1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/error-report.h" 23 #include "qapi/error.h" 24 #include "cpu.h" 25 #include "internals.h" 26 #include "qemu-common.h" 27 #include "exec/exec-all.h" 28 #include "hw/qdev-properties.h" 29 #if !defined(CONFIG_USER_ONLY) 30 #include "hw/loader.h" 31 #endif 32 #include "hw/arm/arm.h" 33 #include "sysemu/sysemu.h" 34 #include "sysemu/kvm.h" 35 #include "kvm_arm.h" 36 37 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 38 { 39 ARMCPU *cpu = ARM_CPU(cs); 40 41 cpu->env.regs[15] = value; 42 } 43 44 static bool arm_cpu_has_work(CPUState *cs) 45 { 46 ARMCPU *cpu = ARM_CPU(cs); 47 48 return !cpu->powered_off 49 && cs->interrupt_request & 50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 52 | CPU_INTERRUPT_EXITTB); 53 } 54 55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 56 void *opaque) 57 { 58 /* We currently only support registering a single hook function */ 59 assert(!cpu->el_change_hook); 60 cpu->el_change_hook = hook; 61 cpu->el_change_hook_opaque = opaque; 62 } 63 64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 65 { 66 /* Reset a single ARMCPRegInfo register */ 67 ARMCPRegInfo *ri = value; 68 ARMCPU *cpu = opaque; 69 70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 71 return; 72 } 73 74 if (ri->resetfn) { 75 ri->resetfn(&cpu->env, ri); 76 return; 77 } 78 79 /* A zero offset is never possible as it would be regs[0] 80 * so we use it to indicate that reset is being handled elsewhere. 81 * This is basically only used for fields in non-core coprocessors 82 * (like the pxa2xx ones). 83 */ 84 if (!ri->fieldoffset) { 85 return; 86 } 87 88 if (cpreg_field_is_64bit(ri)) { 89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 90 } else { 91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 92 } 93 } 94 95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 96 { 97 /* Purely an assertion check: we've already done reset once, 98 * so now check that running the reset for the cpreg doesn't 99 * change its value. This traps bugs where two different cpregs 100 * both try to reset the same state field but to different values. 101 */ 102 ARMCPRegInfo *ri = value; 103 ARMCPU *cpu = opaque; 104 uint64_t oldvalue, newvalue; 105 106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 107 return; 108 } 109 110 oldvalue = read_raw_cp_reg(&cpu->env, ri); 111 cp_reg_reset(key, value, opaque); 112 newvalue = read_raw_cp_reg(&cpu->env, ri); 113 assert(oldvalue == newvalue); 114 } 115 116 /* CPUClass::reset() */ 117 static void arm_cpu_reset(CPUState *s) 118 { 119 ARMCPU *cpu = ARM_CPU(s); 120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 121 CPUARMState *env = &cpu->env; 122 123 acc->parent_reset(s); 124 125 memset(env, 0, offsetof(CPUARMState, features)); 126 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 127 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 128 129 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 130 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0; 131 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1; 132 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2; 133 134 cpu->powered_off = cpu->start_powered_off; 135 s->halted = cpu->start_powered_off; 136 137 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 138 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 139 } 140 141 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 142 /* 64 bit CPUs always start in 64 bit mode */ 143 env->aarch64 = 1; 144 #if defined(CONFIG_USER_ONLY) 145 env->pstate = PSTATE_MODE_EL0t; 146 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 147 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 148 /* and to the FP/Neon instructions */ 149 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 150 #else 151 /* Reset into the highest available EL */ 152 if (arm_feature(env, ARM_FEATURE_EL3)) { 153 env->pstate = PSTATE_MODE_EL3h; 154 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 155 env->pstate = PSTATE_MODE_EL2h; 156 } else { 157 env->pstate = PSTATE_MODE_EL1h; 158 } 159 env->pc = cpu->rvbar; 160 #endif 161 } else { 162 #if defined(CONFIG_USER_ONLY) 163 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 164 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 165 #endif 166 } 167 168 #if defined(CONFIG_USER_ONLY) 169 env->uncached_cpsr = ARM_CPU_MODE_USR; 170 /* For user mode we must enable access to coprocessors */ 171 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 172 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 173 env->cp15.c15_cpar = 3; 174 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 175 env->cp15.c15_cpar = 1; 176 } 177 #else 178 /* SVC mode with interrupts disabled. */ 179 env->uncached_cpsr = ARM_CPU_MODE_SVC; 180 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 181 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is 182 * clear at reset. Initial SP and PC are loaded from ROM. 183 */ 184 if (IS_M(env)) { 185 uint32_t initial_msp; /* Loaded from 0x0 */ 186 uint32_t initial_pc; /* Loaded from 0x4 */ 187 uint8_t *rom; 188 189 env->daif &= ~PSTATE_I; 190 rom = rom_ptr(0); 191 if (rom) { 192 /* Address zero is covered by ROM which hasn't yet been 193 * copied into physical memory. 194 */ 195 initial_msp = ldl_p(rom); 196 initial_pc = ldl_p(rom + 4); 197 } else { 198 /* Address zero not covered by a ROM blob, or the ROM blob 199 * is in non-modifiable memory and this is a second reset after 200 * it got copied into memory. In the latter case, rom_ptr 201 * will return a NULL pointer and we should use ldl_phys instead. 202 */ 203 initial_msp = ldl_phys(s->as, 0); 204 initial_pc = ldl_phys(s->as, 4); 205 } 206 207 env->regs[13] = initial_msp & 0xFFFFFFFC; 208 env->regs[15] = initial_pc & ~1; 209 env->thumb = initial_pc & 1; 210 } 211 212 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 213 * executing as AArch32 then check if highvecs are enabled and 214 * adjust the PC accordingly. 215 */ 216 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 217 env->regs[15] = 0xFFFF0000; 218 } 219 220 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 221 #endif 222 set_flush_to_zero(1, &env->vfp.standard_fp_status); 223 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 224 set_default_nan_mode(1, &env->vfp.standard_fp_status); 225 set_float_detect_tininess(float_tininess_before_rounding, 226 &env->vfp.fp_status); 227 set_float_detect_tininess(float_tininess_before_rounding, 228 &env->vfp.standard_fp_status); 229 tlb_flush(s, 1); 230 231 #ifndef CONFIG_USER_ONLY 232 if (kvm_enabled()) { 233 kvm_arm_reset_vcpu(cpu); 234 } 235 #endif 236 237 hw_breakpoint_update_all(cpu); 238 hw_watchpoint_update_all(cpu); 239 } 240 241 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 242 { 243 CPUClass *cc = CPU_GET_CLASS(cs); 244 CPUARMState *env = cs->env_ptr; 245 uint32_t cur_el = arm_current_el(env); 246 bool secure = arm_is_secure(env); 247 uint32_t target_el; 248 uint32_t excp_idx; 249 bool ret = false; 250 251 if (interrupt_request & CPU_INTERRUPT_FIQ) { 252 excp_idx = EXCP_FIQ; 253 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 254 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 255 cs->exception_index = excp_idx; 256 env->exception.target_el = target_el; 257 cc->do_interrupt(cs); 258 ret = true; 259 } 260 } 261 if (interrupt_request & CPU_INTERRUPT_HARD) { 262 excp_idx = EXCP_IRQ; 263 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 264 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 265 cs->exception_index = excp_idx; 266 env->exception.target_el = target_el; 267 cc->do_interrupt(cs); 268 ret = true; 269 } 270 } 271 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 272 excp_idx = EXCP_VIRQ; 273 target_el = 1; 274 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 275 cs->exception_index = excp_idx; 276 env->exception.target_el = target_el; 277 cc->do_interrupt(cs); 278 ret = true; 279 } 280 } 281 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 282 excp_idx = EXCP_VFIQ; 283 target_el = 1; 284 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 285 cs->exception_index = excp_idx; 286 env->exception.target_el = target_el; 287 cc->do_interrupt(cs); 288 ret = true; 289 } 290 } 291 292 return ret; 293 } 294 295 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 296 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 297 { 298 CPUClass *cc = CPU_GET_CLASS(cs); 299 ARMCPU *cpu = ARM_CPU(cs); 300 CPUARMState *env = &cpu->env; 301 bool ret = false; 302 303 304 if (interrupt_request & CPU_INTERRUPT_FIQ 305 && !(env->daif & PSTATE_F)) { 306 cs->exception_index = EXCP_FIQ; 307 cc->do_interrupt(cs); 308 ret = true; 309 } 310 /* ARMv7-M interrupt return works by loading a magic value 311 * into the PC. On real hardware the load causes the 312 * return to occur. The qemu implementation performs the 313 * jump normally, then does the exception return when the 314 * CPU tries to execute code at the magic address. 315 * This will cause the magic PC value to be pushed to 316 * the stack if an interrupt occurred at the wrong time. 317 * We avoid this by disabling interrupts when 318 * pc contains a magic address. 319 */ 320 if (interrupt_request & CPU_INTERRUPT_HARD 321 && !(env->daif & PSTATE_I) 322 && (env->regs[15] < 0xfffffff0)) { 323 cs->exception_index = EXCP_IRQ; 324 cc->do_interrupt(cs); 325 ret = true; 326 } 327 return ret; 328 } 329 #endif 330 331 #ifndef CONFIG_USER_ONLY 332 static void arm_cpu_set_irq(void *opaque, int irq, int level) 333 { 334 ARMCPU *cpu = opaque; 335 CPUARMState *env = &cpu->env; 336 CPUState *cs = CPU(cpu); 337 static const int mask[] = { 338 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 339 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 340 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 341 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 342 }; 343 344 switch (irq) { 345 case ARM_CPU_VIRQ: 346 case ARM_CPU_VFIQ: 347 assert(arm_feature(env, ARM_FEATURE_EL2)); 348 /* fall through */ 349 case ARM_CPU_IRQ: 350 case ARM_CPU_FIQ: 351 if (level) { 352 cpu_interrupt(cs, mask[irq]); 353 } else { 354 cpu_reset_interrupt(cs, mask[irq]); 355 } 356 break; 357 default: 358 g_assert_not_reached(); 359 } 360 } 361 362 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 363 { 364 #ifdef CONFIG_KVM 365 ARMCPU *cpu = opaque; 366 CPUState *cs = CPU(cpu); 367 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 368 369 switch (irq) { 370 case ARM_CPU_IRQ: 371 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 372 break; 373 case ARM_CPU_FIQ: 374 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 375 break; 376 default: 377 g_assert_not_reached(); 378 } 379 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 380 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 381 #endif 382 } 383 384 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 385 { 386 ARMCPU *cpu = ARM_CPU(cs); 387 CPUARMState *env = &cpu->env; 388 389 cpu_synchronize_state(cs); 390 return arm_cpu_data_is_big_endian(env); 391 } 392 393 #endif 394 395 static inline void set_feature(CPUARMState *env, int feature) 396 { 397 env->features |= 1ULL << feature; 398 } 399 400 static inline void unset_feature(CPUARMState *env, int feature) 401 { 402 env->features &= ~(1ULL << feature); 403 } 404 405 static int 406 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 407 { 408 return print_insn_arm(pc | 1, info); 409 } 410 411 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 412 { 413 ARMCPU *ac = ARM_CPU(cpu); 414 CPUARMState *env = &ac->env; 415 416 if (is_a64(env)) { 417 /* We might not be compiled with the A64 disassembler 418 * because it needs a C++ compiler. Leave print_insn 419 * unset in this case to use the caller default behaviour. 420 */ 421 #if defined(CONFIG_ARM_A64_DIS) 422 info->print_insn = print_insn_arm_a64; 423 #endif 424 } else if (env->thumb) { 425 info->print_insn = print_insn_thumb1; 426 } else { 427 info->print_insn = print_insn_arm; 428 } 429 if (bswap_code(arm_sctlr_b(env))) { 430 #ifdef TARGET_WORDS_BIGENDIAN 431 info->endian = BFD_ENDIAN_LITTLE; 432 #else 433 info->endian = BFD_ENDIAN_BIG; 434 #endif 435 } 436 } 437 438 static void arm_cpu_initfn(Object *obj) 439 { 440 CPUState *cs = CPU(obj); 441 ARMCPU *cpu = ARM_CPU(obj); 442 static bool inited; 443 444 cs->env_ptr = &cpu->env; 445 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 446 g_free, g_free); 447 448 #ifndef CONFIG_USER_ONLY 449 /* Our inbound IRQ and FIQ lines */ 450 if (kvm_enabled()) { 451 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 452 * the same interface as non-KVM CPUs. 453 */ 454 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 455 } else { 456 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 457 } 458 459 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 460 arm_gt_ptimer_cb, cpu); 461 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 462 arm_gt_vtimer_cb, cpu); 463 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 464 arm_gt_htimer_cb, cpu); 465 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 466 arm_gt_stimer_cb, cpu); 467 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 468 ARRAY_SIZE(cpu->gt_timer_outputs)); 469 #endif 470 471 /* DTB consumers generally don't in fact care what the 'compatible' 472 * string is, so always provide some string and trust that a hypothetical 473 * picky DTB consumer will also provide a helpful error message. 474 */ 475 cpu->dtb_compatible = "qemu,unknown"; 476 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 477 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 478 479 if (tcg_enabled()) { 480 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 481 if (!inited) { 482 inited = true; 483 arm_translate_init(); 484 } 485 } 486 } 487 488 static Property arm_cpu_reset_cbar_property = 489 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 490 491 static Property arm_cpu_reset_hivecs_property = 492 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 493 494 static Property arm_cpu_rvbar_property = 495 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 496 497 static Property arm_cpu_has_el3_property = 498 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 499 500 /* use property name "pmu" to match other archs and virt tools */ 501 static Property arm_cpu_has_pmu_property = 502 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 503 504 static Property arm_cpu_has_mpu_property = 505 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 506 507 static Property arm_cpu_pmsav7_dregion_property = 508 DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16); 509 510 static void arm_cpu_post_init(Object *obj) 511 { 512 ARMCPU *cpu = ARM_CPU(obj); 513 514 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 515 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 516 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 517 &error_abort); 518 } 519 520 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 521 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 522 &error_abort); 523 } 524 525 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 526 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 527 &error_abort); 528 } 529 530 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 531 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 532 * prevent "has_el3" from existing on CPUs which cannot support EL3. 533 */ 534 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 535 &error_abort); 536 537 #ifndef CONFIG_USER_ONLY 538 object_property_add_link(obj, "secure-memory", 539 TYPE_MEMORY_REGION, 540 (Object **)&cpu->secure_memory, 541 qdev_prop_allow_set_link_before_realize, 542 OBJ_PROP_LINK_UNREF_ON_RELEASE, 543 &error_abort); 544 #endif 545 } 546 547 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 548 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 549 &error_abort); 550 } 551 552 if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) { 553 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 554 &error_abort); 555 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 556 qdev_property_add_static(DEVICE(obj), 557 &arm_cpu_pmsav7_dregion_property, 558 &error_abort); 559 } 560 } 561 562 } 563 564 static void arm_cpu_finalizefn(Object *obj) 565 { 566 ARMCPU *cpu = ARM_CPU(obj); 567 g_hash_table_destroy(cpu->cp_regs); 568 } 569 570 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 571 { 572 CPUState *cs = CPU(dev); 573 ARMCPU *cpu = ARM_CPU(dev); 574 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 575 CPUARMState *env = &cpu->env; 576 int pagebits; 577 Error *local_err = NULL; 578 579 cpu_exec_realizefn(cs, &local_err); 580 if (local_err != NULL) { 581 error_propagate(errp, local_err); 582 return; 583 } 584 585 /* Some features automatically imply others: */ 586 if (arm_feature(env, ARM_FEATURE_V8)) { 587 set_feature(env, ARM_FEATURE_V7); 588 set_feature(env, ARM_FEATURE_ARM_DIV); 589 set_feature(env, ARM_FEATURE_LPAE); 590 } 591 if (arm_feature(env, ARM_FEATURE_V7)) { 592 set_feature(env, ARM_FEATURE_VAPA); 593 set_feature(env, ARM_FEATURE_THUMB2); 594 set_feature(env, ARM_FEATURE_MPIDR); 595 if (!arm_feature(env, ARM_FEATURE_M)) { 596 set_feature(env, ARM_FEATURE_V6K); 597 } else { 598 set_feature(env, ARM_FEATURE_V6); 599 } 600 601 /* Always define VBAR for V7 CPUs even if it doesn't exist in 602 * non-EL3 configs. This is needed by some legacy boards. 603 */ 604 set_feature(env, ARM_FEATURE_VBAR); 605 } 606 if (arm_feature(env, ARM_FEATURE_V6K)) { 607 set_feature(env, ARM_FEATURE_V6); 608 set_feature(env, ARM_FEATURE_MVFR); 609 } 610 if (arm_feature(env, ARM_FEATURE_V6)) { 611 set_feature(env, ARM_FEATURE_V5); 612 if (!arm_feature(env, ARM_FEATURE_M)) { 613 set_feature(env, ARM_FEATURE_AUXCR); 614 } 615 } 616 if (arm_feature(env, ARM_FEATURE_V5)) { 617 set_feature(env, ARM_FEATURE_V4T); 618 } 619 if (arm_feature(env, ARM_FEATURE_M)) { 620 set_feature(env, ARM_FEATURE_THUMB_DIV); 621 } 622 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { 623 set_feature(env, ARM_FEATURE_THUMB_DIV); 624 } 625 if (arm_feature(env, ARM_FEATURE_VFP4)) { 626 set_feature(env, ARM_FEATURE_VFP3); 627 set_feature(env, ARM_FEATURE_VFP_FP16); 628 } 629 if (arm_feature(env, ARM_FEATURE_VFP3)) { 630 set_feature(env, ARM_FEATURE_VFP); 631 } 632 if (arm_feature(env, ARM_FEATURE_LPAE)) { 633 set_feature(env, ARM_FEATURE_V7MP); 634 set_feature(env, ARM_FEATURE_PXN); 635 } 636 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 637 set_feature(env, ARM_FEATURE_CBAR); 638 } 639 if (arm_feature(env, ARM_FEATURE_THUMB2) && 640 !arm_feature(env, ARM_FEATURE_M)) { 641 set_feature(env, ARM_FEATURE_THUMB_DSP); 642 } 643 644 if (arm_feature(env, ARM_FEATURE_V7) && 645 !arm_feature(env, ARM_FEATURE_M) && 646 !arm_feature(env, ARM_FEATURE_MPU)) { 647 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 648 * can use 4K pages. 649 */ 650 pagebits = 12; 651 } else { 652 /* For CPUs which might have tiny 1K pages, or which have an 653 * MPU and might have small region sizes, stick with 1K pages. 654 */ 655 pagebits = 10; 656 } 657 if (!set_preferred_target_page_bits(pagebits)) { 658 /* This can only ever happen for hotplugging a CPU, or if 659 * the board code incorrectly creates a CPU which it has 660 * promised via minimum_page_size that it will not. 661 */ 662 error_setg(errp, "This CPU requires a smaller page size than the " 663 "system is using"); 664 return; 665 } 666 667 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 668 * We don't support setting cluster ID ([16..23]) (known as Aff2 669 * in later ARM ARM versions), or any of the higher affinity level fields, 670 * so these bits always RAZ. 671 */ 672 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 673 uint32_t Aff1 = cs->cpu_index / ARM_DEFAULT_CPUS_PER_CLUSTER; 674 uint32_t Aff0 = cs->cpu_index % ARM_DEFAULT_CPUS_PER_CLUSTER; 675 cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0; 676 } 677 678 if (cpu->reset_hivecs) { 679 cpu->reset_sctlr |= (1 << 13); 680 } 681 682 if (!cpu->has_el3) { 683 /* If the has_el3 CPU property is disabled then we need to disable the 684 * feature. 685 */ 686 unset_feature(env, ARM_FEATURE_EL3); 687 688 /* Disable the security extension feature bits in the processor feature 689 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 690 */ 691 cpu->id_pfr1 &= ~0xf0; 692 cpu->id_aa64pfr0 &= ~0xf000; 693 } 694 695 if (!cpu->has_pmu || !kvm_enabled()) { 696 cpu->has_pmu = false; 697 unset_feature(env, ARM_FEATURE_PMU); 698 } 699 700 if (!arm_feature(env, ARM_FEATURE_EL2)) { 701 /* Disable the hypervisor feature bits in the processor feature 702 * registers if we don't have EL2. These are id_pfr1[15:12] and 703 * id_aa64pfr0_el1[11:8]. 704 */ 705 cpu->id_aa64pfr0 &= ~0xf00; 706 cpu->id_pfr1 &= ~0xf000; 707 } 708 709 if (!cpu->has_mpu) { 710 unset_feature(env, ARM_FEATURE_MPU); 711 } 712 713 if (arm_feature(env, ARM_FEATURE_MPU) && 714 arm_feature(env, ARM_FEATURE_V7)) { 715 uint32_t nr = cpu->pmsav7_dregion; 716 717 if (nr > 0xff) { 718 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 719 return; 720 } 721 722 if (nr) { 723 env->pmsav7.drbar = g_new0(uint32_t, nr); 724 env->pmsav7.drsr = g_new0(uint32_t, nr); 725 env->pmsav7.dracr = g_new0(uint32_t, nr); 726 } 727 } 728 729 if (arm_feature(env, ARM_FEATURE_EL3)) { 730 set_feature(env, ARM_FEATURE_VBAR); 731 } 732 733 register_cp_regs_for_features(cpu); 734 arm_cpu_register_gdb_regs_for_features(cpu); 735 736 init_cpreg_list(cpu); 737 738 #ifndef CONFIG_USER_ONLY 739 if (cpu->has_el3) { 740 cs->num_ases = 2; 741 } else { 742 cs->num_ases = 1; 743 } 744 745 if (cpu->has_el3) { 746 AddressSpace *as; 747 748 if (!cpu->secure_memory) { 749 cpu->secure_memory = cs->memory; 750 } 751 as = address_space_init_shareable(cpu->secure_memory, 752 "cpu-secure-memory"); 753 cpu_address_space_init(cs, as, ARMASIdx_S); 754 } 755 cpu_address_space_init(cs, 756 address_space_init_shareable(cs->memory, 757 "cpu-memory"), 758 ARMASIdx_NS); 759 #endif 760 761 qemu_init_vcpu(cs); 762 cpu_reset(cs); 763 764 acc->parent_realize(dev, errp); 765 } 766 767 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 768 { 769 ObjectClass *oc; 770 char *typename; 771 char **cpuname; 772 773 if (!cpu_model) { 774 return NULL; 775 } 776 777 cpuname = g_strsplit(cpu_model, ",", 1); 778 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]); 779 oc = object_class_by_name(typename); 780 g_strfreev(cpuname); 781 g_free(typename); 782 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 783 object_class_is_abstract(oc)) { 784 return NULL; 785 } 786 return oc; 787 } 788 789 /* CPU models. These are not needed for the AArch64 linux-user build. */ 790 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 791 792 static void arm926_initfn(Object *obj) 793 { 794 ARMCPU *cpu = ARM_CPU(obj); 795 796 cpu->dtb_compatible = "arm,arm926"; 797 set_feature(&cpu->env, ARM_FEATURE_V5); 798 set_feature(&cpu->env, ARM_FEATURE_VFP); 799 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 800 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 801 cpu->midr = 0x41069265; 802 cpu->reset_fpsid = 0x41011090; 803 cpu->ctr = 0x1dd20d2; 804 cpu->reset_sctlr = 0x00090078; 805 } 806 807 static void arm946_initfn(Object *obj) 808 { 809 ARMCPU *cpu = ARM_CPU(obj); 810 811 cpu->dtb_compatible = "arm,arm946"; 812 set_feature(&cpu->env, ARM_FEATURE_V5); 813 set_feature(&cpu->env, ARM_FEATURE_MPU); 814 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 815 cpu->midr = 0x41059461; 816 cpu->ctr = 0x0f004006; 817 cpu->reset_sctlr = 0x00000078; 818 } 819 820 static void arm1026_initfn(Object *obj) 821 { 822 ARMCPU *cpu = ARM_CPU(obj); 823 824 cpu->dtb_compatible = "arm,arm1026"; 825 set_feature(&cpu->env, ARM_FEATURE_V5); 826 set_feature(&cpu->env, ARM_FEATURE_VFP); 827 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 828 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 829 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 830 cpu->midr = 0x4106a262; 831 cpu->reset_fpsid = 0x410110a0; 832 cpu->ctr = 0x1dd20d2; 833 cpu->reset_sctlr = 0x00090078; 834 cpu->reset_auxcr = 1; 835 { 836 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 837 ARMCPRegInfo ifar = { 838 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 839 .access = PL1_RW, 840 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 841 .resetvalue = 0 842 }; 843 define_one_arm_cp_reg(cpu, &ifar); 844 } 845 } 846 847 static void arm1136_r2_initfn(Object *obj) 848 { 849 ARMCPU *cpu = ARM_CPU(obj); 850 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 851 * older core than plain "arm1136". In particular this does not 852 * have the v6K features. 853 * These ID register values are correct for 1136 but may be wrong 854 * for 1136_r2 (in particular r0p2 does not actually implement most 855 * of the ID registers). 856 */ 857 858 cpu->dtb_compatible = "arm,arm1136"; 859 set_feature(&cpu->env, ARM_FEATURE_V6); 860 set_feature(&cpu->env, ARM_FEATURE_VFP); 861 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 862 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 863 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 864 cpu->midr = 0x4107b362; 865 cpu->reset_fpsid = 0x410120b4; 866 cpu->mvfr0 = 0x11111111; 867 cpu->mvfr1 = 0x00000000; 868 cpu->ctr = 0x1dd20d2; 869 cpu->reset_sctlr = 0x00050078; 870 cpu->id_pfr0 = 0x111; 871 cpu->id_pfr1 = 0x1; 872 cpu->id_dfr0 = 0x2; 873 cpu->id_afr0 = 0x3; 874 cpu->id_mmfr0 = 0x01130003; 875 cpu->id_mmfr1 = 0x10030302; 876 cpu->id_mmfr2 = 0x01222110; 877 cpu->id_isar0 = 0x00140011; 878 cpu->id_isar1 = 0x12002111; 879 cpu->id_isar2 = 0x11231111; 880 cpu->id_isar3 = 0x01102131; 881 cpu->id_isar4 = 0x141; 882 cpu->reset_auxcr = 7; 883 } 884 885 static void arm1136_initfn(Object *obj) 886 { 887 ARMCPU *cpu = ARM_CPU(obj); 888 889 cpu->dtb_compatible = "arm,arm1136"; 890 set_feature(&cpu->env, ARM_FEATURE_V6K); 891 set_feature(&cpu->env, ARM_FEATURE_V6); 892 set_feature(&cpu->env, ARM_FEATURE_VFP); 893 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 894 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 895 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 896 cpu->midr = 0x4117b363; 897 cpu->reset_fpsid = 0x410120b4; 898 cpu->mvfr0 = 0x11111111; 899 cpu->mvfr1 = 0x00000000; 900 cpu->ctr = 0x1dd20d2; 901 cpu->reset_sctlr = 0x00050078; 902 cpu->id_pfr0 = 0x111; 903 cpu->id_pfr1 = 0x1; 904 cpu->id_dfr0 = 0x2; 905 cpu->id_afr0 = 0x3; 906 cpu->id_mmfr0 = 0x01130003; 907 cpu->id_mmfr1 = 0x10030302; 908 cpu->id_mmfr2 = 0x01222110; 909 cpu->id_isar0 = 0x00140011; 910 cpu->id_isar1 = 0x12002111; 911 cpu->id_isar2 = 0x11231111; 912 cpu->id_isar3 = 0x01102131; 913 cpu->id_isar4 = 0x141; 914 cpu->reset_auxcr = 7; 915 } 916 917 static void arm1176_initfn(Object *obj) 918 { 919 ARMCPU *cpu = ARM_CPU(obj); 920 921 cpu->dtb_compatible = "arm,arm1176"; 922 set_feature(&cpu->env, ARM_FEATURE_V6K); 923 set_feature(&cpu->env, ARM_FEATURE_VFP); 924 set_feature(&cpu->env, ARM_FEATURE_VAPA); 925 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 926 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 927 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 928 set_feature(&cpu->env, ARM_FEATURE_EL3); 929 cpu->midr = 0x410fb767; 930 cpu->reset_fpsid = 0x410120b5; 931 cpu->mvfr0 = 0x11111111; 932 cpu->mvfr1 = 0x00000000; 933 cpu->ctr = 0x1dd20d2; 934 cpu->reset_sctlr = 0x00050078; 935 cpu->id_pfr0 = 0x111; 936 cpu->id_pfr1 = 0x11; 937 cpu->id_dfr0 = 0x33; 938 cpu->id_afr0 = 0; 939 cpu->id_mmfr0 = 0x01130003; 940 cpu->id_mmfr1 = 0x10030302; 941 cpu->id_mmfr2 = 0x01222100; 942 cpu->id_isar0 = 0x0140011; 943 cpu->id_isar1 = 0x12002111; 944 cpu->id_isar2 = 0x11231121; 945 cpu->id_isar3 = 0x01102131; 946 cpu->id_isar4 = 0x01141; 947 cpu->reset_auxcr = 7; 948 } 949 950 static void arm11mpcore_initfn(Object *obj) 951 { 952 ARMCPU *cpu = ARM_CPU(obj); 953 954 cpu->dtb_compatible = "arm,arm11mpcore"; 955 set_feature(&cpu->env, ARM_FEATURE_V6K); 956 set_feature(&cpu->env, ARM_FEATURE_VFP); 957 set_feature(&cpu->env, ARM_FEATURE_VAPA); 958 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 959 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 960 cpu->midr = 0x410fb022; 961 cpu->reset_fpsid = 0x410120b4; 962 cpu->mvfr0 = 0x11111111; 963 cpu->mvfr1 = 0x00000000; 964 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 965 cpu->id_pfr0 = 0x111; 966 cpu->id_pfr1 = 0x1; 967 cpu->id_dfr0 = 0; 968 cpu->id_afr0 = 0x2; 969 cpu->id_mmfr0 = 0x01100103; 970 cpu->id_mmfr1 = 0x10020302; 971 cpu->id_mmfr2 = 0x01222000; 972 cpu->id_isar0 = 0x00100011; 973 cpu->id_isar1 = 0x12002111; 974 cpu->id_isar2 = 0x11221011; 975 cpu->id_isar3 = 0x01102131; 976 cpu->id_isar4 = 0x141; 977 cpu->reset_auxcr = 1; 978 } 979 980 static void cortex_m3_initfn(Object *obj) 981 { 982 ARMCPU *cpu = ARM_CPU(obj); 983 set_feature(&cpu->env, ARM_FEATURE_V7); 984 set_feature(&cpu->env, ARM_FEATURE_M); 985 cpu->midr = 0x410fc231; 986 } 987 988 static void cortex_m4_initfn(Object *obj) 989 { 990 ARMCPU *cpu = ARM_CPU(obj); 991 992 set_feature(&cpu->env, ARM_FEATURE_V7); 993 set_feature(&cpu->env, ARM_FEATURE_M); 994 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 995 cpu->midr = 0x410fc240; /* r0p0 */ 996 } 997 static void arm_v7m_class_init(ObjectClass *oc, void *data) 998 { 999 CPUClass *cc = CPU_CLASS(oc); 1000 1001 #ifndef CONFIG_USER_ONLY 1002 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1003 #endif 1004 1005 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1006 } 1007 1008 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1009 /* Dummy the TCM region regs for the moment */ 1010 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1011 .access = PL1_RW, .type = ARM_CP_CONST }, 1012 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1013 .access = PL1_RW, .type = ARM_CP_CONST }, 1014 REGINFO_SENTINEL 1015 }; 1016 1017 static void cortex_r5_initfn(Object *obj) 1018 { 1019 ARMCPU *cpu = ARM_CPU(obj); 1020 1021 set_feature(&cpu->env, ARM_FEATURE_V7); 1022 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV); 1023 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1024 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1025 set_feature(&cpu->env, ARM_FEATURE_MPU); 1026 cpu->midr = 0x411fc153; /* r1p3 */ 1027 cpu->id_pfr0 = 0x0131; 1028 cpu->id_pfr1 = 0x001; 1029 cpu->id_dfr0 = 0x010400; 1030 cpu->id_afr0 = 0x0; 1031 cpu->id_mmfr0 = 0x0210030; 1032 cpu->id_mmfr1 = 0x00000000; 1033 cpu->id_mmfr2 = 0x01200000; 1034 cpu->id_mmfr3 = 0x0211; 1035 cpu->id_isar0 = 0x2101111; 1036 cpu->id_isar1 = 0x13112111; 1037 cpu->id_isar2 = 0x21232141; 1038 cpu->id_isar3 = 0x01112131; 1039 cpu->id_isar4 = 0x0010142; 1040 cpu->id_isar5 = 0x0; 1041 cpu->mp_is_up = true; 1042 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 1043 } 1044 1045 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1046 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1047 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1048 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1049 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1050 REGINFO_SENTINEL 1051 }; 1052 1053 static void cortex_a8_initfn(Object *obj) 1054 { 1055 ARMCPU *cpu = ARM_CPU(obj); 1056 1057 cpu->dtb_compatible = "arm,cortex-a8"; 1058 set_feature(&cpu->env, ARM_FEATURE_V7); 1059 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1060 set_feature(&cpu->env, ARM_FEATURE_NEON); 1061 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1062 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1063 set_feature(&cpu->env, ARM_FEATURE_EL3); 1064 cpu->midr = 0x410fc080; 1065 cpu->reset_fpsid = 0x410330c0; 1066 cpu->mvfr0 = 0x11110222; 1067 cpu->mvfr1 = 0x00011111; 1068 cpu->ctr = 0x82048004; 1069 cpu->reset_sctlr = 0x00c50078; 1070 cpu->id_pfr0 = 0x1031; 1071 cpu->id_pfr1 = 0x11; 1072 cpu->id_dfr0 = 0x400; 1073 cpu->id_afr0 = 0; 1074 cpu->id_mmfr0 = 0x31100003; 1075 cpu->id_mmfr1 = 0x20000000; 1076 cpu->id_mmfr2 = 0x01202000; 1077 cpu->id_mmfr3 = 0x11; 1078 cpu->id_isar0 = 0x00101111; 1079 cpu->id_isar1 = 0x12112111; 1080 cpu->id_isar2 = 0x21232031; 1081 cpu->id_isar3 = 0x11112131; 1082 cpu->id_isar4 = 0x00111142; 1083 cpu->dbgdidr = 0x15141000; 1084 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1085 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1086 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1087 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1088 cpu->reset_auxcr = 2; 1089 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1090 } 1091 1092 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1093 /* power_control should be set to maximum latency. Again, 1094 * default to 0 and set by private hook 1095 */ 1096 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1097 .access = PL1_RW, .resetvalue = 0, 1098 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1099 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1100 .access = PL1_RW, .resetvalue = 0, 1101 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1102 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1103 .access = PL1_RW, .resetvalue = 0, 1104 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1105 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1106 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1107 /* TLB lockdown control */ 1108 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1109 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1110 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1111 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1112 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1113 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1114 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1115 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1116 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1117 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1118 REGINFO_SENTINEL 1119 }; 1120 1121 static void cortex_a9_initfn(Object *obj) 1122 { 1123 ARMCPU *cpu = ARM_CPU(obj); 1124 1125 cpu->dtb_compatible = "arm,cortex-a9"; 1126 set_feature(&cpu->env, ARM_FEATURE_V7); 1127 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1128 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16); 1129 set_feature(&cpu->env, ARM_FEATURE_NEON); 1130 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1131 set_feature(&cpu->env, ARM_FEATURE_EL3); 1132 /* Note that A9 supports the MP extensions even for 1133 * A9UP and single-core A9MP (which are both different 1134 * and valid configurations; we don't model A9UP). 1135 */ 1136 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1137 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1138 cpu->midr = 0x410fc090; 1139 cpu->reset_fpsid = 0x41033090; 1140 cpu->mvfr0 = 0x11110222; 1141 cpu->mvfr1 = 0x01111111; 1142 cpu->ctr = 0x80038003; 1143 cpu->reset_sctlr = 0x00c50078; 1144 cpu->id_pfr0 = 0x1031; 1145 cpu->id_pfr1 = 0x11; 1146 cpu->id_dfr0 = 0x000; 1147 cpu->id_afr0 = 0; 1148 cpu->id_mmfr0 = 0x00100103; 1149 cpu->id_mmfr1 = 0x20000000; 1150 cpu->id_mmfr2 = 0x01230000; 1151 cpu->id_mmfr3 = 0x00002111; 1152 cpu->id_isar0 = 0x00101111; 1153 cpu->id_isar1 = 0x13112111; 1154 cpu->id_isar2 = 0x21232041; 1155 cpu->id_isar3 = 0x11112131; 1156 cpu->id_isar4 = 0x00111142; 1157 cpu->dbgdidr = 0x35141000; 1158 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1159 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1160 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1161 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1162 } 1163 1164 #ifndef CONFIG_USER_ONLY 1165 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1166 { 1167 /* Linux wants the number of processors from here. 1168 * Might as well set the interrupt-controller bit too. 1169 */ 1170 return ((smp_cpus - 1) << 24) | (1 << 23); 1171 } 1172 #endif 1173 1174 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 1175 #ifndef CONFIG_USER_ONLY 1176 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1177 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 1178 .writefn = arm_cp_write_ignore, }, 1179 #endif 1180 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 1181 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1182 REGINFO_SENTINEL 1183 }; 1184 1185 static void cortex_a7_initfn(Object *obj) 1186 { 1187 ARMCPU *cpu = ARM_CPU(obj); 1188 1189 cpu->dtb_compatible = "arm,cortex-a7"; 1190 set_feature(&cpu->env, ARM_FEATURE_V7); 1191 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1192 set_feature(&cpu->env, ARM_FEATURE_NEON); 1193 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1194 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1195 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1196 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1197 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1198 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1199 set_feature(&cpu->env, ARM_FEATURE_EL3); 1200 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 1201 cpu->midr = 0x410fc075; 1202 cpu->reset_fpsid = 0x41023075; 1203 cpu->mvfr0 = 0x10110222; 1204 cpu->mvfr1 = 0x11111111; 1205 cpu->ctr = 0x84448003; 1206 cpu->reset_sctlr = 0x00c50078; 1207 cpu->id_pfr0 = 0x00001131; 1208 cpu->id_pfr1 = 0x00011011; 1209 cpu->id_dfr0 = 0x02010555; 1210 cpu->pmceid0 = 0x00000000; 1211 cpu->pmceid1 = 0x00000000; 1212 cpu->id_afr0 = 0x00000000; 1213 cpu->id_mmfr0 = 0x10101105; 1214 cpu->id_mmfr1 = 0x40000000; 1215 cpu->id_mmfr2 = 0x01240000; 1216 cpu->id_mmfr3 = 0x02102211; 1217 cpu->id_isar0 = 0x01101110; 1218 cpu->id_isar1 = 0x13112111; 1219 cpu->id_isar2 = 0x21232041; 1220 cpu->id_isar3 = 0x11112131; 1221 cpu->id_isar4 = 0x10011142; 1222 cpu->dbgdidr = 0x3515f005; 1223 cpu->clidr = 0x0a200023; 1224 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1225 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1226 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1227 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 1228 } 1229 1230 static void cortex_a15_initfn(Object *obj) 1231 { 1232 ARMCPU *cpu = ARM_CPU(obj); 1233 1234 cpu->dtb_compatible = "arm,cortex-a15"; 1235 set_feature(&cpu->env, ARM_FEATURE_V7); 1236 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1237 set_feature(&cpu->env, ARM_FEATURE_NEON); 1238 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1239 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1240 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1241 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1242 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1243 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1244 set_feature(&cpu->env, ARM_FEATURE_EL3); 1245 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 1246 cpu->midr = 0x412fc0f1; 1247 cpu->reset_fpsid = 0x410430f0; 1248 cpu->mvfr0 = 0x10110222; 1249 cpu->mvfr1 = 0x11111111; 1250 cpu->ctr = 0x8444c004; 1251 cpu->reset_sctlr = 0x00c50078; 1252 cpu->id_pfr0 = 0x00001131; 1253 cpu->id_pfr1 = 0x00011011; 1254 cpu->id_dfr0 = 0x02010555; 1255 cpu->pmceid0 = 0x0000000; 1256 cpu->pmceid1 = 0x00000000; 1257 cpu->id_afr0 = 0x00000000; 1258 cpu->id_mmfr0 = 0x10201105; 1259 cpu->id_mmfr1 = 0x20000000; 1260 cpu->id_mmfr2 = 0x01240000; 1261 cpu->id_mmfr3 = 0x02102211; 1262 cpu->id_isar0 = 0x02101110; 1263 cpu->id_isar1 = 0x13112111; 1264 cpu->id_isar2 = 0x21232041; 1265 cpu->id_isar3 = 0x11112131; 1266 cpu->id_isar4 = 0x10011142; 1267 cpu->dbgdidr = 0x3515f021; 1268 cpu->clidr = 0x0a200023; 1269 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1270 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1271 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1272 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 1273 } 1274 1275 static void ti925t_initfn(Object *obj) 1276 { 1277 ARMCPU *cpu = ARM_CPU(obj); 1278 set_feature(&cpu->env, ARM_FEATURE_V4T); 1279 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 1280 cpu->midr = ARM_CPUID_TI925T; 1281 cpu->ctr = 0x5109149; 1282 cpu->reset_sctlr = 0x00000070; 1283 } 1284 1285 static void sa1100_initfn(Object *obj) 1286 { 1287 ARMCPU *cpu = ARM_CPU(obj); 1288 1289 cpu->dtb_compatible = "intel,sa1100"; 1290 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1291 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1292 cpu->midr = 0x4401A11B; 1293 cpu->reset_sctlr = 0x00000070; 1294 } 1295 1296 static void sa1110_initfn(Object *obj) 1297 { 1298 ARMCPU *cpu = ARM_CPU(obj); 1299 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1300 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1301 cpu->midr = 0x6901B119; 1302 cpu->reset_sctlr = 0x00000070; 1303 } 1304 1305 static void pxa250_initfn(Object *obj) 1306 { 1307 ARMCPU *cpu = ARM_CPU(obj); 1308 1309 cpu->dtb_compatible = "marvell,xscale"; 1310 set_feature(&cpu->env, ARM_FEATURE_V5); 1311 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1312 cpu->midr = 0x69052100; 1313 cpu->ctr = 0xd172172; 1314 cpu->reset_sctlr = 0x00000078; 1315 } 1316 1317 static void pxa255_initfn(Object *obj) 1318 { 1319 ARMCPU *cpu = ARM_CPU(obj); 1320 1321 cpu->dtb_compatible = "marvell,xscale"; 1322 set_feature(&cpu->env, ARM_FEATURE_V5); 1323 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1324 cpu->midr = 0x69052d00; 1325 cpu->ctr = 0xd172172; 1326 cpu->reset_sctlr = 0x00000078; 1327 } 1328 1329 static void pxa260_initfn(Object *obj) 1330 { 1331 ARMCPU *cpu = ARM_CPU(obj); 1332 1333 cpu->dtb_compatible = "marvell,xscale"; 1334 set_feature(&cpu->env, ARM_FEATURE_V5); 1335 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1336 cpu->midr = 0x69052903; 1337 cpu->ctr = 0xd172172; 1338 cpu->reset_sctlr = 0x00000078; 1339 } 1340 1341 static void pxa261_initfn(Object *obj) 1342 { 1343 ARMCPU *cpu = ARM_CPU(obj); 1344 1345 cpu->dtb_compatible = "marvell,xscale"; 1346 set_feature(&cpu->env, ARM_FEATURE_V5); 1347 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1348 cpu->midr = 0x69052d05; 1349 cpu->ctr = 0xd172172; 1350 cpu->reset_sctlr = 0x00000078; 1351 } 1352 1353 static void pxa262_initfn(Object *obj) 1354 { 1355 ARMCPU *cpu = ARM_CPU(obj); 1356 1357 cpu->dtb_compatible = "marvell,xscale"; 1358 set_feature(&cpu->env, ARM_FEATURE_V5); 1359 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1360 cpu->midr = 0x69052d06; 1361 cpu->ctr = 0xd172172; 1362 cpu->reset_sctlr = 0x00000078; 1363 } 1364 1365 static void pxa270a0_initfn(Object *obj) 1366 { 1367 ARMCPU *cpu = ARM_CPU(obj); 1368 1369 cpu->dtb_compatible = "marvell,xscale"; 1370 set_feature(&cpu->env, ARM_FEATURE_V5); 1371 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1372 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1373 cpu->midr = 0x69054110; 1374 cpu->ctr = 0xd172172; 1375 cpu->reset_sctlr = 0x00000078; 1376 } 1377 1378 static void pxa270a1_initfn(Object *obj) 1379 { 1380 ARMCPU *cpu = ARM_CPU(obj); 1381 1382 cpu->dtb_compatible = "marvell,xscale"; 1383 set_feature(&cpu->env, ARM_FEATURE_V5); 1384 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1385 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1386 cpu->midr = 0x69054111; 1387 cpu->ctr = 0xd172172; 1388 cpu->reset_sctlr = 0x00000078; 1389 } 1390 1391 static void pxa270b0_initfn(Object *obj) 1392 { 1393 ARMCPU *cpu = ARM_CPU(obj); 1394 1395 cpu->dtb_compatible = "marvell,xscale"; 1396 set_feature(&cpu->env, ARM_FEATURE_V5); 1397 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1398 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1399 cpu->midr = 0x69054112; 1400 cpu->ctr = 0xd172172; 1401 cpu->reset_sctlr = 0x00000078; 1402 } 1403 1404 static void pxa270b1_initfn(Object *obj) 1405 { 1406 ARMCPU *cpu = ARM_CPU(obj); 1407 1408 cpu->dtb_compatible = "marvell,xscale"; 1409 set_feature(&cpu->env, ARM_FEATURE_V5); 1410 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1411 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1412 cpu->midr = 0x69054113; 1413 cpu->ctr = 0xd172172; 1414 cpu->reset_sctlr = 0x00000078; 1415 } 1416 1417 static void pxa270c0_initfn(Object *obj) 1418 { 1419 ARMCPU *cpu = ARM_CPU(obj); 1420 1421 cpu->dtb_compatible = "marvell,xscale"; 1422 set_feature(&cpu->env, ARM_FEATURE_V5); 1423 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1424 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1425 cpu->midr = 0x69054114; 1426 cpu->ctr = 0xd172172; 1427 cpu->reset_sctlr = 0x00000078; 1428 } 1429 1430 static void pxa270c5_initfn(Object *obj) 1431 { 1432 ARMCPU *cpu = ARM_CPU(obj); 1433 1434 cpu->dtb_compatible = "marvell,xscale"; 1435 set_feature(&cpu->env, ARM_FEATURE_V5); 1436 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1437 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1438 cpu->midr = 0x69054117; 1439 cpu->ctr = 0xd172172; 1440 cpu->reset_sctlr = 0x00000078; 1441 } 1442 1443 #ifdef CONFIG_USER_ONLY 1444 static void arm_any_initfn(Object *obj) 1445 { 1446 ARMCPU *cpu = ARM_CPU(obj); 1447 set_feature(&cpu->env, ARM_FEATURE_V8); 1448 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1449 set_feature(&cpu->env, ARM_FEATURE_NEON); 1450 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1451 set_feature(&cpu->env, ARM_FEATURE_V8_AES); 1452 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); 1453 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); 1454 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); 1455 set_feature(&cpu->env, ARM_FEATURE_CRC); 1456 cpu->midr = 0xffffffff; 1457 } 1458 #endif 1459 1460 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 1461 1462 typedef struct ARMCPUInfo { 1463 const char *name; 1464 void (*initfn)(Object *obj); 1465 void (*class_init)(ObjectClass *oc, void *data); 1466 } ARMCPUInfo; 1467 1468 static const ARMCPUInfo arm_cpus[] = { 1469 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1470 { .name = "arm926", .initfn = arm926_initfn }, 1471 { .name = "arm946", .initfn = arm946_initfn }, 1472 { .name = "arm1026", .initfn = arm1026_initfn }, 1473 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 1474 * older core than plain "arm1136". In particular this does not 1475 * have the v6K features. 1476 */ 1477 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 1478 { .name = "arm1136", .initfn = arm1136_initfn }, 1479 { .name = "arm1176", .initfn = arm1176_initfn }, 1480 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 1481 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 1482 .class_init = arm_v7m_class_init }, 1483 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 1484 .class_init = arm_v7m_class_init }, 1485 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 1486 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 1487 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 1488 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 1489 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 1490 { .name = "ti925t", .initfn = ti925t_initfn }, 1491 { .name = "sa1100", .initfn = sa1100_initfn }, 1492 { .name = "sa1110", .initfn = sa1110_initfn }, 1493 { .name = "pxa250", .initfn = pxa250_initfn }, 1494 { .name = "pxa255", .initfn = pxa255_initfn }, 1495 { .name = "pxa260", .initfn = pxa260_initfn }, 1496 { .name = "pxa261", .initfn = pxa261_initfn }, 1497 { .name = "pxa262", .initfn = pxa262_initfn }, 1498 /* "pxa270" is an alias for "pxa270-a0" */ 1499 { .name = "pxa270", .initfn = pxa270a0_initfn }, 1500 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 1501 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 1502 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 1503 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 1504 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 1505 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 1506 #ifdef CONFIG_USER_ONLY 1507 { .name = "any", .initfn = arm_any_initfn }, 1508 #endif 1509 #endif 1510 { .name = NULL } 1511 }; 1512 1513 static Property arm_cpu_properties[] = { 1514 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 1515 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 1516 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 1517 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 1518 mp_affinity, ARM64_AFFINITY_INVALID), 1519 DEFINE_PROP_END_OF_LIST() 1520 }; 1521 1522 #ifdef CONFIG_USER_ONLY 1523 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, 1524 int mmu_idx) 1525 { 1526 ARMCPU *cpu = ARM_CPU(cs); 1527 CPUARMState *env = &cpu->env; 1528 1529 env->exception.vaddress = address; 1530 if (rw == 2) { 1531 cs->exception_index = EXCP_PREFETCH_ABORT; 1532 } else { 1533 cs->exception_index = EXCP_DATA_ABORT; 1534 } 1535 return 1; 1536 } 1537 #endif 1538 1539 static gchar *arm_gdb_arch_name(CPUState *cs) 1540 { 1541 ARMCPU *cpu = ARM_CPU(cs); 1542 CPUARMState *env = &cpu->env; 1543 1544 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 1545 return g_strdup("iwmmxt"); 1546 } 1547 return g_strdup("arm"); 1548 } 1549 1550 static void arm_cpu_class_init(ObjectClass *oc, void *data) 1551 { 1552 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1553 CPUClass *cc = CPU_CLASS(acc); 1554 DeviceClass *dc = DEVICE_CLASS(oc); 1555 1556 acc->parent_realize = dc->realize; 1557 dc->realize = arm_cpu_realizefn; 1558 dc->props = arm_cpu_properties; 1559 1560 acc->parent_reset = cc->reset; 1561 cc->reset = arm_cpu_reset; 1562 1563 cc->class_by_name = arm_cpu_class_by_name; 1564 cc->has_work = arm_cpu_has_work; 1565 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 1566 cc->dump_state = arm_cpu_dump_state; 1567 cc->set_pc = arm_cpu_set_pc; 1568 cc->gdb_read_register = arm_cpu_gdb_read_register; 1569 cc->gdb_write_register = arm_cpu_gdb_write_register; 1570 #ifdef CONFIG_USER_ONLY 1571 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; 1572 #else 1573 cc->do_interrupt = arm_cpu_do_interrupt; 1574 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 1575 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 1576 cc->asidx_from_attrs = arm_asidx_from_attrs; 1577 cc->vmsd = &vmstate_arm_cpu; 1578 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 1579 cc->write_elf64_note = arm_cpu_write_elf64_note; 1580 cc->write_elf32_note = arm_cpu_write_elf32_note; 1581 #endif 1582 cc->gdb_num_core_regs = 26; 1583 cc->gdb_core_xml_file = "arm-core.xml"; 1584 cc->gdb_arch_name = arm_gdb_arch_name; 1585 cc->gdb_stop_before_watchpoint = true; 1586 cc->debug_excp_handler = arm_debug_excp_handler; 1587 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 1588 1589 cc->disas_set_info = arm_disas_set_info; 1590 } 1591 1592 static void cpu_register(const ARMCPUInfo *info) 1593 { 1594 TypeInfo type_info = { 1595 .parent = TYPE_ARM_CPU, 1596 .instance_size = sizeof(ARMCPU), 1597 .instance_init = info->initfn, 1598 .class_size = sizeof(ARMCPUClass), 1599 .class_init = info->class_init, 1600 }; 1601 1602 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 1603 type_register(&type_info); 1604 g_free((void *)type_info.name); 1605 } 1606 1607 static const TypeInfo arm_cpu_type_info = { 1608 .name = TYPE_ARM_CPU, 1609 .parent = TYPE_CPU, 1610 .instance_size = sizeof(ARMCPU), 1611 .instance_init = arm_cpu_initfn, 1612 .instance_post_init = arm_cpu_post_init, 1613 .instance_finalize = arm_cpu_finalizefn, 1614 .abstract = true, 1615 .class_size = sizeof(ARMCPUClass), 1616 .class_init = arm_cpu_class_init, 1617 }; 1618 1619 static void arm_cpu_register_types(void) 1620 { 1621 const ARMCPUInfo *info = arm_cpus; 1622 1623 type_register_static(&arm_cpu_type_info); 1624 1625 while (info->name) { 1626 cpu_register(info); 1627 info++; 1628 } 1629 } 1630 1631 type_init(arm_cpu_register_types) 1632