xref: /openbmc/qemu/target/arm/cpu.c (revision 5cc8767d)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #endif
35 #include "sysemu/sysemu.h"
36 #include "sysemu/tcg.h"
37 #include "sysemu/hw_accel.h"
38 #include "kvm_arm.h"
39 #include "disas/capstone.h"
40 #include "fpu/softfloat.h"
41 
42 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
43 {
44     ARMCPU *cpu = ARM_CPU(cs);
45     CPUARMState *env = &cpu->env;
46 
47     if (is_a64(env)) {
48         env->pc = value;
49         env->thumb = 0;
50     } else {
51         env->regs[15] = value & ~1;
52         env->thumb = value & 1;
53     }
54 }
55 
56 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
57 {
58     ARMCPU *cpu = ARM_CPU(cs);
59     CPUARMState *env = &cpu->env;
60 
61     /*
62      * It's OK to look at env for the current mode here, because it's
63      * never possible for an AArch64 TB to chain to an AArch32 TB.
64      */
65     if (is_a64(env)) {
66         env->pc = tb->pc;
67     } else {
68         env->regs[15] = tb->pc;
69     }
70 }
71 
72 static bool arm_cpu_has_work(CPUState *cs)
73 {
74     ARMCPU *cpu = ARM_CPU(cs);
75 
76     return (cpu->power_state != PSCI_OFF)
77         && cs->interrupt_request &
78         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
79          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
80          | CPU_INTERRUPT_EXITTB);
81 }
82 
83 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
84                                  void *opaque)
85 {
86     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
87 
88     entry->hook = hook;
89     entry->opaque = opaque;
90 
91     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
92 }
93 
94 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
95                                  void *opaque)
96 {
97     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
98 
99     entry->hook = hook;
100     entry->opaque = opaque;
101 
102     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
103 }
104 
105 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
106 {
107     /* Reset a single ARMCPRegInfo register */
108     ARMCPRegInfo *ri = value;
109     ARMCPU *cpu = opaque;
110 
111     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
112         return;
113     }
114 
115     if (ri->resetfn) {
116         ri->resetfn(&cpu->env, ri);
117         return;
118     }
119 
120     /* A zero offset is never possible as it would be regs[0]
121      * so we use it to indicate that reset is being handled elsewhere.
122      * This is basically only used for fields in non-core coprocessors
123      * (like the pxa2xx ones).
124      */
125     if (!ri->fieldoffset) {
126         return;
127     }
128 
129     if (cpreg_field_is_64bit(ri)) {
130         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
131     } else {
132         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
133     }
134 }
135 
136 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
137 {
138     /* Purely an assertion check: we've already done reset once,
139      * so now check that running the reset for the cpreg doesn't
140      * change its value. This traps bugs where two different cpregs
141      * both try to reset the same state field but to different values.
142      */
143     ARMCPRegInfo *ri = value;
144     ARMCPU *cpu = opaque;
145     uint64_t oldvalue, newvalue;
146 
147     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
148         return;
149     }
150 
151     oldvalue = read_raw_cp_reg(&cpu->env, ri);
152     cp_reg_reset(key, value, opaque);
153     newvalue = read_raw_cp_reg(&cpu->env, ri);
154     assert(oldvalue == newvalue);
155 }
156 
157 /* CPUClass::reset() */
158 static void arm_cpu_reset(CPUState *s)
159 {
160     ARMCPU *cpu = ARM_CPU(s);
161     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
162     CPUARMState *env = &cpu->env;
163 
164     acc->parent_reset(s);
165 
166     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
167 
168     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
170 
171     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
172     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
173     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
174     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
175 
176     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
177     s->halted = cpu->start_powered_off;
178 
179     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
180         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
181     }
182 
183     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
184         /* 64 bit CPUs always start in 64 bit mode */
185         env->aarch64 = 1;
186 #if defined(CONFIG_USER_ONLY)
187         env->pstate = PSTATE_MODE_EL0t;
188         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
190         /* Enable all PAC keys.  */
191         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
192                                   SCTLR_EnDA | SCTLR_EnDB);
193         /* Enable all PAC instructions */
194         env->cp15.hcr_el2 |= HCR_API;
195         env->cp15.scr_el3 |= SCR_API;
196         /* and to the FP/Neon instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
198         /* and to the SVE instructions */
199         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
200         env->cp15.cptr_el[3] |= CPTR_EZ;
201         /* with maximum vector length */
202         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
203         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
204         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
205         /*
206          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
207          * turning on both here will produce smaller code and otherwise
208          * make no difference to the user-level emulation.
209          */
210         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
211 #else
212         /* Reset into the highest available EL */
213         if (arm_feature(env, ARM_FEATURE_EL3)) {
214             env->pstate = PSTATE_MODE_EL3h;
215         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
216             env->pstate = PSTATE_MODE_EL2h;
217         } else {
218             env->pstate = PSTATE_MODE_EL1h;
219         }
220         env->pc = cpu->rvbar;
221 #endif
222     } else {
223 #if defined(CONFIG_USER_ONLY)
224         /* Userspace expects access to cp10 and cp11 for FP/Neon */
225         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
226 #endif
227     }
228 
229 #if defined(CONFIG_USER_ONLY)
230     env->uncached_cpsr = ARM_CPU_MODE_USR;
231     /* For user mode we must enable access to coprocessors */
232     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
233     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234         env->cp15.c15_cpar = 3;
235     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
236         env->cp15.c15_cpar = 1;
237     }
238 #else
239 
240     /*
241      * If the highest available EL is EL2, AArch32 will start in Hyp
242      * mode; otherwise it starts in SVC. Note that if we start in
243      * AArch64 then these values in the uncached_cpsr will be ignored.
244      */
245     if (arm_feature(env, ARM_FEATURE_EL2) &&
246         !arm_feature(env, ARM_FEATURE_EL3)) {
247         env->uncached_cpsr = ARM_CPU_MODE_HYP;
248     } else {
249         env->uncached_cpsr = ARM_CPU_MODE_SVC;
250     }
251     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 
253     if (arm_feature(env, ARM_FEATURE_M)) {
254         uint32_t initial_msp; /* Loaded from 0x0 */
255         uint32_t initial_pc; /* Loaded from 0x4 */
256         uint8_t *rom;
257         uint32_t vecbase;
258 
259         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
260             env->v7m.secure = true;
261         } else {
262             /* This bit resets to 0 if security is supported, but 1 if
263              * it is not. The bit is not present in v7M, but we set it
264              * here so we can avoid having to make checks on it conditional
265              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266              */
267             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
268         }
269 
270         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
271          * that it resets to 1, so QEMU always does that rather than making
272          * it dependent on CPU model. In v8M it is RES1.
273          */
274         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
275         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
276         if (arm_feature(env, ARM_FEATURE_V8)) {
277             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
278             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
279             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280         }
281         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
282             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
283             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
284         }
285 
286         if (arm_feature(env, ARM_FEATURE_VFP)) {
287             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
288             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
289                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
290         }
291         /* Unlike A/R profile, M profile defines the reset LR value */
292         env->regs[14] = 0xffffffff;
293 
294         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
295 
296         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
297         vecbase = env->v7m.vecbase[env->v7m.secure];
298         rom = rom_ptr(vecbase, 8);
299         if (rom) {
300             /* Address zero is covered by ROM which hasn't yet been
301              * copied into physical memory.
302              */
303             initial_msp = ldl_p(rom);
304             initial_pc = ldl_p(rom + 4);
305         } else {
306             /* Address zero not covered by a ROM blob, or the ROM blob
307              * is in non-modifiable memory and this is a second reset after
308              * it got copied into memory. In the latter case, rom_ptr
309              * will return a NULL pointer and we should use ldl_phys instead.
310              */
311             initial_msp = ldl_phys(s->as, vecbase);
312             initial_pc = ldl_phys(s->as, vecbase + 4);
313         }
314 
315         env->regs[13] = initial_msp & 0xFFFFFFFC;
316         env->regs[15] = initial_pc & ~1;
317         env->thumb = initial_pc & 1;
318     }
319 
320     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
321      * executing as AArch32 then check if highvecs are enabled and
322      * adjust the PC accordingly.
323      */
324     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
325         env->regs[15] = 0xFFFF0000;
326     }
327 
328     /* M profile requires that reset clears the exclusive monitor;
329      * A profile does not, but clearing it makes more sense than having it
330      * set with an exclusive access on address zero.
331      */
332     arm_clear_exclusive(env);
333 
334     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
335 #endif
336 
337     if (arm_feature(env, ARM_FEATURE_PMSA)) {
338         if (cpu->pmsav7_dregion > 0) {
339             if (arm_feature(env, ARM_FEATURE_V8)) {
340                 memset(env->pmsav8.rbar[M_REG_NS], 0,
341                        sizeof(*env->pmsav8.rbar[M_REG_NS])
342                        * cpu->pmsav7_dregion);
343                 memset(env->pmsav8.rlar[M_REG_NS], 0,
344                        sizeof(*env->pmsav8.rlar[M_REG_NS])
345                        * cpu->pmsav7_dregion);
346                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
347                     memset(env->pmsav8.rbar[M_REG_S], 0,
348                            sizeof(*env->pmsav8.rbar[M_REG_S])
349                            * cpu->pmsav7_dregion);
350                     memset(env->pmsav8.rlar[M_REG_S], 0,
351                            sizeof(*env->pmsav8.rlar[M_REG_S])
352                            * cpu->pmsav7_dregion);
353                 }
354             } else if (arm_feature(env, ARM_FEATURE_V7)) {
355                 memset(env->pmsav7.drbar, 0,
356                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
357                 memset(env->pmsav7.drsr, 0,
358                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
359                 memset(env->pmsav7.dracr, 0,
360                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
361             }
362         }
363         env->pmsav7.rnr[M_REG_NS] = 0;
364         env->pmsav7.rnr[M_REG_S] = 0;
365         env->pmsav8.mair0[M_REG_NS] = 0;
366         env->pmsav8.mair0[M_REG_S] = 0;
367         env->pmsav8.mair1[M_REG_NS] = 0;
368         env->pmsav8.mair1[M_REG_S] = 0;
369     }
370 
371     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
372         if (cpu->sau_sregion > 0) {
373             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
374             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
375         }
376         env->sau.rnr = 0;
377         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
378          * the Cortex-M33 does.
379          */
380         env->sau.ctrl = 0;
381     }
382 
383     set_flush_to_zero(1, &env->vfp.standard_fp_status);
384     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
385     set_default_nan_mode(1, &env->vfp.standard_fp_status);
386     set_float_detect_tininess(float_tininess_before_rounding,
387                               &env->vfp.fp_status);
388     set_float_detect_tininess(float_tininess_before_rounding,
389                               &env->vfp.standard_fp_status);
390     set_float_detect_tininess(float_tininess_before_rounding,
391                               &env->vfp.fp_status_f16);
392 #ifndef CONFIG_USER_ONLY
393     if (kvm_enabled()) {
394         kvm_arm_reset_vcpu(cpu);
395     }
396 #endif
397 
398     hw_breakpoint_update_all(cpu);
399     hw_watchpoint_update_all(cpu);
400 }
401 
402 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
403 {
404     CPUClass *cc = CPU_GET_CLASS(cs);
405     CPUARMState *env = cs->env_ptr;
406     uint32_t cur_el = arm_current_el(env);
407     bool secure = arm_is_secure(env);
408     uint32_t target_el;
409     uint32_t excp_idx;
410     bool ret = false;
411 
412     if (interrupt_request & CPU_INTERRUPT_FIQ) {
413         excp_idx = EXCP_FIQ;
414         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
415         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
416             cs->exception_index = excp_idx;
417             env->exception.target_el = target_el;
418             cc->do_interrupt(cs);
419             ret = true;
420         }
421     }
422     if (interrupt_request & CPU_INTERRUPT_HARD) {
423         excp_idx = EXCP_IRQ;
424         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
425         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
426             cs->exception_index = excp_idx;
427             env->exception.target_el = target_el;
428             cc->do_interrupt(cs);
429             ret = true;
430         }
431     }
432     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
433         excp_idx = EXCP_VIRQ;
434         target_el = 1;
435         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
436             cs->exception_index = excp_idx;
437             env->exception.target_el = target_el;
438             cc->do_interrupt(cs);
439             ret = true;
440         }
441     }
442     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
443         excp_idx = EXCP_VFIQ;
444         target_el = 1;
445         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
446             cs->exception_index = excp_idx;
447             env->exception.target_el = target_el;
448             cc->do_interrupt(cs);
449             ret = true;
450         }
451     }
452 
453     return ret;
454 }
455 
456 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
457 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
458 {
459     CPUClass *cc = CPU_GET_CLASS(cs);
460     ARMCPU *cpu = ARM_CPU(cs);
461     CPUARMState *env = &cpu->env;
462     bool ret = false;
463 
464     /* ARMv7-M interrupt masking works differently than -A or -R.
465      * There is no FIQ/IRQ distinction. Instead of I and F bits
466      * masking FIQ and IRQ interrupts, an exception is taken only
467      * if it is higher priority than the current execution priority
468      * (which depends on state like BASEPRI, FAULTMASK and the
469      * currently active exception).
470      */
471     if (interrupt_request & CPU_INTERRUPT_HARD
472         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
473         cs->exception_index = EXCP_IRQ;
474         cc->do_interrupt(cs);
475         ret = true;
476     }
477     return ret;
478 }
479 #endif
480 
481 void arm_cpu_update_virq(ARMCPU *cpu)
482 {
483     /*
484      * Update the interrupt level for VIRQ, which is the logical OR of
485      * the HCR_EL2.VI bit and the input line level from the GIC.
486      */
487     CPUARMState *env = &cpu->env;
488     CPUState *cs = CPU(cpu);
489 
490     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
491         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
492 
493     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
494         if (new_state) {
495             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
496         } else {
497             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
498         }
499     }
500 }
501 
502 void arm_cpu_update_vfiq(ARMCPU *cpu)
503 {
504     /*
505      * Update the interrupt level for VFIQ, which is the logical OR of
506      * the HCR_EL2.VF bit and the input line level from the GIC.
507      */
508     CPUARMState *env = &cpu->env;
509     CPUState *cs = CPU(cpu);
510 
511     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
512         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
513 
514     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
515         if (new_state) {
516             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
517         } else {
518             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
519         }
520     }
521 }
522 
523 #ifndef CONFIG_USER_ONLY
524 static void arm_cpu_set_irq(void *opaque, int irq, int level)
525 {
526     ARMCPU *cpu = opaque;
527     CPUARMState *env = &cpu->env;
528     CPUState *cs = CPU(cpu);
529     static const int mask[] = {
530         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
531         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
532         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
533         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
534     };
535 
536     if (level) {
537         env->irq_line_state |= mask[irq];
538     } else {
539         env->irq_line_state &= ~mask[irq];
540     }
541 
542     switch (irq) {
543     case ARM_CPU_VIRQ:
544         assert(arm_feature(env, ARM_FEATURE_EL2));
545         arm_cpu_update_virq(cpu);
546         break;
547     case ARM_CPU_VFIQ:
548         assert(arm_feature(env, ARM_FEATURE_EL2));
549         arm_cpu_update_vfiq(cpu);
550         break;
551     case ARM_CPU_IRQ:
552     case ARM_CPU_FIQ:
553         if (level) {
554             cpu_interrupt(cs, mask[irq]);
555         } else {
556             cpu_reset_interrupt(cs, mask[irq]);
557         }
558         break;
559     default:
560         g_assert_not_reached();
561     }
562 }
563 
564 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
565 {
566 #ifdef CONFIG_KVM
567     ARMCPU *cpu = opaque;
568     CPUARMState *env = &cpu->env;
569     CPUState *cs = CPU(cpu);
570     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
571     uint32_t linestate_bit;
572 
573     switch (irq) {
574     case ARM_CPU_IRQ:
575         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
576         linestate_bit = CPU_INTERRUPT_HARD;
577         break;
578     case ARM_CPU_FIQ:
579         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
580         linestate_bit = CPU_INTERRUPT_FIQ;
581         break;
582     default:
583         g_assert_not_reached();
584     }
585 
586     if (level) {
587         env->irq_line_state |= linestate_bit;
588     } else {
589         env->irq_line_state &= ~linestate_bit;
590     }
591 
592     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
593     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
594 #endif
595 }
596 
597 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
598 {
599     ARMCPU *cpu = ARM_CPU(cs);
600     CPUARMState *env = &cpu->env;
601 
602     cpu_synchronize_state(cs);
603     return arm_cpu_data_is_big_endian(env);
604 }
605 
606 #endif
607 
608 static inline void set_feature(CPUARMState *env, int feature)
609 {
610     env->features |= 1ULL << feature;
611 }
612 
613 static inline void unset_feature(CPUARMState *env, int feature)
614 {
615     env->features &= ~(1ULL << feature);
616 }
617 
618 static int
619 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
620 {
621   return print_insn_arm(pc | 1, info);
622 }
623 
624 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
625 {
626     ARMCPU *ac = ARM_CPU(cpu);
627     CPUARMState *env = &ac->env;
628     bool sctlr_b;
629 
630     if (is_a64(env)) {
631         /* We might not be compiled with the A64 disassembler
632          * because it needs a C++ compiler. Leave print_insn
633          * unset in this case to use the caller default behaviour.
634          */
635 #if defined(CONFIG_ARM_A64_DIS)
636         info->print_insn = print_insn_arm_a64;
637 #endif
638         info->cap_arch = CS_ARCH_ARM64;
639         info->cap_insn_unit = 4;
640         info->cap_insn_split = 4;
641     } else {
642         int cap_mode;
643         if (env->thumb) {
644             info->print_insn = print_insn_thumb1;
645             info->cap_insn_unit = 2;
646             info->cap_insn_split = 4;
647             cap_mode = CS_MODE_THUMB;
648         } else {
649             info->print_insn = print_insn_arm;
650             info->cap_insn_unit = 4;
651             info->cap_insn_split = 4;
652             cap_mode = CS_MODE_ARM;
653         }
654         if (arm_feature(env, ARM_FEATURE_V8)) {
655             cap_mode |= CS_MODE_V8;
656         }
657         if (arm_feature(env, ARM_FEATURE_M)) {
658             cap_mode |= CS_MODE_MCLASS;
659         }
660         info->cap_arch = CS_ARCH_ARM;
661         info->cap_mode = cap_mode;
662     }
663 
664     sctlr_b = arm_sctlr_b(env);
665     if (bswap_code(sctlr_b)) {
666 #ifdef TARGET_WORDS_BIGENDIAN
667         info->endian = BFD_ENDIAN_LITTLE;
668 #else
669         info->endian = BFD_ENDIAN_BIG;
670 #endif
671     }
672     info->flags &= ~INSN_ARM_BE32;
673 #ifndef CONFIG_USER_ONLY
674     if (sctlr_b) {
675         info->flags |= INSN_ARM_BE32;
676     }
677 #endif
678 }
679 
680 #ifdef TARGET_AARCH64
681 
682 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
683 {
684     ARMCPU *cpu = ARM_CPU(cs);
685     CPUARMState *env = &cpu->env;
686     uint32_t psr = pstate_read(env);
687     int i;
688     int el = arm_current_el(env);
689     const char *ns_status;
690 
691     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
692     for (i = 0; i < 32; i++) {
693         if (i == 31) {
694             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
695         } else {
696             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
697                          (i + 2) % 3 ? " " : "\n");
698         }
699     }
700 
701     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
702         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
703     } else {
704         ns_status = "";
705     }
706     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
707                  psr,
708                  psr & PSTATE_N ? 'N' : '-',
709                  psr & PSTATE_Z ? 'Z' : '-',
710                  psr & PSTATE_C ? 'C' : '-',
711                  psr & PSTATE_V ? 'V' : '-',
712                  ns_status,
713                  el,
714                  psr & PSTATE_SP ? 'h' : 't');
715 
716     if (cpu_isar_feature(aa64_bti, cpu)) {
717         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
718     }
719     if (!(flags & CPU_DUMP_FPU)) {
720         qemu_fprintf(f, "\n");
721         return;
722     }
723     if (fp_exception_el(env, el) != 0) {
724         qemu_fprintf(f, "    FPU disabled\n");
725         return;
726     }
727     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
728                  vfp_get_fpcr(env), vfp_get_fpsr(env));
729 
730     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
731         int j, zcr_len = sve_zcr_len_for_el(env, el);
732 
733         for (i = 0; i <= FFR_PRED_NUM; i++) {
734             bool eol;
735             if (i == FFR_PRED_NUM) {
736                 qemu_fprintf(f, "FFR=");
737                 /* It's last, so end the line.  */
738                 eol = true;
739             } else {
740                 qemu_fprintf(f, "P%02d=", i);
741                 switch (zcr_len) {
742                 case 0:
743                     eol = i % 8 == 7;
744                     break;
745                 case 1:
746                     eol = i % 6 == 5;
747                     break;
748                 case 2:
749                 case 3:
750                     eol = i % 3 == 2;
751                     break;
752                 default:
753                     /* More than one quadword per predicate.  */
754                     eol = true;
755                     break;
756                 }
757             }
758             for (j = zcr_len / 4; j >= 0; j--) {
759                 int digits;
760                 if (j * 4 + 4 <= zcr_len + 1) {
761                     digits = 16;
762                 } else {
763                     digits = (zcr_len % 4 + 1) * 4;
764                 }
765                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
766                              env->vfp.pregs[i].p[j],
767                              j ? ":" : eol ? "\n" : " ");
768             }
769         }
770 
771         for (i = 0; i < 32; i++) {
772             if (zcr_len == 0) {
773                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
774                              i, env->vfp.zregs[i].d[1],
775                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
776             } else if (zcr_len == 1) {
777                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
778                              ":%016" PRIx64 ":%016" PRIx64 "\n",
779                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
780                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
781             } else {
782                 for (j = zcr_len; j >= 0; j--) {
783                     bool odd = (zcr_len - j) % 2 != 0;
784                     if (j == zcr_len) {
785                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
786                     } else if (!odd) {
787                         if (j > 0) {
788                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
789                         } else {
790                             qemu_fprintf(f, "     [%x]=", j);
791                         }
792                     }
793                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
794                                  env->vfp.zregs[i].d[j * 2 + 1],
795                                  env->vfp.zregs[i].d[j * 2],
796                                  odd || j == 0 ? "\n" : ":");
797                 }
798             }
799         }
800     } else {
801         for (i = 0; i < 32; i++) {
802             uint64_t *q = aa64_vfp_qreg(env, i);
803             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
804                          i, q[1], q[0], (i & 1 ? "\n" : " "));
805         }
806     }
807 }
808 
809 #else
810 
811 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
812 {
813     g_assert_not_reached();
814 }
815 
816 #endif
817 
818 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
819 {
820     ARMCPU *cpu = ARM_CPU(cs);
821     CPUARMState *env = &cpu->env;
822     int i;
823 
824     if (is_a64(env)) {
825         aarch64_cpu_dump_state(cs, f, flags);
826         return;
827     }
828 
829     for (i = 0; i < 16; i++) {
830         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
831         if ((i % 4) == 3) {
832             qemu_fprintf(f, "\n");
833         } else {
834             qemu_fprintf(f, " ");
835         }
836     }
837 
838     if (arm_feature(env, ARM_FEATURE_M)) {
839         uint32_t xpsr = xpsr_read(env);
840         const char *mode;
841         const char *ns_status = "";
842 
843         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
844             ns_status = env->v7m.secure ? "S " : "NS ";
845         }
846 
847         if (xpsr & XPSR_EXCP) {
848             mode = "handler";
849         } else {
850             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
851                 mode = "unpriv-thread";
852             } else {
853                 mode = "priv-thread";
854             }
855         }
856 
857         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
858                      xpsr,
859                      xpsr & XPSR_N ? 'N' : '-',
860                      xpsr & XPSR_Z ? 'Z' : '-',
861                      xpsr & XPSR_C ? 'C' : '-',
862                      xpsr & XPSR_V ? 'V' : '-',
863                      xpsr & XPSR_T ? 'T' : 'A',
864                      ns_status,
865                      mode);
866     } else {
867         uint32_t psr = cpsr_read(env);
868         const char *ns_status = "";
869 
870         if (arm_feature(env, ARM_FEATURE_EL3) &&
871             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
872             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
873         }
874 
875         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
876                      psr,
877                      psr & CPSR_N ? 'N' : '-',
878                      psr & CPSR_Z ? 'Z' : '-',
879                      psr & CPSR_C ? 'C' : '-',
880                      psr & CPSR_V ? 'V' : '-',
881                      psr & CPSR_T ? 'T' : 'A',
882                      ns_status,
883                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
884     }
885 
886     if (flags & CPU_DUMP_FPU) {
887         int numvfpregs = 0;
888         if (arm_feature(env, ARM_FEATURE_VFP)) {
889             numvfpregs += 16;
890         }
891         if (arm_feature(env, ARM_FEATURE_VFP3)) {
892             numvfpregs += 16;
893         }
894         for (i = 0; i < numvfpregs; i++) {
895             uint64_t v = *aa32_vfp_dreg(env, i);
896             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
897                          i * 2, (uint32_t)v,
898                          i * 2 + 1, (uint32_t)(v >> 32),
899                          i, v);
900         }
901         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
902     }
903 }
904 
905 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
906 {
907     uint32_t Aff1 = idx / clustersz;
908     uint32_t Aff0 = idx % clustersz;
909     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
910 }
911 
912 static void cpreg_hashtable_data_destroy(gpointer data)
913 {
914     /*
915      * Destroy function for cpu->cp_regs hashtable data entries.
916      * We must free the name string because it was g_strdup()ed in
917      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
918      * from r->name because we know we definitely allocated it.
919      */
920     ARMCPRegInfo *r = data;
921 
922     g_free((void *)r->name);
923     g_free(r);
924 }
925 
926 static void arm_cpu_initfn(Object *obj)
927 {
928     ARMCPU *cpu = ARM_CPU(obj);
929 
930     cpu_set_cpustate_pointers(cpu);
931     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
932                                          g_free, cpreg_hashtable_data_destroy);
933 
934     QLIST_INIT(&cpu->pre_el_change_hooks);
935     QLIST_INIT(&cpu->el_change_hooks);
936 
937 #ifndef CONFIG_USER_ONLY
938     /* Our inbound IRQ and FIQ lines */
939     if (kvm_enabled()) {
940         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
941          * the same interface as non-KVM CPUs.
942          */
943         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
944     } else {
945         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
946     }
947 
948     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
949                        ARRAY_SIZE(cpu->gt_timer_outputs));
950 
951     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
952                              "gicv3-maintenance-interrupt", 1);
953     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
954                              "pmu-interrupt", 1);
955 #endif
956 
957     /* DTB consumers generally don't in fact care what the 'compatible'
958      * string is, so always provide some string and trust that a hypothetical
959      * picky DTB consumer will also provide a helpful error message.
960      */
961     cpu->dtb_compatible = "qemu,unknown";
962     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
963     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
964 
965     if (tcg_enabled()) {
966         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
967     }
968 }
969 
970 static Property arm_cpu_reset_cbar_property =
971             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
972 
973 static Property arm_cpu_reset_hivecs_property =
974             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
975 
976 static Property arm_cpu_rvbar_property =
977             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
978 
979 static Property arm_cpu_has_el2_property =
980             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
981 
982 static Property arm_cpu_has_el3_property =
983             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
984 
985 static Property arm_cpu_cfgend_property =
986             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
987 
988 /* use property name "pmu" to match other archs and virt tools */
989 static Property arm_cpu_has_pmu_property =
990             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
991 
992 static Property arm_cpu_has_vfp_property =
993             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
994 
995 static Property arm_cpu_has_neon_property =
996             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
997 
998 static Property arm_cpu_has_dsp_property =
999             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1000 
1001 static Property arm_cpu_has_mpu_property =
1002             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1003 
1004 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1005  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1006  * the right value for that particular CPU type, and we don't want
1007  * to override that with an incorrect constant value.
1008  */
1009 static Property arm_cpu_pmsav7_dregion_property =
1010             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1011                                            pmsav7_dregion,
1012                                            qdev_prop_uint32, uint32_t);
1013 
1014 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1015                                void *opaque, Error **errp)
1016 {
1017     ARMCPU *cpu = ARM_CPU(obj);
1018 
1019     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1020 }
1021 
1022 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1023                                void *opaque, Error **errp)
1024 {
1025     ARMCPU *cpu = ARM_CPU(obj);
1026 
1027     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1028 }
1029 
1030 void arm_cpu_post_init(Object *obj)
1031 {
1032     ARMCPU *cpu = ARM_CPU(obj);
1033 
1034     /* M profile implies PMSA. We have to do this here rather than
1035      * in realize with the other feature-implication checks because
1036      * we look at the PMSA bit to see if we should add some properties.
1037      */
1038     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1039         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1040     }
1041     /* Similarly for the VFP feature bits */
1042     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1043         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1044     }
1045     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1046         set_feature(&cpu->env, ARM_FEATURE_VFP);
1047     }
1048 
1049     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1050         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1051         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1052                                  &error_abort);
1053     }
1054 
1055     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1056         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1057                                  &error_abort);
1058     }
1059 
1060     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1061         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1062                                  &error_abort);
1063     }
1064 
1065     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1066         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1067          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1068          */
1069         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1070                                  &error_abort);
1071 
1072 #ifndef CONFIG_USER_ONLY
1073         object_property_add_link(obj, "secure-memory",
1074                                  TYPE_MEMORY_REGION,
1075                                  (Object **)&cpu->secure_memory,
1076                                  qdev_prop_allow_set_link_before_realize,
1077                                  OBJ_PROP_LINK_STRONG,
1078                                  &error_abort);
1079 #endif
1080     }
1081 
1082     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1083         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1084                                  &error_abort);
1085     }
1086 
1087     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1088         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
1089                                  &error_abort);
1090     }
1091 
1092     /*
1093      * Allow user to turn off VFP and Neon support, but only for TCG --
1094      * KVM does not currently allow us to lie to the guest about its
1095      * ID/feature registers, so the guest always sees what the host has.
1096      */
1097     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1098         cpu->has_vfp = true;
1099         if (!kvm_enabled()) {
1100             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1101                                      &error_abort);
1102         }
1103     }
1104 
1105     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1106         cpu->has_neon = true;
1107         if (!kvm_enabled()) {
1108             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1109                                      &error_abort);
1110         }
1111     }
1112 
1113     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1114         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1115         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1116                                  &error_abort);
1117     }
1118 
1119     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1120         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1121                                  &error_abort);
1122         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1123             qdev_property_add_static(DEVICE(obj),
1124                                      &arm_cpu_pmsav7_dregion_property,
1125                                      &error_abort);
1126         }
1127     }
1128 
1129     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1130         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1131                                  qdev_prop_allow_set_link_before_realize,
1132                                  OBJ_PROP_LINK_STRONG,
1133                                  &error_abort);
1134         /*
1135          * M profile: initial value of the Secure VTOR. We can't just use
1136          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1137          * the property to be set after realize.
1138          */
1139         object_property_add(obj, "init-svtor", "uint32",
1140                             arm_get_init_svtor, arm_set_init_svtor,
1141                             NULL, NULL, &error_abort);
1142     }
1143 
1144     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1145                              &error_abort);
1146 }
1147 
1148 static void arm_cpu_finalizefn(Object *obj)
1149 {
1150     ARMCPU *cpu = ARM_CPU(obj);
1151     ARMELChangeHook *hook, *next;
1152 
1153     g_hash_table_destroy(cpu->cp_regs);
1154 
1155     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1156         QLIST_REMOVE(hook, node);
1157         g_free(hook);
1158     }
1159     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1160         QLIST_REMOVE(hook, node);
1161         g_free(hook);
1162     }
1163 #ifndef CONFIG_USER_ONLY
1164     if (cpu->pmu_timer) {
1165         timer_del(cpu->pmu_timer);
1166         timer_deinit(cpu->pmu_timer);
1167         timer_free(cpu->pmu_timer);
1168     }
1169 #endif
1170 }
1171 
1172 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1173 {
1174     CPUState *cs = CPU(dev);
1175     ARMCPU *cpu = ARM_CPU(dev);
1176     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1177     CPUARMState *env = &cpu->env;
1178     int pagebits;
1179     Error *local_err = NULL;
1180     bool no_aa32 = false;
1181 
1182     /* If we needed to query the host kernel for the CPU features
1183      * then it's possible that might have failed in the initfn, but
1184      * this is the first point where we can report it.
1185      */
1186     if (cpu->host_cpu_probe_failed) {
1187         if (!kvm_enabled()) {
1188             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1189         } else {
1190             error_setg(errp, "Failed to retrieve host CPU features");
1191         }
1192         return;
1193     }
1194 
1195 #ifndef CONFIG_USER_ONLY
1196     /* The NVIC and M-profile CPU are two halves of a single piece of
1197      * hardware; trying to use one without the other is a command line
1198      * error and will result in segfaults if not caught here.
1199      */
1200     if (arm_feature(env, ARM_FEATURE_M)) {
1201         if (!env->nvic) {
1202             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1203             return;
1204         }
1205     } else {
1206         if (env->nvic) {
1207             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1208             return;
1209         }
1210     }
1211 
1212     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1213                                            arm_gt_ptimer_cb, cpu);
1214     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1215                                            arm_gt_vtimer_cb, cpu);
1216     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1217                                           arm_gt_htimer_cb, cpu);
1218     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1219                                           arm_gt_stimer_cb, cpu);
1220 #endif
1221 
1222     cpu_exec_realizefn(cs, &local_err);
1223     if (local_err != NULL) {
1224         error_propagate(errp, local_err);
1225         return;
1226     }
1227 
1228     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1229         cpu->has_vfp != cpu->has_neon) {
1230         /*
1231          * This is an architectural requirement for AArch64; AArch32 is
1232          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1233          */
1234         error_setg(errp,
1235                    "AArch64 CPUs must have both VFP and Neon or neither");
1236         return;
1237     }
1238 
1239     if (!cpu->has_vfp) {
1240         uint64_t t;
1241         uint32_t u;
1242 
1243         unset_feature(env, ARM_FEATURE_VFP);
1244         unset_feature(env, ARM_FEATURE_VFP3);
1245         unset_feature(env, ARM_FEATURE_VFP4);
1246 
1247         t = cpu->isar.id_aa64isar1;
1248         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1249         cpu->isar.id_aa64isar1 = t;
1250 
1251         t = cpu->isar.id_aa64pfr0;
1252         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1253         cpu->isar.id_aa64pfr0 = t;
1254 
1255         u = cpu->isar.id_isar6;
1256         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1257         cpu->isar.id_isar6 = u;
1258 
1259         u = cpu->isar.mvfr0;
1260         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1261         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1262         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1263         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1264         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1265         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1266         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1267         cpu->isar.mvfr0 = u;
1268 
1269         u = cpu->isar.mvfr1;
1270         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1271         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1272         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1273         cpu->isar.mvfr1 = u;
1274 
1275         u = cpu->isar.mvfr2;
1276         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1277         cpu->isar.mvfr2 = u;
1278     }
1279 
1280     if (!cpu->has_neon) {
1281         uint64_t t;
1282         uint32_t u;
1283 
1284         unset_feature(env, ARM_FEATURE_NEON);
1285 
1286         t = cpu->isar.id_aa64isar0;
1287         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1288         cpu->isar.id_aa64isar0 = t;
1289 
1290         t = cpu->isar.id_aa64isar1;
1291         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1292         cpu->isar.id_aa64isar1 = t;
1293 
1294         t = cpu->isar.id_aa64pfr0;
1295         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1296         cpu->isar.id_aa64pfr0 = t;
1297 
1298         u = cpu->isar.id_isar5;
1299         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1300         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1301         cpu->isar.id_isar5 = u;
1302 
1303         u = cpu->isar.id_isar6;
1304         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1305         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1306         cpu->isar.id_isar6 = u;
1307 
1308         u = cpu->isar.mvfr1;
1309         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1310         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1311         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1312         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1313         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1314         cpu->isar.mvfr1 = u;
1315 
1316         u = cpu->isar.mvfr2;
1317         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1318         cpu->isar.mvfr2 = u;
1319     }
1320 
1321     if (!cpu->has_neon && !cpu->has_vfp) {
1322         uint64_t t;
1323         uint32_t u;
1324 
1325         t = cpu->isar.id_aa64isar0;
1326         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1327         cpu->isar.id_aa64isar0 = t;
1328 
1329         t = cpu->isar.id_aa64isar1;
1330         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1331         cpu->isar.id_aa64isar1 = t;
1332 
1333         u = cpu->isar.mvfr0;
1334         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1335         cpu->isar.mvfr0 = u;
1336     }
1337 
1338     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1339         uint32_t u;
1340 
1341         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1342 
1343         u = cpu->isar.id_isar1;
1344         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1345         cpu->isar.id_isar1 = u;
1346 
1347         u = cpu->isar.id_isar2;
1348         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1349         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1350         cpu->isar.id_isar2 = u;
1351 
1352         u = cpu->isar.id_isar3;
1353         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1354         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1355         cpu->isar.id_isar3 = u;
1356     }
1357 
1358     /* Some features automatically imply others: */
1359     if (arm_feature(env, ARM_FEATURE_V8)) {
1360         if (arm_feature(env, ARM_FEATURE_M)) {
1361             set_feature(env, ARM_FEATURE_V7);
1362         } else {
1363             set_feature(env, ARM_FEATURE_V7VE);
1364         }
1365     }
1366 
1367     /*
1368      * There exist AArch64 cpus without AArch32 support.  When KVM
1369      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1370      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1371      */
1372     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1373         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1374     }
1375 
1376     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1377         /* v7 Virtualization Extensions. In real hardware this implies
1378          * EL2 and also the presence of the Security Extensions.
1379          * For QEMU, for backwards-compatibility we implement some
1380          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1381          * include the various other features that V7VE implies.
1382          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1383          * Security Extensions is ARM_FEATURE_EL3.
1384          */
1385         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
1386         set_feature(env, ARM_FEATURE_LPAE);
1387         set_feature(env, ARM_FEATURE_V7);
1388     }
1389     if (arm_feature(env, ARM_FEATURE_V7)) {
1390         set_feature(env, ARM_FEATURE_VAPA);
1391         set_feature(env, ARM_FEATURE_THUMB2);
1392         set_feature(env, ARM_FEATURE_MPIDR);
1393         if (!arm_feature(env, ARM_FEATURE_M)) {
1394             set_feature(env, ARM_FEATURE_V6K);
1395         } else {
1396             set_feature(env, ARM_FEATURE_V6);
1397         }
1398 
1399         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1400          * non-EL3 configs. This is needed by some legacy boards.
1401          */
1402         set_feature(env, ARM_FEATURE_VBAR);
1403     }
1404     if (arm_feature(env, ARM_FEATURE_V6K)) {
1405         set_feature(env, ARM_FEATURE_V6);
1406         set_feature(env, ARM_FEATURE_MVFR);
1407     }
1408     if (arm_feature(env, ARM_FEATURE_V6)) {
1409         set_feature(env, ARM_FEATURE_V5);
1410         if (!arm_feature(env, ARM_FEATURE_M)) {
1411             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1412             set_feature(env, ARM_FEATURE_AUXCR);
1413         }
1414     }
1415     if (arm_feature(env, ARM_FEATURE_V5)) {
1416         set_feature(env, ARM_FEATURE_V4T);
1417     }
1418     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1419         set_feature(env, ARM_FEATURE_V7MP);
1420         set_feature(env, ARM_FEATURE_PXN);
1421     }
1422     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1423         set_feature(env, ARM_FEATURE_CBAR);
1424     }
1425     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1426         !arm_feature(env, ARM_FEATURE_M)) {
1427         set_feature(env, ARM_FEATURE_THUMB_DSP);
1428     }
1429 
1430     /*
1431      * We rely on no XScale CPU having VFP so we can use the same bits in the
1432      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1433      */
1434     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1435              arm_feature(env, ARM_FEATURE_XSCALE)));
1436 
1437     if (arm_feature(env, ARM_FEATURE_V7) &&
1438         !arm_feature(env, ARM_FEATURE_M) &&
1439         !arm_feature(env, ARM_FEATURE_PMSA)) {
1440         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1441          * can use 4K pages.
1442          */
1443         pagebits = 12;
1444     } else {
1445         /* For CPUs which might have tiny 1K pages, or which have an
1446          * MPU and might have small region sizes, stick with 1K pages.
1447          */
1448         pagebits = 10;
1449     }
1450     if (!set_preferred_target_page_bits(pagebits)) {
1451         /* This can only ever happen for hotplugging a CPU, or if
1452          * the board code incorrectly creates a CPU which it has
1453          * promised via minimum_page_size that it will not.
1454          */
1455         error_setg(errp, "This CPU requires a smaller page size than the "
1456                    "system is using");
1457         return;
1458     }
1459 
1460     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1461      * We don't support setting cluster ID ([16..23]) (known as Aff2
1462      * in later ARM ARM versions), or any of the higher affinity level fields,
1463      * so these bits always RAZ.
1464      */
1465     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1466         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1467                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1468     }
1469 
1470     if (cpu->reset_hivecs) {
1471             cpu->reset_sctlr |= (1 << 13);
1472     }
1473 
1474     if (cpu->cfgend) {
1475         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1476             cpu->reset_sctlr |= SCTLR_EE;
1477         } else {
1478             cpu->reset_sctlr |= SCTLR_B;
1479         }
1480     }
1481 
1482     if (!cpu->has_el3) {
1483         /* If the has_el3 CPU property is disabled then we need to disable the
1484          * feature.
1485          */
1486         unset_feature(env, ARM_FEATURE_EL3);
1487 
1488         /* Disable the security extension feature bits in the processor feature
1489          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1490          */
1491         cpu->id_pfr1 &= ~0xf0;
1492         cpu->isar.id_aa64pfr0 &= ~0xf000;
1493     }
1494 
1495     if (!cpu->has_el2) {
1496         unset_feature(env, ARM_FEATURE_EL2);
1497     }
1498 
1499     if (!cpu->has_pmu) {
1500         unset_feature(env, ARM_FEATURE_PMU);
1501     }
1502     if (arm_feature(env, ARM_FEATURE_PMU)) {
1503         pmu_init(cpu);
1504 
1505         if (!kvm_enabled()) {
1506             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1507             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1508         }
1509 
1510 #ifndef CONFIG_USER_ONLY
1511         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1512                 cpu);
1513 #endif
1514     } else {
1515         cpu->id_aa64dfr0 &= ~0xf00;
1516         cpu->id_dfr0 &= ~(0xf << 24);
1517         cpu->pmceid0 = 0;
1518         cpu->pmceid1 = 0;
1519     }
1520 
1521     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1522         /* Disable the hypervisor feature bits in the processor feature
1523          * registers if we don't have EL2. These are id_pfr1[15:12] and
1524          * id_aa64pfr0_el1[11:8].
1525          */
1526         cpu->isar.id_aa64pfr0 &= ~0xf00;
1527         cpu->id_pfr1 &= ~0xf000;
1528     }
1529 
1530     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1531      * to false or by setting pmsav7-dregion to 0.
1532      */
1533     if (!cpu->has_mpu) {
1534         cpu->pmsav7_dregion = 0;
1535     }
1536     if (cpu->pmsav7_dregion == 0) {
1537         cpu->has_mpu = false;
1538     }
1539 
1540     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1541         arm_feature(env, ARM_FEATURE_V7)) {
1542         uint32_t nr = cpu->pmsav7_dregion;
1543 
1544         if (nr > 0xff) {
1545             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1546             return;
1547         }
1548 
1549         if (nr) {
1550             if (arm_feature(env, ARM_FEATURE_V8)) {
1551                 /* PMSAv8 */
1552                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1553                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1554                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1555                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1556                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1557                 }
1558             } else {
1559                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1560                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1561                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1562             }
1563         }
1564     }
1565 
1566     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1567         uint32_t nr = cpu->sau_sregion;
1568 
1569         if (nr > 0xff) {
1570             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1571             return;
1572         }
1573 
1574         if (nr) {
1575             env->sau.rbar = g_new0(uint32_t, nr);
1576             env->sau.rlar = g_new0(uint32_t, nr);
1577         }
1578     }
1579 
1580     if (arm_feature(env, ARM_FEATURE_EL3)) {
1581         set_feature(env, ARM_FEATURE_VBAR);
1582     }
1583 
1584     register_cp_regs_for_features(cpu);
1585     arm_cpu_register_gdb_regs_for_features(cpu);
1586 
1587     init_cpreg_list(cpu);
1588 
1589 #ifndef CONFIG_USER_ONLY
1590     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1591         cs->num_ases = 2;
1592 
1593         if (!cpu->secure_memory) {
1594             cpu->secure_memory = cs->memory;
1595         }
1596         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1597                                cpu->secure_memory);
1598     } else {
1599         cs->num_ases = 1;
1600     }
1601     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1602 
1603     /* No core_count specified, default to smp_cpus. */
1604     if (cpu->core_count == -1) {
1605         cpu->core_count = smp_cpus;
1606     }
1607 #endif
1608 
1609     qemu_init_vcpu(cs);
1610     cpu_reset(cs);
1611 
1612     acc->parent_realize(dev, errp);
1613 }
1614 
1615 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1616 {
1617     ObjectClass *oc;
1618     char *typename;
1619     char **cpuname;
1620     const char *cpunamestr;
1621 
1622     cpuname = g_strsplit(cpu_model, ",", 1);
1623     cpunamestr = cpuname[0];
1624 #ifdef CONFIG_USER_ONLY
1625     /* For backwards compatibility usermode emulation allows "-cpu any",
1626      * which has the same semantics as "-cpu max".
1627      */
1628     if (!strcmp(cpunamestr, "any")) {
1629         cpunamestr = "max";
1630     }
1631 #endif
1632     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1633     oc = object_class_by_name(typename);
1634     g_strfreev(cpuname);
1635     g_free(typename);
1636     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1637         object_class_is_abstract(oc)) {
1638         return NULL;
1639     }
1640     return oc;
1641 }
1642 
1643 /* CPU models. These are not needed for the AArch64 linux-user build. */
1644 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1645 
1646 static void arm926_initfn(Object *obj)
1647 {
1648     ARMCPU *cpu = ARM_CPU(obj);
1649 
1650     cpu->dtb_compatible = "arm,arm926";
1651     set_feature(&cpu->env, ARM_FEATURE_V5);
1652     set_feature(&cpu->env, ARM_FEATURE_VFP);
1653     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1654     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1655     cpu->midr = 0x41069265;
1656     cpu->reset_fpsid = 0x41011090;
1657     cpu->ctr = 0x1dd20d2;
1658     cpu->reset_sctlr = 0x00090078;
1659 
1660     /*
1661      * ARMv5 does not have the ID_ISAR registers, but we can still
1662      * set the field to indicate Jazelle support within QEMU.
1663      */
1664     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1665 }
1666 
1667 static void arm946_initfn(Object *obj)
1668 {
1669     ARMCPU *cpu = ARM_CPU(obj);
1670 
1671     cpu->dtb_compatible = "arm,arm946";
1672     set_feature(&cpu->env, ARM_FEATURE_V5);
1673     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1674     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1675     cpu->midr = 0x41059461;
1676     cpu->ctr = 0x0f004006;
1677     cpu->reset_sctlr = 0x00000078;
1678 }
1679 
1680 static void arm1026_initfn(Object *obj)
1681 {
1682     ARMCPU *cpu = ARM_CPU(obj);
1683 
1684     cpu->dtb_compatible = "arm,arm1026";
1685     set_feature(&cpu->env, ARM_FEATURE_V5);
1686     set_feature(&cpu->env, ARM_FEATURE_VFP);
1687     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1688     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1689     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1690     cpu->midr = 0x4106a262;
1691     cpu->reset_fpsid = 0x410110a0;
1692     cpu->ctr = 0x1dd20d2;
1693     cpu->reset_sctlr = 0x00090078;
1694     cpu->reset_auxcr = 1;
1695 
1696     /*
1697      * ARMv5 does not have the ID_ISAR registers, but we can still
1698      * set the field to indicate Jazelle support within QEMU.
1699      */
1700     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1701 
1702     {
1703         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1704         ARMCPRegInfo ifar = {
1705             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1706             .access = PL1_RW,
1707             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1708             .resetvalue = 0
1709         };
1710         define_one_arm_cp_reg(cpu, &ifar);
1711     }
1712 }
1713 
1714 static void arm1136_r2_initfn(Object *obj)
1715 {
1716     ARMCPU *cpu = ARM_CPU(obj);
1717     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1718      * older core than plain "arm1136". In particular this does not
1719      * have the v6K features.
1720      * These ID register values are correct for 1136 but may be wrong
1721      * for 1136_r2 (in particular r0p2 does not actually implement most
1722      * of the ID registers).
1723      */
1724 
1725     cpu->dtb_compatible = "arm,arm1136";
1726     set_feature(&cpu->env, ARM_FEATURE_V6);
1727     set_feature(&cpu->env, ARM_FEATURE_VFP);
1728     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1729     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1730     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1731     cpu->midr = 0x4107b362;
1732     cpu->reset_fpsid = 0x410120b4;
1733     cpu->isar.mvfr0 = 0x11111111;
1734     cpu->isar.mvfr1 = 0x00000000;
1735     cpu->ctr = 0x1dd20d2;
1736     cpu->reset_sctlr = 0x00050078;
1737     cpu->id_pfr0 = 0x111;
1738     cpu->id_pfr1 = 0x1;
1739     cpu->id_dfr0 = 0x2;
1740     cpu->id_afr0 = 0x3;
1741     cpu->id_mmfr0 = 0x01130003;
1742     cpu->id_mmfr1 = 0x10030302;
1743     cpu->id_mmfr2 = 0x01222110;
1744     cpu->isar.id_isar0 = 0x00140011;
1745     cpu->isar.id_isar1 = 0x12002111;
1746     cpu->isar.id_isar2 = 0x11231111;
1747     cpu->isar.id_isar3 = 0x01102131;
1748     cpu->isar.id_isar4 = 0x141;
1749     cpu->reset_auxcr = 7;
1750 }
1751 
1752 static void arm1136_initfn(Object *obj)
1753 {
1754     ARMCPU *cpu = ARM_CPU(obj);
1755 
1756     cpu->dtb_compatible = "arm,arm1136";
1757     set_feature(&cpu->env, ARM_FEATURE_V6K);
1758     set_feature(&cpu->env, ARM_FEATURE_V6);
1759     set_feature(&cpu->env, ARM_FEATURE_VFP);
1760     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1761     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1762     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1763     cpu->midr = 0x4117b363;
1764     cpu->reset_fpsid = 0x410120b4;
1765     cpu->isar.mvfr0 = 0x11111111;
1766     cpu->isar.mvfr1 = 0x00000000;
1767     cpu->ctr = 0x1dd20d2;
1768     cpu->reset_sctlr = 0x00050078;
1769     cpu->id_pfr0 = 0x111;
1770     cpu->id_pfr1 = 0x1;
1771     cpu->id_dfr0 = 0x2;
1772     cpu->id_afr0 = 0x3;
1773     cpu->id_mmfr0 = 0x01130003;
1774     cpu->id_mmfr1 = 0x10030302;
1775     cpu->id_mmfr2 = 0x01222110;
1776     cpu->isar.id_isar0 = 0x00140011;
1777     cpu->isar.id_isar1 = 0x12002111;
1778     cpu->isar.id_isar2 = 0x11231111;
1779     cpu->isar.id_isar3 = 0x01102131;
1780     cpu->isar.id_isar4 = 0x141;
1781     cpu->reset_auxcr = 7;
1782 }
1783 
1784 static void arm1176_initfn(Object *obj)
1785 {
1786     ARMCPU *cpu = ARM_CPU(obj);
1787 
1788     cpu->dtb_compatible = "arm,arm1176";
1789     set_feature(&cpu->env, ARM_FEATURE_V6K);
1790     set_feature(&cpu->env, ARM_FEATURE_VFP);
1791     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1792     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1793     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1794     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1795     set_feature(&cpu->env, ARM_FEATURE_EL3);
1796     cpu->midr = 0x410fb767;
1797     cpu->reset_fpsid = 0x410120b5;
1798     cpu->isar.mvfr0 = 0x11111111;
1799     cpu->isar.mvfr1 = 0x00000000;
1800     cpu->ctr = 0x1dd20d2;
1801     cpu->reset_sctlr = 0x00050078;
1802     cpu->id_pfr0 = 0x111;
1803     cpu->id_pfr1 = 0x11;
1804     cpu->id_dfr0 = 0x33;
1805     cpu->id_afr0 = 0;
1806     cpu->id_mmfr0 = 0x01130003;
1807     cpu->id_mmfr1 = 0x10030302;
1808     cpu->id_mmfr2 = 0x01222100;
1809     cpu->isar.id_isar0 = 0x0140011;
1810     cpu->isar.id_isar1 = 0x12002111;
1811     cpu->isar.id_isar2 = 0x11231121;
1812     cpu->isar.id_isar3 = 0x01102131;
1813     cpu->isar.id_isar4 = 0x01141;
1814     cpu->reset_auxcr = 7;
1815 }
1816 
1817 static void arm11mpcore_initfn(Object *obj)
1818 {
1819     ARMCPU *cpu = ARM_CPU(obj);
1820 
1821     cpu->dtb_compatible = "arm,arm11mpcore";
1822     set_feature(&cpu->env, ARM_FEATURE_V6K);
1823     set_feature(&cpu->env, ARM_FEATURE_VFP);
1824     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1825     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1826     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1827     cpu->midr = 0x410fb022;
1828     cpu->reset_fpsid = 0x410120b4;
1829     cpu->isar.mvfr0 = 0x11111111;
1830     cpu->isar.mvfr1 = 0x00000000;
1831     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1832     cpu->id_pfr0 = 0x111;
1833     cpu->id_pfr1 = 0x1;
1834     cpu->id_dfr0 = 0;
1835     cpu->id_afr0 = 0x2;
1836     cpu->id_mmfr0 = 0x01100103;
1837     cpu->id_mmfr1 = 0x10020302;
1838     cpu->id_mmfr2 = 0x01222000;
1839     cpu->isar.id_isar0 = 0x00100011;
1840     cpu->isar.id_isar1 = 0x12002111;
1841     cpu->isar.id_isar2 = 0x11221011;
1842     cpu->isar.id_isar3 = 0x01102131;
1843     cpu->isar.id_isar4 = 0x141;
1844     cpu->reset_auxcr = 1;
1845 }
1846 
1847 static void cortex_m0_initfn(Object *obj)
1848 {
1849     ARMCPU *cpu = ARM_CPU(obj);
1850     set_feature(&cpu->env, ARM_FEATURE_V6);
1851     set_feature(&cpu->env, ARM_FEATURE_M);
1852 
1853     cpu->midr = 0x410cc200;
1854 }
1855 
1856 static void cortex_m3_initfn(Object *obj)
1857 {
1858     ARMCPU *cpu = ARM_CPU(obj);
1859     set_feature(&cpu->env, ARM_FEATURE_V7);
1860     set_feature(&cpu->env, ARM_FEATURE_M);
1861     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1862     cpu->midr = 0x410fc231;
1863     cpu->pmsav7_dregion = 8;
1864     cpu->id_pfr0 = 0x00000030;
1865     cpu->id_pfr1 = 0x00000200;
1866     cpu->id_dfr0 = 0x00100000;
1867     cpu->id_afr0 = 0x00000000;
1868     cpu->id_mmfr0 = 0x00000030;
1869     cpu->id_mmfr1 = 0x00000000;
1870     cpu->id_mmfr2 = 0x00000000;
1871     cpu->id_mmfr3 = 0x00000000;
1872     cpu->isar.id_isar0 = 0x01141110;
1873     cpu->isar.id_isar1 = 0x02111000;
1874     cpu->isar.id_isar2 = 0x21112231;
1875     cpu->isar.id_isar3 = 0x01111110;
1876     cpu->isar.id_isar4 = 0x01310102;
1877     cpu->isar.id_isar5 = 0x00000000;
1878     cpu->isar.id_isar6 = 0x00000000;
1879 }
1880 
1881 static void cortex_m4_initfn(Object *obj)
1882 {
1883     ARMCPU *cpu = ARM_CPU(obj);
1884 
1885     set_feature(&cpu->env, ARM_FEATURE_V7);
1886     set_feature(&cpu->env, ARM_FEATURE_M);
1887     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1888     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1889     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1890     cpu->midr = 0x410fc240; /* r0p0 */
1891     cpu->pmsav7_dregion = 8;
1892     cpu->isar.mvfr0 = 0x10110021;
1893     cpu->isar.mvfr1 = 0x11000011;
1894     cpu->isar.mvfr2 = 0x00000000;
1895     cpu->id_pfr0 = 0x00000030;
1896     cpu->id_pfr1 = 0x00000200;
1897     cpu->id_dfr0 = 0x00100000;
1898     cpu->id_afr0 = 0x00000000;
1899     cpu->id_mmfr0 = 0x00000030;
1900     cpu->id_mmfr1 = 0x00000000;
1901     cpu->id_mmfr2 = 0x00000000;
1902     cpu->id_mmfr3 = 0x00000000;
1903     cpu->isar.id_isar0 = 0x01141110;
1904     cpu->isar.id_isar1 = 0x02111000;
1905     cpu->isar.id_isar2 = 0x21112231;
1906     cpu->isar.id_isar3 = 0x01111110;
1907     cpu->isar.id_isar4 = 0x01310102;
1908     cpu->isar.id_isar5 = 0x00000000;
1909     cpu->isar.id_isar6 = 0x00000000;
1910 }
1911 
1912 static void cortex_m33_initfn(Object *obj)
1913 {
1914     ARMCPU *cpu = ARM_CPU(obj);
1915 
1916     set_feature(&cpu->env, ARM_FEATURE_V8);
1917     set_feature(&cpu->env, ARM_FEATURE_M);
1918     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1919     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1920     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1921     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1922     cpu->midr = 0x410fd213; /* r0p3 */
1923     cpu->pmsav7_dregion = 16;
1924     cpu->sau_sregion = 8;
1925     cpu->isar.mvfr0 = 0x10110021;
1926     cpu->isar.mvfr1 = 0x11000011;
1927     cpu->isar.mvfr2 = 0x00000040;
1928     cpu->id_pfr0 = 0x00000030;
1929     cpu->id_pfr1 = 0x00000210;
1930     cpu->id_dfr0 = 0x00200000;
1931     cpu->id_afr0 = 0x00000000;
1932     cpu->id_mmfr0 = 0x00101F40;
1933     cpu->id_mmfr1 = 0x00000000;
1934     cpu->id_mmfr2 = 0x01000000;
1935     cpu->id_mmfr3 = 0x00000000;
1936     cpu->isar.id_isar0 = 0x01101110;
1937     cpu->isar.id_isar1 = 0x02212000;
1938     cpu->isar.id_isar2 = 0x20232232;
1939     cpu->isar.id_isar3 = 0x01111131;
1940     cpu->isar.id_isar4 = 0x01310132;
1941     cpu->isar.id_isar5 = 0x00000000;
1942     cpu->isar.id_isar6 = 0x00000000;
1943     cpu->clidr = 0x00000000;
1944     cpu->ctr = 0x8000c000;
1945 }
1946 
1947 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1948 {
1949     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1950     CPUClass *cc = CPU_CLASS(oc);
1951 
1952     acc->info = data;
1953 #ifndef CONFIG_USER_ONLY
1954     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1955 #endif
1956 
1957     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1958 }
1959 
1960 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1961     /* Dummy the TCM region regs for the moment */
1962     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1963       .access = PL1_RW, .type = ARM_CP_CONST },
1964     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1965       .access = PL1_RW, .type = ARM_CP_CONST },
1966     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1967       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1968     REGINFO_SENTINEL
1969 };
1970 
1971 static void cortex_r5_initfn(Object *obj)
1972 {
1973     ARMCPU *cpu = ARM_CPU(obj);
1974 
1975     set_feature(&cpu->env, ARM_FEATURE_V7);
1976     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1977     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1978     cpu->midr = 0x411fc153; /* r1p3 */
1979     cpu->id_pfr0 = 0x0131;
1980     cpu->id_pfr1 = 0x001;
1981     cpu->id_dfr0 = 0x010400;
1982     cpu->id_afr0 = 0x0;
1983     cpu->id_mmfr0 = 0x0210030;
1984     cpu->id_mmfr1 = 0x00000000;
1985     cpu->id_mmfr2 = 0x01200000;
1986     cpu->id_mmfr3 = 0x0211;
1987     cpu->isar.id_isar0 = 0x02101111;
1988     cpu->isar.id_isar1 = 0x13112111;
1989     cpu->isar.id_isar2 = 0x21232141;
1990     cpu->isar.id_isar3 = 0x01112131;
1991     cpu->isar.id_isar4 = 0x0010142;
1992     cpu->isar.id_isar5 = 0x0;
1993     cpu->isar.id_isar6 = 0x0;
1994     cpu->mp_is_up = true;
1995     cpu->pmsav7_dregion = 16;
1996     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1997 }
1998 
1999 static void cortex_r5f_initfn(Object *obj)
2000 {
2001     ARMCPU *cpu = ARM_CPU(obj);
2002 
2003     cortex_r5_initfn(obj);
2004     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2005     cpu->isar.mvfr0 = 0x10110221;
2006     cpu->isar.mvfr1 = 0x00000011;
2007 }
2008 
2009 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2010     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2011       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2012     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2013       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2014     REGINFO_SENTINEL
2015 };
2016 
2017 static void cortex_a8_initfn(Object *obj)
2018 {
2019     ARMCPU *cpu = ARM_CPU(obj);
2020 
2021     cpu->dtb_compatible = "arm,cortex-a8";
2022     set_feature(&cpu->env, ARM_FEATURE_V7);
2023     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2024     set_feature(&cpu->env, ARM_FEATURE_NEON);
2025     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2026     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2027     set_feature(&cpu->env, ARM_FEATURE_EL3);
2028     cpu->midr = 0x410fc080;
2029     cpu->reset_fpsid = 0x410330c0;
2030     cpu->isar.mvfr0 = 0x11110222;
2031     cpu->isar.mvfr1 = 0x00011111;
2032     cpu->ctr = 0x82048004;
2033     cpu->reset_sctlr = 0x00c50078;
2034     cpu->id_pfr0 = 0x1031;
2035     cpu->id_pfr1 = 0x11;
2036     cpu->id_dfr0 = 0x400;
2037     cpu->id_afr0 = 0;
2038     cpu->id_mmfr0 = 0x31100003;
2039     cpu->id_mmfr1 = 0x20000000;
2040     cpu->id_mmfr2 = 0x01202000;
2041     cpu->id_mmfr3 = 0x11;
2042     cpu->isar.id_isar0 = 0x00101111;
2043     cpu->isar.id_isar1 = 0x12112111;
2044     cpu->isar.id_isar2 = 0x21232031;
2045     cpu->isar.id_isar3 = 0x11112131;
2046     cpu->isar.id_isar4 = 0x00111142;
2047     cpu->dbgdidr = 0x15141000;
2048     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2049     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2050     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2051     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2052     cpu->reset_auxcr = 2;
2053     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2054 }
2055 
2056 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2057     /* power_control should be set to maximum latency. Again,
2058      * default to 0 and set by private hook
2059      */
2060     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2061       .access = PL1_RW, .resetvalue = 0,
2062       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2063     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2064       .access = PL1_RW, .resetvalue = 0,
2065       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2066     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2067       .access = PL1_RW, .resetvalue = 0,
2068       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2069     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2070       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2071     /* TLB lockdown control */
2072     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2073       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2074     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2075       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2076     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2077       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2078     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2079       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2080     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2081       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2082     REGINFO_SENTINEL
2083 };
2084 
2085 static void cortex_a9_initfn(Object *obj)
2086 {
2087     ARMCPU *cpu = ARM_CPU(obj);
2088 
2089     cpu->dtb_compatible = "arm,cortex-a9";
2090     set_feature(&cpu->env, ARM_FEATURE_V7);
2091     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2092     set_feature(&cpu->env, ARM_FEATURE_NEON);
2093     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2094     set_feature(&cpu->env, ARM_FEATURE_EL3);
2095     /* Note that A9 supports the MP extensions even for
2096      * A9UP and single-core A9MP (which are both different
2097      * and valid configurations; we don't model A9UP).
2098      */
2099     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2100     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2101     cpu->midr = 0x410fc090;
2102     cpu->reset_fpsid = 0x41033090;
2103     cpu->isar.mvfr0 = 0x11110222;
2104     cpu->isar.mvfr1 = 0x01111111;
2105     cpu->ctr = 0x80038003;
2106     cpu->reset_sctlr = 0x00c50078;
2107     cpu->id_pfr0 = 0x1031;
2108     cpu->id_pfr1 = 0x11;
2109     cpu->id_dfr0 = 0x000;
2110     cpu->id_afr0 = 0;
2111     cpu->id_mmfr0 = 0x00100103;
2112     cpu->id_mmfr1 = 0x20000000;
2113     cpu->id_mmfr2 = 0x01230000;
2114     cpu->id_mmfr3 = 0x00002111;
2115     cpu->isar.id_isar0 = 0x00101111;
2116     cpu->isar.id_isar1 = 0x13112111;
2117     cpu->isar.id_isar2 = 0x21232041;
2118     cpu->isar.id_isar3 = 0x11112131;
2119     cpu->isar.id_isar4 = 0x00111142;
2120     cpu->dbgdidr = 0x35141000;
2121     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2122     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2123     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2124     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2125 }
2126 
2127 #ifndef CONFIG_USER_ONLY
2128 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2129 {
2130     /* Linux wants the number of processors from here.
2131      * Might as well set the interrupt-controller bit too.
2132      */
2133     return ((smp_cpus - 1) << 24) | (1 << 23);
2134 }
2135 #endif
2136 
2137 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2138 #ifndef CONFIG_USER_ONLY
2139     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2140       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2141       .writefn = arm_cp_write_ignore, },
2142 #endif
2143     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2144       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2145     REGINFO_SENTINEL
2146 };
2147 
2148 static void cortex_a7_initfn(Object *obj)
2149 {
2150     ARMCPU *cpu = ARM_CPU(obj);
2151 
2152     cpu->dtb_compatible = "arm,cortex-a7";
2153     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2154     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2155     set_feature(&cpu->env, ARM_FEATURE_NEON);
2156     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2157     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2158     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2159     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2160     set_feature(&cpu->env, ARM_FEATURE_EL2);
2161     set_feature(&cpu->env, ARM_FEATURE_EL3);
2162     set_feature(&cpu->env, ARM_FEATURE_PMU);
2163     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2164     cpu->midr = 0x410fc075;
2165     cpu->reset_fpsid = 0x41023075;
2166     cpu->isar.mvfr0 = 0x10110222;
2167     cpu->isar.mvfr1 = 0x11111111;
2168     cpu->ctr = 0x84448003;
2169     cpu->reset_sctlr = 0x00c50078;
2170     cpu->id_pfr0 = 0x00001131;
2171     cpu->id_pfr1 = 0x00011011;
2172     cpu->id_dfr0 = 0x02010555;
2173     cpu->id_afr0 = 0x00000000;
2174     cpu->id_mmfr0 = 0x10101105;
2175     cpu->id_mmfr1 = 0x40000000;
2176     cpu->id_mmfr2 = 0x01240000;
2177     cpu->id_mmfr3 = 0x02102211;
2178     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2179      * table 4-41 gives 0x02101110, which includes the arm div insns.
2180      */
2181     cpu->isar.id_isar0 = 0x02101110;
2182     cpu->isar.id_isar1 = 0x13112111;
2183     cpu->isar.id_isar2 = 0x21232041;
2184     cpu->isar.id_isar3 = 0x11112131;
2185     cpu->isar.id_isar4 = 0x10011142;
2186     cpu->dbgdidr = 0x3515f005;
2187     cpu->clidr = 0x0a200023;
2188     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2189     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2190     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2191     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2192 }
2193 
2194 static void cortex_a15_initfn(Object *obj)
2195 {
2196     ARMCPU *cpu = ARM_CPU(obj);
2197 
2198     cpu->dtb_compatible = "arm,cortex-a15";
2199     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2200     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2201     set_feature(&cpu->env, ARM_FEATURE_NEON);
2202     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2203     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2204     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2205     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2206     set_feature(&cpu->env, ARM_FEATURE_EL2);
2207     set_feature(&cpu->env, ARM_FEATURE_EL3);
2208     set_feature(&cpu->env, ARM_FEATURE_PMU);
2209     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2210     cpu->midr = 0x412fc0f1;
2211     cpu->reset_fpsid = 0x410430f0;
2212     cpu->isar.mvfr0 = 0x10110222;
2213     cpu->isar.mvfr1 = 0x11111111;
2214     cpu->ctr = 0x8444c004;
2215     cpu->reset_sctlr = 0x00c50078;
2216     cpu->id_pfr0 = 0x00001131;
2217     cpu->id_pfr1 = 0x00011011;
2218     cpu->id_dfr0 = 0x02010555;
2219     cpu->id_afr0 = 0x00000000;
2220     cpu->id_mmfr0 = 0x10201105;
2221     cpu->id_mmfr1 = 0x20000000;
2222     cpu->id_mmfr2 = 0x01240000;
2223     cpu->id_mmfr3 = 0x02102211;
2224     cpu->isar.id_isar0 = 0x02101110;
2225     cpu->isar.id_isar1 = 0x13112111;
2226     cpu->isar.id_isar2 = 0x21232041;
2227     cpu->isar.id_isar3 = 0x11112131;
2228     cpu->isar.id_isar4 = 0x10011142;
2229     cpu->dbgdidr = 0x3515f021;
2230     cpu->clidr = 0x0a200023;
2231     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2232     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2233     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2234     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2235 }
2236 
2237 static void ti925t_initfn(Object *obj)
2238 {
2239     ARMCPU *cpu = ARM_CPU(obj);
2240     set_feature(&cpu->env, ARM_FEATURE_V4T);
2241     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2242     cpu->midr = ARM_CPUID_TI925T;
2243     cpu->ctr = 0x5109149;
2244     cpu->reset_sctlr = 0x00000070;
2245 }
2246 
2247 static void sa1100_initfn(Object *obj)
2248 {
2249     ARMCPU *cpu = ARM_CPU(obj);
2250 
2251     cpu->dtb_compatible = "intel,sa1100";
2252     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2253     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2254     cpu->midr = 0x4401A11B;
2255     cpu->reset_sctlr = 0x00000070;
2256 }
2257 
2258 static void sa1110_initfn(Object *obj)
2259 {
2260     ARMCPU *cpu = ARM_CPU(obj);
2261     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2262     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2263     cpu->midr = 0x6901B119;
2264     cpu->reset_sctlr = 0x00000070;
2265 }
2266 
2267 static void pxa250_initfn(Object *obj)
2268 {
2269     ARMCPU *cpu = ARM_CPU(obj);
2270 
2271     cpu->dtb_compatible = "marvell,xscale";
2272     set_feature(&cpu->env, ARM_FEATURE_V5);
2273     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2274     cpu->midr = 0x69052100;
2275     cpu->ctr = 0xd172172;
2276     cpu->reset_sctlr = 0x00000078;
2277 }
2278 
2279 static void pxa255_initfn(Object *obj)
2280 {
2281     ARMCPU *cpu = ARM_CPU(obj);
2282 
2283     cpu->dtb_compatible = "marvell,xscale";
2284     set_feature(&cpu->env, ARM_FEATURE_V5);
2285     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2286     cpu->midr = 0x69052d00;
2287     cpu->ctr = 0xd172172;
2288     cpu->reset_sctlr = 0x00000078;
2289 }
2290 
2291 static void pxa260_initfn(Object *obj)
2292 {
2293     ARMCPU *cpu = ARM_CPU(obj);
2294 
2295     cpu->dtb_compatible = "marvell,xscale";
2296     set_feature(&cpu->env, ARM_FEATURE_V5);
2297     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2298     cpu->midr = 0x69052903;
2299     cpu->ctr = 0xd172172;
2300     cpu->reset_sctlr = 0x00000078;
2301 }
2302 
2303 static void pxa261_initfn(Object *obj)
2304 {
2305     ARMCPU *cpu = ARM_CPU(obj);
2306 
2307     cpu->dtb_compatible = "marvell,xscale";
2308     set_feature(&cpu->env, ARM_FEATURE_V5);
2309     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2310     cpu->midr = 0x69052d05;
2311     cpu->ctr = 0xd172172;
2312     cpu->reset_sctlr = 0x00000078;
2313 }
2314 
2315 static void pxa262_initfn(Object *obj)
2316 {
2317     ARMCPU *cpu = ARM_CPU(obj);
2318 
2319     cpu->dtb_compatible = "marvell,xscale";
2320     set_feature(&cpu->env, ARM_FEATURE_V5);
2321     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2322     cpu->midr = 0x69052d06;
2323     cpu->ctr = 0xd172172;
2324     cpu->reset_sctlr = 0x00000078;
2325 }
2326 
2327 static void pxa270a0_initfn(Object *obj)
2328 {
2329     ARMCPU *cpu = ARM_CPU(obj);
2330 
2331     cpu->dtb_compatible = "marvell,xscale";
2332     set_feature(&cpu->env, ARM_FEATURE_V5);
2333     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2334     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2335     cpu->midr = 0x69054110;
2336     cpu->ctr = 0xd172172;
2337     cpu->reset_sctlr = 0x00000078;
2338 }
2339 
2340 static void pxa270a1_initfn(Object *obj)
2341 {
2342     ARMCPU *cpu = ARM_CPU(obj);
2343 
2344     cpu->dtb_compatible = "marvell,xscale";
2345     set_feature(&cpu->env, ARM_FEATURE_V5);
2346     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2347     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2348     cpu->midr = 0x69054111;
2349     cpu->ctr = 0xd172172;
2350     cpu->reset_sctlr = 0x00000078;
2351 }
2352 
2353 static void pxa270b0_initfn(Object *obj)
2354 {
2355     ARMCPU *cpu = ARM_CPU(obj);
2356 
2357     cpu->dtb_compatible = "marvell,xscale";
2358     set_feature(&cpu->env, ARM_FEATURE_V5);
2359     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2360     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2361     cpu->midr = 0x69054112;
2362     cpu->ctr = 0xd172172;
2363     cpu->reset_sctlr = 0x00000078;
2364 }
2365 
2366 static void pxa270b1_initfn(Object *obj)
2367 {
2368     ARMCPU *cpu = ARM_CPU(obj);
2369 
2370     cpu->dtb_compatible = "marvell,xscale";
2371     set_feature(&cpu->env, ARM_FEATURE_V5);
2372     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2373     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2374     cpu->midr = 0x69054113;
2375     cpu->ctr = 0xd172172;
2376     cpu->reset_sctlr = 0x00000078;
2377 }
2378 
2379 static void pxa270c0_initfn(Object *obj)
2380 {
2381     ARMCPU *cpu = ARM_CPU(obj);
2382 
2383     cpu->dtb_compatible = "marvell,xscale";
2384     set_feature(&cpu->env, ARM_FEATURE_V5);
2385     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2386     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2387     cpu->midr = 0x69054114;
2388     cpu->ctr = 0xd172172;
2389     cpu->reset_sctlr = 0x00000078;
2390 }
2391 
2392 static void pxa270c5_initfn(Object *obj)
2393 {
2394     ARMCPU *cpu = ARM_CPU(obj);
2395 
2396     cpu->dtb_compatible = "marvell,xscale";
2397     set_feature(&cpu->env, ARM_FEATURE_V5);
2398     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2399     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2400     cpu->midr = 0x69054117;
2401     cpu->ctr = 0xd172172;
2402     cpu->reset_sctlr = 0x00000078;
2403 }
2404 
2405 #ifndef TARGET_AARCH64
2406 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2407  * otherwise, a CPU with as many features enabled as our emulation supports.
2408  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2409  * this only needs to handle 32 bits.
2410  */
2411 static void arm_max_initfn(Object *obj)
2412 {
2413     ARMCPU *cpu = ARM_CPU(obj);
2414 
2415     if (kvm_enabled()) {
2416         kvm_arm_set_cpu_features_from_host(cpu);
2417     } else {
2418         cortex_a15_initfn(obj);
2419 
2420         /* old-style VFP short-vector support */
2421         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2422 
2423 #ifdef CONFIG_USER_ONLY
2424         /* We don't set these in system emulation mode for the moment,
2425          * since we don't correctly set (all of) the ID registers to
2426          * advertise them.
2427          */
2428         set_feature(&cpu->env, ARM_FEATURE_V8);
2429         {
2430             uint32_t t;
2431 
2432             t = cpu->isar.id_isar5;
2433             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2434             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2435             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2436             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2437             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2438             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2439             cpu->isar.id_isar5 = t;
2440 
2441             t = cpu->isar.id_isar6;
2442             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2443             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2444             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2445             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2446             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2447             cpu->isar.id_isar6 = t;
2448 
2449             t = cpu->isar.mvfr2;
2450             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2451             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2452             cpu->isar.mvfr2 = t;
2453 
2454             t = cpu->id_mmfr4;
2455             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2456             cpu->id_mmfr4 = t;
2457         }
2458 #endif
2459     }
2460 }
2461 #endif
2462 
2463 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2464 
2465 struct ARMCPUInfo {
2466     const char *name;
2467     void (*initfn)(Object *obj);
2468     void (*class_init)(ObjectClass *oc, void *data);
2469 };
2470 
2471 static const ARMCPUInfo arm_cpus[] = {
2472 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2473     { .name = "arm926",      .initfn = arm926_initfn },
2474     { .name = "arm946",      .initfn = arm946_initfn },
2475     { .name = "arm1026",     .initfn = arm1026_initfn },
2476     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2477      * older core than plain "arm1136". In particular this does not
2478      * have the v6K features.
2479      */
2480     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2481     { .name = "arm1136",     .initfn = arm1136_initfn },
2482     { .name = "arm1176",     .initfn = arm1176_initfn },
2483     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2484     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2485                              .class_init = arm_v7m_class_init },
2486     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2487                              .class_init = arm_v7m_class_init },
2488     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2489                              .class_init = arm_v7m_class_init },
2490     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2491                              .class_init = arm_v7m_class_init },
2492     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2493     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2494     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2495     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2496     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2497     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2498     { .name = "ti925t",      .initfn = ti925t_initfn },
2499     { .name = "sa1100",      .initfn = sa1100_initfn },
2500     { .name = "sa1110",      .initfn = sa1110_initfn },
2501     { .name = "pxa250",      .initfn = pxa250_initfn },
2502     { .name = "pxa255",      .initfn = pxa255_initfn },
2503     { .name = "pxa260",      .initfn = pxa260_initfn },
2504     { .name = "pxa261",      .initfn = pxa261_initfn },
2505     { .name = "pxa262",      .initfn = pxa262_initfn },
2506     /* "pxa270" is an alias for "pxa270-a0" */
2507     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2508     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2509     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2510     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2511     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2512     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2513     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2514 #ifndef TARGET_AARCH64
2515     { .name = "max",         .initfn = arm_max_initfn },
2516 #endif
2517 #ifdef CONFIG_USER_ONLY
2518     { .name = "any",         .initfn = arm_max_initfn },
2519 #endif
2520 #endif
2521     { .name = NULL }
2522 };
2523 
2524 static Property arm_cpu_properties[] = {
2525     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2526     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2527     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2528     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2529                         mp_affinity, ARM64_AFFINITY_INVALID),
2530     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2531     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2532     DEFINE_PROP_END_OF_LIST()
2533 };
2534 
2535 static gchar *arm_gdb_arch_name(CPUState *cs)
2536 {
2537     ARMCPU *cpu = ARM_CPU(cs);
2538     CPUARMState *env = &cpu->env;
2539 
2540     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2541         return g_strdup("iwmmxt");
2542     }
2543     return g_strdup("arm");
2544 }
2545 
2546 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2547 {
2548     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2549     CPUClass *cc = CPU_CLASS(acc);
2550     DeviceClass *dc = DEVICE_CLASS(oc);
2551 
2552     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2553                                     &acc->parent_realize);
2554     dc->props = arm_cpu_properties;
2555 
2556     acc->parent_reset = cc->reset;
2557     cc->reset = arm_cpu_reset;
2558 
2559     cc->class_by_name = arm_cpu_class_by_name;
2560     cc->has_work = arm_cpu_has_work;
2561     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2562     cc->dump_state = arm_cpu_dump_state;
2563     cc->set_pc = arm_cpu_set_pc;
2564     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2565     cc->gdb_read_register = arm_cpu_gdb_read_register;
2566     cc->gdb_write_register = arm_cpu_gdb_write_register;
2567 #ifndef CONFIG_USER_ONLY
2568     cc->do_interrupt = arm_cpu_do_interrupt;
2569     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2570     cc->asidx_from_attrs = arm_asidx_from_attrs;
2571     cc->vmsd = &vmstate_arm_cpu;
2572     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2573     cc->write_elf64_note = arm_cpu_write_elf64_note;
2574     cc->write_elf32_note = arm_cpu_write_elf32_note;
2575 #endif
2576     cc->gdb_num_core_regs = 26;
2577     cc->gdb_core_xml_file = "arm-core.xml";
2578     cc->gdb_arch_name = arm_gdb_arch_name;
2579     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2580     cc->gdb_stop_before_watchpoint = true;
2581     cc->disas_set_info = arm_disas_set_info;
2582 #ifdef CONFIG_TCG
2583     cc->tcg_initialize = arm_translate_init;
2584     cc->tlb_fill = arm_cpu_tlb_fill;
2585     cc->debug_excp_handler = arm_debug_excp_handler;
2586     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2587 #if !defined(CONFIG_USER_ONLY)
2588     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2589     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2590     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2591 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2592 #endif
2593 }
2594 
2595 #ifdef CONFIG_KVM
2596 static void arm_host_initfn(Object *obj)
2597 {
2598     ARMCPU *cpu = ARM_CPU(obj);
2599 
2600     kvm_arm_set_cpu_features_from_host(cpu);
2601     arm_cpu_post_init(obj);
2602 }
2603 
2604 static const TypeInfo host_arm_cpu_type_info = {
2605     .name = TYPE_ARM_HOST_CPU,
2606 #ifdef TARGET_AARCH64
2607     .parent = TYPE_AARCH64_CPU,
2608 #else
2609     .parent = TYPE_ARM_CPU,
2610 #endif
2611     .instance_init = arm_host_initfn,
2612 };
2613 
2614 #endif
2615 
2616 static void arm_cpu_instance_init(Object *obj)
2617 {
2618     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2619 
2620     acc->info->initfn(obj);
2621     arm_cpu_post_init(obj);
2622 }
2623 
2624 static void cpu_register_class_init(ObjectClass *oc, void *data)
2625 {
2626     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2627 
2628     acc->info = data;
2629 }
2630 
2631 static void cpu_register(const ARMCPUInfo *info)
2632 {
2633     TypeInfo type_info = {
2634         .parent = TYPE_ARM_CPU,
2635         .instance_size = sizeof(ARMCPU),
2636         .instance_init = arm_cpu_instance_init,
2637         .class_size = sizeof(ARMCPUClass),
2638         .class_init = info->class_init ?: cpu_register_class_init,
2639         .class_data = (void *)info,
2640     };
2641 
2642     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2643     type_register(&type_info);
2644     g_free((void *)type_info.name);
2645 }
2646 
2647 static const TypeInfo arm_cpu_type_info = {
2648     .name = TYPE_ARM_CPU,
2649     .parent = TYPE_CPU,
2650     .instance_size = sizeof(ARMCPU),
2651     .instance_init = arm_cpu_initfn,
2652     .instance_finalize = arm_cpu_finalizefn,
2653     .abstract = true,
2654     .class_size = sizeof(ARMCPUClass),
2655     .class_init = arm_cpu_class_init,
2656 };
2657 
2658 static const TypeInfo idau_interface_type_info = {
2659     .name = TYPE_IDAU_INTERFACE,
2660     .parent = TYPE_INTERFACE,
2661     .class_size = sizeof(IDAUInterfaceClass),
2662 };
2663 
2664 static void arm_cpu_register_types(void)
2665 {
2666     const ARMCPUInfo *info = arm_cpus;
2667 
2668     type_register_static(&arm_cpu_type_info);
2669     type_register_static(&idau_interface_type_info);
2670 
2671     while (info->name) {
2672         cpu_register(info);
2673         info++;
2674     }
2675 
2676 #ifdef CONFIG_KVM
2677     type_register_static(&host_arm_cpu_type_info);
2678 #endif
2679 }
2680 
2681 type_init(arm_cpu_register_types)
2682