xref: /openbmc/qemu/target/arm/cpu.c (revision 55c3ceef)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189             env->v7m.secure = true;
190         } else {
191             /* This bit resets to 0 if security is supported, but 1 if
192              * it is not. The bit is not present in v7M, but we set it
193              * here so we can avoid having to make checks on it conditional
194              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
195              */
196             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
197         }
198 
199         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200          * that it resets to 1, so QEMU always does that rather than making
201          * it dependent on CPU model. In v8M it is RES1.
202          */
203         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
204         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
205         if (arm_feature(env, ARM_FEATURE_V8)) {
206             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
208             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
209         }
210 
211         /* Unlike A/R profile, M profile defines the reset LR value */
212         env->regs[14] = 0xffffffff;
213 
214         /* Load the initial SP and PC from the vector table at address 0 */
215         rom = rom_ptr(0);
216         if (rom) {
217             /* Address zero is covered by ROM which hasn't yet been
218              * copied into physical memory.
219              */
220             initial_msp = ldl_p(rom);
221             initial_pc = ldl_p(rom + 4);
222         } else {
223             /* Address zero not covered by a ROM blob, or the ROM blob
224              * is in non-modifiable memory and this is a second reset after
225              * it got copied into memory. In the latter case, rom_ptr
226              * will return a NULL pointer and we should use ldl_phys instead.
227              */
228             initial_msp = ldl_phys(s->as, 0);
229             initial_pc = ldl_phys(s->as, 4);
230         }
231 
232         env->regs[13] = initial_msp & 0xFFFFFFFC;
233         env->regs[15] = initial_pc & ~1;
234         env->thumb = initial_pc & 1;
235     }
236 
237     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
238      * executing as AArch32 then check if highvecs are enabled and
239      * adjust the PC accordingly.
240      */
241     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
242         env->regs[15] = 0xFFFF0000;
243     }
244 
245     /* M profile requires that reset clears the exclusive monitor;
246      * A profile does not, but clearing it makes more sense than having it
247      * set with an exclusive access on address zero.
248      */
249     arm_clear_exclusive(env);
250 
251     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
252 #endif
253 
254     if (arm_feature(env, ARM_FEATURE_PMSA)) {
255         if (cpu->pmsav7_dregion > 0) {
256             if (arm_feature(env, ARM_FEATURE_V8)) {
257                 memset(env->pmsav8.rbar[M_REG_NS], 0,
258                        sizeof(*env->pmsav8.rbar[M_REG_NS])
259                        * cpu->pmsav7_dregion);
260                 memset(env->pmsav8.rlar[M_REG_NS], 0,
261                        sizeof(*env->pmsav8.rlar[M_REG_NS])
262                        * cpu->pmsav7_dregion);
263                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
264                     memset(env->pmsav8.rbar[M_REG_S], 0,
265                            sizeof(*env->pmsav8.rbar[M_REG_S])
266                            * cpu->pmsav7_dregion);
267                     memset(env->pmsav8.rlar[M_REG_S], 0,
268                            sizeof(*env->pmsav8.rlar[M_REG_S])
269                            * cpu->pmsav7_dregion);
270                 }
271             } else if (arm_feature(env, ARM_FEATURE_V7)) {
272                 memset(env->pmsav7.drbar, 0,
273                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
274                 memset(env->pmsav7.drsr, 0,
275                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
276                 memset(env->pmsav7.dracr, 0,
277                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
278             }
279         }
280         env->pmsav7.rnr[M_REG_NS] = 0;
281         env->pmsav7.rnr[M_REG_S] = 0;
282         env->pmsav8.mair0[M_REG_NS] = 0;
283         env->pmsav8.mair0[M_REG_S] = 0;
284         env->pmsav8.mair1[M_REG_NS] = 0;
285         env->pmsav8.mair1[M_REG_S] = 0;
286     }
287 
288     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
289         if (cpu->sau_sregion > 0) {
290             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
291             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
292         }
293         env->sau.rnr = 0;
294         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
295          * the Cortex-M33 does.
296          */
297         env->sau.ctrl = 0;
298     }
299 
300     set_flush_to_zero(1, &env->vfp.standard_fp_status);
301     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
302     set_default_nan_mode(1, &env->vfp.standard_fp_status);
303     set_float_detect_tininess(float_tininess_before_rounding,
304                               &env->vfp.fp_status);
305     set_float_detect_tininess(float_tininess_before_rounding,
306                               &env->vfp.standard_fp_status);
307 #ifndef CONFIG_USER_ONLY
308     if (kvm_enabled()) {
309         kvm_arm_reset_vcpu(cpu);
310     }
311 #endif
312 
313     hw_breakpoint_update_all(cpu);
314     hw_watchpoint_update_all(cpu);
315 }
316 
317 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
318 {
319     CPUClass *cc = CPU_GET_CLASS(cs);
320     CPUARMState *env = cs->env_ptr;
321     uint32_t cur_el = arm_current_el(env);
322     bool secure = arm_is_secure(env);
323     uint32_t target_el;
324     uint32_t excp_idx;
325     bool ret = false;
326 
327     if (interrupt_request & CPU_INTERRUPT_FIQ) {
328         excp_idx = EXCP_FIQ;
329         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
330         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
331             cs->exception_index = excp_idx;
332             env->exception.target_el = target_el;
333             cc->do_interrupt(cs);
334             ret = true;
335         }
336     }
337     if (interrupt_request & CPU_INTERRUPT_HARD) {
338         excp_idx = EXCP_IRQ;
339         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
340         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
341             cs->exception_index = excp_idx;
342             env->exception.target_el = target_el;
343             cc->do_interrupt(cs);
344             ret = true;
345         }
346     }
347     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
348         excp_idx = EXCP_VIRQ;
349         target_el = 1;
350         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
351             cs->exception_index = excp_idx;
352             env->exception.target_el = target_el;
353             cc->do_interrupt(cs);
354             ret = true;
355         }
356     }
357     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
358         excp_idx = EXCP_VFIQ;
359         target_el = 1;
360         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
361             cs->exception_index = excp_idx;
362             env->exception.target_el = target_el;
363             cc->do_interrupt(cs);
364             ret = true;
365         }
366     }
367 
368     return ret;
369 }
370 
371 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
372 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
373 {
374     CPUClass *cc = CPU_GET_CLASS(cs);
375     ARMCPU *cpu = ARM_CPU(cs);
376     CPUARMState *env = &cpu->env;
377     bool ret = false;
378 
379     /* ARMv7-M interrupt masking works differently than -A or -R.
380      * There is no FIQ/IRQ distinction. Instead of I and F bits
381      * masking FIQ and IRQ interrupts, an exception is taken only
382      * if it is higher priority than the current execution priority
383      * (which depends on state like BASEPRI, FAULTMASK and the
384      * currently active exception).
385      */
386     if (interrupt_request & CPU_INTERRUPT_HARD
387         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
388         cs->exception_index = EXCP_IRQ;
389         cc->do_interrupt(cs);
390         ret = true;
391     }
392     return ret;
393 }
394 #endif
395 
396 #ifndef CONFIG_USER_ONLY
397 static void arm_cpu_set_irq(void *opaque, int irq, int level)
398 {
399     ARMCPU *cpu = opaque;
400     CPUARMState *env = &cpu->env;
401     CPUState *cs = CPU(cpu);
402     static const int mask[] = {
403         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
404         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
405         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
406         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
407     };
408 
409     switch (irq) {
410     case ARM_CPU_VIRQ:
411     case ARM_CPU_VFIQ:
412         assert(arm_feature(env, ARM_FEATURE_EL2));
413         /* fall through */
414     case ARM_CPU_IRQ:
415     case ARM_CPU_FIQ:
416         if (level) {
417             cpu_interrupt(cs, mask[irq]);
418         } else {
419             cpu_reset_interrupt(cs, mask[irq]);
420         }
421         break;
422     default:
423         g_assert_not_reached();
424     }
425 }
426 
427 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
428 {
429 #ifdef CONFIG_KVM
430     ARMCPU *cpu = opaque;
431     CPUState *cs = CPU(cpu);
432     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
433 
434     switch (irq) {
435     case ARM_CPU_IRQ:
436         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
437         break;
438     case ARM_CPU_FIQ:
439         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
440         break;
441     default:
442         g_assert_not_reached();
443     }
444     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
445     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
446 #endif
447 }
448 
449 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
450 {
451     ARMCPU *cpu = ARM_CPU(cs);
452     CPUARMState *env = &cpu->env;
453 
454     cpu_synchronize_state(cs);
455     return arm_cpu_data_is_big_endian(env);
456 }
457 
458 #endif
459 
460 static inline void set_feature(CPUARMState *env, int feature)
461 {
462     env->features |= 1ULL << feature;
463 }
464 
465 static inline void unset_feature(CPUARMState *env, int feature)
466 {
467     env->features &= ~(1ULL << feature);
468 }
469 
470 static int
471 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
472 {
473   return print_insn_arm(pc | 1, info);
474 }
475 
476 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
477                                 int length, struct disassemble_info *info)
478 {
479     assert(info->read_memory_inner_func);
480     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
481 
482     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
483         assert(info->endian == BFD_ENDIAN_LITTLE);
484         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
485                                             info);
486     } else {
487         return info->read_memory_inner_func(memaddr, b, length, info);
488     }
489 }
490 
491 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
492 {
493     ARMCPU *ac = ARM_CPU(cpu);
494     CPUARMState *env = &ac->env;
495 
496     if (is_a64(env)) {
497         /* We might not be compiled with the A64 disassembler
498          * because it needs a C++ compiler. Leave print_insn
499          * unset in this case to use the caller default behaviour.
500          */
501 #if defined(CONFIG_ARM_A64_DIS)
502         info->print_insn = print_insn_arm_a64;
503 #endif
504     } else if (env->thumb) {
505         info->print_insn = print_insn_thumb1;
506     } else {
507         info->print_insn = print_insn_arm;
508     }
509     if (bswap_code(arm_sctlr_b(env))) {
510 #ifdef TARGET_WORDS_BIGENDIAN
511         info->endian = BFD_ENDIAN_LITTLE;
512 #else
513         info->endian = BFD_ENDIAN_BIG;
514 #endif
515     }
516     if (info->read_memory_inner_func == NULL) {
517         info->read_memory_inner_func = info->read_memory_func;
518         info->read_memory_func = arm_read_memory_func;
519     }
520     info->flags &= ~INSN_ARM_BE32;
521     if (arm_sctlr_b(env)) {
522         info->flags |= INSN_ARM_BE32;
523     }
524 }
525 
526 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
527 {
528     uint32_t Aff1 = idx / clustersz;
529     uint32_t Aff0 = idx % clustersz;
530     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
531 }
532 
533 static void arm_cpu_initfn(Object *obj)
534 {
535     CPUState *cs = CPU(obj);
536     ARMCPU *cpu = ARM_CPU(obj);
537 
538     cs->env_ptr = &cpu->env;
539     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
540                                          g_free, g_free);
541 
542 #ifndef CONFIG_USER_ONLY
543     /* Our inbound IRQ and FIQ lines */
544     if (kvm_enabled()) {
545         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
546          * the same interface as non-KVM CPUs.
547          */
548         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
549     } else {
550         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
551     }
552 
553     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
554                                                 arm_gt_ptimer_cb, cpu);
555     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
556                                                 arm_gt_vtimer_cb, cpu);
557     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
558                                                 arm_gt_htimer_cb, cpu);
559     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
560                                                 arm_gt_stimer_cb, cpu);
561     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
562                        ARRAY_SIZE(cpu->gt_timer_outputs));
563 
564     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
565                              "gicv3-maintenance-interrupt", 1);
566     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
567                              "pmu-interrupt", 1);
568 #endif
569 
570     /* DTB consumers generally don't in fact care what the 'compatible'
571      * string is, so always provide some string and trust that a hypothetical
572      * picky DTB consumer will also provide a helpful error message.
573      */
574     cpu->dtb_compatible = "qemu,unknown";
575     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
576     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
577 
578     if (tcg_enabled()) {
579         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
580     }
581 }
582 
583 static Property arm_cpu_reset_cbar_property =
584             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
585 
586 static Property arm_cpu_reset_hivecs_property =
587             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
588 
589 static Property arm_cpu_rvbar_property =
590             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
591 
592 static Property arm_cpu_has_el2_property =
593             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
594 
595 static Property arm_cpu_has_el3_property =
596             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
597 
598 static Property arm_cpu_cfgend_property =
599             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
600 
601 /* use property name "pmu" to match other archs and virt tools */
602 static Property arm_cpu_has_pmu_property =
603             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
604 
605 static Property arm_cpu_has_mpu_property =
606             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
607 
608 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
609  * because the CPU initfn will have already set cpu->pmsav7_dregion to
610  * the right value for that particular CPU type, and we don't want
611  * to override that with an incorrect constant value.
612  */
613 static Property arm_cpu_pmsav7_dregion_property =
614             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
615                                            pmsav7_dregion,
616                                            qdev_prop_uint32, uint32_t);
617 
618 static void arm_cpu_post_init(Object *obj)
619 {
620     ARMCPU *cpu = ARM_CPU(obj);
621 
622     /* M profile implies PMSA. We have to do this here rather than
623      * in realize with the other feature-implication checks because
624      * we look at the PMSA bit to see if we should add some properties.
625      */
626     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
627         set_feature(&cpu->env, ARM_FEATURE_PMSA);
628     }
629 
630     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
631         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
632         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
633                                  &error_abort);
634     }
635 
636     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
637         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
638                                  &error_abort);
639     }
640 
641     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
642         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
643                                  &error_abort);
644     }
645 
646     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
647         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
648          * prevent "has_el3" from existing on CPUs which cannot support EL3.
649          */
650         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
651                                  &error_abort);
652 
653 #ifndef CONFIG_USER_ONLY
654         object_property_add_link(obj, "secure-memory",
655                                  TYPE_MEMORY_REGION,
656                                  (Object **)&cpu->secure_memory,
657                                  qdev_prop_allow_set_link_before_realize,
658                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
659                                  &error_abort);
660 #endif
661     }
662 
663     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
664         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
665                                  &error_abort);
666     }
667 
668     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
669         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
670                                  &error_abort);
671     }
672 
673     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
674         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
675                                  &error_abort);
676         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
677             qdev_property_add_static(DEVICE(obj),
678                                      &arm_cpu_pmsav7_dregion_property,
679                                      &error_abort);
680         }
681     }
682 
683     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
684                              &error_abort);
685 }
686 
687 static void arm_cpu_finalizefn(Object *obj)
688 {
689     ARMCPU *cpu = ARM_CPU(obj);
690     g_hash_table_destroy(cpu->cp_regs);
691 }
692 
693 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
694 {
695     CPUState *cs = CPU(dev);
696     ARMCPU *cpu = ARM_CPU(dev);
697     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
698     CPUARMState *env = &cpu->env;
699     int pagebits;
700     Error *local_err = NULL;
701 #ifndef CONFIG_USER_ONLY
702     AddressSpace *as;
703 #endif
704 
705     cpu_exec_realizefn(cs, &local_err);
706     if (local_err != NULL) {
707         error_propagate(errp, local_err);
708         return;
709     }
710 
711     /* Some features automatically imply others: */
712     if (arm_feature(env, ARM_FEATURE_V8)) {
713         set_feature(env, ARM_FEATURE_V7);
714         set_feature(env, ARM_FEATURE_ARM_DIV);
715         set_feature(env, ARM_FEATURE_LPAE);
716     }
717     if (arm_feature(env, ARM_FEATURE_V7)) {
718         set_feature(env, ARM_FEATURE_VAPA);
719         set_feature(env, ARM_FEATURE_THUMB2);
720         set_feature(env, ARM_FEATURE_MPIDR);
721         if (!arm_feature(env, ARM_FEATURE_M)) {
722             set_feature(env, ARM_FEATURE_V6K);
723         } else {
724             set_feature(env, ARM_FEATURE_V6);
725         }
726 
727         /* Always define VBAR for V7 CPUs even if it doesn't exist in
728          * non-EL3 configs. This is needed by some legacy boards.
729          */
730         set_feature(env, ARM_FEATURE_VBAR);
731     }
732     if (arm_feature(env, ARM_FEATURE_V6K)) {
733         set_feature(env, ARM_FEATURE_V6);
734         set_feature(env, ARM_FEATURE_MVFR);
735     }
736     if (arm_feature(env, ARM_FEATURE_V6)) {
737         set_feature(env, ARM_FEATURE_V5);
738         set_feature(env, ARM_FEATURE_JAZELLE);
739         if (!arm_feature(env, ARM_FEATURE_M)) {
740             set_feature(env, ARM_FEATURE_AUXCR);
741         }
742     }
743     if (arm_feature(env, ARM_FEATURE_V5)) {
744         set_feature(env, ARM_FEATURE_V4T);
745     }
746     if (arm_feature(env, ARM_FEATURE_M)) {
747         set_feature(env, ARM_FEATURE_THUMB_DIV);
748     }
749     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
750         set_feature(env, ARM_FEATURE_THUMB_DIV);
751     }
752     if (arm_feature(env, ARM_FEATURE_VFP4)) {
753         set_feature(env, ARM_FEATURE_VFP3);
754         set_feature(env, ARM_FEATURE_VFP_FP16);
755     }
756     if (arm_feature(env, ARM_FEATURE_VFP3)) {
757         set_feature(env, ARM_FEATURE_VFP);
758     }
759     if (arm_feature(env, ARM_FEATURE_LPAE)) {
760         set_feature(env, ARM_FEATURE_V7MP);
761         set_feature(env, ARM_FEATURE_PXN);
762     }
763     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
764         set_feature(env, ARM_FEATURE_CBAR);
765     }
766     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
767         !arm_feature(env, ARM_FEATURE_M)) {
768         set_feature(env, ARM_FEATURE_THUMB_DSP);
769     }
770 
771     if (arm_feature(env, ARM_FEATURE_V7) &&
772         !arm_feature(env, ARM_FEATURE_M) &&
773         !arm_feature(env, ARM_FEATURE_PMSA)) {
774         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
775          * can use 4K pages.
776          */
777         pagebits = 12;
778     } else {
779         /* For CPUs which might have tiny 1K pages, or which have an
780          * MPU and might have small region sizes, stick with 1K pages.
781          */
782         pagebits = 10;
783     }
784     if (!set_preferred_target_page_bits(pagebits)) {
785         /* This can only ever happen for hotplugging a CPU, or if
786          * the board code incorrectly creates a CPU which it has
787          * promised via minimum_page_size that it will not.
788          */
789         error_setg(errp, "This CPU requires a smaller page size than the "
790                    "system is using");
791         return;
792     }
793 
794     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
795      * We don't support setting cluster ID ([16..23]) (known as Aff2
796      * in later ARM ARM versions), or any of the higher affinity level fields,
797      * so these bits always RAZ.
798      */
799     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
800         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
801                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
802     }
803 
804     if (cpu->reset_hivecs) {
805             cpu->reset_sctlr |= (1 << 13);
806     }
807 
808     if (cpu->cfgend) {
809         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
810             cpu->reset_sctlr |= SCTLR_EE;
811         } else {
812             cpu->reset_sctlr |= SCTLR_B;
813         }
814     }
815 
816     if (!cpu->has_el3) {
817         /* If the has_el3 CPU property is disabled then we need to disable the
818          * feature.
819          */
820         unset_feature(env, ARM_FEATURE_EL3);
821 
822         /* Disable the security extension feature bits in the processor feature
823          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
824          */
825         cpu->id_pfr1 &= ~0xf0;
826         cpu->id_aa64pfr0 &= ~0xf000;
827     }
828 
829     if (!cpu->has_el2) {
830         unset_feature(env, ARM_FEATURE_EL2);
831     }
832 
833     if (!cpu->has_pmu) {
834         unset_feature(env, ARM_FEATURE_PMU);
835         cpu->id_aa64dfr0 &= ~0xf00;
836     }
837 
838     if (!arm_feature(env, ARM_FEATURE_EL2)) {
839         /* Disable the hypervisor feature bits in the processor feature
840          * registers if we don't have EL2. These are id_pfr1[15:12] and
841          * id_aa64pfr0_el1[11:8].
842          */
843         cpu->id_aa64pfr0 &= ~0xf00;
844         cpu->id_pfr1 &= ~0xf000;
845     }
846 
847     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
848      * to false or by setting pmsav7-dregion to 0.
849      */
850     if (!cpu->has_mpu) {
851         cpu->pmsav7_dregion = 0;
852     }
853     if (cpu->pmsav7_dregion == 0) {
854         cpu->has_mpu = false;
855     }
856 
857     if (arm_feature(env, ARM_FEATURE_PMSA) &&
858         arm_feature(env, ARM_FEATURE_V7)) {
859         uint32_t nr = cpu->pmsav7_dregion;
860 
861         if (nr > 0xff) {
862             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
863             return;
864         }
865 
866         if (nr) {
867             if (arm_feature(env, ARM_FEATURE_V8)) {
868                 /* PMSAv8 */
869                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
870                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
871                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
872                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
873                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
874                 }
875             } else {
876                 env->pmsav7.drbar = g_new0(uint32_t, nr);
877                 env->pmsav7.drsr = g_new0(uint32_t, nr);
878                 env->pmsav7.dracr = g_new0(uint32_t, nr);
879             }
880         }
881     }
882 
883     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
884         uint32_t nr = cpu->sau_sregion;
885 
886         if (nr > 0xff) {
887             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
888             return;
889         }
890 
891         if (nr) {
892             env->sau.rbar = g_new0(uint32_t, nr);
893             env->sau.rlar = g_new0(uint32_t, nr);
894         }
895     }
896 
897     if (arm_feature(env, ARM_FEATURE_EL3)) {
898         set_feature(env, ARM_FEATURE_VBAR);
899     }
900 
901     register_cp_regs_for_features(cpu);
902     arm_cpu_register_gdb_regs_for_features(cpu);
903 
904     init_cpreg_list(cpu);
905 
906 #ifndef CONFIG_USER_ONLY
907     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
908         as = g_new0(AddressSpace, 1);
909 
910         cs->num_ases = 2;
911 
912         if (!cpu->secure_memory) {
913             cpu->secure_memory = cs->memory;
914         }
915         address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
916         cpu_address_space_init(cs, as, ARMASIdx_S);
917     } else {
918         cs->num_ases = 1;
919     }
920     as = g_new0(AddressSpace, 1);
921     address_space_init(as, cs->memory, "cpu-memory");
922     cpu_address_space_init(cs, as, ARMASIdx_NS);
923 #endif
924 
925     qemu_init_vcpu(cs);
926     cpu_reset(cs);
927 
928     acc->parent_realize(dev, errp);
929 }
930 
931 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
932 {
933     ObjectClass *oc;
934     char *typename;
935     char **cpuname;
936 
937     cpuname = g_strsplit(cpu_model, ",", 1);
938     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
939     oc = object_class_by_name(typename);
940     g_strfreev(cpuname);
941     g_free(typename);
942     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
943         object_class_is_abstract(oc)) {
944         return NULL;
945     }
946     return oc;
947 }
948 
949 /* CPU models. These are not needed for the AArch64 linux-user build. */
950 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
951 
952 static void arm926_initfn(Object *obj)
953 {
954     ARMCPU *cpu = ARM_CPU(obj);
955 
956     cpu->dtb_compatible = "arm,arm926";
957     set_feature(&cpu->env, ARM_FEATURE_V5);
958     set_feature(&cpu->env, ARM_FEATURE_VFP);
959     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
960     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
961     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
962     cpu->midr = 0x41069265;
963     cpu->reset_fpsid = 0x41011090;
964     cpu->ctr = 0x1dd20d2;
965     cpu->reset_sctlr = 0x00090078;
966 }
967 
968 static void arm946_initfn(Object *obj)
969 {
970     ARMCPU *cpu = ARM_CPU(obj);
971 
972     cpu->dtb_compatible = "arm,arm946";
973     set_feature(&cpu->env, ARM_FEATURE_V5);
974     set_feature(&cpu->env, ARM_FEATURE_PMSA);
975     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
976     cpu->midr = 0x41059461;
977     cpu->ctr = 0x0f004006;
978     cpu->reset_sctlr = 0x00000078;
979 }
980 
981 static void arm1026_initfn(Object *obj)
982 {
983     ARMCPU *cpu = ARM_CPU(obj);
984 
985     cpu->dtb_compatible = "arm,arm1026";
986     set_feature(&cpu->env, ARM_FEATURE_V5);
987     set_feature(&cpu->env, ARM_FEATURE_VFP);
988     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
989     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
990     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
991     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
992     cpu->midr = 0x4106a262;
993     cpu->reset_fpsid = 0x410110a0;
994     cpu->ctr = 0x1dd20d2;
995     cpu->reset_sctlr = 0x00090078;
996     cpu->reset_auxcr = 1;
997     {
998         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
999         ARMCPRegInfo ifar = {
1000             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1001             .access = PL1_RW,
1002             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1003             .resetvalue = 0
1004         };
1005         define_one_arm_cp_reg(cpu, &ifar);
1006     }
1007 }
1008 
1009 static void arm1136_r2_initfn(Object *obj)
1010 {
1011     ARMCPU *cpu = ARM_CPU(obj);
1012     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1013      * older core than plain "arm1136". In particular this does not
1014      * have the v6K features.
1015      * These ID register values are correct for 1136 but may be wrong
1016      * for 1136_r2 (in particular r0p2 does not actually implement most
1017      * of the ID registers).
1018      */
1019 
1020     cpu->dtb_compatible = "arm,arm1136";
1021     set_feature(&cpu->env, ARM_FEATURE_V6);
1022     set_feature(&cpu->env, ARM_FEATURE_VFP);
1023     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1024     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1025     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1026     cpu->midr = 0x4107b362;
1027     cpu->reset_fpsid = 0x410120b4;
1028     cpu->mvfr0 = 0x11111111;
1029     cpu->mvfr1 = 0x00000000;
1030     cpu->ctr = 0x1dd20d2;
1031     cpu->reset_sctlr = 0x00050078;
1032     cpu->id_pfr0 = 0x111;
1033     cpu->id_pfr1 = 0x1;
1034     cpu->id_dfr0 = 0x2;
1035     cpu->id_afr0 = 0x3;
1036     cpu->id_mmfr0 = 0x01130003;
1037     cpu->id_mmfr1 = 0x10030302;
1038     cpu->id_mmfr2 = 0x01222110;
1039     cpu->id_isar0 = 0x00140011;
1040     cpu->id_isar1 = 0x12002111;
1041     cpu->id_isar2 = 0x11231111;
1042     cpu->id_isar3 = 0x01102131;
1043     cpu->id_isar4 = 0x141;
1044     cpu->reset_auxcr = 7;
1045 }
1046 
1047 static void arm1136_initfn(Object *obj)
1048 {
1049     ARMCPU *cpu = ARM_CPU(obj);
1050 
1051     cpu->dtb_compatible = "arm,arm1136";
1052     set_feature(&cpu->env, ARM_FEATURE_V6K);
1053     set_feature(&cpu->env, ARM_FEATURE_V6);
1054     set_feature(&cpu->env, ARM_FEATURE_VFP);
1055     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1056     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1057     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1058     cpu->midr = 0x4117b363;
1059     cpu->reset_fpsid = 0x410120b4;
1060     cpu->mvfr0 = 0x11111111;
1061     cpu->mvfr1 = 0x00000000;
1062     cpu->ctr = 0x1dd20d2;
1063     cpu->reset_sctlr = 0x00050078;
1064     cpu->id_pfr0 = 0x111;
1065     cpu->id_pfr1 = 0x1;
1066     cpu->id_dfr0 = 0x2;
1067     cpu->id_afr0 = 0x3;
1068     cpu->id_mmfr0 = 0x01130003;
1069     cpu->id_mmfr1 = 0x10030302;
1070     cpu->id_mmfr2 = 0x01222110;
1071     cpu->id_isar0 = 0x00140011;
1072     cpu->id_isar1 = 0x12002111;
1073     cpu->id_isar2 = 0x11231111;
1074     cpu->id_isar3 = 0x01102131;
1075     cpu->id_isar4 = 0x141;
1076     cpu->reset_auxcr = 7;
1077 }
1078 
1079 static void arm1176_initfn(Object *obj)
1080 {
1081     ARMCPU *cpu = ARM_CPU(obj);
1082 
1083     cpu->dtb_compatible = "arm,arm1176";
1084     set_feature(&cpu->env, ARM_FEATURE_V6K);
1085     set_feature(&cpu->env, ARM_FEATURE_VFP);
1086     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1087     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1088     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1089     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1090     set_feature(&cpu->env, ARM_FEATURE_EL3);
1091     cpu->midr = 0x410fb767;
1092     cpu->reset_fpsid = 0x410120b5;
1093     cpu->mvfr0 = 0x11111111;
1094     cpu->mvfr1 = 0x00000000;
1095     cpu->ctr = 0x1dd20d2;
1096     cpu->reset_sctlr = 0x00050078;
1097     cpu->id_pfr0 = 0x111;
1098     cpu->id_pfr1 = 0x11;
1099     cpu->id_dfr0 = 0x33;
1100     cpu->id_afr0 = 0;
1101     cpu->id_mmfr0 = 0x01130003;
1102     cpu->id_mmfr1 = 0x10030302;
1103     cpu->id_mmfr2 = 0x01222100;
1104     cpu->id_isar0 = 0x0140011;
1105     cpu->id_isar1 = 0x12002111;
1106     cpu->id_isar2 = 0x11231121;
1107     cpu->id_isar3 = 0x01102131;
1108     cpu->id_isar4 = 0x01141;
1109     cpu->reset_auxcr = 7;
1110 }
1111 
1112 static void arm11mpcore_initfn(Object *obj)
1113 {
1114     ARMCPU *cpu = ARM_CPU(obj);
1115 
1116     cpu->dtb_compatible = "arm,arm11mpcore";
1117     set_feature(&cpu->env, ARM_FEATURE_V6K);
1118     set_feature(&cpu->env, ARM_FEATURE_VFP);
1119     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1120     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1121     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1122     cpu->midr = 0x410fb022;
1123     cpu->reset_fpsid = 0x410120b4;
1124     cpu->mvfr0 = 0x11111111;
1125     cpu->mvfr1 = 0x00000000;
1126     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1127     cpu->id_pfr0 = 0x111;
1128     cpu->id_pfr1 = 0x1;
1129     cpu->id_dfr0 = 0;
1130     cpu->id_afr0 = 0x2;
1131     cpu->id_mmfr0 = 0x01100103;
1132     cpu->id_mmfr1 = 0x10020302;
1133     cpu->id_mmfr2 = 0x01222000;
1134     cpu->id_isar0 = 0x00100011;
1135     cpu->id_isar1 = 0x12002111;
1136     cpu->id_isar2 = 0x11221011;
1137     cpu->id_isar3 = 0x01102131;
1138     cpu->id_isar4 = 0x141;
1139     cpu->reset_auxcr = 1;
1140 }
1141 
1142 static void cortex_m3_initfn(Object *obj)
1143 {
1144     ARMCPU *cpu = ARM_CPU(obj);
1145     set_feature(&cpu->env, ARM_FEATURE_V7);
1146     set_feature(&cpu->env, ARM_FEATURE_M);
1147     cpu->midr = 0x410fc231;
1148     cpu->pmsav7_dregion = 8;
1149 }
1150 
1151 static void cortex_m4_initfn(Object *obj)
1152 {
1153     ARMCPU *cpu = ARM_CPU(obj);
1154 
1155     set_feature(&cpu->env, ARM_FEATURE_V7);
1156     set_feature(&cpu->env, ARM_FEATURE_M);
1157     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1158     cpu->midr = 0x410fc240; /* r0p0 */
1159     cpu->pmsav7_dregion = 8;
1160 }
1161 
1162 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1163 {
1164     CPUClass *cc = CPU_CLASS(oc);
1165 
1166 #ifndef CONFIG_USER_ONLY
1167     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1168 #endif
1169 
1170     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1171 }
1172 
1173 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1174     /* Dummy the TCM region regs for the moment */
1175     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1176       .access = PL1_RW, .type = ARM_CP_CONST },
1177     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1178       .access = PL1_RW, .type = ARM_CP_CONST },
1179     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1180       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1181     REGINFO_SENTINEL
1182 };
1183 
1184 static void cortex_r5_initfn(Object *obj)
1185 {
1186     ARMCPU *cpu = ARM_CPU(obj);
1187 
1188     set_feature(&cpu->env, ARM_FEATURE_V7);
1189     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1190     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1191     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1192     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1193     cpu->midr = 0x411fc153; /* r1p3 */
1194     cpu->id_pfr0 = 0x0131;
1195     cpu->id_pfr1 = 0x001;
1196     cpu->id_dfr0 = 0x010400;
1197     cpu->id_afr0 = 0x0;
1198     cpu->id_mmfr0 = 0x0210030;
1199     cpu->id_mmfr1 = 0x00000000;
1200     cpu->id_mmfr2 = 0x01200000;
1201     cpu->id_mmfr3 = 0x0211;
1202     cpu->id_isar0 = 0x2101111;
1203     cpu->id_isar1 = 0x13112111;
1204     cpu->id_isar2 = 0x21232141;
1205     cpu->id_isar3 = 0x01112131;
1206     cpu->id_isar4 = 0x0010142;
1207     cpu->id_isar5 = 0x0;
1208     cpu->mp_is_up = true;
1209     cpu->pmsav7_dregion = 16;
1210     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1211 }
1212 
1213 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1214     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1215       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1216     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1217       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1218     REGINFO_SENTINEL
1219 };
1220 
1221 static void cortex_a8_initfn(Object *obj)
1222 {
1223     ARMCPU *cpu = ARM_CPU(obj);
1224 
1225     cpu->dtb_compatible = "arm,cortex-a8";
1226     set_feature(&cpu->env, ARM_FEATURE_V7);
1227     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1228     set_feature(&cpu->env, ARM_FEATURE_NEON);
1229     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1230     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1231     set_feature(&cpu->env, ARM_FEATURE_EL3);
1232     cpu->midr = 0x410fc080;
1233     cpu->reset_fpsid = 0x410330c0;
1234     cpu->mvfr0 = 0x11110222;
1235     cpu->mvfr1 = 0x00011111;
1236     cpu->ctr = 0x82048004;
1237     cpu->reset_sctlr = 0x00c50078;
1238     cpu->id_pfr0 = 0x1031;
1239     cpu->id_pfr1 = 0x11;
1240     cpu->id_dfr0 = 0x400;
1241     cpu->id_afr0 = 0;
1242     cpu->id_mmfr0 = 0x31100003;
1243     cpu->id_mmfr1 = 0x20000000;
1244     cpu->id_mmfr2 = 0x01202000;
1245     cpu->id_mmfr3 = 0x11;
1246     cpu->id_isar0 = 0x00101111;
1247     cpu->id_isar1 = 0x12112111;
1248     cpu->id_isar2 = 0x21232031;
1249     cpu->id_isar3 = 0x11112131;
1250     cpu->id_isar4 = 0x00111142;
1251     cpu->dbgdidr = 0x15141000;
1252     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1253     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1254     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1255     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1256     cpu->reset_auxcr = 2;
1257     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1258 }
1259 
1260 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1261     /* power_control should be set to maximum latency. Again,
1262      * default to 0 and set by private hook
1263      */
1264     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1265       .access = PL1_RW, .resetvalue = 0,
1266       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1267     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1268       .access = PL1_RW, .resetvalue = 0,
1269       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1270     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1271       .access = PL1_RW, .resetvalue = 0,
1272       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1273     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1274       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1275     /* TLB lockdown control */
1276     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1277       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1278     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1279       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1280     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1281       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1282     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1283       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1284     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1285       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1286     REGINFO_SENTINEL
1287 };
1288 
1289 static void cortex_a9_initfn(Object *obj)
1290 {
1291     ARMCPU *cpu = ARM_CPU(obj);
1292 
1293     cpu->dtb_compatible = "arm,cortex-a9";
1294     set_feature(&cpu->env, ARM_FEATURE_V7);
1295     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1296     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1297     set_feature(&cpu->env, ARM_FEATURE_NEON);
1298     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1299     set_feature(&cpu->env, ARM_FEATURE_EL3);
1300     /* Note that A9 supports the MP extensions even for
1301      * A9UP and single-core A9MP (which are both different
1302      * and valid configurations; we don't model A9UP).
1303      */
1304     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1305     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1306     cpu->midr = 0x410fc090;
1307     cpu->reset_fpsid = 0x41033090;
1308     cpu->mvfr0 = 0x11110222;
1309     cpu->mvfr1 = 0x01111111;
1310     cpu->ctr = 0x80038003;
1311     cpu->reset_sctlr = 0x00c50078;
1312     cpu->id_pfr0 = 0x1031;
1313     cpu->id_pfr1 = 0x11;
1314     cpu->id_dfr0 = 0x000;
1315     cpu->id_afr0 = 0;
1316     cpu->id_mmfr0 = 0x00100103;
1317     cpu->id_mmfr1 = 0x20000000;
1318     cpu->id_mmfr2 = 0x01230000;
1319     cpu->id_mmfr3 = 0x00002111;
1320     cpu->id_isar0 = 0x00101111;
1321     cpu->id_isar1 = 0x13112111;
1322     cpu->id_isar2 = 0x21232041;
1323     cpu->id_isar3 = 0x11112131;
1324     cpu->id_isar4 = 0x00111142;
1325     cpu->dbgdidr = 0x35141000;
1326     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1327     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1328     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1329     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1330 }
1331 
1332 #ifndef CONFIG_USER_ONLY
1333 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1334 {
1335     /* Linux wants the number of processors from here.
1336      * Might as well set the interrupt-controller bit too.
1337      */
1338     return ((smp_cpus - 1) << 24) | (1 << 23);
1339 }
1340 #endif
1341 
1342 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1343 #ifndef CONFIG_USER_ONLY
1344     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1345       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1346       .writefn = arm_cp_write_ignore, },
1347 #endif
1348     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1349       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1350     REGINFO_SENTINEL
1351 };
1352 
1353 static void cortex_a7_initfn(Object *obj)
1354 {
1355     ARMCPU *cpu = ARM_CPU(obj);
1356 
1357     cpu->dtb_compatible = "arm,cortex-a7";
1358     set_feature(&cpu->env, ARM_FEATURE_V7);
1359     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1360     set_feature(&cpu->env, ARM_FEATURE_NEON);
1361     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1362     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1363     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1364     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1365     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1366     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1367     set_feature(&cpu->env, ARM_FEATURE_EL3);
1368     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1369     cpu->midr = 0x410fc075;
1370     cpu->reset_fpsid = 0x41023075;
1371     cpu->mvfr0 = 0x10110222;
1372     cpu->mvfr1 = 0x11111111;
1373     cpu->ctr = 0x84448003;
1374     cpu->reset_sctlr = 0x00c50078;
1375     cpu->id_pfr0 = 0x00001131;
1376     cpu->id_pfr1 = 0x00011011;
1377     cpu->id_dfr0 = 0x02010555;
1378     cpu->pmceid0 = 0x00000000;
1379     cpu->pmceid1 = 0x00000000;
1380     cpu->id_afr0 = 0x00000000;
1381     cpu->id_mmfr0 = 0x10101105;
1382     cpu->id_mmfr1 = 0x40000000;
1383     cpu->id_mmfr2 = 0x01240000;
1384     cpu->id_mmfr3 = 0x02102211;
1385     cpu->id_isar0 = 0x01101110;
1386     cpu->id_isar1 = 0x13112111;
1387     cpu->id_isar2 = 0x21232041;
1388     cpu->id_isar3 = 0x11112131;
1389     cpu->id_isar4 = 0x10011142;
1390     cpu->dbgdidr = 0x3515f005;
1391     cpu->clidr = 0x0a200023;
1392     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1393     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1394     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1395     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1396 }
1397 
1398 static void cortex_a15_initfn(Object *obj)
1399 {
1400     ARMCPU *cpu = ARM_CPU(obj);
1401 
1402     cpu->dtb_compatible = "arm,cortex-a15";
1403     set_feature(&cpu->env, ARM_FEATURE_V7);
1404     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1405     set_feature(&cpu->env, ARM_FEATURE_NEON);
1406     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1407     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1408     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1409     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1410     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1411     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1412     set_feature(&cpu->env, ARM_FEATURE_EL3);
1413     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1414     cpu->midr = 0x412fc0f1;
1415     cpu->reset_fpsid = 0x410430f0;
1416     cpu->mvfr0 = 0x10110222;
1417     cpu->mvfr1 = 0x11111111;
1418     cpu->ctr = 0x8444c004;
1419     cpu->reset_sctlr = 0x00c50078;
1420     cpu->id_pfr0 = 0x00001131;
1421     cpu->id_pfr1 = 0x00011011;
1422     cpu->id_dfr0 = 0x02010555;
1423     cpu->pmceid0 = 0x0000000;
1424     cpu->pmceid1 = 0x00000000;
1425     cpu->id_afr0 = 0x00000000;
1426     cpu->id_mmfr0 = 0x10201105;
1427     cpu->id_mmfr1 = 0x20000000;
1428     cpu->id_mmfr2 = 0x01240000;
1429     cpu->id_mmfr3 = 0x02102211;
1430     cpu->id_isar0 = 0x02101110;
1431     cpu->id_isar1 = 0x13112111;
1432     cpu->id_isar2 = 0x21232041;
1433     cpu->id_isar3 = 0x11112131;
1434     cpu->id_isar4 = 0x10011142;
1435     cpu->dbgdidr = 0x3515f021;
1436     cpu->clidr = 0x0a200023;
1437     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1438     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1439     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1440     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1441 }
1442 
1443 static void ti925t_initfn(Object *obj)
1444 {
1445     ARMCPU *cpu = ARM_CPU(obj);
1446     set_feature(&cpu->env, ARM_FEATURE_V4T);
1447     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1448     cpu->midr = ARM_CPUID_TI925T;
1449     cpu->ctr = 0x5109149;
1450     cpu->reset_sctlr = 0x00000070;
1451 }
1452 
1453 static void sa1100_initfn(Object *obj)
1454 {
1455     ARMCPU *cpu = ARM_CPU(obj);
1456 
1457     cpu->dtb_compatible = "intel,sa1100";
1458     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1459     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1460     cpu->midr = 0x4401A11B;
1461     cpu->reset_sctlr = 0x00000070;
1462 }
1463 
1464 static void sa1110_initfn(Object *obj)
1465 {
1466     ARMCPU *cpu = ARM_CPU(obj);
1467     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1468     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1469     cpu->midr = 0x6901B119;
1470     cpu->reset_sctlr = 0x00000070;
1471 }
1472 
1473 static void pxa250_initfn(Object *obj)
1474 {
1475     ARMCPU *cpu = ARM_CPU(obj);
1476 
1477     cpu->dtb_compatible = "marvell,xscale";
1478     set_feature(&cpu->env, ARM_FEATURE_V5);
1479     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1480     cpu->midr = 0x69052100;
1481     cpu->ctr = 0xd172172;
1482     cpu->reset_sctlr = 0x00000078;
1483 }
1484 
1485 static void pxa255_initfn(Object *obj)
1486 {
1487     ARMCPU *cpu = ARM_CPU(obj);
1488 
1489     cpu->dtb_compatible = "marvell,xscale";
1490     set_feature(&cpu->env, ARM_FEATURE_V5);
1491     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1492     cpu->midr = 0x69052d00;
1493     cpu->ctr = 0xd172172;
1494     cpu->reset_sctlr = 0x00000078;
1495 }
1496 
1497 static void pxa260_initfn(Object *obj)
1498 {
1499     ARMCPU *cpu = ARM_CPU(obj);
1500 
1501     cpu->dtb_compatible = "marvell,xscale";
1502     set_feature(&cpu->env, ARM_FEATURE_V5);
1503     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1504     cpu->midr = 0x69052903;
1505     cpu->ctr = 0xd172172;
1506     cpu->reset_sctlr = 0x00000078;
1507 }
1508 
1509 static void pxa261_initfn(Object *obj)
1510 {
1511     ARMCPU *cpu = ARM_CPU(obj);
1512 
1513     cpu->dtb_compatible = "marvell,xscale";
1514     set_feature(&cpu->env, ARM_FEATURE_V5);
1515     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1516     cpu->midr = 0x69052d05;
1517     cpu->ctr = 0xd172172;
1518     cpu->reset_sctlr = 0x00000078;
1519 }
1520 
1521 static void pxa262_initfn(Object *obj)
1522 {
1523     ARMCPU *cpu = ARM_CPU(obj);
1524 
1525     cpu->dtb_compatible = "marvell,xscale";
1526     set_feature(&cpu->env, ARM_FEATURE_V5);
1527     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1528     cpu->midr = 0x69052d06;
1529     cpu->ctr = 0xd172172;
1530     cpu->reset_sctlr = 0x00000078;
1531 }
1532 
1533 static void pxa270a0_initfn(Object *obj)
1534 {
1535     ARMCPU *cpu = ARM_CPU(obj);
1536 
1537     cpu->dtb_compatible = "marvell,xscale";
1538     set_feature(&cpu->env, ARM_FEATURE_V5);
1539     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1540     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1541     cpu->midr = 0x69054110;
1542     cpu->ctr = 0xd172172;
1543     cpu->reset_sctlr = 0x00000078;
1544 }
1545 
1546 static void pxa270a1_initfn(Object *obj)
1547 {
1548     ARMCPU *cpu = ARM_CPU(obj);
1549 
1550     cpu->dtb_compatible = "marvell,xscale";
1551     set_feature(&cpu->env, ARM_FEATURE_V5);
1552     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1553     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1554     cpu->midr = 0x69054111;
1555     cpu->ctr = 0xd172172;
1556     cpu->reset_sctlr = 0x00000078;
1557 }
1558 
1559 static void pxa270b0_initfn(Object *obj)
1560 {
1561     ARMCPU *cpu = ARM_CPU(obj);
1562 
1563     cpu->dtb_compatible = "marvell,xscale";
1564     set_feature(&cpu->env, ARM_FEATURE_V5);
1565     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1566     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1567     cpu->midr = 0x69054112;
1568     cpu->ctr = 0xd172172;
1569     cpu->reset_sctlr = 0x00000078;
1570 }
1571 
1572 static void pxa270b1_initfn(Object *obj)
1573 {
1574     ARMCPU *cpu = ARM_CPU(obj);
1575 
1576     cpu->dtb_compatible = "marvell,xscale";
1577     set_feature(&cpu->env, ARM_FEATURE_V5);
1578     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1579     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1580     cpu->midr = 0x69054113;
1581     cpu->ctr = 0xd172172;
1582     cpu->reset_sctlr = 0x00000078;
1583 }
1584 
1585 static void pxa270c0_initfn(Object *obj)
1586 {
1587     ARMCPU *cpu = ARM_CPU(obj);
1588 
1589     cpu->dtb_compatible = "marvell,xscale";
1590     set_feature(&cpu->env, ARM_FEATURE_V5);
1591     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1592     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1593     cpu->midr = 0x69054114;
1594     cpu->ctr = 0xd172172;
1595     cpu->reset_sctlr = 0x00000078;
1596 }
1597 
1598 static void pxa270c5_initfn(Object *obj)
1599 {
1600     ARMCPU *cpu = ARM_CPU(obj);
1601 
1602     cpu->dtb_compatible = "marvell,xscale";
1603     set_feature(&cpu->env, ARM_FEATURE_V5);
1604     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1605     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1606     cpu->midr = 0x69054117;
1607     cpu->ctr = 0xd172172;
1608     cpu->reset_sctlr = 0x00000078;
1609 }
1610 
1611 #ifdef CONFIG_USER_ONLY
1612 static void arm_any_initfn(Object *obj)
1613 {
1614     ARMCPU *cpu = ARM_CPU(obj);
1615     set_feature(&cpu->env, ARM_FEATURE_V8);
1616     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1617     set_feature(&cpu->env, ARM_FEATURE_NEON);
1618     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1619     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1620     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1621     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1622     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1623     set_feature(&cpu->env, ARM_FEATURE_CRC);
1624     cpu->midr = 0xffffffff;
1625 }
1626 #endif
1627 
1628 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1629 
1630 typedef struct ARMCPUInfo {
1631     const char *name;
1632     void (*initfn)(Object *obj);
1633     void (*class_init)(ObjectClass *oc, void *data);
1634 } ARMCPUInfo;
1635 
1636 static const ARMCPUInfo arm_cpus[] = {
1637 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1638     { .name = "arm926",      .initfn = arm926_initfn },
1639     { .name = "arm946",      .initfn = arm946_initfn },
1640     { .name = "arm1026",     .initfn = arm1026_initfn },
1641     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1642      * older core than plain "arm1136". In particular this does not
1643      * have the v6K features.
1644      */
1645     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1646     { .name = "arm1136",     .initfn = arm1136_initfn },
1647     { .name = "arm1176",     .initfn = arm1176_initfn },
1648     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1649     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1650                              .class_init = arm_v7m_class_init },
1651     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1652                              .class_init = arm_v7m_class_init },
1653     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1654     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1655     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1656     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1657     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1658     { .name = "ti925t",      .initfn = ti925t_initfn },
1659     { .name = "sa1100",      .initfn = sa1100_initfn },
1660     { .name = "sa1110",      .initfn = sa1110_initfn },
1661     { .name = "pxa250",      .initfn = pxa250_initfn },
1662     { .name = "pxa255",      .initfn = pxa255_initfn },
1663     { .name = "pxa260",      .initfn = pxa260_initfn },
1664     { .name = "pxa261",      .initfn = pxa261_initfn },
1665     { .name = "pxa262",      .initfn = pxa262_initfn },
1666     /* "pxa270" is an alias for "pxa270-a0" */
1667     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1668     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1669     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1670     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1671     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1672     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1673     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1674 #ifdef CONFIG_USER_ONLY
1675     { .name = "any",         .initfn = arm_any_initfn },
1676 #endif
1677 #endif
1678     { .name = NULL }
1679 };
1680 
1681 static Property arm_cpu_properties[] = {
1682     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1683     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1684     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1685     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1686                         mp_affinity, ARM64_AFFINITY_INVALID),
1687     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1688     DEFINE_PROP_END_OF_LIST()
1689 };
1690 
1691 #ifdef CONFIG_USER_ONLY
1692 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1693                                     int mmu_idx)
1694 {
1695     ARMCPU *cpu = ARM_CPU(cs);
1696     CPUARMState *env = &cpu->env;
1697 
1698     env->exception.vaddress = address;
1699     if (rw == 2) {
1700         cs->exception_index = EXCP_PREFETCH_ABORT;
1701     } else {
1702         cs->exception_index = EXCP_DATA_ABORT;
1703     }
1704     return 1;
1705 }
1706 #endif
1707 
1708 static gchar *arm_gdb_arch_name(CPUState *cs)
1709 {
1710     ARMCPU *cpu = ARM_CPU(cs);
1711     CPUARMState *env = &cpu->env;
1712 
1713     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1714         return g_strdup("iwmmxt");
1715     }
1716     return g_strdup("arm");
1717 }
1718 
1719 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1720 {
1721     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1722     CPUClass *cc = CPU_CLASS(acc);
1723     DeviceClass *dc = DEVICE_CLASS(oc);
1724 
1725     acc->parent_realize = dc->realize;
1726     dc->realize = arm_cpu_realizefn;
1727     dc->props = arm_cpu_properties;
1728 
1729     acc->parent_reset = cc->reset;
1730     cc->reset = arm_cpu_reset;
1731 
1732     cc->class_by_name = arm_cpu_class_by_name;
1733     cc->has_work = arm_cpu_has_work;
1734     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1735     cc->dump_state = arm_cpu_dump_state;
1736     cc->set_pc = arm_cpu_set_pc;
1737     cc->gdb_read_register = arm_cpu_gdb_read_register;
1738     cc->gdb_write_register = arm_cpu_gdb_write_register;
1739 #ifdef CONFIG_USER_ONLY
1740     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1741 #else
1742     cc->do_interrupt = arm_cpu_do_interrupt;
1743     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1744     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1745     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1746     cc->asidx_from_attrs = arm_asidx_from_attrs;
1747     cc->vmsd = &vmstate_arm_cpu;
1748     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1749     cc->write_elf64_note = arm_cpu_write_elf64_note;
1750     cc->write_elf32_note = arm_cpu_write_elf32_note;
1751 #endif
1752     cc->gdb_num_core_regs = 26;
1753     cc->gdb_core_xml_file = "arm-core.xml";
1754     cc->gdb_arch_name = arm_gdb_arch_name;
1755     cc->gdb_stop_before_watchpoint = true;
1756     cc->debug_excp_handler = arm_debug_excp_handler;
1757     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1758 #if !defined(CONFIG_USER_ONLY)
1759     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1760 #endif
1761 
1762     cc->disas_set_info = arm_disas_set_info;
1763     cc->tcg_initialize = arm_translate_init;
1764 }
1765 
1766 static void cpu_register(const ARMCPUInfo *info)
1767 {
1768     TypeInfo type_info = {
1769         .parent = TYPE_ARM_CPU,
1770         .instance_size = sizeof(ARMCPU),
1771         .instance_init = info->initfn,
1772         .class_size = sizeof(ARMCPUClass),
1773         .class_init = info->class_init,
1774     };
1775 
1776     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1777     type_register(&type_info);
1778     g_free((void *)type_info.name);
1779 }
1780 
1781 static const TypeInfo arm_cpu_type_info = {
1782     .name = TYPE_ARM_CPU,
1783     .parent = TYPE_CPU,
1784     .instance_size = sizeof(ARMCPU),
1785     .instance_init = arm_cpu_initfn,
1786     .instance_post_init = arm_cpu_post_init,
1787     .instance_finalize = arm_cpu_finalizefn,
1788     .abstract = true,
1789     .class_size = sizeof(ARMCPUClass),
1790     .class_init = arm_cpu_class_init,
1791 };
1792 
1793 static void arm_cpu_register_types(void)
1794 {
1795     const ARMCPUInfo *info = arm_cpus;
1796 
1797     type_register_static(&arm_cpu_type_info);
1798 
1799     while (info->name) {
1800         cpu_register(info);
1801         info++;
1802     }
1803 }
1804 
1805 type_init(arm_cpu_register_types)
1806