE_V7MP); 1877 } 1878 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1879 set_feature(env, ARM_FEATURE_CBAR); 1880 } 1881 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1882 !arm_feature(env, ARM_FEATURE_M)) { 1883 set_feature(env, ARM_FEATURE_THUMB_DSP); 1884 } 1885 1886 /* 1887 * We rely on no XScale CPU having VFP so we can use the same bits in the 1888 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1889 */ 1890 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || 1891 !cpu_isar_feature(aa32_vfp_simd, cpu) || 1892 !arm_feature(env, ARM_FEATURE_XSCALE)); 1893 1894 if (arm_feature(env, ARM_FEATURE_V7) && 1895 !arm_feature(env, ARM_FEATURE_M) && 1896 !arm_feature(env, ARM_FEATURE_PMSA)) { 1897 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1898 * can use 4K pages. 1899 */ 1900 pagebits = 12; 1901 } else { 1902 /* For CPUs which might have tiny 1K pages, or which have an 1903 * MPU and might have small region sizes, stick with 1K pages. 1904 */ 1905 pagebits = 10; 1906 } 1907 if (!set_preferred_target_page_bits(pagebits)) { 1908 /* This can only ever happen for hotplugging a CPU, or if 1909 * the board code incorrectly creates a CPU which it has 1910 * promised via minimum_page_size that it will not. 1911 */ 1912 error_setg(errp, "This CPU requires a smaller page size than the " 1913 "system is using"); 1914 return; 1915 } 1916 1917 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1918 * We don't support setting cluster ID ([16..23]) (known as Aff2 1919 * in later ARM ARM versions), or any of the higher affinity level fields, 1920 * so these bits always RAZ. 1921 */ 1922 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1923 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1924 ARM_DEFAULT_CPUS_PER_CLUSTER); 1925 } 1926 1927 if (cpu->reset_hivecs) { 1928 cpu->reset_sctlr |= (1 << 13); 1929 } 1930 1931 if (cpu->cfgend) { 1932 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1933 cpu->reset_sctlr |= SCTLR_EE; 1934 } else { 1935 cpu->reset_sctlr |= SCTLR_B; 1936 } 1937 } 1938 1939 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { 1940 /* If the has_el3 CPU property is disabled then we need to disable the 1941 * feature. 1942 */ 1943 unset_feature(env, ARM_FEATURE_EL3); 1944 1945 /* 1946 * Disable the security extension feature bits in the processor 1947 * feature registers as well. 1948 */ 1949 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); 1950 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); 1951 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 1952 ID_AA64PFR0, EL3, 0); 1953 } 1954 1955 if (!cpu->has_el2) { 1956 unset_feature(env, ARM_FEATURE_EL2); 1957 } 1958 1959 if (!cpu->has_pmu) { 1960 unset_feature(env, ARM_FEATURE_PMU); 1961 } 1962 if (arm_feature(env, ARM_FEATURE_PMU)) { 1963 pmu_init(cpu); 1964 1965 if (!kvm_enabled()) { 1966 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1967 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1968 } 1969 1970 #ifndef CONFIG_USER_ONLY 1971 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1972 cpu); 1973 #endif 1974 } else { 1975 cpu->isar.id_aa64dfr0 = 1976 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 1977 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 1978 cpu->pmceid0 = 0; 1979 cpu->pmceid1 = 0; 1980 } 1981 1982 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1983 /* 1984 * Disable the hypervisor feature bits in the processor feature 1985 * registers if we don't have EL2. 1986 */ 1987 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 1988 ID_AA64PFR0, EL2, 0); 1989 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, 1990 ID_PFR1, VIRTUALIZATION, 0); 1991 } 1992 1993 #ifndef CONFIG_USER_ONLY 1994 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { 1995 /* 1996 * Disable the MTE feature bits if we do not have tag-memory 1997 * provided by the machine. 1998 */ 1999 cpu->isar.id_aa64pfr1 = 2000 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); 2001 } 2002 #endif 2003 2004 if (tcg_enabled()) { 2005 /* 2006 * Don't report the Statistical Profiling Extension in the ID 2007 * registers, because TCG doesn't implement it yet (not even a 2008 * minimal stub version) and guests will fall over when they 2009 * try to access the non-existent system registers for it. 2010 */ 2011 cpu->isar.id_aa64dfr0 = 2012 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0); 2013 } 2014 2015 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 2016 * to false or by setting pmsav7-dregion to 0. 2017 */ 2018 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) { 2019 cpu->has_mpu = false; 2020 cpu->pmsav7_dregion = 0; 2021 cpu->pmsav8r_hdregion = 0; 2022 } 2023 2024 if (arm_feature(env, ARM_FEATURE_PMSA) && 2025 arm_feature(env, ARM_FEATURE_V7)) { 2026 uint32_t nr = cpu->pmsav7_dregion; 2027 2028 if (nr > 0xff) { 2029 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 2030 return; 2031 } 2032 2033 if (nr) { 2034 if (arm_feature(env, ARM_FEATURE_V8)) { 2035 /* PMSAv8 */ 2036 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 2037 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 2038 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2039 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 2040 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 2041 } 2042 } else { 2043 env->pmsav7.drbar = g_new0(uint32_t, nr); 2044 env->pmsav7.drsr = g_new0(uint32_t, nr); 2045 env->pmsav7.dracr = g_new0(uint32_t, nr); 2046 } 2047 } 2048 2049 if (cpu->pmsav8r_hdregion > 0xff) { 2050 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32, 2051 cpu->pmsav8r_hdregion); 2052 return; 2053 } 2054 2055 if (cpu->pmsav8r_hdregion) { 2056 env->pmsav8.hprbar = g_new0(uint32_t, 2057 cpu->pmsav8r_hdregion); 2058 env->pmsav8.hprlar = g_new0(uint32_t, 2059 cpu->pmsav8r_hdregion); 2060 } 2061 } 2062 2063 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2064 uint32_t nr = cpu->sau_sregion; 2065 2066 if (nr > 0xff) { 2067 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 2068 return; 2069 } 2070 2071 if (nr) { 2072 env->sau.rbar = g_new0(uint32_t, nr); 2073 env->sau.rlar = g_new0(uint32_t, nr); 2074 } 2075 } 2076 2077 if (arm_feature(env, ARM_FEATURE_EL3)) { 2078 set_feature(env, ARM_FEATURE_VBAR); 2079 } 2080 2081 register_cp_regs_for_features(cpu); 2082 arm_cpu_register_gdb_regs_for_features(cpu); 2083 2084 init_cpreg_list(cpu); 2085 2086 #ifndef CONFIG_USER_ONLY 2087 MachineState *ms = MACHINE(qdev_get_machine()); 2088 unsigned int smp_cpus = ms->smp.cpus; 2089 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 2090 2091 /* 2092 * We must set cs->num_ases to the final value before 2093 * the first call to cpu_address_space_init. 2094 */ 2095 if (cpu->tag_memory != NULL) { 2096 cs->num_ases = 3 + has_secure; 2097 } else { 2098 cs->num_ases = 1 + has_secure; 2099 } 2100 2101 if (has_secure) { 2102 if (!cpu->secure_memory) { 2103 cpu->secure_memory = cs->memory; 2104 } 2105 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 2106 cpu->secure_memory); 2107 } 2108 2109 if (cpu->tag_memory != NULL) { 2110 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 2111 cpu->tag_memory); 2112 if (has_secure) { 2113 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 2114 cpu->secure_tag_memory); 2115 } 2116 } 2117 2118 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 2119 2120 /* No core_count specified, default to smp_cpus. */ 2121 if (cpu->core_count == -1) { 2122 cpu->core_count = smp_cpus; 2123 } 2124 #endif 2125 2126 if (tcg_enabled()) { 2127 int dcz_blocklen = 4 << cpu->dcz_blocksize; 2128 2129 /* 2130 * We only support DCZ blocklen that fits on one page. 2131 * 2132 * Architectually this is always true. However TARGET_PAGE_SIZE 2133 * is variable and, for compatibility with -machine virt-2.7, 2134 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 2135 * But even then, while the largest architectural DCZ blocklen 2136 * is 2KiB, no cpu actually uses such a large blocklen. 2137 */ 2138 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 2139 2140 /* 2141 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 2142 * both nibbles of each byte storing tag data may be written at once. 2143 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 2144 */ 2145 if (cpu_isar_feature(aa64_mte, cpu)) { 2146 assert(dcz_blocklen >= 2 * TAG_GRANULE); 2147 } 2148 } 2149 2150 qemu_init_vcpu(cs); 2151 cpu_reset(cs); 2152 2153 acc->parent_realize(dev, errp); 2154 } 2155 2156 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 2157 { 2158 ObjectClass *oc; 2159 char *typename; 2160 char **cpuname; 2161 const char *cpunamestr; 2162 2163 cpuname = g_strsplit(cpu_model, ",", 1); 2164 cpunamestr = cpuname[0]; 2165 #ifdef CONFIG_USER_ONLY 2166 /* For backwards compatibility usermode emulation allows "-cpu any", 2167 * which has the same semantics as "-cpu max". 2168 */ 2169 if (!strcmp(cpunamestr, "any")) { 2170 cpunamestr = "max"; 2171 } 2172 #endif 2173 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 2174 oc = object_class_by_name(typename); 2175 g_strfreev(cpuname); 2176 g_free(typename); 2177 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 2178 object_class_is_abstract(oc)) { 2179 return NULL; 2180 } 2181 return oc; 2182 } 2183 2184 static Property arm_cpu_properties[] = { 2185 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 2186 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2187 mp_affinity, ARM64_AFFINITY_INVALID), 2188 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2189 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2190 DEFINE_PROP_END_OF_LIST() 2191 }; 2192 2193 static gchar *arm_gdb_arch_name(CPUState *cs) 2194 { 2195 ARMCPU *cpu = ARM_CPU(cs); 2196 CPUARMState *env = &cpu->env; 2197 2198 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2199 return g_strdup("iwmmxt"); 2200 } 2201 return g_strdup("arm"); 2202 } 2203 2204 #ifndef CONFIG_USER_ONLY 2205 #include "hw/core/sysemu-cpu-ops.h" 2206 2207 static const struct SysemuCPUOps arm_sysemu_ops = { 2208 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, 2209 .asidx_from_attrs = arm_asidx_from_attrs, 2210 .write_elf32_note = arm_cpu_write_elf32_note, 2211 .write_elf64_note = arm_cpu_write_elf64_note, 2212 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, 2213 .legacy_vmsd = &vmstate_arm_cpu, 2214 }; 2215 #endif 2216 2217 #ifdef CONFIG_TCG 2218 static const struct TCGCPUOps arm_tcg_ops = { 2219 .initialize = arm_translate_init, 2220 .synchronize_from_tb = arm_cpu_synchronize_from_tb, 2221 .debug_excp_handler = arm_debug_excp_handler, 2222 .restore_state_to_opc = arm_restore_state_to_opc, 2223 2224 #ifdef CONFIG_USER_ONLY 2225 .record_sigsegv = arm_cpu_record_sigsegv, 2226 .record_sigbus = arm_cpu_record_sigbus, 2227 #else 2228 .tlb_fill = arm_cpu_tlb_fill, 2229 .cpu_exec_interrupt = arm_cpu_exec_interrupt, 2230 .do_interrupt = arm_cpu_do_interrupt, 2231 .do_transaction_failed = arm_cpu_do_transaction_failed, 2232 .do_unaligned_access = arm_cpu_do_unaligned_access, 2233 .adjust_watchpoint_address = arm_adjust_watchpoint_address, 2234 .debug_check_watchpoint = arm_debug_check_watchpoint, 2235 .debug_check_breakpoint = arm_debug_check_breakpoint, 2236 #endif /* !CONFIG_USER_ONLY */ 2237 }; 2238 #endif /* CONFIG_TCG */ 2239 2240 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2241 { 2242 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2243 CPUClass *cc = CPU_CLASS(acc); 2244 DeviceClass *dc = DEVICE_CLASS(oc); 2245 ResettableClass *rc = RESETTABLE_CLASS(oc); 2246 2247 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2248 &acc->parent_realize); 2249 2250 device_class_set_props(dc, arm_cpu_properties); 2251 2252 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL, 2253 &acc->parent_phases); 2254 2255 cc->class_by_name = arm_cpu_class_by_name; 2256 cc->has_work = arm_cpu_has_work; 2257 cc->dump_state = arm_cpu_dump_state; 2258 cc->set_pc = arm_cpu_set_pc; 2259 cc->get_pc = arm_cpu_get_pc; 2260 cc->gdb_read_register = arm_cpu_gdb_read_register; 2261 cc->gdb_write_register = arm_cpu_gdb_write_register; 2262 #ifndef CONFIG_USER_ONLY 2263 cc->sysemu_ops = &arm_sysemu_ops; 2264 #endif 2265 cc->gdb_num_core_regs = 26; 2266 cc->gdb_core_xml_file = "arm-core.xml"; 2267 cc->gdb_arch_name = arm_gdb_arch_name; 2268 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2269 cc->gdb_stop_before_watchpoint = true; 2270 cc->disas_set_info = arm_disas_set_info; 2271 2272 #ifdef CONFIG_TCG 2273 cc->tcg_ops = &arm_tcg_ops; 2274 #endif /* CONFIG_TCG */ 2275 } 2276 2277 static void arm_cpu_instance_init(Object *obj) 2278 { 2279 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2280 2281 acc->info->initfn(obj); 2282 arm_cpu_post_init(obj); 2283 } 2284 2285 static void cpu_register_class_init(ObjectClass *oc, void *data) 2286 { 2287 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2288 2289 acc->info = data; 2290 } 2291 2292 void arm_cpu_register(const ARMCPUInfo *info) 2293 { 2294 TypeInfo type_info = { 2295 .parent = TYPE_ARM_CPU, 2296 .instance_size = sizeof(ARMCPU), 2297 .instance_align = __alignof__(ARMCPU), 2298 .instance_init = arm_cpu_instance_init, 2299 .class_size = sizeof(ARMCPUClass), 2300 .class_init = info->class_init ?: cpu_register_class_init, 2301 .class_data = (void *)info, 2302 }; 2303 2304 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2305 type_register(&type_info); 2306 g_free((void *)type_info.name); 2307 } 2308 2309 static const TypeInfo arm_cpu_type_info = { 2310 .name = TYPE_ARM_CPU, 2311 .parent = TYPE_CPU, 2312 .instance_size = sizeof(ARMCPU), 2313 .instance_align = __alignof__(ARMCPU), 2314 .instance_init = arm_cpu_initfn, 2315 .instance_finalize = arm_cpu_finalizefn, 2316 .abstract = true, 2317 .class_size = sizeof(ARMCPUClass), 2318 .class_init = arm_cpu_class_init, 2319 }; 2320 2321 static void arm_cpu_register_types(void) 2322 { 2323 type_register_static(&arm_cpu_type_info); 2324 } 2325 2326 type_init(arm_cpu_register_types) 2327