xref: /openbmc/qemu/target/arm/cpu.c (revision 62a4db55)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
44 
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     CPUARMState *env = &cpu->env;
49 
50     if (is_a64(env)) {
51         env->pc = value;
52         env->thumb = 0;
53     } else {
54         env->regs[15] = value & ~1;
55         env->thumb = value & 1;
56     }
57 }
58 
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61                                  const TranslationBlock *tb)
62 {
63     ARMCPU *cpu = ARM_CPU(cs);
64     CPUARMState *env = &cpu->env;
65 
66     /*
67      * It's OK to look at env for the current mode here, because it's
68      * never possible for an AArch64 TB to chain to an AArch32 TB.
69      */
70     if (is_a64(env)) {
71         env->pc = tb->pc;
72     } else {
73         env->regs[15] = tb->pc;
74     }
75 }
76 #endif /* CONFIG_TCG */
77 
78 static bool arm_cpu_has_work(CPUState *cs)
79 {
80     ARMCPU *cpu = ARM_CPU(cs);
81 
82     return (cpu->power_state != PSCI_OFF)
83         && cs->interrupt_request &
84         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86          | CPU_INTERRUPT_EXITTB);
87 }
88 
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90                                  void *opaque)
91 {
92     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
93 
94     entry->hook = hook;
95     entry->opaque = opaque;
96 
97     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
98 }
99 
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101                                  void *opaque)
102 {
103     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
104 
105     entry->hook = hook;
106     entry->opaque = opaque;
107 
108     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
109 }
110 
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
112 {
113     /* Reset a single ARMCPRegInfo register */
114     ARMCPRegInfo *ri = value;
115     ARMCPU *cpu = opaque;
116 
117     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118         return;
119     }
120 
121     if (ri->resetfn) {
122         ri->resetfn(&cpu->env, ri);
123         return;
124     }
125 
126     /* A zero offset is never possible as it would be regs[0]
127      * so we use it to indicate that reset is being handled elsewhere.
128      * This is basically only used for fields in non-core coprocessors
129      * (like the pxa2xx ones).
130      */
131     if (!ri->fieldoffset) {
132         return;
133     }
134 
135     if (cpreg_field_is_64bit(ri)) {
136         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137     } else {
138         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
139     }
140 }
141 
142 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
143 {
144     /* Purely an assertion check: we've already done reset once,
145      * so now check that running the reset for the cpreg doesn't
146      * change its value. This traps bugs where two different cpregs
147      * both try to reset the same state field but to different values.
148      */
149     ARMCPRegInfo *ri = value;
150     ARMCPU *cpu = opaque;
151     uint64_t oldvalue, newvalue;
152 
153     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154         return;
155     }
156 
157     oldvalue = read_raw_cp_reg(&cpu->env, ri);
158     cp_reg_reset(key, value, opaque);
159     newvalue = read_raw_cp_reg(&cpu->env, ri);
160     assert(oldvalue == newvalue);
161 }
162 
163 static void arm_cpu_reset(DeviceState *dev)
164 {
165     CPUState *s = CPU(dev);
166     ARMCPU *cpu = ARM_CPU(s);
167     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168     CPUARMState *env = &cpu->env;
169 
170     acc->parent_reset(dev);
171 
172     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
173 
174     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
176 
177     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
181 
182     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
183 
184     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
186     }
187 
188     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189         /* 64 bit CPUs always start in 64 bit mode */
190         env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192         env->pstate = PSTATE_MODE_EL0t;
193         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195         /* Enable all PAC keys.  */
196         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197                                   SCTLR_EnDA | SCTLR_EnDB);
198         /* and to the FP/Neon instructions */
199         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200         /* and to the SVE instructions */
201         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202         /* with reasonable vector length */
203         if (cpu_isar_feature(aa64_sve, cpu)) {
204             env->vfp.zcr_el[1] =
205                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
206         }
207         /*
208          * Enable TBI0 but not TBI1.
209          * Note that this must match useronly_clean_ptr.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
212 
213         /* Enable MTE */
214         if (cpu_isar_feature(aa64_mte, cpu)) {
215             /* Enable tag access, but leave TCF0 as No Effect (0). */
216             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
217             /*
218              * Exclude all tags, so that tag 0 is always used.
219              * This corresponds to Linux current->thread.gcr_incl = 0.
220              *
221              * Set RRND, so that helper_irg() will generate a seed later.
222              * Here in cpu_reset(), the crypto subsystem has not yet been
223              * initialized.
224              */
225             env->cp15.gcr_el1 = 0x1ffff;
226         }
227 #else
228         /* Reset into the highest available EL */
229         if (arm_feature(env, ARM_FEATURE_EL3)) {
230             env->pstate = PSTATE_MODE_EL3h;
231         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
232             env->pstate = PSTATE_MODE_EL2h;
233         } else {
234             env->pstate = PSTATE_MODE_EL1h;
235         }
236         env->pc = cpu->rvbar;
237 #endif
238     } else {
239 #if defined(CONFIG_USER_ONLY)
240         /* Userspace expects access to cp10 and cp11 for FP/Neon */
241         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
242 #endif
243     }
244 
245 #if defined(CONFIG_USER_ONLY)
246     env->uncached_cpsr = ARM_CPU_MODE_USR;
247     /* For user mode we must enable access to coprocessors */
248     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
249     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250         env->cp15.c15_cpar = 3;
251     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
252         env->cp15.c15_cpar = 1;
253     }
254 #else
255 
256     /*
257      * If the highest available EL is EL2, AArch32 will start in Hyp
258      * mode; otherwise it starts in SVC. Note that if we start in
259      * AArch64 then these values in the uncached_cpsr will be ignored.
260      */
261     if (arm_feature(env, ARM_FEATURE_EL2) &&
262         !arm_feature(env, ARM_FEATURE_EL3)) {
263         env->uncached_cpsr = ARM_CPU_MODE_HYP;
264     } else {
265         env->uncached_cpsr = ARM_CPU_MODE_SVC;
266     }
267     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
268 
269     if (arm_feature(env, ARM_FEATURE_M)) {
270         uint32_t initial_msp; /* Loaded from 0x0 */
271         uint32_t initial_pc; /* Loaded from 0x4 */
272         uint8_t *rom;
273         uint32_t vecbase;
274 
275         if (cpu_isar_feature(aa32_lob, cpu)) {
276             /*
277              * LTPSIZE is constant 4 if MVE not implemented, and resets
278              * to an UNKNOWN value if MVE is implemented. We choose to
279              * always reset to 4.
280              */
281             env->v7m.ltpsize = 4;
282             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
283             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
284             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
285         }
286 
287         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
288             env->v7m.secure = true;
289         } else {
290             /* This bit resets to 0 if security is supported, but 1 if
291              * it is not. The bit is not present in v7M, but we set it
292              * here so we can avoid having to make checks on it conditional
293              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
294              */
295             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
296             /*
297              * Set NSACR to indicate "NS access permitted to everything";
298              * this avoids having to have all the tests of it being
299              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
300              * v8.1M the guest-visible value of NSACR in a CPU without the
301              * Security Extension is 0xcff.
302              */
303             env->v7m.nsacr = 0xcff;
304         }
305 
306         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
307          * that it resets to 1, so QEMU always does that rather than making
308          * it dependent on CPU model. In v8M it is RES1.
309          */
310         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
311         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
312         if (arm_feature(env, ARM_FEATURE_V8)) {
313             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
314             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
316         }
317         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
318             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
320         }
321 
322         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
323             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
324             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
325                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
326         }
327         /* Unlike A/R profile, M profile defines the reset LR value */
328         env->regs[14] = 0xffffffff;
329 
330         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
331         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
332 
333         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
334         vecbase = env->v7m.vecbase[env->v7m.secure];
335         rom = rom_ptr_for_as(s->as, vecbase, 8);
336         if (rom) {
337             /* Address zero is covered by ROM which hasn't yet been
338              * copied into physical memory.
339              */
340             initial_msp = ldl_p(rom);
341             initial_pc = ldl_p(rom + 4);
342         } else {
343             /* Address zero not covered by a ROM blob, or the ROM blob
344              * is in non-modifiable memory and this is a second reset after
345              * it got copied into memory. In the latter case, rom_ptr
346              * will return a NULL pointer and we should use ldl_phys instead.
347              */
348             initial_msp = ldl_phys(s->as, vecbase);
349             initial_pc = ldl_phys(s->as, vecbase + 4);
350         }
351 
352         env->regs[13] = initial_msp & 0xFFFFFFFC;
353         env->regs[15] = initial_pc & ~1;
354         env->thumb = initial_pc & 1;
355     }
356 
357     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
358      * executing as AArch32 then check if highvecs are enabled and
359      * adjust the PC accordingly.
360      */
361     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
362         env->regs[15] = 0xFFFF0000;
363     }
364 
365     /* M profile requires that reset clears the exclusive monitor;
366      * A profile does not, but clearing it makes more sense than having it
367      * set with an exclusive access on address zero.
368      */
369     arm_clear_exclusive(env);
370 
371     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
372 #endif
373 
374     if (arm_feature(env, ARM_FEATURE_PMSA)) {
375         if (cpu->pmsav7_dregion > 0) {
376             if (arm_feature(env, ARM_FEATURE_V8)) {
377                 memset(env->pmsav8.rbar[M_REG_NS], 0,
378                        sizeof(*env->pmsav8.rbar[M_REG_NS])
379                        * cpu->pmsav7_dregion);
380                 memset(env->pmsav8.rlar[M_REG_NS], 0,
381                        sizeof(*env->pmsav8.rlar[M_REG_NS])
382                        * cpu->pmsav7_dregion);
383                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
384                     memset(env->pmsav8.rbar[M_REG_S], 0,
385                            sizeof(*env->pmsav8.rbar[M_REG_S])
386                            * cpu->pmsav7_dregion);
387                     memset(env->pmsav8.rlar[M_REG_S], 0,
388                            sizeof(*env->pmsav8.rlar[M_REG_S])
389                            * cpu->pmsav7_dregion);
390                 }
391             } else if (arm_feature(env, ARM_FEATURE_V7)) {
392                 memset(env->pmsav7.drbar, 0,
393                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
394                 memset(env->pmsav7.drsr, 0,
395                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
396                 memset(env->pmsav7.dracr, 0,
397                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
398             }
399         }
400         env->pmsav7.rnr[M_REG_NS] = 0;
401         env->pmsav7.rnr[M_REG_S] = 0;
402         env->pmsav8.mair0[M_REG_NS] = 0;
403         env->pmsav8.mair0[M_REG_S] = 0;
404         env->pmsav8.mair1[M_REG_NS] = 0;
405         env->pmsav8.mair1[M_REG_S] = 0;
406     }
407 
408     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
409         if (cpu->sau_sregion > 0) {
410             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
411             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
412         }
413         env->sau.rnr = 0;
414         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
415          * the Cortex-M33 does.
416          */
417         env->sau.ctrl = 0;
418     }
419 
420     set_flush_to_zero(1, &env->vfp.standard_fp_status);
421     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
422     set_default_nan_mode(1, &env->vfp.standard_fp_status);
423     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
424     set_float_detect_tininess(float_tininess_before_rounding,
425                               &env->vfp.fp_status);
426     set_float_detect_tininess(float_tininess_before_rounding,
427                               &env->vfp.standard_fp_status);
428     set_float_detect_tininess(float_tininess_before_rounding,
429                               &env->vfp.fp_status_f16);
430     set_float_detect_tininess(float_tininess_before_rounding,
431                               &env->vfp.standard_fp_status_f16);
432 #ifndef CONFIG_USER_ONLY
433     if (kvm_enabled()) {
434         kvm_arm_reset_vcpu(cpu);
435     }
436 #endif
437 
438     hw_breakpoint_update_all(cpu);
439     hw_watchpoint_update_all(cpu);
440     arm_rebuild_hflags(env);
441 }
442 
443 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
444                                      unsigned int target_el,
445                                      unsigned int cur_el, bool secure,
446                                      uint64_t hcr_el2)
447 {
448     CPUARMState *env = cs->env_ptr;
449     bool pstate_unmasked;
450     bool unmasked = false;
451 
452     /*
453      * Don't take exceptions if they target a lower EL.
454      * This check should catch any exceptions that would not be taken
455      * but left pending.
456      */
457     if (cur_el > target_el) {
458         return false;
459     }
460 
461     switch (excp_idx) {
462     case EXCP_FIQ:
463         pstate_unmasked = !(env->daif & PSTATE_F);
464         break;
465 
466     case EXCP_IRQ:
467         pstate_unmasked = !(env->daif & PSTATE_I);
468         break;
469 
470     case EXCP_VFIQ:
471         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
472             /* VFIQs are only taken when hypervized.  */
473             return false;
474         }
475         return !(env->daif & PSTATE_F);
476     case EXCP_VIRQ:
477         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
478             /* VIRQs are only taken when hypervized.  */
479             return false;
480         }
481         return !(env->daif & PSTATE_I);
482     default:
483         g_assert_not_reached();
484     }
485 
486     /*
487      * Use the target EL, current execution state and SCR/HCR settings to
488      * determine whether the corresponding CPSR bit is used to mask the
489      * interrupt.
490      */
491     if ((target_el > cur_el) && (target_el != 1)) {
492         /* Exceptions targeting a higher EL may not be maskable */
493         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
494             /*
495              * 64-bit masking rules are simple: exceptions to EL3
496              * can't be masked, and exceptions to EL2 can only be
497              * masked from Secure state. The HCR and SCR settings
498              * don't affect the masking logic, only the interrupt routing.
499              */
500             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
501                 unmasked = true;
502             }
503         } else {
504             /*
505              * The old 32-bit-only environment has a more complicated
506              * masking setup. HCR and SCR bits not only affect interrupt
507              * routing but also change the behaviour of masking.
508              */
509             bool hcr, scr;
510 
511             switch (excp_idx) {
512             case EXCP_FIQ:
513                 /*
514                  * If FIQs are routed to EL3 or EL2 then there are cases where
515                  * we override the CPSR.F in determining if the exception is
516                  * masked or not. If neither of these are set then we fall back
517                  * to the CPSR.F setting otherwise we further assess the state
518                  * below.
519                  */
520                 hcr = hcr_el2 & HCR_FMO;
521                 scr = (env->cp15.scr_el3 & SCR_FIQ);
522 
523                 /*
524                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
525                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
526                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
527                  * when non-secure but only when FIQs are only routed to EL3.
528                  */
529                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
530                 break;
531             case EXCP_IRQ:
532                 /*
533                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
534                  * we may override the CPSR.I masking when in non-secure state.
535                  * The SCR.IRQ setting has already been taken into consideration
536                  * when setting the target EL, so it does not have a further
537                  * affect here.
538                  */
539                 hcr = hcr_el2 & HCR_IMO;
540                 scr = false;
541                 break;
542             default:
543                 g_assert_not_reached();
544             }
545 
546             if ((scr || hcr) && !secure) {
547                 unmasked = true;
548             }
549         }
550     }
551 
552     /*
553      * The PSTATE bits only mask the interrupt if we have not overriden the
554      * ability above.
555      */
556     return unmasked || pstate_unmasked;
557 }
558 
559 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
560 {
561     CPUClass *cc = CPU_GET_CLASS(cs);
562     CPUARMState *env = cs->env_ptr;
563     uint32_t cur_el = arm_current_el(env);
564     bool secure = arm_is_secure(env);
565     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
566     uint32_t target_el;
567     uint32_t excp_idx;
568 
569     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
570 
571     if (interrupt_request & CPU_INTERRUPT_FIQ) {
572         excp_idx = EXCP_FIQ;
573         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
574         if (arm_excp_unmasked(cs, excp_idx, target_el,
575                               cur_el, secure, hcr_el2)) {
576             goto found;
577         }
578     }
579     if (interrupt_request & CPU_INTERRUPT_HARD) {
580         excp_idx = EXCP_IRQ;
581         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
582         if (arm_excp_unmasked(cs, excp_idx, target_el,
583                               cur_el, secure, hcr_el2)) {
584             goto found;
585         }
586     }
587     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
588         excp_idx = EXCP_VIRQ;
589         target_el = 1;
590         if (arm_excp_unmasked(cs, excp_idx, target_el,
591                               cur_el, secure, hcr_el2)) {
592             goto found;
593         }
594     }
595     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
596         excp_idx = EXCP_VFIQ;
597         target_el = 1;
598         if (arm_excp_unmasked(cs, excp_idx, target_el,
599                               cur_el, secure, hcr_el2)) {
600             goto found;
601         }
602     }
603     return false;
604 
605  found:
606     cs->exception_index = excp_idx;
607     env->exception.target_el = target_el;
608     cc->tcg_ops->do_interrupt(cs);
609     return true;
610 }
611 
612 void arm_cpu_update_virq(ARMCPU *cpu)
613 {
614     /*
615      * Update the interrupt level for VIRQ, which is the logical OR of
616      * the HCR_EL2.VI bit and the input line level from the GIC.
617      */
618     CPUARMState *env = &cpu->env;
619     CPUState *cs = CPU(cpu);
620 
621     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
622         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
623 
624     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
625         if (new_state) {
626             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
627         } else {
628             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
629         }
630     }
631 }
632 
633 void arm_cpu_update_vfiq(ARMCPU *cpu)
634 {
635     /*
636      * Update the interrupt level for VFIQ, which is the logical OR of
637      * the HCR_EL2.VF bit and the input line level from the GIC.
638      */
639     CPUARMState *env = &cpu->env;
640     CPUState *cs = CPU(cpu);
641 
642     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
643         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
644 
645     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
646         if (new_state) {
647             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
648         } else {
649             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
650         }
651     }
652 }
653 
654 #ifndef CONFIG_USER_ONLY
655 static void arm_cpu_set_irq(void *opaque, int irq, int level)
656 {
657     ARMCPU *cpu = opaque;
658     CPUARMState *env = &cpu->env;
659     CPUState *cs = CPU(cpu);
660     static const int mask[] = {
661         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
662         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
663         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
664         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
665     };
666 
667     if (level) {
668         env->irq_line_state |= mask[irq];
669     } else {
670         env->irq_line_state &= ~mask[irq];
671     }
672 
673     switch (irq) {
674     case ARM_CPU_VIRQ:
675         assert(arm_feature(env, ARM_FEATURE_EL2));
676         arm_cpu_update_virq(cpu);
677         break;
678     case ARM_CPU_VFIQ:
679         assert(arm_feature(env, ARM_FEATURE_EL2));
680         arm_cpu_update_vfiq(cpu);
681         break;
682     case ARM_CPU_IRQ:
683     case ARM_CPU_FIQ:
684         if (level) {
685             cpu_interrupt(cs, mask[irq]);
686         } else {
687             cpu_reset_interrupt(cs, mask[irq]);
688         }
689         break;
690     default:
691         g_assert_not_reached();
692     }
693 }
694 
695 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
696 {
697 #ifdef CONFIG_KVM
698     ARMCPU *cpu = opaque;
699     CPUARMState *env = &cpu->env;
700     CPUState *cs = CPU(cpu);
701     uint32_t linestate_bit;
702     int irq_id;
703 
704     switch (irq) {
705     case ARM_CPU_IRQ:
706         irq_id = KVM_ARM_IRQ_CPU_IRQ;
707         linestate_bit = CPU_INTERRUPT_HARD;
708         break;
709     case ARM_CPU_FIQ:
710         irq_id = KVM_ARM_IRQ_CPU_FIQ;
711         linestate_bit = CPU_INTERRUPT_FIQ;
712         break;
713     default:
714         g_assert_not_reached();
715     }
716 
717     if (level) {
718         env->irq_line_state |= linestate_bit;
719     } else {
720         env->irq_line_state &= ~linestate_bit;
721     }
722     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
723 #endif
724 }
725 
726 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
727 {
728     ARMCPU *cpu = ARM_CPU(cs);
729     CPUARMState *env = &cpu->env;
730 
731     cpu_synchronize_state(cs);
732     return arm_cpu_data_is_big_endian(env);
733 }
734 
735 #endif
736 
737 static int
738 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
739 {
740   return print_insn_arm(pc | 1, info);
741 }
742 
743 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
744 {
745     ARMCPU *ac = ARM_CPU(cpu);
746     CPUARMState *env = &ac->env;
747     bool sctlr_b;
748 
749     if (is_a64(env)) {
750         /* We might not be compiled with the A64 disassembler
751          * because it needs a C++ compiler. Leave print_insn
752          * unset in this case to use the caller default behaviour.
753          */
754 #if defined(CONFIG_ARM_A64_DIS)
755         info->print_insn = print_insn_arm_a64;
756 #endif
757         info->cap_arch = CS_ARCH_ARM64;
758         info->cap_insn_unit = 4;
759         info->cap_insn_split = 4;
760     } else {
761         int cap_mode;
762         if (env->thumb) {
763             info->print_insn = print_insn_thumb1;
764             info->cap_insn_unit = 2;
765             info->cap_insn_split = 4;
766             cap_mode = CS_MODE_THUMB;
767         } else {
768             info->print_insn = print_insn_arm;
769             info->cap_insn_unit = 4;
770             info->cap_insn_split = 4;
771             cap_mode = CS_MODE_ARM;
772         }
773         if (arm_feature(env, ARM_FEATURE_V8)) {
774             cap_mode |= CS_MODE_V8;
775         }
776         if (arm_feature(env, ARM_FEATURE_M)) {
777             cap_mode |= CS_MODE_MCLASS;
778         }
779         info->cap_arch = CS_ARCH_ARM;
780         info->cap_mode = cap_mode;
781     }
782 
783     sctlr_b = arm_sctlr_b(env);
784     if (bswap_code(sctlr_b)) {
785 #ifdef TARGET_WORDS_BIGENDIAN
786         info->endian = BFD_ENDIAN_LITTLE;
787 #else
788         info->endian = BFD_ENDIAN_BIG;
789 #endif
790     }
791     info->flags &= ~INSN_ARM_BE32;
792 #ifndef CONFIG_USER_ONLY
793     if (sctlr_b) {
794         info->flags |= INSN_ARM_BE32;
795     }
796 #endif
797 }
798 
799 #ifdef TARGET_AARCH64
800 
801 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
802 {
803     ARMCPU *cpu = ARM_CPU(cs);
804     CPUARMState *env = &cpu->env;
805     uint32_t psr = pstate_read(env);
806     int i;
807     int el = arm_current_el(env);
808     const char *ns_status;
809 
810     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
811     for (i = 0; i < 32; i++) {
812         if (i == 31) {
813             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
814         } else {
815             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
816                          (i + 2) % 3 ? " " : "\n");
817         }
818     }
819 
820     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
821         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
822     } else {
823         ns_status = "";
824     }
825     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
826                  psr,
827                  psr & PSTATE_N ? 'N' : '-',
828                  psr & PSTATE_Z ? 'Z' : '-',
829                  psr & PSTATE_C ? 'C' : '-',
830                  psr & PSTATE_V ? 'V' : '-',
831                  ns_status,
832                  el,
833                  psr & PSTATE_SP ? 'h' : 't');
834 
835     if (cpu_isar_feature(aa64_bti, cpu)) {
836         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
837     }
838     if (!(flags & CPU_DUMP_FPU)) {
839         qemu_fprintf(f, "\n");
840         return;
841     }
842     if (fp_exception_el(env, el) != 0) {
843         qemu_fprintf(f, "    FPU disabled\n");
844         return;
845     }
846     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
847                  vfp_get_fpcr(env), vfp_get_fpsr(env));
848 
849     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
850         int j, zcr_len = sve_zcr_len_for_el(env, el);
851 
852         for (i = 0; i <= FFR_PRED_NUM; i++) {
853             bool eol;
854             if (i == FFR_PRED_NUM) {
855                 qemu_fprintf(f, "FFR=");
856                 /* It's last, so end the line.  */
857                 eol = true;
858             } else {
859                 qemu_fprintf(f, "P%02d=", i);
860                 switch (zcr_len) {
861                 case 0:
862                     eol = i % 8 == 7;
863                     break;
864                 case 1:
865                     eol = i % 6 == 5;
866                     break;
867                 case 2:
868                 case 3:
869                     eol = i % 3 == 2;
870                     break;
871                 default:
872                     /* More than one quadword per predicate.  */
873                     eol = true;
874                     break;
875                 }
876             }
877             for (j = zcr_len / 4; j >= 0; j--) {
878                 int digits;
879                 if (j * 4 + 4 <= zcr_len + 1) {
880                     digits = 16;
881                 } else {
882                     digits = (zcr_len % 4 + 1) * 4;
883                 }
884                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
885                              env->vfp.pregs[i].p[j],
886                              j ? ":" : eol ? "\n" : " ");
887             }
888         }
889 
890         for (i = 0; i < 32; i++) {
891             if (zcr_len == 0) {
892                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
893                              i, env->vfp.zregs[i].d[1],
894                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
895             } else if (zcr_len == 1) {
896                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
897                              ":%016" PRIx64 ":%016" PRIx64 "\n",
898                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
899                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
900             } else {
901                 for (j = zcr_len; j >= 0; j--) {
902                     bool odd = (zcr_len - j) % 2 != 0;
903                     if (j == zcr_len) {
904                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
905                     } else if (!odd) {
906                         if (j > 0) {
907                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
908                         } else {
909                             qemu_fprintf(f, "     [%x]=", j);
910                         }
911                     }
912                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
913                                  env->vfp.zregs[i].d[j * 2 + 1],
914                                  env->vfp.zregs[i].d[j * 2],
915                                  odd || j == 0 ? "\n" : ":");
916                 }
917             }
918         }
919     } else {
920         for (i = 0; i < 32; i++) {
921             uint64_t *q = aa64_vfp_qreg(env, i);
922             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
923                          i, q[1], q[0], (i & 1 ? "\n" : " "));
924         }
925     }
926 }
927 
928 #else
929 
930 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
931 {
932     g_assert_not_reached();
933 }
934 
935 #endif
936 
937 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
938 {
939     ARMCPU *cpu = ARM_CPU(cs);
940     CPUARMState *env = &cpu->env;
941     int i;
942 
943     if (is_a64(env)) {
944         aarch64_cpu_dump_state(cs, f, flags);
945         return;
946     }
947 
948     for (i = 0; i < 16; i++) {
949         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
950         if ((i % 4) == 3) {
951             qemu_fprintf(f, "\n");
952         } else {
953             qemu_fprintf(f, " ");
954         }
955     }
956 
957     if (arm_feature(env, ARM_FEATURE_M)) {
958         uint32_t xpsr = xpsr_read(env);
959         const char *mode;
960         const char *ns_status = "";
961 
962         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
963             ns_status = env->v7m.secure ? "S " : "NS ";
964         }
965 
966         if (xpsr & XPSR_EXCP) {
967             mode = "handler";
968         } else {
969             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
970                 mode = "unpriv-thread";
971             } else {
972                 mode = "priv-thread";
973             }
974         }
975 
976         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
977                      xpsr,
978                      xpsr & XPSR_N ? 'N' : '-',
979                      xpsr & XPSR_Z ? 'Z' : '-',
980                      xpsr & XPSR_C ? 'C' : '-',
981                      xpsr & XPSR_V ? 'V' : '-',
982                      xpsr & XPSR_T ? 'T' : 'A',
983                      ns_status,
984                      mode);
985     } else {
986         uint32_t psr = cpsr_read(env);
987         const char *ns_status = "";
988 
989         if (arm_feature(env, ARM_FEATURE_EL3) &&
990             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
991             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
992         }
993 
994         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
995                      psr,
996                      psr & CPSR_N ? 'N' : '-',
997                      psr & CPSR_Z ? 'Z' : '-',
998                      psr & CPSR_C ? 'C' : '-',
999                      psr & CPSR_V ? 'V' : '-',
1000                      psr & CPSR_T ? 'T' : 'A',
1001                      ns_status,
1002                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1003     }
1004 
1005     if (flags & CPU_DUMP_FPU) {
1006         int numvfpregs = 0;
1007         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1008             numvfpregs = 32;
1009         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1010             numvfpregs = 16;
1011         }
1012         for (i = 0; i < numvfpregs; i++) {
1013             uint64_t v = *aa32_vfp_dreg(env, i);
1014             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1015                          i * 2, (uint32_t)v,
1016                          i * 2 + 1, (uint32_t)(v >> 32),
1017                          i, v);
1018         }
1019         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1020     }
1021 }
1022 
1023 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024 {
1025     uint32_t Aff1 = idx / clustersz;
1026     uint32_t Aff0 = idx % clustersz;
1027     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1028 }
1029 
1030 static void cpreg_hashtable_data_destroy(gpointer data)
1031 {
1032     /*
1033      * Destroy function for cpu->cp_regs hashtable data entries.
1034      * We must free the name string because it was g_strdup()ed in
1035      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1036      * from r->name because we know we definitely allocated it.
1037      */
1038     ARMCPRegInfo *r = data;
1039 
1040     g_free((void *)r->name);
1041     g_free(r);
1042 }
1043 
1044 static void arm_cpu_initfn(Object *obj)
1045 {
1046     ARMCPU *cpu = ARM_CPU(obj);
1047 
1048     cpu_set_cpustate_pointers(cpu);
1049     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1050                                          g_free, cpreg_hashtable_data_destroy);
1051 
1052     QLIST_INIT(&cpu->pre_el_change_hooks);
1053     QLIST_INIT(&cpu->el_change_hooks);
1054 
1055 #ifdef CONFIG_USER_ONLY
1056 # ifdef TARGET_AARCH64
1057     /*
1058      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1059      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1060      * our corresponding sve-default-vector-length cpu property.
1061      */
1062     cpu->sve_default_vq = 4;
1063 # endif
1064 #else
1065     /* Our inbound IRQ and FIQ lines */
1066     if (kvm_enabled()) {
1067         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1068          * the same interface as non-KVM CPUs.
1069          */
1070         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1071     } else {
1072         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1073     }
1074 
1075     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1076                        ARRAY_SIZE(cpu->gt_timer_outputs));
1077 
1078     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1079                              "gicv3-maintenance-interrupt", 1);
1080     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1081                              "pmu-interrupt", 1);
1082 #endif
1083 
1084     /* DTB consumers generally don't in fact care what the 'compatible'
1085      * string is, so always provide some string and trust that a hypothetical
1086      * picky DTB consumer will also provide a helpful error message.
1087      */
1088     cpu->dtb_compatible = "qemu,unknown";
1089     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1090     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1091 
1092     if (tcg_enabled()) {
1093         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1094     }
1095 }
1096 
1097 static Property arm_cpu_gt_cntfrq_property =
1098             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1099                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1100 
1101 static Property arm_cpu_reset_cbar_property =
1102             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1103 
1104 static Property arm_cpu_reset_hivecs_property =
1105             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1106 
1107 static Property arm_cpu_rvbar_property =
1108             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1109 
1110 #ifndef CONFIG_USER_ONLY
1111 static Property arm_cpu_has_el2_property =
1112             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1113 
1114 static Property arm_cpu_has_el3_property =
1115             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1116 #endif
1117 
1118 static Property arm_cpu_cfgend_property =
1119             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1120 
1121 static Property arm_cpu_has_vfp_property =
1122             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1123 
1124 static Property arm_cpu_has_neon_property =
1125             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1126 
1127 static Property arm_cpu_has_dsp_property =
1128             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1129 
1130 static Property arm_cpu_has_mpu_property =
1131             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1132 
1133 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1134  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1135  * the right value for that particular CPU type, and we don't want
1136  * to override that with an incorrect constant value.
1137  */
1138 static Property arm_cpu_pmsav7_dregion_property =
1139             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1140                                            pmsav7_dregion,
1141                                            qdev_prop_uint32, uint32_t);
1142 
1143 static bool arm_get_pmu(Object *obj, Error **errp)
1144 {
1145     ARMCPU *cpu = ARM_CPU(obj);
1146 
1147     return cpu->has_pmu;
1148 }
1149 
1150 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1151 {
1152     ARMCPU *cpu = ARM_CPU(obj);
1153 
1154     if (value) {
1155         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1156             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1157             return;
1158         }
1159         set_feature(&cpu->env, ARM_FEATURE_PMU);
1160     } else {
1161         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1162     }
1163     cpu->has_pmu = value;
1164 }
1165 
1166 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1167 {
1168     /*
1169      * The exact approach to calculating guest ticks is:
1170      *
1171      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1172      *              NANOSECONDS_PER_SECOND);
1173      *
1174      * We don't do that. Rather we intentionally use integer division
1175      * truncation below and in the caller for the conversion of host monotonic
1176      * time to guest ticks to provide the exact inverse for the semantics of
1177      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1178      * it loses precision when representing frequencies where
1179      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1180      * provide an exact inverse leads to scheduling timers with negative
1181      * periods, which in turn leads to sticky behaviour in the guest.
1182      *
1183      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1184      * cannot become zero.
1185      */
1186     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1187       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1188 }
1189 
1190 void arm_cpu_post_init(Object *obj)
1191 {
1192     ARMCPU *cpu = ARM_CPU(obj);
1193 
1194     /* M profile implies PMSA. We have to do this here rather than
1195      * in realize with the other feature-implication checks because
1196      * we look at the PMSA bit to see if we should add some properties.
1197      */
1198     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1199         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1200     }
1201 
1202     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1203         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1204         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1205     }
1206 
1207     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1208         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1209     }
1210 
1211     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1212         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1213     }
1214 
1215 #ifndef CONFIG_USER_ONLY
1216     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1217         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1218          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1219          */
1220         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1221 
1222         object_property_add_link(obj, "secure-memory",
1223                                  TYPE_MEMORY_REGION,
1224                                  (Object **)&cpu->secure_memory,
1225                                  qdev_prop_allow_set_link_before_realize,
1226                                  OBJ_PROP_LINK_STRONG);
1227     }
1228 
1229     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1230         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1231     }
1232 #endif
1233 
1234     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1235         cpu->has_pmu = true;
1236         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1237     }
1238 
1239     /*
1240      * Allow user to turn off VFP and Neon support, but only for TCG --
1241      * KVM does not currently allow us to lie to the guest about its
1242      * ID/feature registers, so the guest always sees what the host has.
1243      */
1244     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1245         ? cpu_isar_feature(aa64_fp_simd, cpu)
1246         : cpu_isar_feature(aa32_vfp, cpu)) {
1247         cpu->has_vfp = true;
1248         if (!kvm_enabled()) {
1249             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1250         }
1251     }
1252 
1253     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1254         cpu->has_neon = true;
1255         if (!kvm_enabled()) {
1256             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1257         }
1258     }
1259 
1260     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1261         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1262         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1263     }
1264 
1265     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1266         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1267         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1268             qdev_property_add_static(DEVICE(obj),
1269                                      &arm_cpu_pmsav7_dregion_property);
1270         }
1271     }
1272 
1273     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1274         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1275                                  qdev_prop_allow_set_link_before_realize,
1276                                  OBJ_PROP_LINK_STRONG);
1277         /*
1278          * M profile: initial value of the Secure VTOR. We can't just use
1279          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1280          * the property to be set after realize.
1281          */
1282         object_property_add_uint32_ptr(obj, "init-svtor",
1283                                        &cpu->init_svtor,
1284                                        OBJ_PROP_FLAG_READWRITE);
1285     }
1286     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1287         /*
1288          * Initial value of the NS VTOR (for cores without the Security
1289          * extension, this is the only VTOR)
1290          */
1291         object_property_add_uint32_ptr(obj, "init-nsvtor",
1292                                        &cpu->init_nsvtor,
1293                                        OBJ_PROP_FLAG_READWRITE);
1294     }
1295 
1296     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1297 
1298     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1299         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1300     }
1301 
1302     if (kvm_enabled()) {
1303         kvm_arm_add_vcpu_properties(obj);
1304     }
1305 
1306 #ifndef CONFIG_USER_ONLY
1307     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1308         cpu_isar_feature(aa64_mte, cpu)) {
1309         object_property_add_link(obj, "tag-memory",
1310                                  TYPE_MEMORY_REGION,
1311                                  (Object **)&cpu->tag_memory,
1312                                  qdev_prop_allow_set_link_before_realize,
1313                                  OBJ_PROP_LINK_STRONG);
1314 
1315         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1316             object_property_add_link(obj, "secure-tag-memory",
1317                                      TYPE_MEMORY_REGION,
1318                                      (Object **)&cpu->secure_tag_memory,
1319                                      qdev_prop_allow_set_link_before_realize,
1320                                      OBJ_PROP_LINK_STRONG);
1321         }
1322     }
1323 #endif
1324 }
1325 
1326 static void arm_cpu_finalizefn(Object *obj)
1327 {
1328     ARMCPU *cpu = ARM_CPU(obj);
1329     ARMELChangeHook *hook, *next;
1330 
1331     g_hash_table_destroy(cpu->cp_regs);
1332 
1333     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1334         QLIST_REMOVE(hook, node);
1335         g_free(hook);
1336     }
1337     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1338         QLIST_REMOVE(hook, node);
1339         g_free(hook);
1340     }
1341 #ifndef CONFIG_USER_ONLY
1342     if (cpu->pmu_timer) {
1343         timer_free(cpu->pmu_timer);
1344     }
1345 #endif
1346 }
1347 
1348 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1349 {
1350     Error *local_err = NULL;
1351 
1352     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1353         arm_cpu_sve_finalize(cpu, &local_err);
1354         if (local_err != NULL) {
1355             error_propagate(errp, local_err);
1356             return;
1357         }
1358 
1359         /*
1360          * KVM does not support modifications to this feature.
1361          * We have not registered the cpu properties when KVM
1362          * is in use, so the user will not be able to set them.
1363          */
1364         if (!kvm_enabled()) {
1365             arm_cpu_pauth_finalize(cpu, &local_err);
1366             if (local_err != NULL) {
1367                 error_propagate(errp, local_err);
1368                 return;
1369             }
1370         }
1371     }
1372 
1373     if (kvm_enabled()) {
1374         kvm_arm_steal_time_finalize(cpu, &local_err);
1375         if (local_err != NULL) {
1376             error_propagate(errp, local_err);
1377             return;
1378         }
1379     }
1380 }
1381 
1382 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1383 {
1384     CPUState *cs = CPU(dev);
1385     ARMCPU *cpu = ARM_CPU(dev);
1386     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1387     CPUARMState *env = &cpu->env;
1388     int pagebits;
1389     Error *local_err = NULL;
1390     bool no_aa32 = false;
1391 
1392     /* If we needed to query the host kernel for the CPU features
1393      * then it's possible that might have failed in the initfn, but
1394      * this is the first point where we can report it.
1395      */
1396     if (cpu->host_cpu_probe_failed) {
1397         if (!kvm_enabled()) {
1398             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1399         } else {
1400             error_setg(errp, "Failed to retrieve host CPU features");
1401         }
1402         return;
1403     }
1404 
1405 #ifndef CONFIG_USER_ONLY
1406     /* The NVIC and M-profile CPU are two halves of a single piece of
1407      * hardware; trying to use one without the other is a command line
1408      * error and will result in segfaults if not caught here.
1409      */
1410     if (arm_feature(env, ARM_FEATURE_M)) {
1411         if (!env->nvic) {
1412             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1413             return;
1414         }
1415     } else {
1416         if (env->nvic) {
1417             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1418             return;
1419         }
1420     }
1421 
1422     {
1423         uint64_t scale;
1424 
1425         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1426             if (!cpu->gt_cntfrq_hz) {
1427                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1428                            cpu->gt_cntfrq_hz);
1429                 return;
1430             }
1431             scale = gt_cntfrq_period_ns(cpu);
1432         } else {
1433             scale = GTIMER_SCALE;
1434         }
1435 
1436         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1437                                                arm_gt_ptimer_cb, cpu);
1438         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1439                                                arm_gt_vtimer_cb, cpu);
1440         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1441                                               arm_gt_htimer_cb, cpu);
1442         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1443                                               arm_gt_stimer_cb, cpu);
1444         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1445                                                   arm_gt_hvtimer_cb, cpu);
1446     }
1447 #endif
1448 
1449     cpu_exec_realizefn(cs, &local_err);
1450     if (local_err != NULL) {
1451         error_propagate(errp, local_err);
1452         return;
1453     }
1454 
1455     arm_cpu_finalize_features(cpu, &local_err);
1456     if (local_err != NULL) {
1457         error_propagate(errp, local_err);
1458         return;
1459     }
1460 
1461     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1462         cpu->has_vfp != cpu->has_neon) {
1463         /*
1464          * This is an architectural requirement for AArch64; AArch32 is
1465          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1466          */
1467         error_setg(errp,
1468                    "AArch64 CPUs must have both VFP and Neon or neither");
1469         return;
1470     }
1471 
1472     if (!cpu->has_vfp) {
1473         uint64_t t;
1474         uint32_t u;
1475 
1476         t = cpu->isar.id_aa64isar1;
1477         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1478         cpu->isar.id_aa64isar1 = t;
1479 
1480         t = cpu->isar.id_aa64pfr0;
1481         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1482         cpu->isar.id_aa64pfr0 = t;
1483 
1484         u = cpu->isar.id_isar6;
1485         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1486         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1487         cpu->isar.id_isar6 = u;
1488 
1489         u = cpu->isar.mvfr0;
1490         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1491         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1492         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1493         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1494         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1495         if (!arm_feature(env, ARM_FEATURE_M)) {
1496             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1497             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1498         }
1499         cpu->isar.mvfr0 = u;
1500 
1501         u = cpu->isar.mvfr1;
1502         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1503         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1504         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1505         if (arm_feature(env, ARM_FEATURE_M)) {
1506             u = FIELD_DP32(u, MVFR1, FP16, 0);
1507         }
1508         cpu->isar.mvfr1 = u;
1509 
1510         u = cpu->isar.mvfr2;
1511         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1512         cpu->isar.mvfr2 = u;
1513     }
1514 
1515     if (!cpu->has_neon) {
1516         uint64_t t;
1517         uint32_t u;
1518 
1519         unset_feature(env, ARM_FEATURE_NEON);
1520 
1521         t = cpu->isar.id_aa64isar0;
1522         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1523         cpu->isar.id_aa64isar0 = t;
1524 
1525         t = cpu->isar.id_aa64isar1;
1526         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1527         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1528         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1529         cpu->isar.id_aa64isar1 = t;
1530 
1531         t = cpu->isar.id_aa64pfr0;
1532         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1533         cpu->isar.id_aa64pfr0 = t;
1534 
1535         u = cpu->isar.id_isar5;
1536         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1537         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1538         cpu->isar.id_isar5 = u;
1539 
1540         u = cpu->isar.id_isar6;
1541         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1542         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1543         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1544         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1545         cpu->isar.id_isar6 = u;
1546 
1547         if (!arm_feature(env, ARM_FEATURE_M)) {
1548             u = cpu->isar.mvfr1;
1549             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1550             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1551             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1552             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1553             cpu->isar.mvfr1 = u;
1554 
1555             u = cpu->isar.mvfr2;
1556             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1557             cpu->isar.mvfr2 = u;
1558         }
1559     }
1560 
1561     if (!cpu->has_neon && !cpu->has_vfp) {
1562         uint64_t t;
1563         uint32_t u;
1564 
1565         t = cpu->isar.id_aa64isar0;
1566         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1567         cpu->isar.id_aa64isar0 = t;
1568 
1569         t = cpu->isar.id_aa64isar1;
1570         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1571         cpu->isar.id_aa64isar1 = t;
1572 
1573         u = cpu->isar.mvfr0;
1574         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1575         cpu->isar.mvfr0 = u;
1576 
1577         /* Despite the name, this field covers both VFP and Neon */
1578         u = cpu->isar.mvfr1;
1579         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1580         cpu->isar.mvfr1 = u;
1581     }
1582 
1583     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1584         uint32_t u;
1585 
1586         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1587 
1588         u = cpu->isar.id_isar1;
1589         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1590         cpu->isar.id_isar1 = u;
1591 
1592         u = cpu->isar.id_isar2;
1593         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1594         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1595         cpu->isar.id_isar2 = u;
1596 
1597         u = cpu->isar.id_isar3;
1598         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1599         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1600         cpu->isar.id_isar3 = u;
1601     }
1602 
1603     /* Some features automatically imply others: */
1604     if (arm_feature(env, ARM_FEATURE_V8)) {
1605         if (arm_feature(env, ARM_FEATURE_M)) {
1606             set_feature(env, ARM_FEATURE_V7);
1607         } else {
1608             set_feature(env, ARM_FEATURE_V7VE);
1609         }
1610     }
1611 
1612     /*
1613      * There exist AArch64 cpus without AArch32 support.  When KVM
1614      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1615      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1616      * As a general principle, we also do not make ID register
1617      * consistency checks anywhere unless using TCG, because only
1618      * for TCG would a consistency-check failure be a QEMU bug.
1619      */
1620     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1621         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1622     }
1623 
1624     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1625         /* v7 Virtualization Extensions. In real hardware this implies
1626          * EL2 and also the presence of the Security Extensions.
1627          * For QEMU, for backwards-compatibility we implement some
1628          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1629          * include the various other features that V7VE implies.
1630          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1631          * Security Extensions is ARM_FEATURE_EL3.
1632          */
1633         assert(!tcg_enabled() || no_aa32 ||
1634                cpu_isar_feature(aa32_arm_div, cpu));
1635         set_feature(env, ARM_FEATURE_LPAE);
1636         set_feature(env, ARM_FEATURE_V7);
1637     }
1638     if (arm_feature(env, ARM_FEATURE_V7)) {
1639         set_feature(env, ARM_FEATURE_VAPA);
1640         set_feature(env, ARM_FEATURE_THUMB2);
1641         set_feature(env, ARM_FEATURE_MPIDR);
1642         if (!arm_feature(env, ARM_FEATURE_M)) {
1643             set_feature(env, ARM_FEATURE_V6K);
1644         } else {
1645             set_feature(env, ARM_FEATURE_V6);
1646         }
1647 
1648         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1649          * non-EL3 configs. This is needed by some legacy boards.
1650          */
1651         set_feature(env, ARM_FEATURE_VBAR);
1652     }
1653     if (arm_feature(env, ARM_FEATURE_V6K)) {
1654         set_feature(env, ARM_FEATURE_V6);
1655         set_feature(env, ARM_FEATURE_MVFR);
1656     }
1657     if (arm_feature(env, ARM_FEATURE_V6)) {
1658         set_feature(env, ARM_FEATURE_V5);
1659         if (!arm_feature(env, ARM_FEATURE_M)) {
1660             assert(!tcg_enabled() || no_aa32 ||
1661                    cpu_isar_feature(aa32_jazelle, cpu));
1662             set_feature(env, ARM_FEATURE_AUXCR);
1663         }
1664     }
1665     if (arm_feature(env, ARM_FEATURE_V5)) {
1666         set_feature(env, ARM_FEATURE_V4T);
1667     }
1668     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1669         set_feature(env, ARM_FEATURE_V7MP);
1670     }
1671     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1672         set_feature(env, ARM_FEATURE_CBAR);
1673     }
1674     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1675         !arm_feature(env, ARM_FEATURE_M)) {
1676         set_feature(env, ARM_FEATURE_THUMB_DSP);
1677     }
1678 
1679     /*
1680      * We rely on no XScale CPU having VFP so we can use the same bits in the
1681      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1682      */
1683     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1684            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1685            !arm_feature(env, ARM_FEATURE_XSCALE));
1686 
1687     if (arm_feature(env, ARM_FEATURE_V7) &&
1688         !arm_feature(env, ARM_FEATURE_M) &&
1689         !arm_feature(env, ARM_FEATURE_PMSA)) {
1690         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1691          * can use 4K pages.
1692          */
1693         pagebits = 12;
1694     } else {
1695         /* For CPUs which might have tiny 1K pages, or which have an
1696          * MPU and might have small region sizes, stick with 1K pages.
1697          */
1698         pagebits = 10;
1699     }
1700     if (!set_preferred_target_page_bits(pagebits)) {
1701         /* This can only ever happen for hotplugging a CPU, or if
1702          * the board code incorrectly creates a CPU which it has
1703          * promised via minimum_page_size that it will not.
1704          */
1705         error_setg(errp, "This CPU requires a smaller page size than the "
1706                    "system is using");
1707         return;
1708     }
1709 
1710     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1711      * We don't support setting cluster ID ([16..23]) (known as Aff2
1712      * in later ARM ARM versions), or any of the higher affinity level fields,
1713      * so these bits always RAZ.
1714      */
1715     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1716         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1717                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1718     }
1719 
1720     if (cpu->reset_hivecs) {
1721             cpu->reset_sctlr |= (1 << 13);
1722     }
1723 
1724     if (cpu->cfgend) {
1725         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1726             cpu->reset_sctlr |= SCTLR_EE;
1727         } else {
1728             cpu->reset_sctlr |= SCTLR_B;
1729         }
1730     }
1731 
1732     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1733         /* If the has_el3 CPU property is disabled then we need to disable the
1734          * feature.
1735          */
1736         unset_feature(env, ARM_FEATURE_EL3);
1737 
1738         /* Disable the security extension feature bits in the processor feature
1739          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1740          */
1741         cpu->isar.id_pfr1 &= ~0xf0;
1742         cpu->isar.id_aa64pfr0 &= ~0xf000;
1743     }
1744 
1745     if (!cpu->has_el2) {
1746         unset_feature(env, ARM_FEATURE_EL2);
1747     }
1748 
1749     if (!cpu->has_pmu) {
1750         unset_feature(env, ARM_FEATURE_PMU);
1751     }
1752     if (arm_feature(env, ARM_FEATURE_PMU)) {
1753         pmu_init(cpu);
1754 
1755         if (!kvm_enabled()) {
1756             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1757             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1758         }
1759 
1760 #ifndef CONFIG_USER_ONLY
1761         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1762                 cpu);
1763 #endif
1764     } else {
1765         cpu->isar.id_aa64dfr0 =
1766             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1767         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1768         cpu->pmceid0 = 0;
1769         cpu->pmceid1 = 0;
1770     }
1771 
1772     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1773         /* Disable the hypervisor feature bits in the processor feature
1774          * registers if we don't have EL2. These are id_pfr1[15:12] and
1775          * id_aa64pfr0_el1[11:8].
1776          */
1777         cpu->isar.id_aa64pfr0 &= ~0xf00;
1778         cpu->isar.id_pfr1 &= ~0xf000;
1779     }
1780 
1781 #ifndef CONFIG_USER_ONLY
1782     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1783         /*
1784          * Disable the MTE feature bits if we do not have tag-memory
1785          * provided by the machine.
1786          */
1787         cpu->isar.id_aa64pfr1 =
1788             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1789     }
1790 #endif
1791 
1792     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1793      * to false or by setting pmsav7-dregion to 0.
1794      */
1795     if (!cpu->has_mpu) {
1796         cpu->pmsav7_dregion = 0;
1797     }
1798     if (cpu->pmsav7_dregion == 0) {
1799         cpu->has_mpu = false;
1800     }
1801 
1802     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1803         arm_feature(env, ARM_FEATURE_V7)) {
1804         uint32_t nr = cpu->pmsav7_dregion;
1805 
1806         if (nr > 0xff) {
1807             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1808             return;
1809         }
1810 
1811         if (nr) {
1812             if (arm_feature(env, ARM_FEATURE_V8)) {
1813                 /* PMSAv8 */
1814                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1815                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1816                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1817                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1818                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1819                 }
1820             } else {
1821                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1822                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1823                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1824             }
1825         }
1826     }
1827 
1828     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1829         uint32_t nr = cpu->sau_sregion;
1830 
1831         if (nr > 0xff) {
1832             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1833             return;
1834         }
1835 
1836         if (nr) {
1837             env->sau.rbar = g_new0(uint32_t, nr);
1838             env->sau.rlar = g_new0(uint32_t, nr);
1839         }
1840     }
1841 
1842     if (arm_feature(env, ARM_FEATURE_EL3)) {
1843         set_feature(env, ARM_FEATURE_VBAR);
1844     }
1845 
1846     register_cp_regs_for_features(cpu);
1847     arm_cpu_register_gdb_regs_for_features(cpu);
1848 
1849     init_cpreg_list(cpu);
1850 
1851 #ifndef CONFIG_USER_ONLY
1852     MachineState *ms = MACHINE(qdev_get_machine());
1853     unsigned int smp_cpus = ms->smp.cpus;
1854     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1855 
1856     /*
1857      * We must set cs->num_ases to the final value before
1858      * the first call to cpu_address_space_init.
1859      */
1860     if (cpu->tag_memory != NULL) {
1861         cs->num_ases = 3 + has_secure;
1862     } else {
1863         cs->num_ases = 1 + has_secure;
1864     }
1865 
1866     if (has_secure) {
1867         if (!cpu->secure_memory) {
1868             cpu->secure_memory = cs->memory;
1869         }
1870         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1871                                cpu->secure_memory);
1872     }
1873 
1874     if (cpu->tag_memory != NULL) {
1875         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1876                                cpu->tag_memory);
1877         if (has_secure) {
1878             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1879                                    cpu->secure_tag_memory);
1880         }
1881     }
1882 
1883     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1884 
1885     /* No core_count specified, default to smp_cpus. */
1886     if (cpu->core_count == -1) {
1887         cpu->core_count = smp_cpus;
1888     }
1889 #endif
1890 
1891     if (tcg_enabled()) {
1892         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1893 
1894         /*
1895          * We only support DCZ blocklen that fits on one page.
1896          *
1897          * Architectually this is always true.  However TARGET_PAGE_SIZE
1898          * is variable and, for compatibility with -machine virt-2.7,
1899          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1900          * But even then, while the largest architectural DCZ blocklen
1901          * is 2KiB, no cpu actually uses such a large blocklen.
1902          */
1903         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1904 
1905         /*
1906          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1907          * both nibbles of each byte storing tag data may be written at once.
1908          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1909          */
1910         if (cpu_isar_feature(aa64_mte, cpu)) {
1911             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1912         }
1913     }
1914 
1915     qemu_init_vcpu(cs);
1916     cpu_reset(cs);
1917 
1918     acc->parent_realize(dev, errp);
1919 }
1920 
1921 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1922 {
1923     ObjectClass *oc;
1924     char *typename;
1925     char **cpuname;
1926     const char *cpunamestr;
1927 
1928     cpuname = g_strsplit(cpu_model, ",", 1);
1929     cpunamestr = cpuname[0];
1930 #ifdef CONFIG_USER_ONLY
1931     /* For backwards compatibility usermode emulation allows "-cpu any",
1932      * which has the same semantics as "-cpu max".
1933      */
1934     if (!strcmp(cpunamestr, "any")) {
1935         cpunamestr = "max";
1936     }
1937 #endif
1938     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1939     oc = object_class_by_name(typename);
1940     g_strfreev(cpuname);
1941     g_free(typename);
1942     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1943         object_class_is_abstract(oc)) {
1944         return NULL;
1945     }
1946     return oc;
1947 }
1948 
1949 static Property arm_cpu_properties[] = {
1950     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1951     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1952     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1953                         mp_affinity, ARM64_AFFINITY_INVALID),
1954     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1955     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1956     DEFINE_PROP_END_OF_LIST()
1957 };
1958 
1959 static gchar *arm_gdb_arch_name(CPUState *cs)
1960 {
1961     ARMCPU *cpu = ARM_CPU(cs);
1962     CPUARMState *env = &cpu->env;
1963 
1964     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1965         return g_strdup("iwmmxt");
1966     }
1967     return g_strdup("arm");
1968 }
1969 
1970 #ifndef CONFIG_USER_ONLY
1971 #include "hw/core/sysemu-cpu-ops.h"
1972 
1973 static const struct SysemuCPUOps arm_sysemu_ops = {
1974     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
1975     .asidx_from_attrs = arm_asidx_from_attrs,
1976     .write_elf32_note = arm_cpu_write_elf32_note,
1977     .write_elf64_note = arm_cpu_write_elf64_note,
1978     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
1979     .legacy_vmsd = &vmstate_arm_cpu,
1980 };
1981 #endif
1982 
1983 #ifdef CONFIG_TCG
1984 static const struct TCGCPUOps arm_tcg_ops = {
1985     .initialize = arm_translate_init,
1986     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1987     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1988     .tlb_fill = arm_cpu_tlb_fill,
1989     .debug_excp_handler = arm_debug_excp_handler,
1990 
1991 #if !defined(CONFIG_USER_ONLY)
1992     .do_interrupt = arm_cpu_do_interrupt,
1993     .do_transaction_failed = arm_cpu_do_transaction_failed,
1994     .do_unaligned_access = arm_cpu_do_unaligned_access,
1995     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1996     .debug_check_watchpoint = arm_debug_check_watchpoint,
1997     .debug_check_breakpoint = arm_debug_check_breakpoint,
1998 #endif /* !CONFIG_USER_ONLY */
1999 };
2000 #endif /* CONFIG_TCG */
2001 
2002 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2003 {
2004     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2005     CPUClass *cc = CPU_CLASS(acc);
2006     DeviceClass *dc = DEVICE_CLASS(oc);
2007 
2008     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2009                                     &acc->parent_realize);
2010 
2011     device_class_set_props(dc, arm_cpu_properties);
2012     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2013 
2014     cc->class_by_name = arm_cpu_class_by_name;
2015     cc->has_work = arm_cpu_has_work;
2016     cc->dump_state = arm_cpu_dump_state;
2017     cc->set_pc = arm_cpu_set_pc;
2018     cc->gdb_read_register = arm_cpu_gdb_read_register;
2019     cc->gdb_write_register = arm_cpu_gdb_write_register;
2020 #ifndef CONFIG_USER_ONLY
2021     cc->sysemu_ops = &arm_sysemu_ops;
2022 #endif
2023     cc->gdb_num_core_regs = 26;
2024     cc->gdb_core_xml_file = "arm-core.xml";
2025     cc->gdb_arch_name = arm_gdb_arch_name;
2026     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2027     cc->gdb_stop_before_watchpoint = true;
2028     cc->disas_set_info = arm_disas_set_info;
2029 
2030 #ifdef CONFIG_TCG
2031     cc->tcg_ops = &arm_tcg_ops;
2032 #endif /* CONFIG_TCG */
2033 }
2034 
2035 #ifdef CONFIG_KVM
2036 static void arm_host_initfn(Object *obj)
2037 {
2038     ARMCPU *cpu = ARM_CPU(obj);
2039 
2040     kvm_arm_set_cpu_features_from_host(cpu);
2041     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2042         aarch64_add_sve_properties(obj);
2043     }
2044     arm_cpu_post_init(obj);
2045 }
2046 
2047 static const TypeInfo host_arm_cpu_type_info = {
2048     .name = TYPE_ARM_HOST_CPU,
2049     .parent = TYPE_AARCH64_CPU,
2050     .instance_init = arm_host_initfn,
2051 };
2052 
2053 #endif
2054 
2055 static void arm_cpu_instance_init(Object *obj)
2056 {
2057     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2058 
2059     acc->info->initfn(obj);
2060     arm_cpu_post_init(obj);
2061 }
2062 
2063 static void cpu_register_class_init(ObjectClass *oc, void *data)
2064 {
2065     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2066 
2067     acc->info = data;
2068 }
2069 
2070 void arm_cpu_register(const ARMCPUInfo *info)
2071 {
2072     TypeInfo type_info = {
2073         .parent = TYPE_ARM_CPU,
2074         .instance_size = sizeof(ARMCPU),
2075         .instance_align = __alignof__(ARMCPU),
2076         .instance_init = arm_cpu_instance_init,
2077         .class_size = sizeof(ARMCPUClass),
2078         .class_init = info->class_init ?: cpu_register_class_init,
2079         .class_data = (void *)info,
2080     };
2081 
2082     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2083     type_register(&type_info);
2084     g_free((void *)type_info.name);
2085 }
2086 
2087 static const TypeInfo arm_cpu_type_info = {
2088     .name = TYPE_ARM_CPU,
2089     .parent = TYPE_CPU,
2090     .instance_size = sizeof(ARMCPU),
2091     .instance_align = __alignof__(ARMCPU),
2092     .instance_init = arm_cpu_initfn,
2093     .instance_finalize = arm_cpu_finalizefn,
2094     .abstract = true,
2095     .class_size = sizeof(ARMCPUClass),
2096     .class_init = arm_cpu_class_init,
2097 };
2098 
2099 static void arm_cpu_register_types(void)
2100 {
2101     type_register_static(&arm_cpu_type_info);
2102 
2103 #ifdef CONFIG_KVM
2104     type_register_static(&host_arm_cpu_type_info);
2105 #endif
2106 }
2107 
2108 type_init(arm_cpu_register_types)
2109