xref: /openbmc/qemu/target/arm/cpu.c (revision 5dd0be53e89acfc367944489a364b0ec835dee9a)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 
47 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50     CPUARMState *env = &cpu->env;
51 
52     if (is_a64(env)) {
53         env->pc = value;
54         env->thumb = 0;
55     } else {
56         env->regs[15] = value & ~1;
57         env->thumb = value & 1;
58     }
59 }
60 
61 #ifdef CONFIG_TCG
62 void arm_cpu_synchronize_from_tb(CPUState *cs,
63                                  const TranslationBlock *tb)
64 {
65     ARMCPU *cpu = ARM_CPU(cs);
66     CPUARMState *env = &cpu->env;
67 
68     /*
69      * It's OK to look at env for the current mode here, because it's
70      * never possible for an AArch64 TB to chain to an AArch32 TB.
71      */
72     if (is_a64(env)) {
73         env->pc = tb->pc;
74     } else {
75         env->regs[15] = tb->pc;
76     }
77 }
78 #endif /* CONFIG_TCG */
79 
80 static bool arm_cpu_has_work(CPUState *cs)
81 {
82     ARMCPU *cpu = ARM_CPU(cs);
83 
84     return (cpu->power_state != PSCI_OFF)
85         && cs->interrupt_request &
86         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
87          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
88          | CPU_INTERRUPT_EXITTB);
89 }
90 
91 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
92                                  void *opaque)
93 {
94     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 
96     entry->hook = hook;
97     entry->opaque = opaque;
98 
99     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
100 }
101 
102 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
103                                  void *opaque)
104 {
105     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
106 
107     entry->hook = hook;
108     entry->opaque = opaque;
109 
110     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
111 }
112 
113 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
114 {
115     /* Reset a single ARMCPRegInfo register */
116     ARMCPRegInfo *ri = value;
117     ARMCPU *cpu = opaque;
118 
119     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
120         return;
121     }
122 
123     if (ri->resetfn) {
124         ri->resetfn(&cpu->env, ri);
125         return;
126     }
127 
128     /* A zero offset is never possible as it would be regs[0]
129      * so we use it to indicate that reset is being handled elsewhere.
130      * This is basically only used for fields in non-core coprocessors
131      * (like the pxa2xx ones).
132      */
133     if (!ri->fieldoffset) {
134         return;
135     }
136 
137     if (cpreg_field_is_64bit(ri)) {
138         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
139     } else {
140         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
141     }
142 }
143 
144 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
145 {
146     /* Purely an assertion check: we've already done reset once,
147      * so now check that running the reset for the cpreg doesn't
148      * change its value. This traps bugs where two different cpregs
149      * both try to reset the same state field but to different values.
150      */
151     ARMCPRegInfo *ri = value;
152     ARMCPU *cpu = opaque;
153     uint64_t oldvalue, newvalue;
154 
155     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
156         return;
157     }
158 
159     oldvalue = read_raw_cp_reg(&cpu->env, ri);
160     cp_reg_reset(key, value, opaque);
161     newvalue = read_raw_cp_reg(&cpu->env, ri);
162     assert(oldvalue == newvalue);
163 }
164 
165 static void arm_cpu_reset(DeviceState *dev)
166 {
167     CPUState *s = CPU(dev);
168     ARMCPU *cpu = ARM_CPU(s);
169     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
170     CPUARMState *env = &cpu->env;
171 
172     acc->parent_reset(dev);
173 
174     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
175 
176     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
178 
179     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
180     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
181     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
182     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
183 
184     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
185 
186     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
187         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
188     }
189 
190     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
191         /* 64 bit CPUs always start in 64 bit mode */
192         env->aarch64 = 1;
193 #if defined(CONFIG_USER_ONLY)
194         env->pstate = PSTATE_MODE_EL0t;
195         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
196         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
197         /* Enable all PAC keys.  */
198         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
199                                   SCTLR_EnDA | SCTLR_EnDB);
200         /* and to the FP/Neon instructions */
201         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
202         /* and to the SVE instructions */
203         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
204         /* with reasonable vector length */
205         if (cpu_isar_feature(aa64_sve, cpu)) {
206             env->vfp.zcr_el[1] =
207                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
208         }
209         /*
210          * Enable 48-bit address space (TODO: take reserved_va into account).
211          * Enable TBI0 but not TBI1.
212          * Note that this must match useronly_clean_ptr.
213          */
214         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
215 
216         /* Enable MTE */
217         if (cpu_isar_feature(aa64_mte, cpu)) {
218             /* Enable tag access, but leave TCF0 as No Effect (0). */
219             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
220             /*
221              * Exclude all tags, so that tag 0 is always used.
222              * This corresponds to Linux current->thread.gcr_incl = 0.
223              *
224              * Set RRND, so that helper_irg() will generate a seed later.
225              * Here in cpu_reset(), the crypto subsystem has not yet been
226              * initialized.
227              */
228             env->cp15.gcr_el1 = 0x1ffff;
229         }
230 #else
231         /* Reset into the highest available EL */
232         if (arm_feature(env, ARM_FEATURE_EL3)) {
233             env->pstate = PSTATE_MODE_EL3h;
234         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
235             env->pstate = PSTATE_MODE_EL2h;
236         } else {
237             env->pstate = PSTATE_MODE_EL1h;
238         }
239 
240         /* Sample rvbar at reset.  */
241         env->cp15.rvbar = cpu->rvbar_prop;
242         env->pc = env->cp15.rvbar;
243 #endif
244     } else {
245 #if defined(CONFIG_USER_ONLY)
246         /* Userspace expects access to cp10 and cp11 for FP/Neon */
247         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
248 #endif
249     }
250 
251 #if defined(CONFIG_USER_ONLY)
252     env->uncached_cpsr = ARM_CPU_MODE_USR;
253     /* For user mode we must enable access to coprocessors */
254     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
255     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
256         env->cp15.c15_cpar = 3;
257     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
258         env->cp15.c15_cpar = 1;
259     }
260 #else
261 
262     /*
263      * If the highest available EL is EL2, AArch32 will start in Hyp
264      * mode; otherwise it starts in SVC. Note that if we start in
265      * AArch64 then these values in the uncached_cpsr will be ignored.
266      */
267     if (arm_feature(env, ARM_FEATURE_EL2) &&
268         !arm_feature(env, ARM_FEATURE_EL3)) {
269         env->uncached_cpsr = ARM_CPU_MODE_HYP;
270     } else {
271         env->uncached_cpsr = ARM_CPU_MODE_SVC;
272     }
273     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
274 
275     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
276      * executing as AArch32 then check if highvecs are enabled and
277      * adjust the PC accordingly.
278      */
279     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
280         env->regs[15] = 0xFFFF0000;
281     }
282 
283     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
284 #endif
285 
286     if (arm_feature(env, ARM_FEATURE_M)) {
287 #ifndef CONFIG_USER_ONLY
288         uint32_t initial_msp; /* Loaded from 0x0 */
289         uint32_t initial_pc; /* Loaded from 0x4 */
290         uint8_t *rom;
291         uint32_t vecbase;
292 #endif
293 
294         if (cpu_isar_feature(aa32_lob, cpu)) {
295             /*
296              * LTPSIZE is constant 4 if MVE not implemented, and resets
297              * to an UNKNOWN value if MVE is implemented. We choose to
298              * always reset to 4.
299              */
300             env->v7m.ltpsize = 4;
301             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
302             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
303             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
304         }
305 
306         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
307             env->v7m.secure = true;
308         } else {
309             /* This bit resets to 0 if security is supported, but 1 if
310              * it is not. The bit is not present in v7M, but we set it
311              * here so we can avoid having to make checks on it conditional
312              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
313              */
314             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
315             /*
316              * Set NSACR to indicate "NS access permitted to everything";
317              * this avoids having to have all the tests of it being
318              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
319              * v8.1M the guest-visible value of NSACR in a CPU without the
320              * Security Extension is 0xcff.
321              */
322             env->v7m.nsacr = 0xcff;
323         }
324 
325         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
326          * that it resets to 1, so QEMU always does that rather than making
327          * it dependent on CPU model. In v8M it is RES1.
328          */
329         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
330         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
331         if (arm_feature(env, ARM_FEATURE_V8)) {
332             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
333             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
334             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
335         }
336         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
337             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
338             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
339         }
340 
341         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
342             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
343             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
344                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
345         }
346 
347 #ifndef CONFIG_USER_ONLY
348         /* Unlike A/R profile, M profile defines the reset LR value */
349         env->regs[14] = 0xffffffff;
350 
351         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
352         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
353 
354         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
355         vecbase = env->v7m.vecbase[env->v7m.secure];
356         rom = rom_ptr_for_as(s->as, vecbase, 8);
357         if (rom) {
358             /* Address zero is covered by ROM which hasn't yet been
359              * copied into physical memory.
360              */
361             initial_msp = ldl_p(rom);
362             initial_pc = ldl_p(rom + 4);
363         } else {
364             /* Address zero not covered by a ROM blob, or the ROM blob
365              * is in non-modifiable memory and this is a second reset after
366              * it got copied into memory. In the latter case, rom_ptr
367              * will return a NULL pointer and we should use ldl_phys instead.
368              */
369             initial_msp = ldl_phys(s->as, vecbase);
370             initial_pc = ldl_phys(s->as, vecbase + 4);
371         }
372 
373         qemu_log_mask(CPU_LOG_INT,
374                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
375                       initial_msp, initial_pc);
376 
377         env->regs[13] = initial_msp & 0xFFFFFFFC;
378         env->regs[15] = initial_pc & ~1;
379         env->thumb = initial_pc & 1;
380 #else
381         /*
382          * For user mode we run non-secure and with access to the FPU.
383          * The FPU context is active (ie does not need further setup)
384          * and is owned by non-secure.
385          */
386         env->v7m.secure = false;
387         env->v7m.nsacr = 0xcff;
388         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
389         env->v7m.fpccr[M_REG_S] &=
390             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
391         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
392 #endif
393     }
394 
395     /* M profile requires that reset clears the exclusive monitor;
396      * A profile does not, but clearing it makes more sense than having it
397      * set with an exclusive access on address zero.
398      */
399     arm_clear_exclusive(env);
400 
401     if (arm_feature(env, ARM_FEATURE_PMSA)) {
402         if (cpu->pmsav7_dregion > 0) {
403             if (arm_feature(env, ARM_FEATURE_V8)) {
404                 memset(env->pmsav8.rbar[M_REG_NS], 0,
405                        sizeof(*env->pmsav8.rbar[M_REG_NS])
406                        * cpu->pmsav7_dregion);
407                 memset(env->pmsav8.rlar[M_REG_NS], 0,
408                        sizeof(*env->pmsav8.rlar[M_REG_NS])
409                        * cpu->pmsav7_dregion);
410                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
411                     memset(env->pmsav8.rbar[M_REG_S], 0,
412                            sizeof(*env->pmsav8.rbar[M_REG_S])
413                            * cpu->pmsav7_dregion);
414                     memset(env->pmsav8.rlar[M_REG_S], 0,
415                            sizeof(*env->pmsav8.rlar[M_REG_S])
416                            * cpu->pmsav7_dregion);
417                 }
418             } else if (arm_feature(env, ARM_FEATURE_V7)) {
419                 memset(env->pmsav7.drbar, 0,
420                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
421                 memset(env->pmsav7.drsr, 0,
422                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
423                 memset(env->pmsav7.dracr, 0,
424                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
425             }
426         }
427         env->pmsav7.rnr[M_REG_NS] = 0;
428         env->pmsav7.rnr[M_REG_S] = 0;
429         env->pmsav8.mair0[M_REG_NS] = 0;
430         env->pmsav8.mair0[M_REG_S] = 0;
431         env->pmsav8.mair1[M_REG_NS] = 0;
432         env->pmsav8.mair1[M_REG_S] = 0;
433     }
434 
435     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
436         if (cpu->sau_sregion > 0) {
437             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
438             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
439         }
440         env->sau.rnr = 0;
441         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
442          * the Cortex-M33 does.
443          */
444         env->sau.ctrl = 0;
445     }
446 
447     set_flush_to_zero(1, &env->vfp.standard_fp_status);
448     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
449     set_default_nan_mode(1, &env->vfp.standard_fp_status);
450     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
451     set_float_detect_tininess(float_tininess_before_rounding,
452                               &env->vfp.fp_status);
453     set_float_detect_tininess(float_tininess_before_rounding,
454                               &env->vfp.standard_fp_status);
455     set_float_detect_tininess(float_tininess_before_rounding,
456                               &env->vfp.fp_status_f16);
457     set_float_detect_tininess(float_tininess_before_rounding,
458                               &env->vfp.standard_fp_status_f16);
459 #ifndef CONFIG_USER_ONLY
460     if (kvm_enabled()) {
461         kvm_arm_reset_vcpu(cpu);
462     }
463 #endif
464 
465     hw_breakpoint_update_all(cpu);
466     hw_watchpoint_update_all(cpu);
467     arm_rebuild_hflags(env);
468 }
469 
470 #ifndef CONFIG_USER_ONLY
471 
472 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
473                                      unsigned int target_el,
474                                      unsigned int cur_el, bool secure,
475                                      uint64_t hcr_el2)
476 {
477     CPUARMState *env = cs->env_ptr;
478     bool pstate_unmasked;
479     bool unmasked = false;
480 
481     /*
482      * Don't take exceptions if they target a lower EL.
483      * This check should catch any exceptions that would not be taken
484      * but left pending.
485      */
486     if (cur_el > target_el) {
487         return false;
488     }
489 
490     switch (excp_idx) {
491     case EXCP_FIQ:
492         pstate_unmasked = !(env->daif & PSTATE_F);
493         break;
494 
495     case EXCP_IRQ:
496         pstate_unmasked = !(env->daif & PSTATE_I);
497         break;
498 
499     case EXCP_VFIQ:
500         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
501             /* VFIQs are only taken when hypervized.  */
502             return false;
503         }
504         return !(env->daif & PSTATE_F);
505     case EXCP_VIRQ:
506         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
507             /* VIRQs are only taken when hypervized.  */
508             return false;
509         }
510         return !(env->daif & PSTATE_I);
511     default:
512         g_assert_not_reached();
513     }
514 
515     /*
516      * Use the target EL, current execution state and SCR/HCR settings to
517      * determine whether the corresponding CPSR bit is used to mask the
518      * interrupt.
519      */
520     if ((target_el > cur_el) && (target_el != 1)) {
521         /* Exceptions targeting a higher EL may not be maskable */
522         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
523             /*
524              * 64-bit masking rules are simple: exceptions to EL3
525              * can't be masked, and exceptions to EL2 can only be
526              * masked from Secure state. The HCR and SCR settings
527              * don't affect the masking logic, only the interrupt routing.
528              */
529             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
530                 unmasked = true;
531             }
532         } else {
533             /*
534              * The old 32-bit-only environment has a more complicated
535              * masking setup. HCR and SCR bits not only affect interrupt
536              * routing but also change the behaviour of masking.
537              */
538             bool hcr, scr;
539 
540             switch (excp_idx) {
541             case EXCP_FIQ:
542                 /*
543                  * If FIQs are routed to EL3 or EL2 then there are cases where
544                  * we override the CPSR.F in determining if the exception is
545                  * masked or not. If neither of these are set then we fall back
546                  * to the CPSR.F setting otherwise we further assess the state
547                  * below.
548                  */
549                 hcr = hcr_el2 & HCR_FMO;
550                 scr = (env->cp15.scr_el3 & SCR_FIQ);
551 
552                 /*
553                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
554                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
555                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
556                  * when non-secure but only when FIQs are only routed to EL3.
557                  */
558                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
559                 break;
560             case EXCP_IRQ:
561                 /*
562                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
563                  * we may override the CPSR.I masking when in non-secure state.
564                  * The SCR.IRQ setting has already been taken into consideration
565                  * when setting the target EL, so it does not have a further
566                  * affect here.
567                  */
568                 hcr = hcr_el2 & HCR_IMO;
569                 scr = false;
570                 break;
571             default:
572                 g_assert_not_reached();
573             }
574 
575             if ((scr || hcr) && !secure) {
576                 unmasked = true;
577             }
578         }
579     }
580 
581     /*
582      * The PSTATE bits only mask the interrupt if we have not overriden the
583      * ability above.
584      */
585     return unmasked || pstate_unmasked;
586 }
587 
588 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
589 {
590     CPUClass *cc = CPU_GET_CLASS(cs);
591     CPUARMState *env = cs->env_ptr;
592     uint32_t cur_el = arm_current_el(env);
593     bool secure = arm_is_secure(env);
594     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
595     uint32_t target_el;
596     uint32_t excp_idx;
597 
598     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
599 
600     if (interrupt_request & CPU_INTERRUPT_FIQ) {
601         excp_idx = EXCP_FIQ;
602         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
603         if (arm_excp_unmasked(cs, excp_idx, target_el,
604                               cur_el, secure, hcr_el2)) {
605             goto found;
606         }
607     }
608     if (interrupt_request & CPU_INTERRUPT_HARD) {
609         excp_idx = EXCP_IRQ;
610         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
611         if (arm_excp_unmasked(cs, excp_idx, target_el,
612                               cur_el, secure, hcr_el2)) {
613             goto found;
614         }
615     }
616     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
617         excp_idx = EXCP_VIRQ;
618         target_el = 1;
619         if (arm_excp_unmasked(cs, excp_idx, target_el,
620                               cur_el, secure, hcr_el2)) {
621             goto found;
622         }
623     }
624     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
625         excp_idx = EXCP_VFIQ;
626         target_el = 1;
627         if (arm_excp_unmasked(cs, excp_idx, target_el,
628                               cur_el, secure, hcr_el2)) {
629             goto found;
630         }
631     }
632     return false;
633 
634  found:
635     cs->exception_index = excp_idx;
636     env->exception.target_el = target_el;
637     cc->tcg_ops->do_interrupt(cs);
638     return true;
639 }
640 #endif /* !CONFIG_USER_ONLY */
641 
642 void arm_cpu_update_virq(ARMCPU *cpu)
643 {
644     /*
645      * Update the interrupt level for VIRQ, which is the logical OR of
646      * the HCR_EL2.VI bit and the input line level from the GIC.
647      */
648     CPUARMState *env = &cpu->env;
649     CPUState *cs = CPU(cpu);
650 
651     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
652         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
653 
654     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
655         if (new_state) {
656             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
657         } else {
658             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
659         }
660     }
661 }
662 
663 void arm_cpu_update_vfiq(ARMCPU *cpu)
664 {
665     /*
666      * Update the interrupt level for VFIQ, which is the logical OR of
667      * the HCR_EL2.VF bit and the input line level from the GIC.
668      */
669     CPUARMState *env = &cpu->env;
670     CPUState *cs = CPU(cpu);
671 
672     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
673         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
674 
675     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
676         if (new_state) {
677             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
678         } else {
679             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
680         }
681     }
682 }
683 
684 #ifndef CONFIG_USER_ONLY
685 static void arm_cpu_set_irq(void *opaque, int irq, int level)
686 {
687     ARMCPU *cpu = opaque;
688     CPUARMState *env = &cpu->env;
689     CPUState *cs = CPU(cpu);
690     static const int mask[] = {
691         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
692         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
693         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
694         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
695     };
696 
697     if (level) {
698         env->irq_line_state |= mask[irq];
699     } else {
700         env->irq_line_state &= ~mask[irq];
701     }
702 
703     switch (irq) {
704     case ARM_CPU_VIRQ:
705         assert(arm_feature(env, ARM_FEATURE_EL2));
706         arm_cpu_update_virq(cpu);
707         break;
708     case ARM_CPU_VFIQ:
709         assert(arm_feature(env, ARM_FEATURE_EL2));
710         arm_cpu_update_vfiq(cpu);
711         break;
712     case ARM_CPU_IRQ:
713     case ARM_CPU_FIQ:
714         if (level) {
715             cpu_interrupt(cs, mask[irq]);
716         } else {
717             cpu_reset_interrupt(cs, mask[irq]);
718         }
719         break;
720     default:
721         g_assert_not_reached();
722     }
723 }
724 
725 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
726 {
727 #ifdef CONFIG_KVM
728     ARMCPU *cpu = opaque;
729     CPUARMState *env = &cpu->env;
730     CPUState *cs = CPU(cpu);
731     uint32_t linestate_bit;
732     int irq_id;
733 
734     switch (irq) {
735     case ARM_CPU_IRQ:
736         irq_id = KVM_ARM_IRQ_CPU_IRQ;
737         linestate_bit = CPU_INTERRUPT_HARD;
738         break;
739     case ARM_CPU_FIQ:
740         irq_id = KVM_ARM_IRQ_CPU_FIQ;
741         linestate_bit = CPU_INTERRUPT_FIQ;
742         break;
743     default:
744         g_assert_not_reached();
745     }
746 
747     if (level) {
748         env->irq_line_state |= linestate_bit;
749     } else {
750         env->irq_line_state &= ~linestate_bit;
751     }
752     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
753 #endif
754 }
755 
756 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
757 {
758     ARMCPU *cpu = ARM_CPU(cs);
759     CPUARMState *env = &cpu->env;
760 
761     cpu_synchronize_state(cs);
762     return arm_cpu_data_is_big_endian(env);
763 }
764 
765 #endif
766 
767 static int
768 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
769 {
770   return print_insn_arm(pc | 1, info);
771 }
772 
773 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
774 {
775     ARMCPU *ac = ARM_CPU(cpu);
776     CPUARMState *env = &ac->env;
777     bool sctlr_b;
778 
779     if (is_a64(env)) {
780         /* We might not be compiled with the A64 disassembler
781          * because it needs a C++ compiler. Leave print_insn
782          * unset in this case to use the caller default behaviour.
783          */
784 #if defined(CONFIG_ARM_A64_DIS)
785         info->print_insn = print_insn_arm_a64;
786 #endif
787         info->cap_arch = CS_ARCH_ARM64;
788         info->cap_insn_unit = 4;
789         info->cap_insn_split = 4;
790     } else {
791         int cap_mode;
792         if (env->thumb) {
793             info->print_insn = print_insn_thumb1;
794             info->cap_insn_unit = 2;
795             info->cap_insn_split = 4;
796             cap_mode = CS_MODE_THUMB;
797         } else {
798             info->print_insn = print_insn_arm;
799             info->cap_insn_unit = 4;
800             info->cap_insn_split = 4;
801             cap_mode = CS_MODE_ARM;
802         }
803         if (arm_feature(env, ARM_FEATURE_V8)) {
804             cap_mode |= CS_MODE_V8;
805         }
806         if (arm_feature(env, ARM_FEATURE_M)) {
807             cap_mode |= CS_MODE_MCLASS;
808         }
809         info->cap_arch = CS_ARCH_ARM;
810         info->cap_mode = cap_mode;
811     }
812 
813     sctlr_b = arm_sctlr_b(env);
814     if (bswap_code(sctlr_b)) {
815 #if TARGET_BIG_ENDIAN
816         info->endian = BFD_ENDIAN_LITTLE;
817 #else
818         info->endian = BFD_ENDIAN_BIG;
819 #endif
820     }
821     info->flags &= ~INSN_ARM_BE32;
822 #ifndef CONFIG_USER_ONLY
823     if (sctlr_b) {
824         info->flags |= INSN_ARM_BE32;
825     }
826 #endif
827 }
828 
829 #ifdef TARGET_AARCH64
830 
831 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
832 {
833     ARMCPU *cpu = ARM_CPU(cs);
834     CPUARMState *env = &cpu->env;
835     uint32_t psr = pstate_read(env);
836     int i;
837     int el = arm_current_el(env);
838     const char *ns_status;
839 
840     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
841     for (i = 0; i < 32; i++) {
842         if (i == 31) {
843             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
844         } else {
845             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
846                          (i + 2) % 3 ? " " : "\n");
847         }
848     }
849 
850     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
851         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
852     } else {
853         ns_status = "";
854     }
855     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
856                  psr,
857                  psr & PSTATE_N ? 'N' : '-',
858                  psr & PSTATE_Z ? 'Z' : '-',
859                  psr & PSTATE_C ? 'C' : '-',
860                  psr & PSTATE_V ? 'V' : '-',
861                  ns_status,
862                  el,
863                  psr & PSTATE_SP ? 'h' : 't');
864 
865     if (cpu_isar_feature(aa64_bti, cpu)) {
866         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
867     }
868     if (!(flags & CPU_DUMP_FPU)) {
869         qemu_fprintf(f, "\n");
870         return;
871     }
872     if (fp_exception_el(env, el) != 0) {
873         qemu_fprintf(f, "    FPU disabled\n");
874         return;
875     }
876     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
877                  vfp_get_fpcr(env), vfp_get_fpsr(env));
878 
879     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
880         int j, zcr_len = sve_zcr_len_for_el(env, el);
881 
882         for (i = 0; i <= FFR_PRED_NUM; i++) {
883             bool eol;
884             if (i == FFR_PRED_NUM) {
885                 qemu_fprintf(f, "FFR=");
886                 /* It's last, so end the line.  */
887                 eol = true;
888             } else {
889                 qemu_fprintf(f, "P%02d=", i);
890                 switch (zcr_len) {
891                 case 0:
892                     eol = i % 8 == 7;
893                     break;
894                 case 1:
895                     eol = i % 6 == 5;
896                     break;
897                 case 2:
898                 case 3:
899                     eol = i % 3 == 2;
900                     break;
901                 default:
902                     /* More than one quadword per predicate.  */
903                     eol = true;
904                     break;
905                 }
906             }
907             for (j = zcr_len / 4; j >= 0; j--) {
908                 int digits;
909                 if (j * 4 + 4 <= zcr_len + 1) {
910                     digits = 16;
911                 } else {
912                     digits = (zcr_len % 4 + 1) * 4;
913                 }
914                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
915                              env->vfp.pregs[i].p[j],
916                              j ? ":" : eol ? "\n" : " ");
917             }
918         }
919 
920         for (i = 0; i < 32; i++) {
921             if (zcr_len == 0) {
922                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
923                              i, env->vfp.zregs[i].d[1],
924                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
925             } else if (zcr_len == 1) {
926                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
927                              ":%016" PRIx64 ":%016" PRIx64 "\n",
928                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
929                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
930             } else {
931                 for (j = zcr_len; j >= 0; j--) {
932                     bool odd = (zcr_len - j) % 2 != 0;
933                     if (j == zcr_len) {
934                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
935                     } else if (!odd) {
936                         if (j > 0) {
937                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
938                         } else {
939                             qemu_fprintf(f, "     [%x]=", j);
940                         }
941                     }
942                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
943                                  env->vfp.zregs[i].d[j * 2 + 1],
944                                  env->vfp.zregs[i].d[j * 2],
945                                  odd || j == 0 ? "\n" : ":");
946                 }
947             }
948         }
949     } else {
950         for (i = 0; i < 32; i++) {
951             uint64_t *q = aa64_vfp_qreg(env, i);
952             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
953                          i, q[1], q[0], (i & 1 ? "\n" : " "));
954         }
955     }
956 }
957 
958 #else
959 
960 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
961 {
962     g_assert_not_reached();
963 }
964 
965 #endif
966 
967 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
968 {
969     ARMCPU *cpu = ARM_CPU(cs);
970     CPUARMState *env = &cpu->env;
971     int i;
972 
973     if (is_a64(env)) {
974         aarch64_cpu_dump_state(cs, f, flags);
975         return;
976     }
977 
978     for (i = 0; i < 16; i++) {
979         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
980         if ((i % 4) == 3) {
981             qemu_fprintf(f, "\n");
982         } else {
983             qemu_fprintf(f, " ");
984         }
985     }
986 
987     if (arm_feature(env, ARM_FEATURE_M)) {
988         uint32_t xpsr = xpsr_read(env);
989         const char *mode;
990         const char *ns_status = "";
991 
992         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
993             ns_status = env->v7m.secure ? "S " : "NS ";
994         }
995 
996         if (xpsr & XPSR_EXCP) {
997             mode = "handler";
998         } else {
999             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1000                 mode = "unpriv-thread";
1001             } else {
1002                 mode = "priv-thread";
1003             }
1004         }
1005 
1006         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1007                      xpsr,
1008                      xpsr & XPSR_N ? 'N' : '-',
1009                      xpsr & XPSR_Z ? 'Z' : '-',
1010                      xpsr & XPSR_C ? 'C' : '-',
1011                      xpsr & XPSR_V ? 'V' : '-',
1012                      xpsr & XPSR_T ? 'T' : 'A',
1013                      ns_status,
1014                      mode);
1015     } else {
1016         uint32_t psr = cpsr_read(env);
1017         const char *ns_status = "";
1018 
1019         if (arm_feature(env, ARM_FEATURE_EL3) &&
1020             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1021             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1022         }
1023 
1024         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1025                      psr,
1026                      psr & CPSR_N ? 'N' : '-',
1027                      psr & CPSR_Z ? 'Z' : '-',
1028                      psr & CPSR_C ? 'C' : '-',
1029                      psr & CPSR_V ? 'V' : '-',
1030                      psr & CPSR_T ? 'T' : 'A',
1031                      ns_status,
1032                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1033     }
1034 
1035     if (flags & CPU_DUMP_FPU) {
1036         int numvfpregs = 0;
1037         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1038             numvfpregs = 32;
1039         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1040             numvfpregs = 16;
1041         }
1042         for (i = 0; i < numvfpregs; i++) {
1043             uint64_t v = *aa32_vfp_dreg(env, i);
1044             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1045                          i * 2, (uint32_t)v,
1046                          i * 2 + 1, (uint32_t)(v >> 32),
1047                          i, v);
1048         }
1049         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1050         if (cpu_isar_feature(aa32_mve, cpu)) {
1051             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1052         }
1053     }
1054 }
1055 
1056 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1057 {
1058     uint32_t Aff1 = idx / clustersz;
1059     uint32_t Aff0 = idx % clustersz;
1060     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1061 }
1062 
1063 static void cpreg_hashtable_data_destroy(gpointer data)
1064 {
1065     /*
1066      * Destroy function for cpu->cp_regs hashtable data entries.
1067      * We must free the name string because it was g_strdup()ed in
1068      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1069      * from r->name because we know we definitely allocated it.
1070      */
1071     ARMCPRegInfo *r = data;
1072 
1073     g_free((void *)r->name);
1074     g_free(r);
1075 }
1076 
1077 static void arm_cpu_initfn(Object *obj)
1078 {
1079     ARMCPU *cpu = ARM_CPU(obj);
1080 
1081     cpu_set_cpustate_pointers(cpu);
1082     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1083                                          g_free, cpreg_hashtable_data_destroy);
1084 
1085     QLIST_INIT(&cpu->pre_el_change_hooks);
1086     QLIST_INIT(&cpu->el_change_hooks);
1087 
1088 #ifdef CONFIG_USER_ONLY
1089 # ifdef TARGET_AARCH64
1090     /*
1091      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1092      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1093      * our corresponding sve-default-vector-length cpu property.
1094      */
1095     cpu->sve_default_vq = 4;
1096 # endif
1097 #else
1098     /* Our inbound IRQ and FIQ lines */
1099     if (kvm_enabled()) {
1100         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1101          * the same interface as non-KVM CPUs.
1102          */
1103         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1104     } else {
1105         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1106     }
1107 
1108     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1109                        ARRAY_SIZE(cpu->gt_timer_outputs));
1110 
1111     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1112                              "gicv3-maintenance-interrupt", 1);
1113     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1114                              "pmu-interrupt", 1);
1115 #endif
1116 
1117     /* DTB consumers generally don't in fact care what the 'compatible'
1118      * string is, so always provide some string and trust that a hypothetical
1119      * picky DTB consumer will also provide a helpful error message.
1120      */
1121     cpu->dtb_compatible = "qemu,unknown";
1122     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1123     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1124 
1125     if (tcg_enabled() || hvf_enabled()) {
1126         /* TCG and HVF implement PSCI 1.1 */
1127         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1128     }
1129 }
1130 
1131 static Property arm_cpu_gt_cntfrq_property =
1132             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1133                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1134 
1135 static Property arm_cpu_reset_cbar_property =
1136             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1137 
1138 static Property arm_cpu_reset_hivecs_property =
1139             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1140 
1141 #ifndef CONFIG_USER_ONLY
1142 static Property arm_cpu_has_el2_property =
1143             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1144 
1145 static Property arm_cpu_has_el3_property =
1146             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1147 #endif
1148 
1149 static Property arm_cpu_cfgend_property =
1150             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1151 
1152 static Property arm_cpu_has_vfp_property =
1153             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1154 
1155 static Property arm_cpu_has_neon_property =
1156             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1157 
1158 static Property arm_cpu_has_dsp_property =
1159             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1160 
1161 static Property arm_cpu_has_mpu_property =
1162             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1163 
1164 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1165  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1166  * the right value for that particular CPU type, and we don't want
1167  * to override that with an incorrect constant value.
1168  */
1169 static Property arm_cpu_pmsav7_dregion_property =
1170             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1171                                            pmsav7_dregion,
1172                                            qdev_prop_uint32, uint32_t);
1173 
1174 static bool arm_get_pmu(Object *obj, Error **errp)
1175 {
1176     ARMCPU *cpu = ARM_CPU(obj);
1177 
1178     return cpu->has_pmu;
1179 }
1180 
1181 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1182 {
1183     ARMCPU *cpu = ARM_CPU(obj);
1184 
1185     if (value) {
1186         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1187             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1188             return;
1189         }
1190         set_feature(&cpu->env, ARM_FEATURE_PMU);
1191     } else {
1192         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1193     }
1194     cpu->has_pmu = value;
1195 }
1196 
1197 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1198 {
1199     /*
1200      * The exact approach to calculating guest ticks is:
1201      *
1202      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1203      *              NANOSECONDS_PER_SECOND);
1204      *
1205      * We don't do that. Rather we intentionally use integer division
1206      * truncation below and in the caller for the conversion of host monotonic
1207      * time to guest ticks to provide the exact inverse for the semantics of
1208      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1209      * it loses precision when representing frequencies where
1210      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1211      * provide an exact inverse leads to scheduling timers with negative
1212      * periods, which in turn leads to sticky behaviour in the guest.
1213      *
1214      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1215      * cannot become zero.
1216      */
1217     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1218       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1219 }
1220 
1221 void arm_cpu_post_init(Object *obj)
1222 {
1223     ARMCPU *cpu = ARM_CPU(obj);
1224 
1225     /* M profile implies PMSA. We have to do this here rather than
1226      * in realize with the other feature-implication checks because
1227      * we look at the PMSA bit to see if we should add some properties.
1228      */
1229     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1230         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1231     }
1232 
1233     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1234         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1235         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1236     }
1237 
1238     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1239         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1240     }
1241 
1242     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1243         object_property_add_uint64_ptr(obj, "rvbar",
1244                                        &cpu->rvbar_prop,
1245                                        OBJ_PROP_FLAG_READWRITE);
1246     }
1247 
1248 #ifndef CONFIG_USER_ONLY
1249     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1250         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1251          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1252          */
1253         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1254 
1255         object_property_add_link(obj, "secure-memory",
1256                                  TYPE_MEMORY_REGION,
1257                                  (Object **)&cpu->secure_memory,
1258                                  qdev_prop_allow_set_link_before_realize,
1259                                  OBJ_PROP_LINK_STRONG);
1260     }
1261 
1262     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1263         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1264     }
1265 #endif
1266 
1267     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1268         cpu->has_pmu = true;
1269         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1270     }
1271 
1272     /*
1273      * Allow user to turn off VFP and Neon support, but only for TCG --
1274      * KVM does not currently allow us to lie to the guest about its
1275      * ID/feature registers, so the guest always sees what the host has.
1276      */
1277     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1278         ? cpu_isar_feature(aa64_fp_simd, cpu)
1279         : cpu_isar_feature(aa32_vfp, cpu)) {
1280         cpu->has_vfp = true;
1281         if (!kvm_enabled()) {
1282             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1283         }
1284     }
1285 
1286     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1287         cpu->has_neon = true;
1288         if (!kvm_enabled()) {
1289             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1290         }
1291     }
1292 
1293     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1294         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1295         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1296     }
1297 
1298     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1299         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1300         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1301             qdev_property_add_static(DEVICE(obj),
1302                                      &arm_cpu_pmsav7_dregion_property);
1303         }
1304     }
1305 
1306     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1307         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1308                                  qdev_prop_allow_set_link_before_realize,
1309                                  OBJ_PROP_LINK_STRONG);
1310         /*
1311          * M profile: initial value of the Secure VTOR. We can't just use
1312          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1313          * the property to be set after realize.
1314          */
1315         object_property_add_uint32_ptr(obj, "init-svtor",
1316                                        &cpu->init_svtor,
1317                                        OBJ_PROP_FLAG_READWRITE);
1318     }
1319     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1320         /*
1321          * Initial value of the NS VTOR (for cores without the Security
1322          * extension, this is the only VTOR)
1323          */
1324         object_property_add_uint32_ptr(obj, "init-nsvtor",
1325                                        &cpu->init_nsvtor,
1326                                        OBJ_PROP_FLAG_READWRITE);
1327     }
1328 
1329     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1330     object_property_add_uint32_ptr(obj, "psci-conduit",
1331                                    &cpu->psci_conduit,
1332                                    OBJ_PROP_FLAG_READWRITE);
1333 
1334     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1335 
1336     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1337         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1338     }
1339 
1340     if (kvm_enabled()) {
1341         kvm_arm_add_vcpu_properties(obj);
1342     }
1343 
1344 #ifndef CONFIG_USER_ONLY
1345     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1346         cpu_isar_feature(aa64_mte, cpu)) {
1347         object_property_add_link(obj, "tag-memory",
1348                                  TYPE_MEMORY_REGION,
1349                                  (Object **)&cpu->tag_memory,
1350                                  qdev_prop_allow_set_link_before_realize,
1351                                  OBJ_PROP_LINK_STRONG);
1352 
1353         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1354             object_property_add_link(obj, "secure-tag-memory",
1355                                      TYPE_MEMORY_REGION,
1356                                      (Object **)&cpu->secure_tag_memory,
1357                                      qdev_prop_allow_set_link_before_realize,
1358                                      OBJ_PROP_LINK_STRONG);
1359         }
1360     }
1361 #endif
1362 }
1363 
1364 static void arm_cpu_finalizefn(Object *obj)
1365 {
1366     ARMCPU *cpu = ARM_CPU(obj);
1367     ARMELChangeHook *hook, *next;
1368 
1369     g_hash_table_destroy(cpu->cp_regs);
1370 
1371     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1372         QLIST_REMOVE(hook, node);
1373         g_free(hook);
1374     }
1375     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1376         QLIST_REMOVE(hook, node);
1377         g_free(hook);
1378     }
1379 #ifndef CONFIG_USER_ONLY
1380     if (cpu->pmu_timer) {
1381         timer_free(cpu->pmu_timer);
1382     }
1383 #endif
1384 }
1385 
1386 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1387 {
1388     Error *local_err = NULL;
1389 
1390     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1391         arm_cpu_sve_finalize(cpu, &local_err);
1392         if (local_err != NULL) {
1393             error_propagate(errp, local_err);
1394             return;
1395         }
1396 
1397         arm_cpu_pauth_finalize(cpu, &local_err);
1398         if (local_err != NULL) {
1399             error_propagate(errp, local_err);
1400             return;
1401         }
1402 
1403         arm_cpu_lpa2_finalize(cpu, &local_err);
1404         if (local_err != NULL) {
1405             error_propagate(errp, local_err);
1406             return;
1407         }
1408     }
1409 
1410     if (kvm_enabled()) {
1411         kvm_arm_steal_time_finalize(cpu, &local_err);
1412         if (local_err != NULL) {
1413             error_propagate(errp, local_err);
1414             return;
1415         }
1416     }
1417 }
1418 
1419 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1420 {
1421     CPUState *cs = CPU(dev);
1422     ARMCPU *cpu = ARM_CPU(dev);
1423     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1424     CPUARMState *env = &cpu->env;
1425     int pagebits;
1426     Error *local_err = NULL;
1427     bool no_aa32 = false;
1428 
1429     /* If we needed to query the host kernel for the CPU features
1430      * then it's possible that might have failed in the initfn, but
1431      * this is the first point where we can report it.
1432      */
1433     if (cpu->host_cpu_probe_failed) {
1434         if (!kvm_enabled() && !hvf_enabled()) {
1435             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1436         } else {
1437             error_setg(errp, "Failed to retrieve host CPU features");
1438         }
1439         return;
1440     }
1441 
1442 #ifndef CONFIG_USER_ONLY
1443     /* The NVIC and M-profile CPU are two halves of a single piece of
1444      * hardware; trying to use one without the other is a command line
1445      * error and will result in segfaults if not caught here.
1446      */
1447     if (arm_feature(env, ARM_FEATURE_M)) {
1448         if (!env->nvic) {
1449             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1450             return;
1451         }
1452     } else {
1453         if (env->nvic) {
1454             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1455             return;
1456         }
1457     }
1458 
1459     if (kvm_enabled()) {
1460         /*
1461          * Catch all the cases which might cause us to create more than one
1462          * address space for the CPU (otherwise we will assert() later in
1463          * cpu_address_space_init()).
1464          */
1465         if (arm_feature(env, ARM_FEATURE_M)) {
1466             error_setg(errp,
1467                        "Cannot enable KVM when using an M-profile guest CPU");
1468             return;
1469         }
1470         if (cpu->has_el3) {
1471             error_setg(errp,
1472                        "Cannot enable KVM when guest CPU has EL3 enabled");
1473             return;
1474         }
1475         if (cpu->tag_memory) {
1476             error_setg(errp,
1477                        "Cannot enable KVM when guest CPUs has MTE enabled");
1478             return;
1479         }
1480     }
1481 
1482     {
1483         uint64_t scale;
1484 
1485         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1486             if (!cpu->gt_cntfrq_hz) {
1487                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1488                            cpu->gt_cntfrq_hz);
1489                 return;
1490             }
1491             scale = gt_cntfrq_period_ns(cpu);
1492         } else {
1493             scale = GTIMER_SCALE;
1494         }
1495 
1496         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1497                                                arm_gt_ptimer_cb, cpu);
1498         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1499                                                arm_gt_vtimer_cb, cpu);
1500         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1501                                               arm_gt_htimer_cb, cpu);
1502         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1503                                               arm_gt_stimer_cb, cpu);
1504         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1505                                                   arm_gt_hvtimer_cb, cpu);
1506     }
1507 #endif
1508 
1509     cpu_exec_realizefn(cs, &local_err);
1510     if (local_err != NULL) {
1511         error_propagate(errp, local_err);
1512         return;
1513     }
1514 
1515     arm_cpu_finalize_features(cpu, &local_err);
1516     if (local_err != NULL) {
1517         error_propagate(errp, local_err);
1518         return;
1519     }
1520 
1521     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1522         cpu->has_vfp != cpu->has_neon) {
1523         /*
1524          * This is an architectural requirement for AArch64; AArch32 is
1525          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1526          */
1527         error_setg(errp,
1528                    "AArch64 CPUs must have both VFP and Neon or neither");
1529         return;
1530     }
1531 
1532     if (!cpu->has_vfp) {
1533         uint64_t t;
1534         uint32_t u;
1535 
1536         t = cpu->isar.id_aa64isar1;
1537         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1538         cpu->isar.id_aa64isar1 = t;
1539 
1540         t = cpu->isar.id_aa64pfr0;
1541         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1542         cpu->isar.id_aa64pfr0 = t;
1543 
1544         u = cpu->isar.id_isar6;
1545         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1546         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1547         cpu->isar.id_isar6 = u;
1548 
1549         u = cpu->isar.mvfr0;
1550         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1551         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1552         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1553         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1554         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1555         if (!arm_feature(env, ARM_FEATURE_M)) {
1556             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1557             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1558         }
1559         cpu->isar.mvfr0 = u;
1560 
1561         u = cpu->isar.mvfr1;
1562         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1563         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1564         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1565         if (arm_feature(env, ARM_FEATURE_M)) {
1566             u = FIELD_DP32(u, MVFR1, FP16, 0);
1567         }
1568         cpu->isar.mvfr1 = u;
1569 
1570         u = cpu->isar.mvfr2;
1571         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1572         cpu->isar.mvfr2 = u;
1573     }
1574 
1575     if (!cpu->has_neon) {
1576         uint64_t t;
1577         uint32_t u;
1578 
1579         unset_feature(env, ARM_FEATURE_NEON);
1580 
1581         t = cpu->isar.id_aa64isar0;
1582         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1583         cpu->isar.id_aa64isar0 = t;
1584 
1585         t = cpu->isar.id_aa64isar1;
1586         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1587         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1588         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1589         cpu->isar.id_aa64isar1 = t;
1590 
1591         t = cpu->isar.id_aa64pfr0;
1592         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1593         cpu->isar.id_aa64pfr0 = t;
1594 
1595         u = cpu->isar.id_isar5;
1596         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1597         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1598         cpu->isar.id_isar5 = u;
1599 
1600         u = cpu->isar.id_isar6;
1601         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1602         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1603         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1604         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1605         cpu->isar.id_isar6 = u;
1606 
1607         if (!arm_feature(env, ARM_FEATURE_M)) {
1608             u = cpu->isar.mvfr1;
1609             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1610             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1611             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1612             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1613             cpu->isar.mvfr1 = u;
1614 
1615             u = cpu->isar.mvfr2;
1616             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1617             cpu->isar.mvfr2 = u;
1618         }
1619     }
1620 
1621     if (!cpu->has_neon && !cpu->has_vfp) {
1622         uint64_t t;
1623         uint32_t u;
1624 
1625         t = cpu->isar.id_aa64isar0;
1626         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1627         cpu->isar.id_aa64isar0 = t;
1628 
1629         t = cpu->isar.id_aa64isar1;
1630         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1631         cpu->isar.id_aa64isar1 = t;
1632 
1633         u = cpu->isar.mvfr0;
1634         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1635         cpu->isar.mvfr0 = u;
1636 
1637         /* Despite the name, this field covers both VFP and Neon */
1638         u = cpu->isar.mvfr1;
1639         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1640         cpu->isar.mvfr1 = u;
1641     }
1642 
1643     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1644         uint32_t u;
1645 
1646         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1647 
1648         u = cpu->isar.id_isar1;
1649         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1650         cpu->isar.id_isar1 = u;
1651 
1652         u = cpu->isar.id_isar2;
1653         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1654         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1655         cpu->isar.id_isar2 = u;
1656 
1657         u = cpu->isar.id_isar3;
1658         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1659         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1660         cpu->isar.id_isar3 = u;
1661     }
1662 
1663     /* Some features automatically imply others: */
1664     if (arm_feature(env, ARM_FEATURE_V8)) {
1665         if (arm_feature(env, ARM_FEATURE_M)) {
1666             set_feature(env, ARM_FEATURE_V7);
1667         } else {
1668             set_feature(env, ARM_FEATURE_V7VE);
1669         }
1670     }
1671 
1672     /*
1673      * There exist AArch64 cpus without AArch32 support.  When KVM
1674      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1675      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1676      * As a general principle, we also do not make ID register
1677      * consistency checks anywhere unless using TCG, because only
1678      * for TCG would a consistency-check failure be a QEMU bug.
1679      */
1680     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1681         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1682     }
1683 
1684     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1685         /* v7 Virtualization Extensions. In real hardware this implies
1686          * EL2 and also the presence of the Security Extensions.
1687          * For QEMU, for backwards-compatibility we implement some
1688          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1689          * include the various other features that V7VE implies.
1690          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1691          * Security Extensions is ARM_FEATURE_EL3.
1692          */
1693         assert(!tcg_enabled() || no_aa32 ||
1694                cpu_isar_feature(aa32_arm_div, cpu));
1695         set_feature(env, ARM_FEATURE_LPAE);
1696         set_feature(env, ARM_FEATURE_V7);
1697     }
1698     if (arm_feature(env, ARM_FEATURE_V7)) {
1699         set_feature(env, ARM_FEATURE_VAPA);
1700         set_feature(env, ARM_FEATURE_THUMB2);
1701         set_feature(env, ARM_FEATURE_MPIDR);
1702         if (!arm_feature(env, ARM_FEATURE_M)) {
1703             set_feature(env, ARM_FEATURE_V6K);
1704         } else {
1705             set_feature(env, ARM_FEATURE_V6);
1706         }
1707 
1708         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1709          * non-EL3 configs. This is needed by some legacy boards.
1710          */
1711         set_feature(env, ARM_FEATURE_VBAR);
1712     }
1713     if (arm_feature(env, ARM_FEATURE_V6K)) {
1714         set_feature(env, ARM_FEATURE_V6);
1715         set_feature(env, ARM_FEATURE_MVFR);
1716     }
1717     if (arm_feature(env, ARM_FEATURE_V6)) {
1718         set_feature(env, ARM_FEATURE_V5);
1719         if (!arm_feature(env, ARM_FEATURE_M)) {
1720             assert(!tcg_enabled() || no_aa32 ||
1721                    cpu_isar_feature(aa32_jazelle, cpu));
1722             set_feature(env, ARM_FEATURE_AUXCR);
1723         }
1724     }
1725     if (arm_feature(env, ARM_FEATURE_V5)) {
1726         set_feature(env, ARM_FEATURE_V4T);
1727     }
1728     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1729         set_feature(env, ARM_FEATURE_V7MP);
1730     }
1731     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1732         set_feature(env, ARM_FEATURE_CBAR);
1733     }
1734     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1735         !arm_feature(env, ARM_FEATURE_M)) {
1736         set_feature(env, ARM_FEATURE_THUMB_DSP);
1737     }
1738 
1739     /*
1740      * We rely on no XScale CPU having VFP so we can use the same bits in the
1741      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1742      */
1743     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1744            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1745            !arm_feature(env, ARM_FEATURE_XSCALE));
1746 
1747     if (arm_feature(env, ARM_FEATURE_V7) &&
1748         !arm_feature(env, ARM_FEATURE_M) &&
1749         !arm_feature(env, ARM_FEATURE_PMSA)) {
1750         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1751          * can use 4K pages.
1752          */
1753         pagebits = 12;
1754     } else {
1755         /* For CPUs which might have tiny 1K pages, or which have an
1756          * MPU and might have small region sizes, stick with 1K pages.
1757          */
1758         pagebits = 10;
1759     }
1760     if (!set_preferred_target_page_bits(pagebits)) {
1761         /* This can only ever happen for hotplugging a CPU, or if
1762          * the board code incorrectly creates a CPU which it has
1763          * promised via minimum_page_size that it will not.
1764          */
1765         error_setg(errp, "This CPU requires a smaller page size than the "
1766                    "system is using");
1767         return;
1768     }
1769 
1770     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1771      * We don't support setting cluster ID ([16..23]) (known as Aff2
1772      * in later ARM ARM versions), or any of the higher affinity level fields,
1773      * so these bits always RAZ.
1774      */
1775     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1776         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1777                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1778     }
1779 
1780     if (cpu->reset_hivecs) {
1781             cpu->reset_sctlr |= (1 << 13);
1782     }
1783 
1784     if (cpu->cfgend) {
1785         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1786             cpu->reset_sctlr |= SCTLR_EE;
1787         } else {
1788             cpu->reset_sctlr |= SCTLR_B;
1789         }
1790     }
1791 
1792     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1793         /* If the has_el3 CPU property is disabled then we need to disable the
1794          * feature.
1795          */
1796         unset_feature(env, ARM_FEATURE_EL3);
1797 
1798         /* Disable the security extension feature bits in the processor feature
1799          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1800          */
1801         cpu->isar.id_pfr1 &= ~0xf0;
1802         cpu->isar.id_aa64pfr0 &= ~0xf000;
1803     }
1804 
1805     if (!cpu->has_el2) {
1806         unset_feature(env, ARM_FEATURE_EL2);
1807     }
1808 
1809     if (!cpu->has_pmu) {
1810         unset_feature(env, ARM_FEATURE_PMU);
1811     }
1812     if (arm_feature(env, ARM_FEATURE_PMU)) {
1813         pmu_init(cpu);
1814 
1815         if (!kvm_enabled()) {
1816             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1817             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1818         }
1819 
1820 #ifndef CONFIG_USER_ONLY
1821         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1822                 cpu);
1823 #endif
1824     } else {
1825         cpu->isar.id_aa64dfr0 =
1826             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1827         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1828         cpu->pmceid0 = 0;
1829         cpu->pmceid1 = 0;
1830     }
1831 
1832     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1833         /* Disable the hypervisor feature bits in the processor feature
1834          * registers if we don't have EL2. These are id_pfr1[15:12] and
1835          * id_aa64pfr0_el1[11:8].
1836          */
1837         cpu->isar.id_aa64pfr0 &= ~0xf00;
1838         cpu->isar.id_pfr1 &= ~0xf000;
1839     }
1840 
1841 #ifndef CONFIG_USER_ONLY
1842     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1843         /*
1844          * Disable the MTE feature bits if we do not have tag-memory
1845          * provided by the machine.
1846          */
1847         cpu->isar.id_aa64pfr1 =
1848             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1849     }
1850 #endif
1851 
1852     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1853      * to false or by setting pmsav7-dregion to 0.
1854      */
1855     if (!cpu->has_mpu) {
1856         cpu->pmsav7_dregion = 0;
1857     }
1858     if (cpu->pmsav7_dregion == 0) {
1859         cpu->has_mpu = false;
1860     }
1861 
1862     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1863         arm_feature(env, ARM_FEATURE_V7)) {
1864         uint32_t nr = cpu->pmsav7_dregion;
1865 
1866         if (nr > 0xff) {
1867             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1868             return;
1869         }
1870 
1871         if (nr) {
1872             if (arm_feature(env, ARM_FEATURE_V8)) {
1873                 /* PMSAv8 */
1874                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1875                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1876                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1877                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1878                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1879                 }
1880             } else {
1881                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1882                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1883                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1884             }
1885         }
1886     }
1887 
1888     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1889         uint32_t nr = cpu->sau_sregion;
1890 
1891         if (nr > 0xff) {
1892             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1893             return;
1894         }
1895 
1896         if (nr) {
1897             env->sau.rbar = g_new0(uint32_t, nr);
1898             env->sau.rlar = g_new0(uint32_t, nr);
1899         }
1900     }
1901 
1902     if (arm_feature(env, ARM_FEATURE_EL3)) {
1903         set_feature(env, ARM_FEATURE_VBAR);
1904     }
1905 
1906     register_cp_regs_for_features(cpu);
1907     arm_cpu_register_gdb_regs_for_features(cpu);
1908 
1909     init_cpreg_list(cpu);
1910 
1911 #ifndef CONFIG_USER_ONLY
1912     MachineState *ms = MACHINE(qdev_get_machine());
1913     unsigned int smp_cpus = ms->smp.cpus;
1914     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1915 
1916     /*
1917      * We must set cs->num_ases to the final value before
1918      * the first call to cpu_address_space_init.
1919      */
1920     if (cpu->tag_memory != NULL) {
1921         cs->num_ases = 3 + has_secure;
1922     } else {
1923         cs->num_ases = 1 + has_secure;
1924     }
1925 
1926     if (has_secure) {
1927         if (!cpu->secure_memory) {
1928             cpu->secure_memory = cs->memory;
1929         }
1930         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1931                                cpu->secure_memory);
1932     }
1933 
1934     if (cpu->tag_memory != NULL) {
1935         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1936                                cpu->tag_memory);
1937         if (has_secure) {
1938             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1939                                    cpu->secure_tag_memory);
1940         }
1941     }
1942 
1943     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1944 
1945     /* No core_count specified, default to smp_cpus. */
1946     if (cpu->core_count == -1) {
1947         cpu->core_count = smp_cpus;
1948     }
1949 #endif
1950 
1951     if (tcg_enabled()) {
1952         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1953 
1954         /*
1955          * We only support DCZ blocklen that fits on one page.
1956          *
1957          * Architectually this is always true.  However TARGET_PAGE_SIZE
1958          * is variable and, for compatibility with -machine virt-2.7,
1959          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1960          * But even then, while the largest architectural DCZ blocklen
1961          * is 2KiB, no cpu actually uses such a large blocklen.
1962          */
1963         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1964 
1965         /*
1966          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1967          * both nibbles of each byte storing tag data may be written at once.
1968          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1969          */
1970         if (cpu_isar_feature(aa64_mte, cpu)) {
1971             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1972         }
1973     }
1974 
1975     qemu_init_vcpu(cs);
1976     cpu_reset(cs);
1977 
1978     acc->parent_realize(dev, errp);
1979 }
1980 
1981 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1982 {
1983     ObjectClass *oc;
1984     char *typename;
1985     char **cpuname;
1986     const char *cpunamestr;
1987 
1988     cpuname = g_strsplit(cpu_model, ",", 1);
1989     cpunamestr = cpuname[0];
1990 #ifdef CONFIG_USER_ONLY
1991     /* For backwards compatibility usermode emulation allows "-cpu any",
1992      * which has the same semantics as "-cpu max".
1993      */
1994     if (!strcmp(cpunamestr, "any")) {
1995         cpunamestr = "max";
1996     }
1997 #endif
1998     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1999     oc = object_class_by_name(typename);
2000     g_strfreev(cpuname);
2001     g_free(typename);
2002     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2003         object_class_is_abstract(oc)) {
2004         return NULL;
2005     }
2006     return oc;
2007 }
2008 
2009 static Property arm_cpu_properties[] = {
2010     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2011     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2012                         mp_affinity, ARM64_AFFINITY_INVALID),
2013     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2014     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2015     DEFINE_PROP_END_OF_LIST()
2016 };
2017 
2018 static gchar *arm_gdb_arch_name(CPUState *cs)
2019 {
2020     ARMCPU *cpu = ARM_CPU(cs);
2021     CPUARMState *env = &cpu->env;
2022 
2023     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2024         return g_strdup("iwmmxt");
2025     }
2026     return g_strdup("arm");
2027 }
2028 
2029 #ifndef CONFIG_USER_ONLY
2030 #include "hw/core/sysemu-cpu-ops.h"
2031 
2032 static const struct SysemuCPUOps arm_sysemu_ops = {
2033     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2034     .asidx_from_attrs = arm_asidx_from_attrs,
2035     .write_elf32_note = arm_cpu_write_elf32_note,
2036     .write_elf64_note = arm_cpu_write_elf64_note,
2037     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2038     .legacy_vmsd = &vmstate_arm_cpu,
2039 };
2040 #endif
2041 
2042 #ifdef CONFIG_TCG
2043 static const struct TCGCPUOps arm_tcg_ops = {
2044     .initialize = arm_translate_init,
2045     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2046     .debug_excp_handler = arm_debug_excp_handler,
2047 
2048 #ifdef CONFIG_USER_ONLY
2049     .record_sigsegv = arm_cpu_record_sigsegv,
2050     .record_sigbus = arm_cpu_record_sigbus,
2051 #else
2052     .tlb_fill = arm_cpu_tlb_fill,
2053     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2054     .do_interrupt = arm_cpu_do_interrupt,
2055     .do_transaction_failed = arm_cpu_do_transaction_failed,
2056     .do_unaligned_access = arm_cpu_do_unaligned_access,
2057     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2058     .debug_check_watchpoint = arm_debug_check_watchpoint,
2059     .debug_check_breakpoint = arm_debug_check_breakpoint,
2060 #endif /* !CONFIG_USER_ONLY */
2061 };
2062 #endif /* CONFIG_TCG */
2063 
2064 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2065 {
2066     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2067     CPUClass *cc = CPU_CLASS(acc);
2068     DeviceClass *dc = DEVICE_CLASS(oc);
2069 
2070     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2071                                     &acc->parent_realize);
2072 
2073     device_class_set_props(dc, arm_cpu_properties);
2074     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2075 
2076     cc->class_by_name = arm_cpu_class_by_name;
2077     cc->has_work = arm_cpu_has_work;
2078     cc->dump_state = arm_cpu_dump_state;
2079     cc->set_pc = arm_cpu_set_pc;
2080     cc->gdb_read_register = arm_cpu_gdb_read_register;
2081     cc->gdb_write_register = arm_cpu_gdb_write_register;
2082 #ifndef CONFIG_USER_ONLY
2083     cc->sysemu_ops = &arm_sysemu_ops;
2084 #endif
2085     cc->gdb_num_core_regs = 26;
2086     cc->gdb_core_xml_file = "arm-core.xml";
2087     cc->gdb_arch_name = arm_gdb_arch_name;
2088     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2089     cc->gdb_stop_before_watchpoint = true;
2090     cc->disas_set_info = arm_disas_set_info;
2091 
2092 #ifdef CONFIG_TCG
2093     cc->tcg_ops = &arm_tcg_ops;
2094 #endif /* CONFIG_TCG */
2095 }
2096 
2097 static void arm_cpu_instance_init(Object *obj)
2098 {
2099     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2100 
2101     acc->info->initfn(obj);
2102     arm_cpu_post_init(obj);
2103 }
2104 
2105 static void cpu_register_class_init(ObjectClass *oc, void *data)
2106 {
2107     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2108 
2109     acc->info = data;
2110 }
2111 
2112 void arm_cpu_register(const ARMCPUInfo *info)
2113 {
2114     TypeInfo type_info = {
2115         .parent = TYPE_ARM_CPU,
2116         .instance_size = sizeof(ARMCPU),
2117         .instance_align = __alignof__(ARMCPU),
2118         .instance_init = arm_cpu_instance_init,
2119         .class_size = sizeof(ARMCPUClass),
2120         .class_init = info->class_init ?: cpu_register_class_init,
2121         .class_data = (void *)info,
2122     };
2123 
2124     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2125     type_register(&type_info);
2126     g_free((void *)type_info.name);
2127 }
2128 
2129 static const TypeInfo arm_cpu_type_info = {
2130     .name = TYPE_ARM_CPU,
2131     .parent = TYPE_CPU,
2132     .instance_size = sizeof(ARMCPU),
2133     .instance_align = __alignof__(ARMCPU),
2134     .instance_init = arm_cpu_initfn,
2135     .instance_finalize = arm_cpu_finalizefn,
2136     .abstract = true,
2137     .class_size = sizeof(ARMCPUClass),
2138     .class_init = arm_cpu_class_init,
2139 };
2140 
2141 static void arm_cpu_register_types(void)
2142 {
2143     type_register_static(&arm_cpu_type_info);
2144 }
2145 
2146 type_init(arm_cpu_register_types)
2147