xref: /openbmc/qemu/target/arm/cpu.c (revision 646f34fa)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167         /* and to the SVE instructions */
168         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169         env->cp15.cptr_el[3] |= CPTR_EZ;
170         /* with maximum vector length */
171         env->vfp.zcr_el[1] = ARM_MAX_VQ - 1;
172         env->vfp.zcr_el[2] = ARM_MAX_VQ - 1;
173         env->vfp.zcr_el[3] = ARM_MAX_VQ - 1;
174 #else
175         /* Reset into the highest available EL */
176         if (arm_feature(env, ARM_FEATURE_EL3)) {
177             env->pstate = PSTATE_MODE_EL3h;
178         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179             env->pstate = PSTATE_MODE_EL2h;
180         } else {
181             env->pstate = PSTATE_MODE_EL1h;
182         }
183         env->pc = cpu->rvbar;
184 #endif
185     } else {
186 #if defined(CONFIG_USER_ONLY)
187         /* Userspace expects access to cp10 and cp11 for FP/Neon */
188         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
190     }
191 
192 #if defined(CONFIG_USER_ONLY)
193     env->uncached_cpsr = ARM_CPU_MODE_USR;
194     /* For user mode we must enable access to coprocessors */
195     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197         env->cp15.c15_cpar = 3;
198     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199         env->cp15.c15_cpar = 1;
200     }
201 #else
202     /* SVC mode with interrupts disabled.  */
203     env->uncached_cpsr = ARM_CPU_MODE_SVC;
204     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
205 
206     if (arm_feature(env, ARM_FEATURE_M)) {
207         uint32_t initial_msp; /* Loaded from 0x0 */
208         uint32_t initial_pc; /* Loaded from 0x4 */
209         uint8_t *rom;
210         uint32_t vecbase;
211 
212         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
213             env->v7m.secure = true;
214         } else {
215             /* This bit resets to 0 if security is supported, but 1 if
216              * it is not. The bit is not present in v7M, but we set it
217              * here so we can avoid having to make checks on it conditional
218              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
219              */
220             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
221         }
222 
223         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
224          * that it resets to 1, so QEMU always does that rather than making
225          * it dependent on CPU model. In v8M it is RES1.
226          */
227         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
228         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
229         if (arm_feature(env, ARM_FEATURE_V8)) {
230             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
231             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
232             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
233         }
234 
235         /* Unlike A/R profile, M profile defines the reset LR value */
236         env->regs[14] = 0xffffffff;
237 
238         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
239 
240         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
241         vecbase = env->v7m.vecbase[env->v7m.secure];
242         rom = rom_ptr(vecbase);
243         if (rom) {
244             /* Address zero is covered by ROM which hasn't yet been
245              * copied into physical memory.
246              */
247             initial_msp = ldl_p(rom);
248             initial_pc = ldl_p(rom + 4);
249         } else {
250             /* Address zero not covered by a ROM blob, or the ROM blob
251              * is in non-modifiable memory and this is a second reset after
252              * it got copied into memory. In the latter case, rom_ptr
253              * will return a NULL pointer and we should use ldl_phys instead.
254              */
255             initial_msp = ldl_phys(s->as, vecbase);
256             initial_pc = ldl_phys(s->as, vecbase + 4);
257         }
258 
259         env->regs[13] = initial_msp & 0xFFFFFFFC;
260         env->regs[15] = initial_pc & ~1;
261         env->thumb = initial_pc & 1;
262     }
263 
264     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
265      * executing as AArch32 then check if highvecs are enabled and
266      * adjust the PC accordingly.
267      */
268     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
269         env->regs[15] = 0xFFFF0000;
270     }
271 
272     /* M profile requires that reset clears the exclusive monitor;
273      * A profile does not, but clearing it makes more sense than having it
274      * set with an exclusive access on address zero.
275      */
276     arm_clear_exclusive(env);
277 
278     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
279 #endif
280 
281     if (arm_feature(env, ARM_FEATURE_PMSA)) {
282         if (cpu->pmsav7_dregion > 0) {
283             if (arm_feature(env, ARM_FEATURE_V8)) {
284                 memset(env->pmsav8.rbar[M_REG_NS], 0,
285                        sizeof(*env->pmsav8.rbar[M_REG_NS])
286                        * cpu->pmsav7_dregion);
287                 memset(env->pmsav8.rlar[M_REG_NS], 0,
288                        sizeof(*env->pmsav8.rlar[M_REG_NS])
289                        * cpu->pmsav7_dregion);
290                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
291                     memset(env->pmsav8.rbar[M_REG_S], 0,
292                            sizeof(*env->pmsav8.rbar[M_REG_S])
293                            * cpu->pmsav7_dregion);
294                     memset(env->pmsav8.rlar[M_REG_S], 0,
295                            sizeof(*env->pmsav8.rlar[M_REG_S])
296                            * cpu->pmsav7_dregion);
297                 }
298             } else if (arm_feature(env, ARM_FEATURE_V7)) {
299                 memset(env->pmsav7.drbar, 0,
300                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
301                 memset(env->pmsav7.drsr, 0,
302                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
303                 memset(env->pmsav7.dracr, 0,
304                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
305             }
306         }
307         env->pmsav7.rnr[M_REG_NS] = 0;
308         env->pmsav7.rnr[M_REG_S] = 0;
309         env->pmsav8.mair0[M_REG_NS] = 0;
310         env->pmsav8.mair0[M_REG_S] = 0;
311         env->pmsav8.mair1[M_REG_NS] = 0;
312         env->pmsav8.mair1[M_REG_S] = 0;
313     }
314 
315     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
316         if (cpu->sau_sregion > 0) {
317             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
318             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
319         }
320         env->sau.rnr = 0;
321         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
322          * the Cortex-M33 does.
323          */
324         env->sau.ctrl = 0;
325     }
326 
327     set_flush_to_zero(1, &env->vfp.standard_fp_status);
328     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
329     set_default_nan_mode(1, &env->vfp.standard_fp_status);
330     set_float_detect_tininess(float_tininess_before_rounding,
331                               &env->vfp.fp_status);
332     set_float_detect_tininess(float_tininess_before_rounding,
333                               &env->vfp.standard_fp_status);
334     set_float_detect_tininess(float_tininess_before_rounding,
335                               &env->vfp.fp_status_f16);
336 #ifndef CONFIG_USER_ONLY
337     if (kvm_enabled()) {
338         kvm_arm_reset_vcpu(cpu);
339     }
340 #endif
341 
342     hw_breakpoint_update_all(cpu);
343     hw_watchpoint_update_all(cpu);
344 }
345 
346 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
347 {
348     CPUClass *cc = CPU_GET_CLASS(cs);
349     CPUARMState *env = cs->env_ptr;
350     uint32_t cur_el = arm_current_el(env);
351     bool secure = arm_is_secure(env);
352     uint32_t target_el;
353     uint32_t excp_idx;
354     bool ret = false;
355 
356     if (interrupt_request & CPU_INTERRUPT_FIQ) {
357         excp_idx = EXCP_FIQ;
358         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
359         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
360             cs->exception_index = excp_idx;
361             env->exception.target_el = target_el;
362             cc->do_interrupt(cs);
363             ret = true;
364         }
365     }
366     if (interrupt_request & CPU_INTERRUPT_HARD) {
367         excp_idx = EXCP_IRQ;
368         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
369         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
370             cs->exception_index = excp_idx;
371             env->exception.target_el = target_el;
372             cc->do_interrupt(cs);
373             ret = true;
374         }
375     }
376     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
377         excp_idx = EXCP_VIRQ;
378         target_el = 1;
379         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
380             cs->exception_index = excp_idx;
381             env->exception.target_el = target_el;
382             cc->do_interrupt(cs);
383             ret = true;
384         }
385     }
386     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
387         excp_idx = EXCP_VFIQ;
388         target_el = 1;
389         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
390             cs->exception_index = excp_idx;
391             env->exception.target_el = target_el;
392             cc->do_interrupt(cs);
393             ret = true;
394         }
395     }
396 
397     return ret;
398 }
399 
400 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
401 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
402 {
403     CPUClass *cc = CPU_GET_CLASS(cs);
404     ARMCPU *cpu = ARM_CPU(cs);
405     CPUARMState *env = &cpu->env;
406     bool ret = false;
407 
408     /* ARMv7-M interrupt masking works differently than -A or -R.
409      * There is no FIQ/IRQ distinction. Instead of I and F bits
410      * masking FIQ and IRQ interrupts, an exception is taken only
411      * if it is higher priority than the current execution priority
412      * (which depends on state like BASEPRI, FAULTMASK and the
413      * currently active exception).
414      */
415     if (interrupt_request & CPU_INTERRUPT_HARD
416         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
417         cs->exception_index = EXCP_IRQ;
418         cc->do_interrupt(cs);
419         ret = true;
420     }
421     return ret;
422 }
423 #endif
424 
425 #ifndef CONFIG_USER_ONLY
426 static void arm_cpu_set_irq(void *opaque, int irq, int level)
427 {
428     ARMCPU *cpu = opaque;
429     CPUARMState *env = &cpu->env;
430     CPUState *cs = CPU(cpu);
431     static const int mask[] = {
432         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
433         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
434         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
435         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
436     };
437 
438     switch (irq) {
439     case ARM_CPU_VIRQ:
440     case ARM_CPU_VFIQ:
441         assert(arm_feature(env, ARM_FEATURE_EL2));
442         /* fall through */
443     case ARM_CPU_IRQ:
444     case ARM_CPU_FIQ:
445         if (level) {
446             cpu_interrupt(cs, mask[irq]);
447         } else {
448             cpu_reset_interrupt(cs, mask[irq]);
449         }
450         break;
451     default:
452         g_assert_not_reached();
453     }
454 }
455 
456 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
457 {
458 #ifdef CONFIG_KVM
459     ARMCPU *cpu = opaque;
460     CPUState *cs = CPU(cpu);
461     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
462 
463     switch (irq) {
464     case ARM_CPU_IRQ:
465         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
466         break;
467     case ARM_CPU_FIQ:
468         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
469         break;
470     default:
471         g_assert_not_reached();
472     }
473     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
474     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
475 #endif
476 }
477 
478 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
479 {
480     ARMCPU *cpu = ARM_CPU(cs);
481     CPUARMState *env = &cpu->env;
482 
483     cpu_synchronize_state(cs);
484     return arm_cpu_data_is_big_endian(env);
485 }
486 
487 #endif
488 
489 static inline void set_feature(CPUARMState *env, int feature)
490 {
491     env->features |= 1ULL << feature;
492 }
493 
494 static inline void unset_feature(CPUARMState *env, int feature)
495 {
496     env->features &= ~(1ULL << feature);
497 }
498 
499 static int
500 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
501 {
502   return print_insn_arm(pc | 1, info);
503 }
504 
505 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
506 {
507     ARMCPU *ac = ARM_CPU(cpu);
508     CPUARMState *env = &ac->env;
509     bool sctlr_b;
510 
511     if (is_a64(env)) {
512         /* We might not be compiled with the A64 disassembler
513          * because it needs a C++ compiler. Leave print_insn
514          * unset in this case to use the caller default behaviour.
515          */
516 #if defined(CONFIG_ARM_A64_DIS)
517         info->print_insn = print_insn_arm_a64;
518 #endif
519         info->cap_arch = CS_ARCH_ARM64;
520         info->cap_insn_unit = 4;
521         info->cap_insn_split = 4;
522     } else {
523         int cap_mode;
524         if (env->thumb) {
525             info->print_insn = print_insn_thumb1;
526             info->cap_insn_unit = 2;
527             info->cap_insn_split = 4;
528             cap_mode = CS_MODE_THUMB;
529         } else {
530             info->print_insn = print_insn_arm;
531             info->cap_insn_unit = 4;
532             info->cap_insn_split = 4;
533             cap_mode = CS_MODE_ARM;
534         }
535         if (arm_feature(env, ARM_FEATURE_V8)) {
536             cap_mode |= CS_MODE_V8;
537         }
538         if (arm_feature(env, ARM_FEATURE_M)) {
539             cap_mode |= CS_MODE_MCLASS;
540         }
541         info->cap_arch = CS_ARCH_ARM;
542         info->cap_mode = cap_mode;
543     }
544 
545     sctlr_b = arm_sctlr_b(env);
546     if (bswap_code(sctlr_b)) {
547 #ifdef TARGET_WORDS_BIGENDIAN
548         info->endian = BFD_ENDIAN_LITTLE;
549 #else
550         info->endian = BFD_ENDIAN_BIG;
551 #endif
552     }
553     info->flags &= ~INSN_ARM_BE32;
554 #ifndef CONFIG_USER_ONLY
555     if (sctlr_b) {
556         info->flags |= INSN_ARM_BE32;
557     }
558 #endif
559 }
560 
561 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
562 {
563     uint32_t Aff1 = idx / clustersz;
564     uint32_t Aff0 = idx % clustersz;
565     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
566 }
567 
568 static void arm_cpu_initfn(Object *obj)
569 {
570     CPUState *cs = CPU(obj);
571     ARMCPU *cpu = ARM_CPU(obj);
572 
573     cs->env_ptr = &cpu->env;
574     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
575                                          g_free, g_free);
576 
577     QLIST_INIT(&cpu->pre_el_change_hooks);
578     QLIST_INIT(&cpu->el_change_hooks);
579 
580 #ifndef CONFIG_USER_ONLY
581     /* Our inbound IRQ and FIQ lines */
582     if (kvm_enabled()) {
583         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
584          * the same interface as non-KVM CPUs.
585          */
586         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
587     } else {
588         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
589     }
590 
591     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
592                                                 arm_gt_ptimer_cb, cpu);
593     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
594                                                 arm_gt_vtimer_cb, cpu);
595     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
596                                                 arm_gt_htimer_cb, cpu);
597     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
598                                                 arm_gt_stimer_cb, cpu);
599     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
600                        ARRAY_SIZE(cpu->gt_timer_outputs));
601 
602     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
603                              "gicv3-maintenance-interrupt", 1);
604     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
605                              "pmu-interrupt", 1);
606 #endif
607 
608     /* DTB consumers generally don't in fact care what the 'compatible'
609      * string is, so always provide some string and trust that a hypothetical
610      * picky DTB consumer will also provide a helpful error message.
611      */
612     cpu->dtb_compatible = "qemu,unknown";
613     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
614     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
615 
616     if (tcg_enabled()) {
617         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
618     }
619 }
620 
621 static Property arm_cpu_reset_cbar_property =
622             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
623 
624 static Property arm_cpu_reset_hivecs_property =
625             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
626 
627 static Property arm_cpu_rvbar_property =
628             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
629 
630 static Property arm_cpu_has_el2_property =
631             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
632 
633 static Property arm_cpu_has_el3_property =
634             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
635 
636 static Property arm_cpu_cfgend_property =
637             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
638 
639 /* use property name "pmu" to match other archs and virt tools */
640 static Property arm_cpu_has_pmu_property =
641             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
642 
643 static Property arm_cpu_has_mpu_property =
644             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
645 
646 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
647  * because the CPU initfn will have already set cpu->pmsav7_dregion to
648  * the right value for that particular CPU type, and we don't want
649  * to override that with an incorrect constant value.
650  */
651 static Property arm_cpu_pmsav7_dregion_property =
652             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
653                                            pmsav7_dregion,
654                                            qdev_prop_uint32, uint32_t);
655 
656 /* M profile: initial value of the Secure VTOR */
657 static Property arm_cpu_initsvtor_property =
658             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
659 
660 static void arm_cpu_post_init(Object *obj)
661 {
662     ARMCPU *cpu = ARM_CPU(obj);
663 
664     /* M profile implies PMSA. We have to do this here rather than
665      * in realize with the other feature-implication checks because
666      * we look at the PMSA bit to see if we should add some properties.
667      */
668     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
669         set_feature(&cpu->env, ARM_FEATURE_PMSA);
670     }
671 
672     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
673         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
674         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
675                                  &error_abort);
676     }
677 
678     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
679         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
680                                  &error_abort);
681     }
682 
683     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
684         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
685                                  &error_abort);
686     }
687 
688     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
689         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
690          * prevent "has_el3" from existing on CPUs which cannot support EL3.
691          */
692         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
693                                  &error_abort);
694 
695 #ifndef CONFIG_USER_ONLY
696         object_property_add_link(obj, "secure-memory",
697                                  TYPE_MEMORY_REGION,
698                                  (Object **)&cpu->secure_memory,
699                                  qdev_prop_allow_set_link_before_realize,
700                                  OBJ_PROP_LINK_STRONG,
701                                  &error_abort);
702 #endif
703     }
704 
705     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
706         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
707                                  &error_abort);
708     }
709 
710     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
711         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
712                                  &error_abort);
713     }
714 
715     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
716         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
717                                  &error_abort);
718         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
719             qdev_property_add_static(DEVICE(obj),
720                                      &arm_cpu_pmsav7_dregion_property,
721                                      &error_abort);
722         }
723     }
724 
725     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
726         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
727                                  qdev_prop_allow_set_link_before_realize,
728                                  OBJ_PROP_LINK_STRONG,
729                                  &error_abort);
730         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
731                                  &error_abort);
732     }
733 
734     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
735                              &error_abort);
736 }
737 
738 static void arm_cpu_finalizefn(Object *obj)
739 {
740     ARMCPU *cpu = ARM_CPU(obj);
741     ARMELChangeHook *hook, *next;
742 
743     g_hash_table_destroy(cpu->cp_regs);
744 
745     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
746         QLIST_REMOVE(hook, node);
747         g_free(hook);
748     }
749     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
750         QLIST_REMOVE(hook, node);
751         g_free(hook);
752     }
753 }
754 
755 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
756 {
757     CPUState *cs = CPU(dev);
758     ARMCPU *cpu = ARM_CPU(dev);
759     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
760     CPUARMState *env = &cpu->env;
761     int pagebits;
762     Error *local_err = NULL;
763 
764     /* If we needed to query the host kernel for the CPU features
765      * then it's possible that might have failed in the initfn, but
766      * this is the first point where we can report it.
767      */
768     if (cpu->host_cpu_probe_failed) {
769         if (!kvm_enabled()) {
770             error_setg(errp, "The 'host' CPU type can only be used with KVM");
771         } else {
772             error_setg(errp, "Failed to retrieve host CPU features");
773         }
774         return;
775     }
776 
777 #ifndef CONFIG_USER_ONLY
778     /* The NVIC and M-profile CPU are two halves of a single piece of
779      * hardware; trying to use one without the other is a command line
780      * error and will result in segfaults if not caught here.
781      */
782     if (arm_feature(env, ARM_FEATURE_M)) {
783         if (!env->nvic) {
784             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
785             return;
786         }
787     } else {
788         if (env->nvic) {
789             error_setg(errp, "This board can only be used with Cortex-M CPUs");
790             return;
791         }
792     }
793 #endif
794 
795     cpu_exec_realizefn(cs, &local_err);
796     if (local_err != NULL) {
797         error_propagate(errp, local_err);
798         return;
799     }
800 
801     /* Some features automatically imply others: */
802     if (arm_feature(env, ARM_FEATURE_V8)) {
803         set_feature(env, ARM_FEATURE_V7VE);
804     }
805     if (arm_feature(env, ARM_FEATURE_V7VE)) {
806         /* v7 Virtualization Extensions. In real hardware this implies
807          * EL2 and also the presence of the Security Extensions.
808          * For QEMU, for backwards-compatibility we implement some
809          * CPUs or CPU configs which have no actual EL2 or EL3 but do
810          * include the various other features that V7VE implies.
811          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
812          * Security Extensions is ARM_FEATURE_EL3.
813          */
814         set_feature(env, ARM_FEATURE_ARM_DIV);
815         set_feature(env, ARM_FEATURE_LPAE);
816         set_feature(env, ARM_FEATURE_V7);
817     }
818     if (arm_feature(env, ARM_FEATURE_V7)) {
819         set_feature(env, ARM_FEATURE_VAPA);
820         set_feature(env, ARM_FEATURE_THUMB2);
821         set_feature(env, ARM_FEATURE_MPIDR);
822         if (!arm_feature(env, ARM_FEATURE_M)) {
823             set_feature(env, ARM_FEATURE_V6K);
824         } else {
825             set_feature(env, ARM_FEATURE_V6);
826         }
827 
828         /* Always define VBAR for V7 CPUs even if it doesn't exist in
829          * non-EL3 configs. This is needed by some legacy boards.
830          */
831         set_feature(env, ARM_FEATURE_VBAR);
832     }
833     if (arm_feature(env, ARM_FEATURE_V6K)) {
834         set_feature(env, ARM_FEATURE_V6);
835         set_feature(env, ARM_FEATURE_MVFR);
836     }
837     if (arm_feature(env, ARM_FEATURE_V6)) {
838         set_feature(env, ARM_FEATURE_V5);
839         set_feature(env, ARM_FEATURE_JAZELLE);
840         if (!arm_feature(env, ARM_FEATURE_M)) {
841             set_feature(env, ARM_FEATURE_AUXCR);
842         }
843     }
844     if (arm_feature(env, ARM_FEATURE_V5)) {
845         set_feature(env, ARM_FEATURE_V4T);
846     }
847     if (arm_feature(env, ARM_FEATURE_M)) {
848         set_feature(env, ARM_FEATURE_THUMB_DIV);
849     }
850     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
851         set_feature(env, ARM_FEATURE_THUMB_DIV);
852     }
853     if (arm_feature(env, ARM_FEATURE_VFP4)) {
854         set_feature(env, ARM_FEATURE_VFP3);
855         set_feature(env, ARM_FEATURE_VFP_FP16);
856     }
857     if (arm_feature(env, ARM_FEATURE_VFP3)) {
858         set_feature(env, ARM_FEATURE_VFP);
859     }
860     if (arm_feature(env, ARM_FEATURE_LPAE)) {
861         set_feature(env, ARM_FEATURE_V7MP);
862         set_feature(env, ARM_FEATURE_PXN);
863     }
864     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
865         set_feature(env, ARM_FEATURE_CBAR);
866     }
867     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
868         !arm_feature(env, ARM_FEATURE_M)) {
869         set_feature(env, ARM_FEATURE_THUMB_DSP);
870     }
871 
872     if (arm_feature(env, ARM_FEATURE_V7) &&
873         !arm_feature(env, ARM_FEATURE_M) &&
874         !arm_feature(env, ARM_FEATURE_PMSA)) {
875         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
876          * can use 4K pages.
877          */
878         pagebits = 12;
879     } else {
880         /* For CPUs which might have tiny 1K pages, or which have an
881          * MPU and might have small region sizes, stick with 1K pages.
882          */
883         pagebits = 10;
884     }
885     if (!set_preferred_target_page_bits(pagebits)) {
886         /* This can only ever happen for hotplugging a CPU, or if
887          * the board code incorrectly creates a CPU which it has
888          * promised via minimum_page_size that it will not.
889          */
890         error_setg(errp, "This CPU requires a smaller page size than the "
891                    "system is using");
892         return;
893     }
894 
895     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
896      * We don't support setting cluster ID ([16..23]) (known as Aff2
897      * in later ARM ARM versions), or any of the higher affinity level fields,
898      * so these bits always RAZ.
899      */
900     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
901         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
902                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
903     }
904 
905     if (cpu->reset_hivecs) {
906             cpu->reset_sctlr |= (1 << 13);
907     }
908 
909     if (cpu->cfgend) {
910         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
911             cpu->reset_sctlr |= SCTLR_EE;
912         } else {
913             cpu->reset_sctlr |= SCTLR_B;
914         }
915     }
916 
917     if (!cpu->has_el3) {
918         /* If the has_el3 CPU property is disabled then we need to disable the
919          * feature.
920          */
921         unset_feature(env, ARM_FEATURE_EL3);
922 
923         /* Disable the security extension feature bits in the processor feature
924          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
925          */
926         cpu->id_pfr1 &= ~0xf0;
927         cpu->id_aa64pfr0 &= ~0xf000;
928     }
929 
930     if (!cpu->has_el2) {
931         unset_feature(env, ARM_FEATURE_EL2);
932     }
933 
934     if (!cpu->has_pmu) {
935         unset_feature(env, ARM_FEATURE_PMU);
936         cpu->id_aa64dfr0 &= ~0xf00;
937     }
938 
939     if (!arm_feature(env, ARM_FEATURE_EL2)) {
940         /* Disable the hypervisor feature bits in the processor feature
941          * registers if we don't have EL2. These are id_pfr1[15:12] and
942          * id_aa64pfr0_el1[11:8].
943          */
944         cpu->id_aa64pfr0 &= ~0xf00;
945         cpu->id_pfr1 &= ~0xf000;
946     }
947 
948     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
949      * to false or by setting pmsav7-dregion to 0.
950      */
951     if (!cpu->has_mpu) {
952         cpu->pmsav7_dregion = 0;
953     }
954     if (cpu->pmsav7_dregion == 0) {
955         cpu->has_mpu = false;
956     }
957 
958     if (arm_feature(env, ARM_FEATURE_PMSA) &&
959         arm_feature(env, ARM_FEATURE_V7)) {
960         uint32_t nr = cpu->pmsav7_dregion;
961 
962         if (nr > 0xff) {
963             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
964             return;
965         }
966 
967         if (nr) {
968             if (arm_feature(env, ARM_FEATURE_V8)) {
969                 /* PMSAv8 */
970                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
971                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
972                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
973                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
974                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
975                 }
976             } else {
977                 env->pmsav7.drbar = g_new0(uint32_t, nr);
978                 env->pmsav7.drsr = g_new0(uint32_t, nr);
979                 env->pmsav7.dracr = g_new0(uint32_t, nr);
980             }
981         }
982     }
983 
984     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
985         uint32_t nr = cpu->sau_sregion;
986 
987         if (nr > 0xff) {
988             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
989             return;
990         }
991 
992         if (nr) {
993             env->sau.rbar = g_new0(uint32_t, nr);
994             env->sau.rlar = g_new0(uint32_t, nr);
995         }
996     }
997 
998     if (arm_feature(env, ARM_FEATURE_EL3)) {
999         set_feature(env, ARM_FEATURE_VBAR);
1000     }
1001 
1002     register_cp_regs_for_features(cpu);
1003     arm_cpu_register_gdb_regs_for_features(cpu);
1004 
1005     init_cpreg_list(cpu);
1006 
1007 #ifndef CONFIG_USER_ONLY
1008     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1009         cs->num_ases = 2;
1010 
1011         if (!cpu->secure_memory) {
1012             cpu->secure_memory = cs->memory;
1013         }
1014         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1015                                cpu->secure_memory);
1016     } else {
1017         cs->num_ases = 1;
1018     }
1019     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1020 
1021     /* No core_count specified, default to smp_cpus. */
1022     if (cpu->core_count == -1) {
1023         cpu->core_count = smp_cpus;
1024     }
1025 #endif
1026 
1027     qemu_init_vcpu(cs);
1028     cpu_reset(cs);
1029 
1030     acc->parent_realize(dev, errp);
1031 }
1032 
1033 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1034 {
1035     ObjectClass *oc;
1036     char *typename;
1037     char **cpuname;
1038     const char *cpunamestr;
1039 
1040     cpuname = g_strsplit(cpu_model, ",", 1);
1041     cpunamestr = cpuname[0];
1042 #ifdef CONFIG_USER_ONLY
1043     /* For backwards compatibility usermode emulation allows "-cpu any",
1044      * which has the same semantics as "-cpu max".
1045      */
1046     if (!strcmp(cpunamestr, "any")) {
1047         cpunamestr = "max";
1048     }
1049 #endif
1050     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1051     oc = object_class_by_name(typename);
1052     g_strfreev(cpuname);
1053     g_free(typename);
1054     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1055         object_class_is_abstract(oc)) {
1056         return NULL;
1057     }
1058     return oc;
1059 }
1060 
1061 /* CPU models. These are not needed for the AArch64 linux-user build. */
1062 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1063 
1064 static void arm926_initfn(Object *obj)
1065 {
1066     ARMCPU *cpu = ARM_CPU(obj);
1067 
1068     cpu->dtb_compatible = "arm,arm926";
1069     set_feature(&cpu->env, ARM_FEATURE_V5);
1070     set_feature(&cpu->env, ARM_FEATURE_VFP);
1071     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1072     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1073     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1074     cpu->midr = 0x41069265;
1075     cpu->reset_fpsid = 0x41011090;
1076     cpu->ctr = 0x1dd20d2;
1077     cpu->reset_sctlr = 0x00090078;
1078 }
1079 
1080 static void arm946_initfn(Object *obj)
1081 {
1082     ARMCPU *cpu = ARM_CPU(obj);
1083 
1084     cpu->dtb_compatible = "arm,arm946";
1085     set_feature(&cpu->env, ARM_FEATURE_V5);
1086     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1087     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1088     cpu->midr = 0x41059461;
1089     cpu->ctr = 0x0f004006;
1090     cpu->reset_sctlr = 0x00000078;
1091 }
1092 
1093 static void arm1026_initfn(Object *obj)
1094 {
1095     ARMCPU *cpu = ARM_CPU(obj);
1096 
1097     cpu->dtb_compatible = "arm,arm1026";
1098     set_feature(&cpu->env, ARM_FEATURE_V5);
1099     set_feature(&cpu->env, ARM_FEATURE_VFP);
1100     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1101     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1102     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1103     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1104     cpu->midr = 0x4106a262;
1105     cpu->reset_fpsid = 0x410110a0;
1106     cpu->ctr = 0x1dd20d2;
1107     cpu->reset_sctlr = 0x00090078;
1108     cpu->reset_auxcr = 1;
1109     {
1110         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1111         ARMCPRegInfo ifar = {
1112             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1113             .access = PL1_RW,
1114             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1115             .resetvalue = 0
1116         };
1117         define_one_arm_cp_reg(cpu, &ifar);
1118     }
1119 }
1120 
1121 static void arm1136_r2_initfn(Object *obj)
1122 {
1123     ARMCPU *cpu = ARM_CPU(obj);
1124     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1125      * older core than plain "arm1136". In particular this does not
1126      * have the v6K features.
1127      * These ID register values are correct for 1136 but may be wrong
1128      * for 1136_r2 (in particular r0p2 does not actually implement most
1129      * of the ID registers).
1130      */
1131 
1132     cpu->dtb_compatible = "arm,arm1136";
1133     set_feature(&cpu->env, ARM_FEATURE_V6);
1134     set_feature(&cpu->env, ARM_FEATURE_VFP);
1135     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1136     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1137     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1138     cpu->midr = 0x4107b362;
1139     cpu->reset_fpsid = 0x410120b4;
1140     cpu->mvfr0 = 0x11111111;
1141     cpu->mvfr1 = 0x00000000;
1142     cpu->ctr = 0x1dd20d2;
1143     cpu->reset_sctlr = 0x00050078;
1144     cpu->id_pfr0 = 0x111;
1145     cpu->id_pfr1 = 0x1;
1146     cpu->id_dfr0 = 0x2;
1147     cpu->id_afr0 = 0x3;
1148     cpu->id_mmfr0 = 0x01130003;
1149     cpu->id_mmfr1 = 0x10030302;
1150     cpu->id_mmfr2 = 0x01222110;
1151     cpu->id_isar0 = 0x00140011;
1152     cpu->id_isar1 = 0x12002111;
1153     cpu->id_isar2 = 0x11231111;
1154     cpu->id_isar3 = 0x01102131;
1155     cpu->id_isar4 = 0x141;
1156     cpu->reset_auxcr = 7;
1157 }
1158 
1159 static void arm1136_initfn(Object *obj)
1160 {
1161     ARMCPU *cpu = ARM_CPU(obj);
1162 
1163     cpu->dtb_compatible = "arm,arm1136";
1164     set_feature(&cpu->env, ARM_FEATURE_V6K);
1165     set_feature(&cpu->env, ARM_FEATURE_V6);
1166     set_feature(&cpu->env, ARM_FEATURE_VFP);
1167     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1168     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1169     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1170     cpu->midr = 0x4117b363;
1171     cpu->reset_fpsid = 0x410120b4;
1172     cpu->mvfr0 = 0x11111111;
1173     cpu->mvfr1 = 0x00000000;
1174     cpu->ctr = 0x1dd20d2;
1175     cpu->reset_sctlr = 0x00050078;
1176     cpu->id_pfr0 = 0x111;
1177     cpu->id_pfr1 = 0x1;
1178     cpu->id_dfr0 = 0x2;
1179     cpu->id_afr0 = 0x3;
1180     cpu->id_mmfr0 = 0x01130003;
1181     cpu->id_mmfr1 = 0x10030302;
1182     cpu->id_mmfr2 = 0x01222110;
1183     cpu->id_isar0 = 0x00140011;
1184     cpu->id_isar1 = 0x12002111;
1185     cpu->id_isar2 = 0x11231111;
1186     cpu->id_isar3 = 0x01102131;
1187     cpu->id_isar4 = 0x141;
1188     cpu->reset_auxcr = 7;
1189 }
1190 
1191 static void arm1176_initfn(Object *obj)
1192 {
1193     ARMCPU *cpu = ARM_CPU(obj);
1194 
1195     cpu->dtb_compatible = "arm,arm1176";
1196     set_feature(&cpu->env, ARM_FEATURE_V6K);
1197     set_feature(&cpu->env, ARM_FEATURE_VFP);
1198     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1199     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1200     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1201     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1202     set_feature(&cpu->env, ARM_FEATURE_EL3);
1203     cpu->midr = 0x410fb767;
1204     cpu->reset_fpsid = 0x410120b5;
1205     cpu->mvfr0 = 0x11111111;
1206     cpu->mvfr1 = 0x00000000;
1207     cpu->ctr = 0x1dd20d2;
1208     cpu->reset_sctlr = 0x00050078;
1209     cpu->id_pfr0 = 0x111;
1210     cpu->id_pfr1 = 0x11;
1211     cpu->id_dfr0 = 0x33;
1212     cpu->id_afr0 = 0;
1213     cpu->id_mmfr0 = 0x01130003;
1214     cpu->id_mmfr1 = 0x10030302;
1215     cpu->id_mmfr2 = 0x01222100;
1216     cpu->id_isar0 = 0x0140011;
1217     cpu->id_isar1 = 0x12002111;
1218     cpu->id_isar2 = 0x11231121;
1219     cpu->id_isar3 = 0x01102131;
1220     cpu->id_isar4 = 0x01141;
1221     cpu->reset_auxcr = 7;
1222 }
1223 
1224 static void arm11mpcore_initfn(Object *obj)
1225 {
1226     ARMCPU *cpu = ARM_CPU(obj);
1227 
1228     cpu->dtb_compatible = "arm,arm11mpcore";
1229     set_feature(&cpu->env, ARM_FEATURE_V6K);
1230     set_feature(&cpu->env, ARM_FEATURE_VFP);
1231     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1232     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1233     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1234     cpu->midr = 0x410fb022;
1235     cpu->reset_fpsid = 0x410120b4;
1236     cpu->mvfr0 = 0x11111111;
1237     cpu->mvfr1 = 0x00000000;
1238     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1239     cpu->id_pfr0 = 0x111;
1240     cpu->id_pfr1 = 0x1;
1241     cpu->id_dfr0 = 0;
1242     cpu->id_afr0 = 0x2;
1243     cpu->id_mmfr0 = 0x01100103;
1244     cpu->id_mmfr1 = 0x10020302;
1245     cpu->id_mmfr2 = 0x01222000;
1246     cpu->id_isar0 = 0x00100011;
1247     cpu->id_isar1 = 0x12002111;
1248     cpu->id_isar2 = 0x11221011;
1249     cpu->id_isar3 = 0x01102131;
1250     cpu->id_isar4 = 0x141;
1251     cpu->reset_auxcr = 1;
1252 }
1253 
1254 static void cortex_m3_initfn(Object *obj)
1255 {
1256     ARMCPU *cpu = ARM_CPU(obj);
1257     set_feature(&cpu->env, ARM_FEATURE_V7);
1258     set_feature(&cpu->env, ARM_FEATURE_M);
1259     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1260     cpu->midr = 0x410fc231;
1261     cpu->pmsav7_dregion = 8;
1262     cpu->id_pfr0 = 0x00000030;
1263     cpu->id_pfr1 = 0x00000200;
1264     cpu->id_dfr0 = 0x00100000;
1265     cpu->id_afr0 = 0x00000000;
1266     cpu->id_mmfr0 = 0x00000030;
1267     cpu->id_mmfr1 = 0x00000000;
1268     cpu->id_mmfr2 = 0x00000000;
1269     cpu->id_mmfr3 = 0x00000000;
1270     cpu->id_isar0 = 0x01141110;
1271     cpu->id_isar1 = 0x02111000;
1272     cpu->id_isar2 = 0x21112231;
1273     cpu->id_isar3 = 0x01111110;
1274     cpu->id_isar4 = 0x01310102;
1275     cpu->id_isar5 = 0x00000000;
1276     cpu->id_isar6 = 0x00000000;
1277 }
1278 
1279 static void cortex_m4_initfn(Object *obj)
1280 {
1281     ARMCPU *cpu = ARM_CPU(obj);
1282 
1283     set_feature(&cpu->env, ARM_FEATURE_V7);
1284     set_feature(&cpu->env, ARM_FEATURE_M);
1285     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1286     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1287     cpu->midr = 0x410fc240; /* r0p0 */
1288     cpu->pmsav7_dregion = 8;
1289     cpu->id_pfr0 = 0x00000030;
1290     cpu->id_pfr1 = 0x00000200;
1291     cpu->id_dfr0 = 0x00100000;
1292     cpu->id_afr0 = 0x00000000;
1293     cpu->id_mmfr0 = 0x00000030;
1294     cpu->id_mmfr1 = 0x00000000;
1295     cpu->id_mmfr2 = 0x00000000;
1296     cpu->id_mmfr3 = 0x00000000;
1297     cpu->id_isar0 = 0x01141110;
1298     cpu->id_isar1 = 0x02111000;
1299     cpu->id_isar2 = 0x21112231;
1300     cpu->id_isar3 = 0x01111110;
1301     cpu->id_isar4 = 0x01310102;
1302     cpu->id_isar5 = 0x00000000;
1303     cpu->id_isar6 = 0x00000000;
1304 }
1305 
1306 static void cortex_m33_initfn(Object *obj)
1307 {
1308     ARMCPU *cpu = ARM_CPU(obj);
1309 
1310     set_feature(&cpu->env, ARM_FEATURE_V8);
1311     set_feature(&cpu->env, ARM_FEATURE_M);
1312     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1313     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1314     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1315     cpu->midr = 0x410fd213; /* r0p3 */
1316     cpu->pmsav7_dregion = 16;
1317     cpu->sau_sregion = 8;
1318     cpu->id_pfr0 = 0x00000030;
1319     cpu->id_pfr1 = 0x00000210;
1320     cpu->id_dfr0 = 0x00200000;
1321     cpu->id_afr0 = 0x00000000;
1322     cpu->id_mmfr0 = 0x00101F40;
1323     cpu->id_mmfr1 = 0x00000000;
1324     cpu->id_mmfr2 = 0x01000000;
1325     cpu->id_mmfr3 = 0x00000000;
1326     cpu->id_isar0 = 0x01101110;
1327     cpu->id_isar1 = 0x02212000;
1328     cpu->id_isar2 = 0x20232232;
1329     cpu->id_isar3 = 0x01111131;
1330     cpu->id_isar4 = 0x01310132;
1331     cpu->id_isar5 = 0x00000000;
1332     cpu->id_isar6 = 0x00000000;
1333     cpu->clidr = 0x00000000;
1334     cpu->ctr = 0x8000c000;
1335 }
1336 
1337 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1338 {
1339     CPUClass *cc = CPU_CLASS(oc);
1340 
1341 #ifndef CONFIG_USER_ONLY
1342     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1343 #endif
1344 
1345     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1346 }
1347 
1348 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1349     /* Dummy the TCM region regs for the moment */
1350     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1351       .access = PL1_RW, .type = ARM_CP_CONST },
1352     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1353       .access = PL1_RW, .type = ARM_CP_CONST },
1354     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1355       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1356     REGINFO_SENTINEL
1357 };
1358 
1359 static void cortex_r5_initfn(Object *obj)
1360 {
1361     ARMCPU *cpu = ARM_CPU(obj);
1362 
1363     set_feature(&cpu->env, ARM_FEATURE_V7);
1364     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1365     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1366     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1367     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1368     cpu->midr = 0x411fc153; /* r1p3 */
1369     cpu->id_pfr0 = 0x0131;
1370     cpu->id_pfr1 = 0x001;
1371     cpu->id_dfr0 = 0x010400;
1372     cpu->id_afr0 = 0x0;
1373     cpu->id_mmfr0 = 0x0210030;
1374     cpu->id_mmfr1 = 0x00000000;
1375     cpu->id_mmfr2 = 0x01200000;
1376     cpu->id_mmfr3 = 0x0211;
1377     cpu->id_isar0 = 0x2101111;
1378     cpu->id_isar1 = 0x13112111;
1379     cpu->id_isar2 = 0x21232141;
1380     cpu->id_isar3 = 0x01112131;
1381     cpu->id_isar4 = 0x0010142;
1382     cpu->id_isar5 = 0x0;
1383     cpu->id_isar6 = 0x0;
1384     cpu->mp_is_up = true;
1385     cpu->pmsav7_dregion = 16;
1386     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1387 }
1388 
1389 static void cortex_r5f_initfn(Object *obj)
1390 {
1391     ARMCPU *cpu = ARM_CPU(obj);
1392 
1393     cortex_r5_initfn(obj);
1394     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1395 }
1396 
1397 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1398     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1399       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1400     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1401       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1402     REGINFO_SENTINEL
1403 };
1404 
1405 static void cortex_a8_initfn(Object *obj)
1406 {
1407     ARMCPU *cpu = ARM_CPU(obj);
1408 
1409     cpu->dtb_compatible = "arm,cortex-a8";
1410     set_feature(&cpu->env, ARM_FEATURE_V7);
1411     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1412     set_feature(&cpu->env, ARM_FEATURE_NEON);
1413     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1414     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1415     set_feature(&cpu->env, ARM_FEATURE_EL3);
1416     cpu->midr = 0x410fc080;
1417     cpu->reset_fpsid = 0x410330c0;
1418     cpu->mvfr0 = 0x11110222;
1419     cpu->mvfr1 = 0x00011111;
1420     cpu->ctr = 0x82048004;
1421     cpu->reset_sctlr = 0x00c50078;
1422     cpu->id_pfr0 = 0x1031;
1423     cpu->id_pfr1 = 0x11;
1424     cpu->id_dfr0 = 0x400;
1425     cpu->id_afr0 = 0;
1426     cpu->id_mmfr0 = 0x31100003;
1427     cpu->id_mmfr1 = 0x20000000;
1428     cpu->id_mmfr2 = 0x01202000;
1429     cpu->id_mmfr3 = 0x11;
1430     cpu->id_isar0 = 0x00101111;
1431     cpu->id_isar1 = 0x12112111;
1432     cpu->id_isar2 = 0x21232031;
1433     cpu->id_isar3 = 0x11112131;
1434     cpu->id_isar4 = 0x00111142;
1435     cpu->dbgdidr = 0x15141000;
1436     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1437     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1438     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1439     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1440     cpu->reset_auxcr = 2;
1441     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1442 }
1443 
1444 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1445     /* power_control should be set to maximum latency. Again,
1446      * default to 0 and set by private hook
1447      */
1448     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1449       .access = PL1_RW, .resetvalue = 0,
1450       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1451     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1452       .access = PL1_RW, .resetvalue = 0,
1453       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1454     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1455       .access = PL1_RW, .resetvalue = 0,
1456       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1457     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1458       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1459     /* TLB lockdown control */
1460     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1461       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1462     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1463       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1464     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1465       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1466     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1467       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1468     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1469       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1470     REGINFO_SENTINEL
1471 };
1472 
1473 static void cortex_a9_initfn(Object *obj)
1474 {
1475     ARMCPU *cpu = ARM_CPU(obj);
1476 
1477     cpu->dtb_compatible = "arm,cortex-a9";
1478     set_feature(&cpu->env, ARM_FEATURE_V7);
1479     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1480     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1481     set_feature(&cpu->env, ARM_FEATURE_NEON);
1482     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1483     set_feature(&cpu->env, ARM_FEATURE_EL3);
1484     /* Note that A9 supports the MP extensions even for
1485      * A9UP and single-core A9MP (which are both different
1486      * and valid configurations; we don't model A9UP).
1487      */
1488     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1489     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1490     cpu->midr = 0x410fc090;
1491     cpu->reset_fpsid = 0x41033090;
1492     cpu->mvfr0 = 0x11110222;
1493     cpu->mvfr1 = 0x01111111;
1494     cpu->ctr = 0x80038003;
1495     cpu->reset_sctlr = 0x00c50078;
1496     cpu->id_pfr0 = 0x1031;
1497     cpu->id_pfr1 = 0x11;
1498     cpu->id_dfr0 = 0x000;
1499     cpu->id_afr0 = 0;
1500     cpu->id_mmfr0 = 0x00100103;
1501     cpu->id_mmfr1 = 0x20000000;
1502     cpu->id_mmfr2 = 0x01230000;
1503     cpu->id_mmfr3 = 0x00002111;
1504     cpu->id_isar0 = 0x00101111;
1505     cpu->id_isar1 = 0x13112111;
1506     cpu->id_isar2 = 0x21232041;
1507     cpu->id_isar3 = 0x11112131;
1508     cpu->id_isar4 = 0x00111142;
1509     cpu->dbgdidr = 0x35141000;
1510     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1511     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1512     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1513     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1514 }
1515 
1516 #ifndef CONFIG_USER_ONLY
1517 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1518 {
1519     /* Linux wants the number of processors from here.
1520      * Might as well set the interrupt-controller bit too.
1521      */
1522     return ((smp_cpus - 1) << 24) | (1 << 23);
1523 }
1524 #endif
1525 
1526 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1527 #ifndef CONFIG_USER_ONLY
1528     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1529       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1530       .writefn = arm_cp_write_ignore, },
1531 #endif
1532     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1533       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1534     REGINFO_SENTINEL
1535 };
1536 
1537 static void cortex_a7_initfn(Object *obj)
1538 {
1539     ARMCPU *cpu = ARM_CPU(obj);
1540 
1541     cpu->dtb_compatible = "arm,cortex-a7";
1542     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1543     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1544     set_feature(&cpu->env, ARM_FEATURE_NEON);
1545     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1546     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1547     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1548     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1549     set_feature(&cpu->env, ARM_FEATURE_EL3);
1550     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1551     cpu->midr = 0x410fc075;
1552     cpu->reset_fpsid = 0x41023075;
1553     cpu->mvfr0 = 0x10110222;
1554     cpu->mvfr1 = 0x11111111;
1555     cpu->ctr = 0x84448003;
1556     cpu->reset_sctlr = 0x00c50078;
1557     cpu->id_pfr0 = 0x00001131;
1558     cpu->id_pfr1 = 0x00011011;
1559     cpu->id_dfr0 = 0x02010555;
1560     cpu->pmceid0 = 0x00000000;
1561     cpu->pmceid1 = 0x00000000;
1562     cpu->id_afr0 = 0x00000000;
1563     cpu->id_mmfr0 = 0x10101105;
1564     cpu->id_mmfr1 = 0x40000000;
1565     cpu->id_mmfr2 = 0x01240000;
1566     cpu->id_mmfr3 = 0x02102211;
1567     cpu->id_isar0 = 0x01101110;
1568     cpu->id_isar1 = 0x13112111;
1569     cpu->id_isar2 = 0x21232041;
1570     cpu->id_isar3 = 0x11112131;
1571     cpu->id_isar4 = 0x10011142;
1572     cpu->dbgdidr = 0x3515f005;
1573     cpu->clidr = 0x0a200023;
1574     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1575     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1576     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1577     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1578 }
1579 
1580 static void cortex_a15_initfn(Object *obj)
1581 {
1582     ARMCPU *cpu = ARM_CPU(obj);
1583 
1584     cpu->dtb_compatible = "arm,cortex-a15";
1585     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1586     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1587     set_feature(&cpu->env, ARM_FEATURE_NEON);
1588     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1589     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1590     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1591     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1592     set_feature(&cpu->env, ARM_FEATURE_EL3);
1593     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1594     cpu->midr = 0x412fc0f1;
1595     cpu->reset_fpsid = 0x410430f0;
1596     cpu->mvfr0 = 0x10110222;
1597     cpu->mvfr1 = 0x11111111;
1598     cpu->ctr = 0x8444c004;
1599     cpu->reset_sctlr = 0x00c50078;
1600     cpu->id_pfr0 = 0x00001131;
1601     cpu->id_pfr1 = 0x00011011;
1602     cpu->id_dfr0 = 0x02010555;
1603     cpu->pmceid0 = 0x0000000;
1604     cpu->pmceid1 = 0x00000000;
1605     cpu->id_afr0 = 0x00000000;
1606     cpu->id_mmfr0 = 0x10201105;
1607     cpu->id_mmfr1 = 0x20000000;
1608     cpu->id_mmfr2 = 0x01240000;
1609     cpu->id_mmfr3 = 0x02102211;
1610     cpu->id_isar0 = 0x02101110;
1611     cpu->id_isar1 = 0x13112111;
1612     cpu->id_isar2 = 0x21232041;
1613     cpu->id_isar3 = 0x11112131;
1614     cpu->id_isar4 = 0x10011142;
1615     cpu->dbgdidr = 0x3515f021;
1616     cpu->clidr = 0x0a200023;
1617     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1618     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1619     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1620     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1621 }
1622 
1623 static void ti925t_initfn(Object *obj)
1624 {
1625     ARMCPU *cpu = ARM_CPU(obj);
1626     set_feature(&cpu->env, ARM_FEATURE_V4T);
1627     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1628     cpu->midr = ARM_CPUID_TI925T;
1629     cpu->ctr = 0x5109149;
1630     cpu->reset_sctlr = 0x00000070;
1631 }
1632 
1633 static void sa1100_initfn(Object *obj)
1634 {
1635     ARMCPU *cpu = ARM_CPU(obj);
1636 
1637     cpu->dtb_compatible = "intel,sa1100";
1638     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1639     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1640     cpu->midr = 0x4401A11B;
1641     cpu->reset_sctlr = 0x00000070;
1642 }
1643 
1644 static void sa1110_initfn(Object *obj)
1645 {
1646     ARMCPU *cpu = ARM_CPU(obj);
1647     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1648     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1649     cpu->midr = 0x6901B119;
1650     cpu->reset_sctlr = 0x00000070;
1651 }
1652 
1653 static void pxa250_initfn(Object *obj)
1654 {
1655     ARMCPU *cpu = ARM_CPU(obj);
1656 
1657     cpu->dtb_compatible = "marvell,xscale";
1658     set_feature(&cpu->env, ARM_FEATURE_V5);
1659     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1660     cpu->midr = 0x69052100;
1661     cpu->ctr = 0xd172172;
1662     cpu->reset_sctlr = 0x00000078;
1663 }
1664 
1665 static void pxa255_initfn(Object *obj)
1666 {
1667     ARMCPU *cpu = ARM_CPU(obj);
1668 
1669     cpu->dtb_compatible = "marvell,xscale";
1670     set_feature(&cpu->env, ARM_FEATURE_V5);
1671     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1672     cpu->midr = 0x69052d00;
1673     cpu->ctr = 0xd172172;
1674     cpu->reset_sctlr = 0x00000078;
1675 }
1676 
1677 static void pxa260_initfn(Object *obj)
1678 {
1679     ARMCPU *cpu = ARM_CPU(obj);
1680 
1681     cpu->dtb_compatible = "marvell,xscale";
1682     set_feature(&cpu->env, ARM_FEATURE_V5);
1683     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1684     cpu->midr = 0x69052903;
1685     cpu->ctr = 0xd172172;
1686     cpu->reset_sctlr = 0x00000078;
1687 }
1688 
1689 static void pxa261_initfn(Object *obj)
1690 {
1691     ARMCPU *cpu = ARM_CPU(obj);
1692 
1693     cpu->dtb_compatible = "marvell,xscale";
1694     set_feature(&cpu->env, ARM_FEATURE_V5);
1695     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1696     cpu->midr = 0x69052d05;
1697     cpu->ctr = 0xd172172;
1698     cpu->reset_sctlr = 0x00000078;
1699 }
1700 
1701 static void pxa262_initfn(Object *obj)
1702 {
1703     ARMCPU *cpu = ARM_CPU(obj);
1704 
1705     cpu->dtb_compatible = "marvell,xscale";
1706     set_feature(&cpu->env, ARM_FEATURE_V5);
1707     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1708     cpu->midr = 0x69052d06;
1709     cpu->ctr = 0xd172172;
1710     cpu->reset_sctlr = 0x00000078;
1711 }
1712 
1713 static void pxa270a0_initfn(Object *obj)
1714 {
1715     ARMCPU *cpu = ARM_CPU(obj);
1716 
1717     cpu->dtb_compatible = "marvell,xscale";
1718     set_feature(&cpu->env, ARM_FEATURE_V5);
1719     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1720     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1721     cpu->midr = 0x69054110;
1722     cpu->ctr = 0xd172172;
1723     cpu->reset_sctlr = 0x00000078;
1724 }
1725 
1726 static void pxa270a1_initfn(Object *obj)
1727 {
1728     ARMCPU *cpu = ARM_CPU(obj);
1729 
1730     cpu->dtb_compatible = "marvell,xscale";
1731     set_feature(&cpu->env, ARM_FEATURE_V5);
1732     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1733     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1734     cpu->midr = 0x69054111;
1735     cpu->ctr = 0xd172172;
1736     cpu->reset_sctlr = 0x00000078;
1737 }
1738 
1739 static void pxa270b0_initfn(Object *obj)
1740 {
1741     ARMCPU *cpu = ARM_CPU(obj);
1742 
1743     cpu->dtb_compatible = "marvell,xscale";
1744     set_feature(&cpu->env, ARM_FEATURE_V5);
1745     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1746     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1747     cpu->midr = 0x69054112;
1748     cpu->ctr = 0xd172172;
1749     cpu->reset_sctlr = 0x00000078;
1750 }
1751 
1752 static void pxa270b1_initfn(Object *obj)
1753 {
1754     ARMCPU *cpu = ARM_CPU(obj);
1755 
1756     cpu->dtb_compatible = "marvell,xscale";
1757     set_feature(&cpu->env, ARM_FEATURE_V5);
1758     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1759     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1760     cpu->midr = 0x69054113;
1761     cpu->ctr = 0xd172172;
1762     cpu->reset_sctlr = 0x00000078;
1763 }
1764 
1765 static void pxa270c0_initfn(Object *obj)
1766 {
1767     ARMCPU *cpu = ARM_CPU(obj);
1768 
1769     cpu->dtb_compatible = "marvell,xscale";
1770     set_feature(&cpu->env, ARM_FEATURE_V5);
1771     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1772     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1773     cpu->midr = 0x69054114;
1774     cpu->ctr = 0xd172172;
1775     cpu->reset_sctlr = 0x00000078;
1776 }
1777 
1778 static void pxa270c5_initfn(Object *obj)
1779 {
1780     ARMCPU *cpu = ARM_CPU(obj);
1781 
1782     cpu->dtb_compatible = "marvell,xscale";
1783     set_feature(&cpu->env, ARM_FEATURE_V5);
1784     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1785     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1786     cpu->midr = 0x69054117;
1787     cpu->ctr = 0xd172172;
1788     cpu->reset_sctlr = 0x00000078;
1789 }
1790 
1791 #ifndef TARGET_AARCH64
1792 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1793  * otherwise, a CPU with as many features enabled as our emulation supports.
1794  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1795  * this only needs to handle 32 bits.
1796  */
1797 static void arm_max_initfn(Object *obj)
1798 {
1799     ARMCPU *cpu = ARM_CPU(obj);
1800 
1801     if (kvm_enabled()) {
1802         kvm_arm_set_cpu_features_from_host(cpu);
1803     } else {
1804         cortex_a15_initfn(obj);
1805 #ifdef CONFIG_USER_ONLY
1806         /* We don't set these in system emulation mode for the moment,
1807          * since we don't correctly set the ID registers to advertise them,
1808          */
1809         set_feature(&cpu->env, ARM_FEATURE_V8);
1810         set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1811         set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1812         set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1813         set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1814         set_feature(&cpu->env, ARM_FEATURE_CRC);
1815         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1816         set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
1817         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1818 #endif
1819     }
1820 }
1821 #endif
1822 
1823 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1824 
1825 typedef struct ARMCPUInfo {
1826     const char *name;
1827     void (*initfn)(Object *obj);
1828     void (*class_init)(ObjectClass *oc, void *data);
1829 } ARMCPUInfo;
1830 
1831 static const ARMCPUInfo arm_cpus[] = {
1832 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1833     { .name = "arm926",      .initfn = arm926_initfn },
1834     { .name = "arm946",      .initfn = arm946_initfn },
1835     { .name = "arm1026",     .initfn = arm1026_initfn },
1836     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1837      * older core than plain "arm1136". In particular this does not
1838      * have the v6K features.
1839      */
1840     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1841     { .name = "arm1136",     .initfn = arm1136_initfn },
1842     { .name = "arm1176",     .initfn = arm1176_initfn },
1843     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1844     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1845                              .class_init = arm_v7m_class_init },
1846     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1847                              .class_init = arm_v7m_class_init },
1848     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1849                              .class_init = arm_v7m_class_init },
1850     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1851     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1852     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1853     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1854     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1855     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1856     { .name = "ti925t",      .initfn = ti925t_initfn },
1857     { .name = "sa1100",      .initfn = sa1100_initfn },
1858     { .name = "sa1110",      .initfn = sa1110_initfn },
1859     { .name = "pxa250",      .initfn = pxa250_initfn },
1860     { .name = "pxa255",      .initfn = pxa255_initfn },
1861     { .name = "pxa260",      .initfn = pxa260_initfn },
1862     { .name = "pxa261",      .initfn = pxa261_initfn },
1863     { .name = "pxa262",      .initfn = pxa262_initfn },
1864     /* "pxa270" is an alias for "pxa270-a0" */
1865     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1866     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1867     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1868     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1869     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1870     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1871     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1872 #ifndef TARGET_AARCH64
1873     { .name = "max",         .initfn = arm_max_initfn },
1874 #endif
1875 #ifdef CONFIG_USER_ONLY
1876     { .name = "any",         .initfn = arm_max_initfn },
1877 #endif
1878 #endif
1879     { .name = NULL }
1880 };
1881 
1882 static Property arm_cpu_properties[] = {
1883     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1884     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1885     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1886     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1887                         mp_affinity, ARM64_AFFINITY_INVALID),
1888     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1889     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1890     DEFINE_PROP_END_OF_LIST()
1891 };
1892 
1893 #ifdef CONFIG_USER_ONLY
1894 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1895                                     int rw, int mmu_idx)
1896 {
1897     ARMCPU *cpu = ARM_CPU(cs);
1898     CPUARMState *env = &cpu->env;
1899 
1900     env->exception.vaddress = address;
1901     if (rw == 2) {
1902         cs->exception_index = EXCP_PREFETCH_ABORT;
1903     } else {
1904         cs->exception_index = EXCP_DATA_ABORT;
1905     }
1906     return 1;
1907 }
1908 #endif
1909 
1910 static gchar *arm_gdb_arch_name(CPUState *cs)
1911 {
1912     ARMCPU *cpu = ARM_CPU(cs);
1913     CPUARMState *env = &cpu->env;
1914 
1915     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1916         return g_strdup("iwmmxt");
1917     }
1918     return g_strdup("arm");
1919 }
1920 
1921 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1922 {
1923     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1924     CPUClass *cc = CPU_CLASS(acc);
1925     DeviceClass *dc = DEVICE_CLASS(oc);
1926 
1927     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1928                                     &acc->parent_realize);
1929     dc->props = arm_cpu_properties;
1930 
1931     acc->parent_reset = cc->reset;
1932     cc->reset = arm_cpu_reset;
1933 
1934     cc->class_by_name = arm_cpu_class_by_name;
1935     cc->has_work = arm_cpu_has_work;
1936     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1937     cc->dump_state = arm_cpu_dump_state;
1938     cc->set_pc = arm_cpu_set_pc;
1939     cc->gdb_read_register = arm_cpu_gdb_read_register;
1940     cc->gdb_write_register = arm_cpu_gdb_write_register;
1941 #ifdef CONFIG_USER_ONLY
1942     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1943 #else
1944     cc->do_interrupt = arm_cpu_do_interrupt;
1945     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1946     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1947     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1948     cc->asidx_from_attrs = arm_asidx_from_attrs;
1949     cc->vmsd = &vmstate_arm_cpu;
1950     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1951     cc->write_elf64_note = arm_cpu_write_elf64_note;
1952     cc->write_elf32_note = arm_cpu_write_elf32_note;
1953 #endif
1954     cc->gdb_num_core_regs = 26;
1955     cc->gdb_core_xml_file = "arm-core.xml";
1956     cc->gdb_arch_name = arm_gdb_arch_name;
1957     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1958     cc->gdb_stop_before_watchpoint = true;
1959     cc->debug_excp_handler = arm_debug_excp_handler;
1960     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1961 #if !defined(CONFIG_USER_ONLY)
1962     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1963 #endif
1964 
1965     cc->disas_set_info = arm_disas_set_info;
1966 #ifdef CONFIG_TCG
1967     cc->tcg_initialize = arm_translate_init;
1968 #endif
1969 }
1970 
1971 #ifdef CONFIG_KVM
1972 static void arm_host_initfn(Object *obj)
1973 {
1974     ARMCPU *cpu = ARM_CPU(obj);
1975 
1976     kvm_arm_set_cpu_features_from_host(cpu);
1977 }
1978 
1979 static const TypeInfo host_arm_cpu_type_info = {
1980     .name = TYPE_ARM_HOST_CPU,
1981 #ifdef TARGET_AARCH64
1982     .parent = TYPE_AARCH64_CPU,
1983 #else
1984     .parent = TYPE_ARM_CPU,
1985 #endif
1986     .instance_init = arm_host_initfn,
1987 };
1988 
1989 #endif
1990 
1991 static void cpu_register(const ARMCPUInfo *info)
1992 {
1993     TypeInfo type_info = {
1994         .parent = TYPE_ARM_CPU,
1995         .instance_size = sizeof(ARMCPU),
1996         .instance_init = info->initfn,
1997         .class_size = sizeof(ARMCPUClass),
1998         .class_init = info->class_init,
1999     };
2000 
2001     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2002     type_register(&type_info);
2003     g_free((void *)type_info.name);
2004 }
2005 
2006 static const TypeInfo arm_cpu_type_info = {
2007     .name = TYPE_ARM_CPU,
2008     .parent = TYPE_CPU,
2009     .instance_size = sizeof(ARMCPU),
2010     .instance_init = arm_cpu_initfn,
2011     .instance_post_init = arm_cpu_post_init,
2012     .instance_finalize = arm_cpu_finalizefn,
2013     .abstract = true,
2014     .class_size = sizeof(ARMCPUClass),
2015     .class_init = arm_cpu_class_init,
2016 };
2017 
2018 static const TypeInfo idau_interface_type_info = {
2019     .name = TYPE_IDAU_INTERFACE,
2020     .parent = TYPE_INTERFACE,
2021     .class_size = sizeof(IDAUInterfaceClass),
2022 };
2023 
2024 static void arm_cpu_register_types(void)
2025 {
2026     const ARMCPUInfo *info = arm_cpus;
2027 
2028     type_register_static(&arm_cpu_type_info);
2029     type_register_static(&idau_interface_type_info);
2030 
2031     while (info->name) {
2032         cpu_register(info);
2033         info++;
2034     }
2035 
2036 #ifdef CONFIG_KVM
2037     type_register_static(&host_arm_cpu_type_info);
2038 #endif
2039 }
2040 
2041 type_init(arm_cpu_register_types)
2042