xref: /openbmc/qemu/target/arm/cpu.c (revision 64c9a921)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs,
58                                         const TranslationBlock *tb)
59 {
60     ARMCPU *cpu = ARM_CPU(cs);
61     CPUARMState *env = &cpu->env;
62 
63     /*
64      * It's OK to look at env for the current mode here, because it's
65      * never possible for an AArch64 TB to chain to an AArch32 TB.
66      */
67     if (is_a64(env)) {
68         env->pc = tb->pc;
69     } else {
70         env->regs[15] = tb->pc;
71     }
72 }
73 
74 static bool arm_cpu_has_work(CPUState *cs)
75 {
76     ARMCPU *cpu = ARM_CPU(cs);
77 
78     return (cpu->power_state != PSCI_OFF)
79         && cs->interrupt_request &
80         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
81          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
82          | CPU_INTERRUPT_EXITTB);
83 }
84 
85 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
86                                  void *opaque)
87 {
88     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
89 
90     entry->hook = hook;
91     entry->opaque = opaque;
92 
93     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
94 }
95 
96 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
97                                  void *opaque)
98 {
99     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
100 
101     entry->hook = hook;
102     entry->opaque = opaque;
103 
104     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
105 }
106 
107 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
108 {
109     /* Reset a single ARMCPRegInfo register */
110     ARMCPRegInfo *ri = value;
111     ARMCPU *cpu = opaque;
112 
113     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
114         return;
115     }
116 
117     if (ri->resetfn) {
118         ri->resetfn(&cpu->env, ri);
119         return;
120     }
121 
122     /* A zero offset is never possible as it would be regs[0]
123      * so we use it to indicate that reset is being handled elsewhere.
124      * This is basically only used for fields in non-core coprocessors
125      * (like the pxa2xx ones).
126      */
127     if (!ri->fieldoffset) {
128         return;
129     }
130 
131     if (cpreg_field_is_64bit(ri)) {
132         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
133     } else {
134         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
135     }
136 }
137 
138 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
139 {
140     /* Purely an assertion check: we've already done reset once,
141      * so now check that running the reset for the cpreg doesn't
142      * change its value. This traps bugs where two different cpregs
143      * both try to reset the same state field but to different values.
144      */
145     ARMCPRegInfo *ri = value;
146     ARMCPU *cpu = opaque;
147     uint64_t oldvalue, newvalue;
148 
149     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
150         return;
151     }
152 
153     oldvalue = read_raw_cp_reg(&cpu->env, ri);
154     cp_reg_reset(key, value, opaque);
155     newvalue = read_raw_cp_reg(&cpu->env, ri);
156     assert(oldvalue == newvalue);
157 }
158 
159 static void arm_cpu_reset(DeviceState *dev)
160 {
161     CPUState *s = CPU(dev);
162     ARMCPU *cpu = ARM_CPU(s);
163     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
164     CPUARMState *env = &cpu->env;
165 
166     acc->parent_reset(dev);
167 
168     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
169 
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
171     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
172 
173     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
174     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
175     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
176     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
177 
178     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with reasonable vector length */
199         if (cpu_isar_feature(aa64_sve, cpu)) {
200             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201         }
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          *
207          * In sve_probe_page, we assume that this is set.
208          * Do not modify this without other changes.
209          */
210         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
211 #else
212         /* Reset into the highest available EL */
213         if (arm_feature(env, ARM_FEATURE_EL3)) {
214             env->pstate = PSTATE_MODE_EL3h;
215         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
216             env->pstate = PSTATE_MODE_EL2h;
217         } else {
218             env->pstate = PSTATE_MODE_EL1h;
219         }
220         env->pc = cpu->rvbar;
221 #endif
222     } else {
223 #if defined(CONFIG_USER_ONLY)
224         /* Userspace expects access to cp10 and cp11 for FP/Neon */
225         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
226 #endif
227     }
228 
229 #if defined(CONFIG_USER_ONLY)
230     env->uncached_cpsr = ARM_CPU_MODE_USR;
231     /* For user mode we must enable access to coprocessors */
232     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
233     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234         env->cp15.c15_cpar = 3;
235     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
236         env->cp15.c15_cpar = 1;
237     }
238 #else
239 
240     /*
241      * If the highest available EL is EL2, AArch32 will start in Hyp
242      * mode; otherwise it starts in SVC. Note that if we start in
243      * AArch64 then these values in the uncached_cpsr will be ignored.
244      */
245     if (arm_feature(env, ARM_FEATURE_EL2) &&
246         !arm_feature(env, ARM_FEATURE_EL3)) {
247         env->uncached_cpsr = ARM_CPU_MODE_HYP;
248     } else {
249         env->uncached_cpsr = ARM_CPU_MODE_SVC;
250     }
251     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 
253     if (arm_feature(env, ARM_FEATURE_M)) {
254         uint32_t initial_msp; /* Loaded from 0x0 */
255         uint32_t initial_pc; /* Loaded from 0x4 */
256         uint8_t *rom;
257         uint32_t vecbase;
258 
259         if (cpu_isar_feature(aa32_lob, cpu)) {
260             /*
261              * LTPSIZE is constant 4 if MVE not implemented, and resets
262              * to an UNKNOWN value if MVE is implemented. We choose to
263              * always reset to 4.
264              */
265             env->v7m.ltpsize = 4;
266             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
267             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
268             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
269         }
270 
271         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
272             env->v7m.secure = true;
273         } else {
274             /* This bit resets to 0 if security is supported, but 1 if
275              * it is not. The bit is not present in v7M, but we set it
276              * here so we can avoid having to make checks on it conditional
277              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
278              */
279             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
280             /*
281              * Set NSACR to indicate "NS access permitted to everything";
282              * this avoids having to have all the tests of it being
283              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
284              * v8.1M the guest-visible value of NSACR in a CPU without the
285              * Security Extension is 0xcff.
286              */
287             env->v7m.nsacr = 0xcff;
288         }
289 
290         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
291          * that it resets to 1, so QEMU always does that rather than making
292          * it dependent on CPU model. In v8M it is RES1.
293          */
294         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
295         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
296         if (arm_feature(env, ARM_FEATURE_V8)) {
297             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
298             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
299             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
300         }
301         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
302             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
303             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
304         }
305 
306         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
307             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
308             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
309                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
310         }
311         /* Unlike A/R profile, M profile defines the reset LR value */
312         env->regs[14] = 0xffffffff;
313 
314         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
315 
316         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
317         vecbase = env->v7m.vecbase[env->v7m.secure];
318         rom = rom_ptr(vecbase, 8);
319         if (rom) {
320             /* Address zero is covered by ROM which hasn't yet been
321              * copied into physical memory.
322              */
323             initial_msp = ldl_p(rom);
324             initial_pc = ldl_p(rom + 4);
325         } else {
326             /* Address zero not covered by a ROM blob, or the ROM blob
327              * is in non-modifiable memory and this is a second reset after
328              * it got copied into memory. In the latter case, rom_ptr
329              * will return a NULL pointer and we should use ldl_phys instead.
330              */
331             initial_msp = ldl_phys(s->as, vecbase);
332             initial_pc = ldl_phys(s->as, vecbase + 4);
333         }
334 
335         env->regs[13] = initial_msp & 0xFFFFFFFC;
336         env->regs[15] = initial_pc & ~1;
337         env->thumb = initial_pc & 1;
338     }
339 
340     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
341      * executing as AArch32 then check if highvecs are enabled and
342      * adjust the PC accordingly.
343      */
344     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
345         env->regs[15] = 0xFFFF0000;
346     }
347 
348     /* M profile requires that reset clears the exclusive monitor;
349      * A profile does not, but clearing it makes more sense than having it
350      * set with an exclusive access on address zero.
351      */
352     arm_clear_exclusive(env);
353 
354     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
355 #endif
356 
357     if (arm_feature(env, ARM_FEATURE_PMSA)) {
358         if (cpu->pmsav7_dregion > 0) {
359             if (arm_feature(env, ARM_FEATURE_V8)) {
360                 memset(env->pmsav8.rbar[M_REG_NS], 0,
361                        sizeof(*env->pmsav8.rbar[M_REG_NS])
362                        * cpu->pmsav7_dregion);
363                 memset(env->pmsav8.rlar[M_REG_NS], 0,
364                        sizeof(*env->pmsav8.rlar[M_REG_NS])
365                        * cpu->pmsav7_dregion);
366                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
367                     memset(env->pmsav8.rbar[M_REG_S], 0,
368                            sizeof(*env->pmsav8.rbar[M_REG_S])
369                            * cpu->pmsav7_dregion);
370                     memset(env->pmsav8.rlar[M_REG_S], 0,
371                            sizeof(*env->pmsav8.rlar[M_REG_S])
372                            * cpu->pmsav7_dregion);
373                 }
374             } else if (arm_feature(env, ARM_FEATURE_V7)) {
375                 memset(env->pmsav7.drbar, 0,
376                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
377                 memset(env->pmsav7.drsr, 0,
378                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
379                 memset(env->pmsav7.dracr, 0,
380                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
381             }
382         }
383         env->pmsav7.rnr[M_REG_NS] = 0;
384         env->pmsav7.rnr[M_REG_S] = 0;
385         env->pmsav8.mair0[M_REG_NS] = 0;
386         env->pmsav8.mair0[M_REG_S] = 0;
387         env->pmsav8.mair1[M_REG_NS] = 0;
388         env->pmsav8.mair1[M_REG_S] = 0;
389     }
390 
391     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
392         if (cpu->sau_sregion > 0) {
393             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
394             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
395         }
396         env->sau.rnr = 0;
397         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
398          * the Cortex-M33 does.
399          */
400         env->sau.ctrl = 0;
401     }
402 
403     set_flush_to_zero(1, &env->vfp.standard_fp_status);
404     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
405     set_default_nan_mode(1, &env->vfp.standard_fp_status);
406     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
407     set_float_detect_tininess(float_tininess_before_rounding,
408                               &env->vfp.fp_status);
409     set_float_detect_tininess(float_tininess_before_rounding,
410                               &env->vfp.standard_fp_status);
411     set_float_detect_tininess(float_tininess_before_rounding,
412                               &env->vfp.fp_status_f16);
413     set_float_detect_tininess(float_tininess_before_rounding,
414                               &env->vfp.standard_fp_status_f16);
415 #ifndef CONFIG_USER_ONLY
416     if (kvm_enabled()) {
417         kvm_arm_reset_vcpu(cpu);
418     }
419 #endif
420 
421     hw_breakpoint_update_all(cpu);
422     hw_watchpoint_update_all(cpu);
423     arm_rebuild_hflags(env);
424 }
425 
426 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
427                                      unsigned int target_el,
428                                      unsigned int cur_el, bool secure,
429                                      uint64_t hcr_el2)
430 {
431     CPUARMState *env = cs->env_ptr;
432     bool pstate_unmasked;
433     bool unmasked = false;
434 
435     /*
436      * Don't take exceptions if they target a lower EL.
437      * This check should catch any exceptions that would not be taken
438      * but left pending.
439      */
440     if (cur_el > target_el) {
441         return false;
442     }
443 
444     switch (excp_idx) {
445     case EXCP_FIQ:
446         pstate_unmasked = !(env->daif & PSTATE_F);
447         break;
448 
449     case EXCP_IRQ:
450         pstate_unmasked = !(env->daif & PSTATE_I);
451         break;
452 
453     case EXCP_VFIQ:
454         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
455             /* VFIQs are only taken when hypervized.  */
456             return false;
457         }
458         return !(env->daif & PSTATE_F);
459     case EXCP_VIRQ:
460         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
461             /* VIRQs are only taken when hypervized.  */
462             return false;
463         }
464         return !(env->daif & PSTATE_I);
465     default:
466         g_assert_not_reached();
467     }
468 
469     /*
470      * Use the target EL, current execution state and SCR/HCR settings to
471      * determine whether the corresponding CPSR bit is used to mask the
472      * interrupt.
473      */
474     if ((target_el > cur_el) && (target_el != 1)) {
475         /* Exceptions targeting a higher EL may not be maskable */
476         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
477             /*
478              * 64-bit masking rules are simple: exceptions to EL3
479              * can't be masked, and exceptions to EL2 can only be
480              * masked from Secure state. The HCR and SCR settings
481              * don't affect the masking logic, only the interrupt routing.
482              */
483             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
484                 unmasked = true;
485             }
486         } else {
487             /*
488              * The old 32-bit-only environment has a more complicated
489              * masking setup. HCR and SCR bits not only affect interrupt
490              * routing but also change the behaviour of masking.
491              */
492             bool hcr, scr;
493 
494             switch (excp_idx) {
495             case EXCP_FIQ:
496                 /*
497                  * If FIQs are routed to EL3 or EL2 then there are cases where
498                  * we override the CPSR.F in determining if the exception is
499                  * masked or not. If neither of these are set then we fall back
500                  * to the CPSR.F setting otherwise we further assess the state
501                  * below.
502                  */
503                 hcr = hcr_el2 & HCR_FMO;
504                 scr = (env->cp15.scr_el3 & SCR_FIQ);
505 
506                 /*
507                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
508                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
509                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
510                  * when non-secure but only when FIQs are only routed to EL3.
511                  */
512                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
513                 break;
514             case EXCP_IRQ:
515                 /*
516                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
517                  * we may override the CPSR.I masking when in non-secure state.
518                  * The SCR.IRQ setting has already been taken into consideration
519                  * when setting the target EL, so it does not have a further
520                  * affect here.
521                  */
522                 hcr = hcr_el2 & HCR_IMO;
523                 scr = false;
524                 break;
525             default:
526                 g_assert_not_reached();
527             }
528 
529             if ((scr || hcr) && !secure) {
530                 unmasked = true;
531             }
532         }
533     }
534 
535     /*
536      * The PSTATE bits only mask the interrupt if we have not overriden the
537      * ability above.
538      */
539     return unmasked || pstate_unmasked;
540 }
541 
542 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
543 {
544     CPUClass *cc = CPU_GET_CLASS(cs);
545     CPUARMState *env = cs->env_ptr;
546     uint32_t cur_el = arm_current_el(env);
547     bool secure = arm_is_secure(env);
548     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
549     uint32_t target_el;
550     uint32_t excp_idx;
551 
552     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
553 
554     if (interrupt_request & CPU_INTERRUPT_FIQ) {
555         excp_idx = EXCP_FIQ;
556         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
557         if (arm_excp_unmasked(cs, excp_idx, target_el,
558                               cur_el, secure, hcr_el2)) {
559             goto found;
560         }
561     }
562     if (interrupt_request & CPU_INTERRUPT_HARD) {
563         excp_idx = EXCP_IRQ;
564         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
565         if (arm_excp_unmasked(cs, excp_idx, target_el,
566                               cur_el, secure, hcr_el2)) {
567             goto found;
568         }
569     }
570     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
571         excp_idx = EXCP_VIRQ;
572         target_el = 1;
573         if (arm_excp_unmasked(cs, excp_idx, target_el,
574                               cur_el, secure, hcr_el2)) {
575             goto found;
576         }
577     }
578     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
579         excp_idx = EXCP_VFIQ;
580         target_el = 1;
581         if (arm_excp_unmasked(cs, excp_idx, target_el,
582                               cur_el, secure, hcr_el2)) {
583             goto found;
584         }
585     }
586     return false;
587 
588  found:
589     cs->exception_index = excp_idx;
590     env->exception.target_el = target_el;
591     cc->do_interrupt(cs);
592     return true;
593 }
594 
595 void arm_cpu_update_virq(ARMCPU *cpu)
596 {
597     /*
598      * Update the interrupt level for VIRQ, which is the logical OR of
599      * the HCR_EL2.VI bit and the input line level from the GIC.
600      */
601     CPUARMState *env = &cpu->env;
602     CPUState *cs = CPU(cpu);
603 
604     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
605         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
606 
607     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
608         if (new_state) {
609             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
610         } else {
611             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
612         }
613     }
614 }
615 
616 void arm_cpu_update_vfiq(ARMCPU *cpu)
617 {
618     /*
619      * Update the interrupt level for VFIQ, which is the logical OR of
620      * the HCR_EL2.VF bit and the input line level from the GIC.
621      */
622     CPUARMState *env = &cpu->env;
623     CPUState *cs = CPU(cpu);
624 
625     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
626         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
627 
628     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
629         if (new_state) {
630             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
631         } else {
632             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
633         }
634     }
635 }
636 
637 #ifndef CONFIG_USER_ONLY
638 static void arm_cpu_set_irq(void *opaque, int irq, int level)
639 {
640     ARMCPU *cpu = opaque;
641     CPUARMState *env = &cpu->env;
642     CPUState *cs = CPU(cpu);
643     static const int mask[] = {
644         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
645         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
646         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
647         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
648     };
649 
650     if (level) {
651         env->irq_line_state |= mask[irq];
652     } else {
653         env->irq_line_state &= ~mask[irq];
654     }
655 
656     switch (irq) {
657     case ARM_CPU_VIRQ:
658         assert(arm_feature(env, ARM_FEATURE_EL2));
659         arm_cpu_update_virq(cpu);
660         break;
661     case ARM_CPU_VFIQ:
662         assert(arm_feature(env, ARM_FEATURE_EL2));
663         arm_cpu_update_vfiq(cpu);
664         break;
665     case ARM_CPU_IRQ:
666     case ARM_CPU_FIQ:
667         if (level) {
668             cpu_interrupt(cs, mask[irq]);
669         } else {
670             cpu_reset_interrupt(cs, mask[irq]);
671         }
672         break;
673     default:
674         g_assert_not_reached();
675     }
676 }
677 
678 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
679 {
680 #ifdef CONFIG_KVM
681     ARMCPU *cpu = opaque;
682     CPUARMState *env = &cpu->env;
683     CPUState *cs = CPU(cpu);
684     uint32_t linestate_bit;
685     int irq_id;
686 
687     switch (irq) {
688     case ARM_CPU_IRQ:
689         irq_id = KVM_ARM_IRQ_CPU_IRQ;
690         linestate_bit = CPU_INTERRUPT_HARD;
691         break;
692     case ARM_CPU_FIQ:
693         irq_id = KVM_ARM_IRQ_CPU_FIQ;
694         linestate_bit = CPU_INTERRUPT_FIQ;
695         break;
696     default:
697         g_assert_not_reached();
698     }
699 
700     if (level) {
701         env->irq_line_state |= linestate_bit;
702     } else {
703         env->irq_line_state &= ~linestate_bit;
704     }
705     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
706 #endif
707 }
708 
709 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
710 {
711     ARMCPU *cpu = ARM_CPU(cs);
712     CPUARMState *env = &cpu->env;
713 
714     cpu_synchronize_state(cs);
715     return arm_cpu_data_is_big_endian(env);
716 }
717 
718 #endif
719 
720 static int
721 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
722 {
723   return print_insn_arm(pc | 1, info);
724 }
725 
726 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
727 {
728     ARMCPU *ac = ARM_CPU(cpu);
729     CPUARMState *env = &ac->env;
730     bool sctlr_b;
731 
732     if (is_a64(env)) {
733         /* We might not be compiled with the A64 disassembler
734          * because it needs a C++ compiler. Leave print_insn
735          * unset in this case to use the caller default behaviour.
736          */
737 #if defined(CONFIG_ARM_A64_DIS)
738         info->print_insn = print_insn_arm_a64;
739 #endif
740         info->cap_arch = CS_ARCH_ARM64;
741         info->cap_insn_unit = 4;
742         info->cap_insn_split = 4;
743     } else {
744         int cap_mode;
745         if (env->thumb) {
746             info->print_insn = print_insn_thumb1;
747             info->cap_insn_unit = 2;
748             info->cap_insn_split = 4;
749             cap_mode = CS_MODE_THUMB;
750         } else {
751             info->print_insn = print_insn_arm;
752             info->cap_insn_unit = 4;
753             info->cap_insn_split = 4;
754             cap_mode = CS_MODE_ARM;
755         }
756         if (arm_feature(env, ARM_FEATURE_V8)) {
757             cap_mode |= CS_MODE_V8;
758         }
759         if (arm_feature(env, ARM_FEATURE_M)) {
760             cap_mode |= CS_MODE_MCLASS;
761         }
762         info->cap_arch = CS_ARCH_ARM;
763         info->cap_mode = cap_mode;
764     }
765 
766     sctlr_b = arm_sctlr_b(env);
767     if (bswap_code(sctlr_b)) {
768 #ifdef TARGET_WORDS_BIGENDIAN
769         info->endian = BFD_ENDIAN_LITTLE;
770 #else
771         info->endian = BFD_ENDIAN_BIG;
772 #endif
773     }
774     info->flags &= ~INSN_ARM_BE32;
775 #ifndef CONFIG_USER_ONLY
776     if (sctlr_b) {
777         info->flags |= INSN_ARM_BE32;
778     }
779 #endif
780 }
781 
782 #ifdef TARGET_AARCH64
783 
784 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
785 {
786     ARMCPU *cpu = ARM_CPU(cs);
787     CPUARMState *env = &cpu->env;
788     uint32_t psr = pstate_read(env);
789     int i;
790     int el = arm_current_el(env);
791     const char *ns_status;
792 
793     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
794     for (i = 0; i < 32; i++) {
795         if (i == 31) {
796             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
797         } else {
798             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
799                          (i + 2) % 3 ? " " : "\n");
800         }
801     }
802 
803     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
804         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
805     } else {
806         ns_status = "";
807     }
808     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
809                  psr,
810                  psr & PSTATE_N ? 'N' : '-',
811                  psr & PSTATE_Z ? 'Z' : '-',
812                  psr & PSTATE_C ? 'C' : '-',
813                  psr & PSTATE_V ? 'V' : '-',
814                  ns_status,
815                  el,
816                  psr & PSTATE_SP ? 'h' : 't');
817 
818     if (cpu_isar_feature(aa64_bti, cpu)) {
819         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
820     }
821     if (!(flags & CPU_DUMP_FPU)) {
822         qemu_fprintf(f, "\n");
823         return;
824     }
825     if (fp_exception_el(env, el) != 0) {
826         qemu_fprintf(f, "    FPU disabled\n");
827         return;
828     }
829     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
830                  vfp_get_fpcr(env), vfp_get_fpsr(env));
831 
832     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
833         int j, zcr_len = sve_zcr_len_for_el(env, el);
834 
835         for (i = 0; i <= FFR_PRED_NUM; i++) {
836             bool eol;
837             if (i == FFR_PRED_NUM) {
838                 qemu_fprintf(f, "FFR=");
839                 /* It's last, so end the line.  */
840                 eol = true;
841             } else {
842                 qemu_fprintf(f, "P%02d=", i);
843                 switch (zcr_len) {
844                 case 0:
845                     eol = i % 8 == 7;
846                     break;
847                 case 1:
848                     eol = i % 6 == 5;
849                     break;
850                 case 2:
851                 case 3:
852                     eol = i % 3 == 2;
853                     break;
854                 default:
855                     /* More than one quadword per predicate.  */
856                     eol = true;
857                     break;
858                 }
859             }
860             for (j = zcr_len / 4; j >= 0; j--) {
861                 int digits;
862                 if (j * 4 + 4 <= zcr_len + 1) {
863                     digits = 16;
864                 } else {
865                     digits = (zcr_len % 4 + 1) * 4;
866                 }
867                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
868                              env->vfp.pregs[i].p[j],
869                              j ? ":" : eol ? "\n" : " ");
870             }
871         }
872 
873         for (i = 0; i < 32; i++) {
874             if (zcr_len == 0) {
875                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
876                              i, env->vfp.zregs[i].d[1],
877                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
878             } else if (zcr_len == 1) {
879                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
880                              ":%016" PRIx64 ":%016" PRIx64 "\n",
881                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
882                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
883             } else {
884                 for (j = zcr_len; j >= 0; j--) {
885                     bool odd = (zcr_len - j) % 2 != 0;
886                     if (j == zcr_len) {
887                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
888                     } else if (!odd) {
889                         if (j > 0) {
890                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
891                         } else {
892                             qemu_fprintf(f, "     [%x]=", j);
893                         }
894                     }
895                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
896                                  env->vfp.zregs[i].d[j * 2 + 1],
897                                  env->vfp.zregs[i].d[j * 2],
898                                  odd || j == 0 ? "\n" : ":");
899                 }
900             }
901         }
902     } else {
903         for (i = 0; i < 32; i++) {
904             uint64_t *q = aa64_vfp_qreg(env, i);
905             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
906                          i, q[1], q[0], (i & 1 ? "\n" : " "));
907         }
908     }
909 }
910 
911 #else
912 
913 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
914 {
915     g_assert_not_reached();
916 }
917 
918 #endif
919 
920 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
921 {
922     ARMCPU *cpu = ARM_CPU(cs);
923     CPUARMState *env = &cpu->env;
924     int i;
925 
926     if (is_a64(env)) {
927         aarch64_cpu_dump_state(cs, f, flags);
928         return;
929     }
930 
931     for (i = 0; i < 16; i++) {
932         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
933         if ((i % 4) == 3) {
934             qemu_fprintf(f, "\n");
935         } else {
936             qemu_fprintf(f, " ");
937         }
938     }
939 
940     if (arm_feature(env, ARM_FEATURE_M)) {
941         uint32_t xpsr = xpsr_read(env);
942         const char *mode;
943         const char *ns_status = "";
944 
945         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
946             ns_status = env->v7m.secure ? "S " : "NS ";
947         }
948 
949         if (xpsr & XPSR_EXCP) {
950             mode = "handler";
951         } else {
952             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
953                 mode = "unpriv-thread";
954             } else {
955                 mode = "priv-thread";
956             }
957         }
958 
959         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
960                      xpsr,
961                      xpsr & XPSR_N ? 'N' : '-',
962                      xpsr & XPSR_Z ? 'Z' : '-',
963                      xpsr & XPSR_C ? 'C' : '-',
964                      xpsr & XPSR_V ? 'V' : '-',
965                      xpsr & XPSR_T ? 'T' : 'A',
966                      ns_status,
967                      mode);
968     } else {
969         uint32_t psr = cpsr_read(env);
970         const char *ns_status = "";
971 
972         if (arm_feature(env, ARM_FEATURE_EL3) &&
973             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
974             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
975         }
976 
977         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
978                      psr,
979                      psr & CPSR_N ? 'N' : '-',
980                      psr & CPSR_Z ? 'Z' : '-',
981                      psr & CPSR_C ? 'C' : '-',
982                      psr & CPSR_V ? 'V' : '-',
983                      psr & CPSR_T ? 'T' : 'A',
984                      ns_status,
985                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
986     }
987 
988     if (flags & CPU_DUMP_FPU) {
989         int numvfpregs = 0;
990         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
991             numvfpregs = 32;
992         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
993             numvfpregs = 16;
994         }
995         for (i = 0; i < numvfpregs; i++) {
996             uint64_t v = *aa32_vfp_dreg(env, i);
997             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
998                          i * 2, (uint32_t)v,
999                          i * 2 + 1, (uint32_t)(v >> 32),
1000                          i, v);
1001         }
1002         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1003     }
1004 }
1005 
1006 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1007 {
1008     uint32_t Aff1 = idx / clustersz;
1009     uint32_t Aff0 = idx % clustersz;
1010     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1011 }
1012 
1013 static void cpreg_hashtable_data_destroy(gpointer data)
1014 {
1015     /*
1016      * Destroy function for cpu->cp_regs hashtable data entries.
1017      * We must free the name string because it was g_strdup()ed in
1018      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1019      * from r->name because we know we definitely allocated it.
1020      */
1021     ARMCPRegInfo *r = data;
1022 
1023     g_free((void *)r->name);
1024     g_free(r);
1025 }
1026 
1027 static void arm_cpu_initfn(Object *obj)
1028 {
1029     ARMCPU *cpu = ARM_CPU(obj);
1030 
1031     cpu_set_cpustate_pointers(cpu);
1032     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1033                                          g_free, cpreg_hashtable_data_destroy);
1034 
1035     QLIST_INIT(&cpu->pre_el_change_hooks);
1036     QLIST_INIT(&cpu->el_change_hooks);
1037 
1038 #ifndef CONFIG_USER_ONLY
1039     /* Our inbound IRQ and FIQ lines */
1040     if (kvm_enabled()) {
1041         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1042          * the same interface as non-KVM CPUs.
1043          */
1044         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1045     } else {
1046         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1047     }
1048 
1049     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1050                        ARRAY_SIZE(cpu->gt_timer_outputs));
1051 
1052     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1053                              "gicv3-maintenance-interrupt", 1);
1054     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1055                              "pmu-interrupt", 1);
1056 #endif
1057 
1058     /* DTB consumers generally don't in fact care what the 'compatible'
1059      * string is, so always provide some string and trust that a hypothetical
1060      * picky DTB consumer will also provide a helpful error message.
1061      */
1062     cpu->dtb_compatible = "qemu,unknown";
1063     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1064     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1065 
1066     if (tcg_enabled()) {
1067         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1068     }
1069 }
1070 
1071 static Property arm_cpu_gt_cntfrq_property =
1072             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1073                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1074 
1075 static Property arm_cpu_reset_cbar_property =
1076             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1077 
1078 static Property arm_cpu_reset_hivecs_property =
1079             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1080 
1081 static Property arm_cpu_rvbar_property =
1082             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1083 
1084 #ifndef CONFIG_USER_ONLY
1085 static Property arm_cpu_has_el2_property =
1086             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1087 
1088 static Property arm_cpu_has_el3_property =
1089             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1090 #endif
1091 
1092 static Property arm_cpu_cfgend_property =
1093             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1094 
1095 static Property arm_cpu_has_vfp_property =
1096             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1097 
1098 static Property arm_cpu_has_neon_property =
1099             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1100 
1101 static Property arm_cpu_has_dsp_property =
1102             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1103 
1104 static Property arm_cpu_has_mpu_property =
1105             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1106 
1107 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1108  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1109  * the right value for that particular CPU type, and we don't want
1110  * to override that with an incorrect constant value.
1111  */
1112 static Property arm_cpu_pmsav7_dregion_property =
1113             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1114                                            pmsav7_dregion,
1115                                            qdev_prop_uint32, uint32_t);
1116 
1117 static bool arm_get_pmu(Object *obj, Error **errp)
1118 {
1119     ARMCPU *cpu = ARM_CPU(obj);
1120 
1121     return cpu->has_pmu;
1122 }
1123 
1124 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1125 {
1126     ARMCPU *cpu = ARM_CPU(obj);
1127 
1128     if (value) {
1129         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1130             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1131             return;
1132         }
1133         set_feature(&cpu->env, ARM_FEATURE_PMU);
1134     } else {
1135         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1136     }
1137     cpu->has_pmu = value;
1138 }
1139 
1140 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1141 {
1142     /*
1143      * The exact approach to calculating guest ticks is:
1144      *
1145      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1146      *              NANOSECONDS_PER_SECOND);
1147      *
1148      * We don't do that. Rather we intentionally use integer division
1149      * truncation below and in the caller for the conversion of host monotonic
1150      * time to guest ticks to provide the exact inverse for the semantics of
1151      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1152      * it loses precision when representing frequencies where
1153      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1154      * provide an exact inverse leads to scheduling timers with negative
1155      * periods, which in turn leads to sticky behaviour in the guest.
1156      *
1157      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1158      * cannot become zero.
1159      */
1160     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1161       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1162 }
1163 
1164 void arm_cpu_post_init(Object *obj)
1165 {
1166     ARMCPU *cpu = ARM_CPU(obj);
1167 
1168     /* M profile implies PMSA. We have to do this here rather than
1169      * in realize with the other feature-implication checks because
1170      * we look at the PMSA bit to see if we should add some properties.
1171      */
1172     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1173         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1174     }
1175 
1176     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1177         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1178         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1179     }
1180 
1181     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1182         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1183     }
1184 
1185     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1186         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1187     }
1188 
1189 #ifndef CONFIG_USER_ONLY
1190     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1191         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1192          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1193          */
1194         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1195 
1196         object_property_add_link(obj, "secure-memory",
1197                                  TYPE_MEMORY_REGION,
1198                                  (Object **)&cpu->secure_memory,
1199                                  qdev_prop_allow_set_link_before_realize,
1200                                  OBJ_PROP_LINK_STRONG);
1201     }
1202 
1203     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1204         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1205     }
1206 #endif
1207 
1208     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1209         cpu->has_pmu = true;
1210         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1211     }
1212 
1213     /*
1214      * Allow user to turn off VFP and Neon support, but only for TCG --
1215      * KVM does not currently allow us to lie to the guest about its
1216      * ID/feature registers, so the guest always sees what the host has.
1217      */
1218     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1219         ? cpu_isar_feature(aa64_fp_simd, cpu)
1220         : cpu_isar_feature(aa32_vfp, cpu)) {
1221         cpu->has_vfp = true;
1222         if (!kvm_enabled()) {
1223             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1224         }
1225     }
1226 
1227     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1228         cpu->has_neon = true;
1229         if (!kvm_enabled()) {
1230             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1231         }
1232     }
1233 
1234     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1235         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1236         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1237     }
1238 
1239     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1240         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1241         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1242             qdev_property_add_static(DEVICE(obj),
1243                                      &arm_cpu_pmsav7_dregion_property);
1244         }
1245     }
1246 
1247     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1248         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1249                                  qdev_prop_allow_set_link_before_realize,
1250                                  OBJ_PROP_LINK_STRONG);
1251         /*
1252          * M profile: initial value of the Secure VTOR. We can't just use
1253          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1254          * the property to be set after realize.
1255          */
1256         object_property_add_uint32_ptr(obj, "init-svtor",
1257                                        &cpu->init_svtor,
1258                                        OBJ_PROP_FLAG_READWRITE);
1259     }
1260 
1261     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1262 
1263     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1264         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1265     }
1266 
1267     if (kvm_enabled()) {
1268         kvm_arm_add_vcpu_properties(obj);
1269     }
1270 
1271 #ifndef CONFIG_USER_ONLY
1272     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1273         cpu_isar_feature(aa64_mte, cpu)) {
1274         object_property_add_link(obj, "tag-memory",
1275                                  TYPE_MEMORY_REGION,
1276                                  (Object **)&cpu->tag_memory,
1277                                  qdev_prop_allow_set_link_before_realize,
1278                                  OBJ_PROP_LINK_STRONG);
1279 
1280         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1281             object_property_add_link(obj, "secure-tag-memory",
1282                                      TYPE_MEMORY_REGION,
1283                                      (Object **)&cpu->secure_tag_memory,
1284                                      qdev_prop_allow_set_link_before_realize,
1285                                      OBJ_PROP_LINK_STRONG);
1286         }
1287     }
1288 #endif
1289 }
1290 
1291 static void arm_cpu_finalizefn(Object *obj)
1292 {
1293     ARMCPU *cpu = ARM_CPU(obj);
1294     ARMELChangeHook *hook, *next;
1295 
1296     g_hash_table_destroy(cpu->cp_regs);
1297 
1298     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1299         QLIST_REMOVE(hook, node);
1300         g_free(hook);
1301     }
1302     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1303         QLIST_REMOVE(hook, node);
1304         g_free(hook);
1305     }
1306 #ifndef CONFIG_USER_ONLY
1307     if (cpu->pmu_timer) {
1308         timer_free(cpu->pmu_timer);
1309     }
1310 #endif
1311 }
1312 
1313 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1314 {
1315     Error *local_err = NULL;
1316 
1317     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1318         arm_cpu_sve_finalize(cpu, &local_err);
1319         if (local_err != NULL) {
1320             error_propagate(errp, local_err);
1321             return;
1322         }
1323 
1324         /*
1325          * KVM does not support modifications to this feature.
1326          * We have not registered the cpu properties when KVM
1327          * is in use, so the user will not be able to set them.
1328          */
1329         if (!kvm_enabled()) {
1330             arm_cpu_pauth_finalize(cpu, &local_err);
1331             if (local_err != NULL) {
1332                 error_propagate(errp, local_err);
1333                 return;
1334             }
1335         }
1336     }
1337 
1338     if (kvm_enabled()) {
1339         kvm_arm_steal_time_finalize(cpu, &local_err);
1340         if (local_err != NULL) {
1341             error_propagate(errp, local_err);
1342             return;
1343         }
1344     }
1345 }
1346 
1347 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1348 {
1349     CPUState *cs = CPU(dev);
1350     ARMCPU *cpu = ARM_CPU(dev);
1351     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1352     CPUARMState *env = &cpu->env;
1353     int pagebits;
1354     Error *local_err = NULL;
1355     bool no_aa32 = false;
1356 
1357     /* If we needed to query the host kernel for the CPU features
1358      * then it's possible that might have failed in the initfn, but
1359      * this is the first point where we can report it.
1360      */
1361     if (cpu->host_cpu_probe_failed) {
1362         if (!kvm_enabled()) {
1363             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1364         } else {
1365             error_setg(errp, "Failed to retrieve host CPU features");
1366         }
1367         return;
1368     }
1369 
1370 #ifndef CONFIG_USER_ONLY
1371     /* The NVIC and M-profile CPU are two halves of a single piece of
1372      * hardware; trying to use one without the other is a command line
1373      * error and will result in segfaults if not caught here.
1374      */
1375     if (arm_feature(env, ARM_FEATURE_M)) {
1376         if (!env->nvic) {
1377             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1378             return;
1379         }
1380     } else {
1381         if (env->nvic) {
1382             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1383             return;
1384         }
1385     }
1386 
1387     {
1388         uint64_t scale;
1389 
1390         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1391             if (!cpu->gt_cntfrq_hz) {
1392                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1393                            cpu->gt_cntfrq_hz);
1394                 return;
1395             }
1396             scale = gt_cntfrq_period_ns(cpu);
1397         } else {
1398             scale = GTIMER_SCALE;
1399         }
1400 
1401         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1402                                                arm_gt_ptimer_cb, cpu);
1403         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1404                                                arm_gt_vtimer_cb, cpu);
1405         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1406                                               arm_gt_htimer_cb, cpu);
1407         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1408                                               arm_gt_stimer_cb, cpu);
1409         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1410                                                   arm_gt_hvtimer_cb, cpu);
1411     }
1412 #endif
1413 
1414     cpu_exec_realizefn(cs, &local_err);
1415     if (local_err != NULL) {
1416         error_propagate(errp, local_err);
1417         return;
1418     }
1419 
1420     arm_cpu_finalize_features(cpu, &local_err);
1421     if (local_err != NULL) {
1422         error_propagate(errp, local_err);
1423         return;
1424     }
1425 
1426     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1427         cpu->has_vfp != cpu->has_neon) {
1428         /*
1429          * This is an architectural requirement for AArch64; AArch32 is
1430          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1431          */
1432         error_setg(errp,
1433                    "AArch64 CPUs must have both VFP and Neon or neither");
1434         return;
1435     }
1436 
1437     if (!cpu->has_vfp) {
1438         uint64_t t;
1439         uint32_t u;
1440 
1441         t = cpu->isar.id_aa64isar1;
1442         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1443         cpu->isar.id_aa64isar1 = t;
1444 
1445         t = cpu->isar.id_aa64pfr0;
1446         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1447         cpu->isar.id_aa64pfr0 = t;
1448 
1449         u = cpu->isar.id_isar6;
1450         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1451         cpu->isar.id_isar6 = u;
1452 
1453         u = cpu->isar.mvfr0;
1454         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1455         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1456         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1457         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1458         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1459         if (!arm_feature(env, ARM_FEATURE_M)) {
1460             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1461             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1462         }
1463         cpu->isar.mvfr0 = u;
1464 
1465         u = cpu->isar.mvfr1;
1466         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1467         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1468         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1469         if (arm_feature(env, ARM_FEATURE_M)) {
1470             u = FIELD_DP32(u, MVFR1, FP16, 0);
1471         }
1472         cpu->isar.mvfr1 = u;
1473 
1474         u = cpu->isar.mvfr2;
1475         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1476         cpu->isar.mvfr2 = u;
1477     }
1478 
1479     if (!cpu->has_neon) {
1480         uint64_t t;
1481         uint32_t u;
1482 
1483         unset_feature(env, ARM_FEATURE_NEON);
1484 
1485         t = cpu->isar.id_aa64isar0;
1486         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1487         cpu->isar.id_aa64isar0 = t;
1488 
1489         t = cpu->isar.id_aa64isar1;
1490         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1491         cpu->isar.id_aa64isar1 = t;
1492 
1493         t = cpu->isar.id_aa64pfr0;
1494         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1495         cpu->isar.id_aa64pfr0 = t;
1496 
1497         u = cpu->isar.id_isar5;
1498         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1499         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1500         cpu->isar.id_isar5 = u;
1501 
1502         u = cpu->isar.id_isar6;
1503         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1504         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1505         cpu->isar.id_isar6 = u;
1506 
1507         if (!arm_feature(env, ARM_FEATURE_M)) {
1508             u = cpu->isar.mvfr1;
1509             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1510             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1511             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1512             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1513             cpu->isar.mvfr1 = u;
1514 
1515             u = cpu->isar.mvfr2;
1516             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1517             cpu->isar.mvfr2 = u;
1518         }
1519     }
1520 
1521     if (!cpu->has_neon && !cpu->has_vfp) {
1522         uint64_t t;
1523         uint32_t u;
1524 
1525         t = cpu->isar.id_aa64isar0;
1526         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1527         cpu->isar.id_aa64isar0 = t;
1528 
1529         t = cpu->isar.id_aa64isar1;
1530         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1531         cpu->isar.id_aa64isar1 = t;
1532 
1533         u = cpu->isar.mvfr0;
1534         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1535         cpu->isar.mvfr0 = u;
1536 
1537         /* Despite the name, this field covers both VFP and Neon */
1538         u = cpu->isar.mvfr1;
1539         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1540         cpu->isar.mvfr1 = u;
1541     }
1542 
1543     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1544         uint32_t u;
1545 
1546         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1547 
1548         u = cpu->isar.id_isar1;
1549         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1550         cpu->isar.id_isar1 = u;
1551 
1552         u = cpu->isar.id_isar2;
1553         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1554         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1555         cpu->isar.id_isar2 = u;
1556 
1557         u = cpu->isar.id_isar3;
1558         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1559         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1560         cpu->isar.id_isar3 = u;
1561     }
1562 
1563     /* Some features automatically imply others: */
1564     if (arm_feature(env, ARM_FEATURE_V8)) {
1565         if (arm_feature(env, ARM_FEATURE_M)) {
1566             set_feature(env, ARM_FEATURE_V7);
1567         } else {
1568             set_feature(env, ARM_FEATURE_V7VE);
1569         }
1570     }
1571 
1572     /*
1573      * There exist AArch64 cpus without AArch32 support.  When KVM
1574      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1575      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1576      * As a general principle, we also do not make ID register
1577      * consistency checks anywhere unless using TCG, because only
1578      * for TCG would a consistency-check failure be a QEMU bug.
1579      */
1580     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1581         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1582     }
1583 
1584     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1585         /* v7 Virtualization Extensions. In real hardware this implies
1586          * EL2 and also the presence of the Security Extensions.
1587          * For QEMU, for backwards-compatibility we implement some
1588          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1589          * include the various other features that V7VE implies.
1590          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1591          * Security Extensions is ARM_FEATURE_EL3.
1592          */
1593         assert(!tcg_enabled() || no_aa32 ||
1594                cpu_isar_feature(aa32_arm_div, cpu));
1595         set_feature(env, ARM_FEATURE_LPAE);
1596         set_feature(env, ARM_FEATURE_V7);
1597     }
1598     if (arm_feature(env, ARM_FEATURE_V7)) {
1599         set_feature(env, ARM_FEATURE_VAPA);
1600         set_feature(env, ARM_FEATURE_THUMB2);
1601         set_feature(env, ARM_FEATURE_MPIDR);
1602         if (!arm_feature(env, ARM_FEATURE_M)) {
1603             set_feature(env, ARM_FEATURE_V6K);
1604         } else {
1605             set_feature(env, ARM_FEATURE_V6);
1606         }
1607 
1608         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1609          * non-EL3 configs. This is needed by some legacy boards.
1610          */
1611         set_feature(env, ARM_FEATURE_VBAR);
1612     }
1613     if (arm_feature(env, ARM_FEATURE_V6K)) {
1614         set_feature(env, ARM_FEATURE_V6);
1615         set_feature(env, ARM_FEATURE_MVFR);
1616     }
1617     if (arm_feature(env, ARM_FEATURE_V6)) {
1618         set_feature(env, ARM_FEATURE_V5);
1619         if (!arm_feature(env, ARM_FEATURE_M)) {
1620             assert(!tcg_enabled() || no_aa32 ||
1621                    cpu_isar_feature(aa32_jazelle, cpu));
1622             set_feature(env, ARM_FEATURE_AUXCR);
1623         }
1624     }
1625     if (arm_feature(env, ARM_FEATURE_V5)) {
1626         set_feature(env, ARM_FEATURE_V4T);
1627     }
1628     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1629         set_feature(env, ARM_FEATURE_V7MP);
1630     }
1631     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1632         set_feature(env, ARM_FEATURE_CBAR);
1633     }
1634     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1635         !arm_feature(env, ARM_FEATURE_M)) {
1636         set_feature(env, ARM_FEATURE_THUMB_DSP);
1637     }
1638 
1639     /*
1640      * We rely on no XScale CPU having VFP so we can use the same bits in the
1641      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1642      */
1643     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1644            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1645            !arm_feature(env, ARM_FEATURE_XSCALE));
1646 
1647     if (arm_feature(env, ARM_FEATURE_V7) &&
1648         !arm_feature(env, ARM_FEATURE_M) &&
1649         !arm_feature(env, ARM_FEATURE_PMSA)) {
1650         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1651          * can use 4K pages.
1652          */
1653         pagebits = 12;
1654     } else {
1655         /* For CPUs which might have tiny 1K pages, or which have an
1656          * MPU and might have small region sizes, stick with 1K pages.
1657          */
1658         pagebits = 10;
1659     }
1660     if (!set_preferred_target_page_bits(pagebits)) {
1661         /* This can only ever happen for hotplugging a CPU, or if
1662          * the board code incorrectly creates a CPU which it has
1663          * promised via minimum_page_size that it will not.
1664          */
1665         error_setg(errp, "This CPU requires a smaller page size than the "
1666                    "system is using");
1667         return;
1668     }
1669 
1670     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1671      * We don't support setting cluster ID ([16..23]) (known as Aff2
1672      * in later ARM ARM versions), or any of the higher affinity level fields,
1673      * so these bits always RAZ.
1674      */
1675     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1676         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1677                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1678     }
1679 
1680     if (cpu->reset_hivecs) {
1681             cpu->reset_sctlr |= (1 << 13);
1682     }
1683 
1684     if (cpu->cfgend) {
1685         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1686             cpu->reset_sctlr |= SCTLR_EE;
1687         } else {
1688             cpu->reset_sctlr |= SCTLR_B;
1689         }
1690     }
1691 
1692     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1693         /* If the has_el3 CPU property is disabled then we need to disable the
1694          * feature.
1695          */
1696         unset_feature(env, ARM_FEATURE_EL3);
1697 
1698         /* Disable the security extension feature bits in the processor feature
1699          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1700          */
1701         cpu->isar.id_pfr1 &= ~0xf0;
1702         cpu->isar.id_aa64pfr0 &= ~0xf000;
1703     }
1704 
1705     if (!cpu->has_el2) {
1706         unset_feature(env, ARM_FEATURE_EL2);
1707     }
1708 
1709     if (!cpu->has_pmu) {
1710         unset_feature(env, ARM_FEATURE_PMU);
1711     }
1712     if (arm_feature(env, ARM_FEATURE_PMU)) {
1713         pmu_init(cpu);
1714 
1715         if (!kvm_enabled()) {
1716             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1717             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1718         }
1719 
1720 #ifndef CONFIG_USER_ONLY
1721         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1722                 cpu);
1723 #endif
1724     } else {
1725         cpu->isar.id_aa64dfr0 =
1726             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1727         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1728         cpu->pmceid0 = 0;
1729         cpu->pmceid1 = 0;
1730     }
1731 
1732     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1733         /* Disable the hypervisor feature bits in the processor feature
1734          * registers if we don't have EL2. These are id_pfr1[15:12] and
1735          * id_aa64pfr0_el1[11:8].
1736          */
1737         cpu->isar.id_aa64pfr0 &= ~0xf00;
1738         cpu->isar.id_pfr1 &= ~0xf000;
1739     }
1740 
1741 #ifndef CONFIG_USER_ONLY
1742     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1743         /*
1744          * Disable the MTE feature bits if we do not have tag-memory
1745          * provided by the machine.
1746          */
1747         cpu->isar.id_aa64pfr1 =
1748             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1749     }
1750 #endif
1751 
1752     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1753      * to false or by setting pmsav7-dregion to 0.
1754      */
1755     if (!cpu->has_mpu) {
1756         cpu->pmsav7_dregion = 0;
1757     }
1758     if (cpu->pmsav7_dregion == 0) {
1759         cpu->has_mpu = false;
1760     }
1761 
1762     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1763         arm_feature(env, ARM_FEATURE_V7)) {
1764         uint32_t nr = cpu->pmsav7_dregion;
1765 
1766         if (nr > 0xff) {
1767             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1768             return;
1769         }
1770 
1771         if (nr) {
1772             if (arm_feature(env, ARM_FEATURE_V8)) {
1773                 /* PMSAv8 */
1774                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1775                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1776                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1777                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1778                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1779                 }
1780             } else {
1781                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1782                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1783                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1784             }
1785         }
1786     }
1787 
1788     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1789         uint32_t nr = cpu->sau_sregion;
1790 
1791         if (nr > 0xff) {
1792             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1793             return;
1794         }
1795 
1796         if (nr) {
1797             env->sau.rbar = g_new0(uint32_t, nr);
1798             env->sau.rlar = g_new0(uint32_t, nr);
1799         }
1800     }
1801 
1802     if (arm_feature(env, ARM_FEATURE_EL3)) {
1803         set_feature(env, ARM_FEATURE_VBAR);
1804     }
1805 
1806     register_cp_regs_for_features(cpu);
1807     arm_cpu_register_gdb_regs_for_features(cpu);
1808 
1809     init_cpreg_list(cpu);
1810 
1811 #ifndef CONFIG_USER_ONLY
1812     MachineState *ms = MACHINE(qdev_get_machine());
1813     unsigned int smp_cpus = ms->smp.cpus;
1814     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1815 
1816     /*
1817      * We must set cs->num_ases to the final value before
1818      * the first call to cpu_address_space_init.
1819      */
1820     if (cpu->tag_memory != NULL) {
1821         cs->num_ases = 3 + has_secure;
1822     } else {
1823         cs->num_ases = 1 + has_secure;
1824     }
1825 
1826     if (has_secure) {
1827         if (!cpu->secure_memory) {
1828             cpu->secure_memory = cs->memory;
1829         }
1830         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1831                                cpu->secure_memory);
1832     }
1833 
1834     if (cpu->tag_memory != NULL) {
1835         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1836                                cpu->tag_memory);
1837         if (has_secure) {
1838             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1839                                    cpu->secure_tag_memory);
1840         }
1841     }
1842 
1843     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1844 
1845     /* No core_count specified, default to smp_cpus. */
1846     if (cpu->core_count == -1) {
1847         cpu->core_count = smp_cpus;
1848     }
1849 #endif
1850 
1851     if (tcg_enabled()) {
1852         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1853 
1854         /*
1855          * We only support DCZ blocklen that fits on one page.
1856          *
1857          * Architectually this is always true.  However TARGET_PAGE_SIZE
1858          * is variable and, for compatibility with -machine virt-2.7,
1859          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1860          * But even then, while the largest architectural DCZ blocklen
1861          * is 2KiB, no cpu actually uses such a large blocklen.
1862          */
1863         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1864 
1865         /*
1866          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1867          * both nibbles of each byte storing tag data may be written at once.
1868          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1869          */
1870         if (cpu_isar_feature(aa64_mte, cpu)) {
1871             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1872         }
1873     }
1874 
1875     qemu_init_vcpu(cs);
1876     cpu_reset(cs);
1877 
1878     acc->parent_realize(dev, errp);
1879 }
1880 
1881 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1882 {
1883     ObjectClass *oc;
1884     char *typename;
1885     char **cpuname;
1886     const char *cpunamestr;
1887 
1888     cpuname = g_strsplit(cpu_model, ",", 1);
1889     cpunamestr = cpuname[0];
1890 #ifdef CONFIG_USER_ONLY
1891     /* For backwards compatibility usermode emulation allows "-cpu any",
1892      * which has the same semantics as "-cpu max".
1893      */
1894     if (!strcmp(cpunamestr, "any")) {
1895         cpunamestr = "max";
1896     }
1897 #endif
1898     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1899     oc = object_class_by_name(typename);
1900     g_strfreev(cpuname);
1901     g_free(typename);
1902     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1903         object_class_is_abstract(oc)) {
1904         return NULL;
1905     }
1906     return oc;
1907 }
1908 
1909 /* CPU models. These are not needed for the AArch64 linux-user build. */
1910 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1911 
1912 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1913     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1914       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1915     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1916       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1917     REGINFO_SENTINEL
1918 };
1919 
1920 static void cortex_a8_initfn(Object *obj)
1921 {
1922     ARMCPU *cpu = ARM_CPU(obj);
1923 
1924     cpu->dtb_compatible = "arm,cortex-a8";
1925     set_feature(&cpu->env, ARM_FEATURE_V7);
1926     set_feature(&cpu->env, ARM_FEATURE_NEON);
1927     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1928     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1929     set_feature(&cpu->env, ARM_FEATURE_EL3);
1930     cpu->midr = 0x410fc080;
1931     cpu->reset_fpsid = 0x410330c0;
1932     cpu->isar.mvfr0 = 0x11110222;
1933     cpu->isar.mvfr1 = 0x00011111;
1934     cpu->ctr = 0x82048004;
1935     cpu->reset_sctlr = 0x00c50078;
1936     cpu->isar.id_pfr0 = 0x1031;
1937     cpu->isar.id_pfr1 = 0x11;
1938     cpu->isar.id_dfr0 = 0x400;
1939     cpu->id_afr0 = 0;
1940     cpu->isar.id_mmfr0 = 0x31100003;
1941     cpu->isar.id_mmfr1 = 0x20000000;
1942     cpu->isar.id_mmfr2 = 0x01202000;
1943     cpu->isar.id_mmfr3 = 0x11;
1944     cpu->isar.id_isar0 = 0x00101111;
1945     cpu->isar.id_isar1 = 0x12112111;
1946     cpu->isar.id_isar2 = 0x21232031;
1947     cpu->isar.id_isar3 = 0x11112131;
1948     cpu->isar.id_isar4 = 0x00111142;
1949     cpu->isar.dbgdidr = 0x15141000;
1950     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1951     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1952     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1953     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1954     cpu->reset_auxcr = 2;
1955     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1956 }
1957 
1958 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1959     /* power_control should be set to maximum latency. Again,
1960      * default to 0 and set by private hook
1961      */
1962     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1963       .access = PL1_RW, .resetvalue = 0,
1964       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1965     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1966       .access = PL1_RW, .resetvalue = 0,
1967       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1968     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1969       .access = PL1_RW, .resetvalue = 0,
1970       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1971     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1972       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1973     /* TLB lockdown control */
1974     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1975       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1976     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1977       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1978     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1979       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1980     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1981       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1982     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1983       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1984     REGINFO_SENTINEL
1985 };
1986 
1987 static void cortex_a9_initfn(Object *obj)
1988 {
1989     ARMCPU *cpu = ARM_CPU(obj);
1990 
1991     cpu->dtb_compatible = "arm,cortex-a9";
1992     set_feature(&cpu->env, ARM_FEATURE_V7);
1993     set_feature(&cpu->env, ARM_FEATURE_NEON);
1994     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1995     set_feature(&cpu->env, ARM_FEATURE_EL3);
1996     /* Note that A9 supports the MP extensions even for
1997      * A9UP and single-core A9MP (which are both different
1998      * and valid configurations; we don't model A9UP).
1999      */
2000     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2001     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2002     cpu->midr = 0x410fc090;
2003     cpu->reset_fpsid = 0x41033090;
2004     cpu->isar.mvfr0 = 0x11110222;
2005     cpu->isar.mvfr1 = 0x01111111;
2006     cpu->ctr = 0x80038003;
2007     cpu->reset_sctlr = 0x00c50078;
2008     cpu->isar.id_pfr0 = 0x1031;
2009     cpu->isar.id_pfr1 = 0x11;
2010     cpu->isar.id_dfr0 = 0x000;
2011     cpu->id_afr0 = 0;
2012     cpu->isar.id_mmfr0 = 0x00100103;
2013     cpu->isar.id_mmfr1 = 0x20000000;
2014     cpu->isar.id_mmfr2 = 0x01230000;
2015     cpu->isar.id_mmfr3 = 0x00002111;
2016     cpu->isar.id_isar0 = 0x00101111;
2017     cpu->isar.id_isar1 = 0x13112111;
2018     cpu->isar.id_isar2 = 0x21232041;
2019     cpu->isar.id_isar3 = 0x11112131;
2020     cpu->isar.id_isar4 = 0x00111142;
2021     cpu->isar.dbgdidr = 0x35141000;
2022     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2023     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2024     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2025     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2026 }
2027 
2028 #ifndef CONFIG_USER_ONLY
2029 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2030 {
2031     MachineState *ms = MACHINE(qdev_get_machine());
2032 
2033     /* Linux wants the number of processors from here.
2034      * Might as well set the interrupt-controller bit too.
2035      */
2036     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2037 }
2038 #endif
2039 
2040 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2041 #ifndef CONFIG_USER_ONLY
2042     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2043       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2044       .writefn = arm_cp_write_ignore, },
2045 #endif
2046     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2047       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2048     REGINFO_SENTINEL
2049 };
2050 
2051 static void cortex_a7_initfn(Object *obj)
2052 {
2053     ARMCPU *cpu = ARM_CPU(obj);
2054 
2055     cpu->dtb_compatible = "arm,cortex-a7";
2056     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2057     set_feature(&cpu->env, ARM_FEATURE_NEON);
2058     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2059     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2060     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2061     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2062     set_feature(&cpu->env, ARM_FEATURE_EL2);
2063     set_feature(&cpu->env, ARM_FEATURE_EL3);
2064     set_feature(&cpu->env, ARM_FEATURE_PMU);
2065     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2066     cpu->midr = 0x410fc075;
2067     cpu->reset_fpsid = 0x41023075;
2068     cpu->isar.mvfr0 = 0x10110222;
2069     cpu->isar.mvfr1 = 0x11111111;
2070     cpu->ctr = 0x84448003;
2071     cpu->reset_sctlr = 0x00c50078;
2072     cpu->isar.id_pfr0 = 0x00001131;
2073     cpu->isar.id_pfr1 = 0x00011011;
2074     cpu->isar.id_dfr0 = 0x02010555;
2075     cpu->id_afr0 = 0x00000000;
2076     cpu->isar.id_mmfr0 = 0x10101105;
2077     cpu->isar.id_mmfr1 = 0x40000000;
2078     cpu->isar.id_mmfr2 = 0x01240000;
2079     cpu->isar.id_mmfr3 = 0x02102211;
2080     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2081      * table 4-41 gives 0x02101110, which includes the arm div insns.
2082      */
2083     cpu->isar.id_isar0 = 0x02101110;
2084     cpu->isar.id_isar1 = 0x13112111;
2085     cpu->isar.id_isar2 = 0x21232041;
2086     cpu->isar.id_isar3 = 0x11112131;
2087     cpu->isar.id_isar4 = 0x10011142;
2088     cpu->isar.dbgdidr = 0x3515f005;
2089     cpu->clidr = 0x0a200023;
2090     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2091     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2092     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2093     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2094 }
2095 
2096 static void cortex_a15_initfn(Object *obj)
2097 {
2098     ARMCPU *cpu = ARM_CPU(obj);
2099 
2100     cpu->dtb_compatible = "arm,cortex-a15";
2101     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2102     set_feature(&cpu->env, ARM_FEATURE_NEON);
2103     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2104     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2105     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2106     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2107     set_feature(&cpu->env, ARM_FEATURE_EL2);
2108     set_feature(&cpu->env, ARM_FEATURE_EL3);
2109     set_feature(&cpu->env, ARM_FEATURE_PMU);
2110     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2111     cpu->midr = 0x412fc0f1;
2112     cpu->reset_fpsid = 0x410430f0;
2113     cpu->isar.mvfr0 = 0x10110222;
2114     cpu->isar.mvfr1 = 0x11111111;
2115     cpu->ctr = 0x8444c004;
2116     cpu->reset_sctlr = 0x00c50078;
2117     cpu->isar.id_pfr0 = 0x00001131;
2118     cpu->isar.id_pfr1 = 0x00011011;
2119     cpu->isar.id_dfr0 = 0x02010555;
2120     cpu->id_afr0 = 0x00000000;
2121     cpu->isar.id_mmfr0 = 0x10201105;
2122     cpu->isar.id_mmfr1 = 0x20000000;
2123     cpu->isar.id_mmfr2 = 0x01240000;
2124     cpu->isar.id_mmfr3 = 0x02102211;
2125     cpu->isar.id_isar0 = 0x02101110;
2126     cpu->isar.id_isar1 = 0x13112111;
2127     cpu->isar.id_isar2 = 0x21232041;
2128     cpu->isar.id_isar3 = 0x11112131;
2129     cpu->isar.id_isar4 = 0x10011142;
2130     cpu->isar.dbgdidr = 0x3515f021;
2131     cpu->clidr = 0x0a200023;
2132     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2133     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2134     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2135     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2136 }
2137 
2138 #ifndef TARGET_AARCH64
2139 /*
2140  * -cpu max: a CPU with as many features enabled as our emulation supports.
2141  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2142  * this only needs to handle 32 bits, and need not care about KVM.
2143  */
2144 static void arm_max_initfn(Object *obj)
2145 {
2146     ARMCPU *cpu = ARM_CPU(obj);
2147 
2148     cortex_a15_initfn(obj);
2149 
2150     /* old-style VFP short-vector support */
2151     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2152 
2153 #ifdef CONFIG_USER_ONLY
2154     /*
2155      * We don't set these in system emulation mode for the moment,
2156      * since we don't correctly set (all of) the ID registers to
2157      * advertise them.
2158      */
2159     set_feature(&cpu->env, ARM_FEATURE_V8);
2160     {
2161         uint32_t t;
2162 
2163         t = cpu->isar.id_isar5;
2164         t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2165         t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2166         t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2167         t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2168         t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2169         t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2170         cpu->isar.id_isar5 = t;
2171 
2172         t = cpu->isar.id_isar6;
2173         t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2174         t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2175         t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2176         t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2177         t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2178         cpu->isar.id_isar6 = t;
2179 
2180         t = cpu->isar.mvfr1;
2181         t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2182         t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2183         cpu->isar.mvfr1 = t;
2184 
2185         t = cpu->isar.mvfr2;
2186         t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2187         t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2188         cpu->isar.mvfr2 = t;
2189 
2190         t = cpu->isar.id_mmfr3;
2191         t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2192         cpu->isar.id_mmfr3 = t;
2193 
2194         t = cpu->isar.id_mmfr4;
2195         t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2196         t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2197         t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2198         t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2199         cpu->isar.id_mmfr4 = t;
2200     }
2201 #endif
2202 }
2203 #endif
2204 
2205 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2206 
2207 static const ARMCPUInfo arm_cpus[] = {
2208 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2209     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2210     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2211     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2212     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2213 #ifndef TARGET_AARCH64
2214     { .name = "max",         .initfn = arm_max_initfn },
2215 #endif
2216 #ifdef CONFIG_USER_ONLY
2217     { .name = "any",         .initfn = arm_max_initfn },
2218 #endif
2219 #endif
2220 };
2221 
2222 static Property arm_cpu_properties[] = {
2223     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2224     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2225     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2226                         mp_affinity, ARM64_AFFINITY_INVALID),
2227     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2228     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2229     DEFINE_PROP_END_OF_LIST()
2230 };
2231 
2232 static gchar *arm_gdb_arch_name(CPUState *cs)
2233 {
2234     ARMCPU *cpu = ARM_CPU(cs);
2235     CPUARMState *env = &cpu->env;
2236 
2237     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2238         return g_strdup("iwmmxt");
2239     }
2240     return g_strdup("arm");
2241 }
2242 
2243 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2244 {
2245     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2246     CPUClass *cc = CPU_CLASS(acc);
2247     DeviceClass *dc = DEVICE_CLASS(oc);
2248 
2249     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2250                                     &acc->parent_realize);
2251 
2252     device_class_set_props(dc, arm_cpu_properties);
2253     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2254 
2255     cc->class_by_name = arm_cpu_class_by_name;
2256     cc->has_work = arm_cpu_has_work;
2257     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2258     cc->dump_state = arm_cpu_dump_state;
2259     cc->set_pc = arm_cpu_set_pc;
2260     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2261     cc->gdb_read_register = arm_cpu_gdb_read_register;
2262     cc->gdb_write_register = arm_cpu_gdb_write_register;
2263 #ifndef CONFIG_USER_ONLY
2264     cc->do_interrupt = arm_cpu_do_interrupt;
2265     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2266     cc->asidx_from_attrs = arm_asidx_from_attrs;
2267     cc->vmsd = &vmstate_arm_cpu;
2268     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2269     cc->write_elf64_note = arm_cpu_write_elf64_note;
2270     cc->write_elf32_note = arm_cpu_write_elf32_note;
2271 #endif
2272     cc->gdb_num_core_regs = 26;
2273     cc->gdb_core_xml_file = "arm-core.xml";
2274     cc->gdb_arch_name = arm_gdb_arch_name;
2275     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2276     cc->gdb_stop_before_watchpoint = true;
2277     cc->disas_set_info = arm_disas_set_info;
2278 #ifdef CONFIG_TCG
2279     cc->tcg_initialize = arm_translate_init;
2280     cc->tlb_fill = arm_cpu_tlb_fill;
2281     cc->debug_excp_handler = arm_debug_excp_handler;
2282     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2283     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2284 #if !defined(CONFIG_USER_ONLY)
2285     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2286     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2287 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2288 #endif
2289 }
2290 
2291 #ifdef CONFIG_KVM
2292 static void arm_host_initfn(Object *obj)
2293 {
2294     ARMCPU *cpu = ARM_CPU(obj);
2295 
2296     kvm_arm_set_cpu_features_from_host(cpu);
2297     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2298         aarch64_add_sve_properties(obj);
2299     }
2300     arm_cpu_post_init(obj);
2301 }
2302 
2303 static const TypeInfo host_arm_cpu_type_info = {
2304     .name = TYPE_ARM_HOST_CPU,
2305     .parent = TYPE_AARCH64_CPU,
2306     .instance_init = arm_host_initfn,
2307 };
2308 
2309 #endif
2310 
2311 static void arm_cpu_instance_init(Object *obj)
2312 {
2313     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2314 
2315     acc->info->initfn(obj);
2316     arm_cpu_post_init(obj);
2317 }
2318 
2319 static void cpu_register_class_init(ObjectClass *oc, void *data)
2320 {
2321     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2322 
2323     acc->info = data;
2324 }
2325 
2326 void arm_cpu_register(const ARMCPUInfo *info)
2327 {
2328     TypeInfo type_info = {
2329         .parent = TYPE_ARM_CPU,
2330         .instance_size = sizeof(ARMCPU),
2331         .instance_align = __alignof__(ARMCPU),
2332         .instance_init = arm_cpu_instance_init,
2333         .class_size = sizeof(ARMCPUClass),
2334         .class_init = info->class_init ?: cpu_register_class_init,
2335         .class_data = (void *)info,
2336     };
2337 
2338     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2339     type_register(&type_info);
2340     g_free((void *)type_info.name);
2341 }
2342 
2343 static const TypeInfo arm_cpu_type_info = {
2344     .name = TYPE_ARM_CPU,
2345     .parent = TYPE_CPU,
2346     .instance_size = sizeof(ARMCPU),
2347     .instance_align = __alignof__(ARMCPU),
2348     .instance_init = arm_cpu_initfn,
2349     .instance_finalize = arm_cpu_finalizefn,
2350     .abstract = true,
2351     .class_size = sizeof(ARMCPUClass),
2352     .class_init = arm_cpu_class_init,
2353 };
2354 
2355 static const TypeInfo idau_interface_type_info = {
2356     .name = TYPE_IDAU_INTERFACE,
2357     .parent = TYPE_INTERFACE,
2358     .class_size = sizeof(IDAUInterfaceClass),
2359 };
2360 
2361 static void arm_cpu_register_types(void)
2362 {
2363     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2364 
2365     type_register_static(&arm_cpu_type_info);
2366 
2367 #ifdef CONFIG_KVM
2368     type_register_static(&host_arm_cpu_type_info);
2369 #endif
2370 
2371     if (cpu_count) {
2372         size_t i;
2373 
2374         type_register_static(&idau_interface_type_info);
2375         for (i = 0; i < cpu_count; ++i) {
2376             arm_cpu_register(&arm_cpus[i]);
2377         }
2378     }
2379 }
2380 
2381 type_init(arm_cpu_register_types)
2382