xref: /openbmc/qemu/target/arm/cpu.c (revision 520e210c)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43     CPUARMState *env = &cpu->env;
44 
45     if (is_a64(env)) {
46         env->pc = value;
47         env->thumb = 0;
48     } else {
49         env->regs[15] = value & ~1;
50         env->thumb = value & 1;
51     }
52 }
53 
54 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
55 {
56     ARMCPU *cpu = ARM_CPU(cs);
57     CPUARMState *env = &cpu->env;
58 
59     /*
60      * It's OK to look at env for the current mode here, because it's
61      * never possible for an AArch64 TB to chain to an AArch32 TB.
62      */
63     if (is_a64(env)) {
64         env->pc = tb->pc;
65     } else {
66         env->regs[15] = tb->pc;
67     }
68 }
69 
70 static bool arm_cpu_has_work(CPUState *cs)
71 {
72     ARMCPU *cpu = ARM_CPU(cs);
73 
74     return (cpu->power_state != PSCI_OFF)
75         && cs->interrupt_request &
76         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
77          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
78          | CPU_INTERRUPT_EXITTB);
79 }
80 
81 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
82                                  void *opaque)
83 {
84     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
85 
86     entry->hook = hook;
87     entry->opaque = opaque;
88 
89     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
90 }
91 
92 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93                                  void *opaque)
94 {
95     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 
97     entry->hook = hook;
98     entry->opaque = opaque;
99 
100     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
101 }
102 
103 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
104 {
105     /* Reset a single ARMCPRegInfo register */
106     ARMCPRegInfo *ri = value;
107     ARMCPU *cpu = opaque;
108 
109     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
110         return;
111     }
112 
113     if (ri->resetfn) {
114         ri->resetfn(&cpu->env, ri);
115         return;
116     }
117 
118     /* A zero offset is never possible as it would be regs[0]
119      * so we use it to indicate that reset is being handled elsewhere.
120      * This is basically only used for fields in non-core coprocessors
121      * (like the pxa2xx ones).
122      */
123     if (!ri->fieldoffset) {
124         return;
125     }
126 
127     if (cpreg_field_is_64bit(ri)) {
128         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
129     } else {
130         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
131     }
132 }
133 
134 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
135 {
136     /* Purely an assertion check: we've already done reset once,
137      * so now check that running the reset for the cpreg doesn't
138      * change its value. This traps bugs where two different cpregs
139      * both try to reset the same state field but to different values.
140      */
141     ARMCPRegInfo *ri = value;
142     ARMCPU *cpu = opaque;
143     uint64_t oldvalue, newvalue;
144 
145     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
146         return;
147     }
148 
149     oldvalue = read_raw_cp_reg(&cpu->env, ri);
150     cp_reg_reset(key, value, opaque);
151     newvalue = read_raw_cp_reg(&cpu->env, ri);
152     assert(oldvalue == newvalue);
153 }
154 
155 /* CPUClass::reset() */
156 static void arm_cpu_reset(CPUState *s)
157 {
158     ARMCPU *cpu = ARM_CPU(s);
159     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
160     CPUARMState *env = &cpu->env;
161 
162     acc->parent_reset(s);
163 
164     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
165 
166     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
167     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
168 
169     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
170     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
171     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
172     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
173 
174     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
175     s->halted = cpu->start_powered_off;
176 
177     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
178         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
179     }
180 
181     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
182         /* 64 bit CPUs always start in 64 bit mode */
183         env->aarch64 = 1;
184 #if defined(CONFIG_USER_ONLY)
185         env->pstate = PSTATE_MODE_EL0t;
186         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
187         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
188         /* Enable all PAC keys.  */
189         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
190                                   SCTLR_EnDA | SCTLR_EnDB);
191         /* Enable all PAC instructions */
192         env->cp15.hcr_el2 |= HCR_API;
193         env->cp15.scr_el3 |= SCR_API;
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         env->cp15.cptr_el[3] |= CPTR_EZ;
199         /* with maximum vector length */
200         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
201         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
202         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
203         /*
204          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
205          * turning on both here will produce smaller code and otherwise
206          * make no difference to the user-level emulation.
207          */
208         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
209 #else
210         /* Reset into the highest available EL */
211         if (arm_feature(env, ARM_FEATURE_EL3)) {
212             env->pstate = PSTATE_MODE_EL3h;
213         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
214             env->pstate = PSTATE_MODE_EL2h;
215         } else {
216             env->pstate = PSTATE_MODE_EL1h;
217         }
218         env->pc = cpu->rvbar;
219 #endif
220     } else {
221 #if defined(CONFIG_USER_ONLY)
222         /* Userspace expects access to cp10 and cp11 for FP/Neon */
223         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
224 #endif
225     }
226 
227 #if defined(CONFIG_USER_ONLY)
228     env->uncached_cpsr = ARM_CPU_MODE_USR;
229     /* For user mode we must enable access to coprocessors */
230     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
231     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
232         env->cp15.c15_cpar = 3;
233     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
234         env->cp15.c15_cpar = 1;
235     }
236 #else
237 
238     /*
239      * If the highest available EL is EL2, AArch32 will start in Hyp
240      * mode; otherwise it starts in SVC. Note that if we start in
241      * AArch64 then these values in the uncached_cpsr will be ignored.
242      */
243     if (arm_feature(env, ARM_FEATURE_EL2) &&
244         !arm_feature(env, ARM_FEATURE_EL3)) {
245         env->uncached_cpsr = ARM_CPU_MODE_HYP;
246     } else {
247         env->uncached_cpsr = ARM_CPU_MODE_SVC;
248     }
249     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
250 
251     if (arm_feature(env, ARM_FEATURE_M)) {
252         uint32_t initial_msp; /* Loaded from 0x0 */
253         uint32_t initial_pc; /* Loaded from 0x4 */
254         uint8_t *rom;
255         uint32_t vecbase;
256 
257         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
258             env->v7m.secure = true;
259         } else {
260             /* This bit resets to 0 if security is supported, but 1 if
261              * it is not. The bit is not present in v7M, but we set it
262              * here so we can avoid having to make checks on it conditional
263              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
264              */
265             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
266         }
267 
268         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
269          * that it resets to 1, so QEMU always does that rather than making
270          * it dependent on CPU model. In v8M it is RES1.
271          */
272         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
273         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
274         if (arm_feature(env, ARM_FEATURE_V8)) {
275             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
276             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
277             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278         }
279         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
280             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
281             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282         }
283 
284         /* Unlike A/R profile, M profile defines the reset LR value */
285         env->regs[14] = 0xffffffff;
286 
287         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
288 
289         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
290         vecbase = env->v7m.vecbase[env->v7m.secure];
291         rom = rom_ptr(vecbase, 8);
292         if (rom) {
293             /* Address zero is covered by ROM which hasn't yet been
294              * copied into physical memory.
295              */
296             initial_msp = ldl_p(rom);
297             initial_pc = ldl_p(rom + 4);
298         } else {
299             /* Address zero not covered by a ROM blob, or the ROM blob
300              * is in non-modifiable memory and this is a second reset after
301              * it got copied into memory. In the latter case, rom_ptr
302              * will return a NULL pointer and we should use ldl_phys instead.
303              */
304             initial_msp = ldl_phys(s->as, vecbase);
305             initial_pc = ldl_phys(s->as, vecbase + 4);
306         }
307 
308         env->regs[13] = initial_msp & 0xFFFFFFFC;
309         env->regs[15] = initial_pc & ~1;
310         env->thumb = initial_pc & 1;
311     }
312 
313     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
314      * executing as AArch32 then check if highvecs are enabled and
315      * adjust the PC accordingly.
316      */
317     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
318         env->regs[15] = 0xFFFF0000;
319     }
320 
321     /* M profile requires that reset clears the exclusive monitor;
322      * A profile does not, but clearing it makes more sense than having it
323      * set with an exclusive access on address zero.
324      */
325     arm_clear_exclusive(env);
326 
327     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
328 #endif
329 
330     if (arm_feature(env, ARM_FEATURE_PMSA)) {
331         if (cpu->pmsav7_dregion > 0) {
332             if (arm_feature(env, ARM_FEATURE_V8)) {
333                 memset(env->pmsav8.rbar[M_REG_NS], 0,
334                        sizeof(*env->pmsav8.rbar[M_REG_NS])
335                        * cpu->pmsav7_dregion);
336                 memset(env->pmsav8.rlar[M_REG_NS], 0,
337                        sizeof(*env->pmsav8.rlar[M_REG_NS])
338                        * cpu->pmsav7_dregion);
339                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
340                     memset(env->pmsav8.rbar[M_REG_S], 0,
341                            sizeof(*env->pmsav8.rbar[M_REG_S])
342                            * cpu->pmsav7_dregion);
343                     memset(env->pmsav8.rlar[M_REG_S], 0,
344                            sizeof(*env->pmsav8.rlar[M_REG_S])
345                            * cpu->pmsav7_dregion);
346                 }
347             } else if (arm_feature(env, ARM_FEATURE_V7)) {
348                 memset(env->pmsav7.drbar, 0,
349                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
350                 memset(env->pmsav7.drsr, 0,
351                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
352                 memset(env->pmsav7.dracr, 0,
353                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
354             }
355         }
356         env->pmsav7.rnr[M_REG_NS] = 0;
357         env->pmsav7.rnr[M_REG_S] = 0;
358         env->pmsav8.mair0[M_REG_NS] = 0;
359         env->pmsav8.mair0[M_REG_S] = 0;
360         env->pmsav8.mair1[M_REG_NS] = 0;
361         env->pmsav8.mair1[M_REG_S] = 0;
362     }
363 
364     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
365         if (cpu->sau_sregion > 0) {
366             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
367             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
368         }
369         env->sau.rnr = 0;
370         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
371          * the Cortex-M33 does.
372          */
373         env->sau.ctrl = 0;
374     }
375 
376     set_flush_to_zero(1, &env->vfp.standard_fp_status);
377     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
378     set_default_nan_mode(1, &env->vfp.standard_fp_status);
379     set_float_detect_tininess(float_tininess_before_rounding,
380                               &env->vfp.fp_status);
381     set_float_detect_tininess(float_tininess_before_rounding,
382                               &env->vfp.standard_fp_status);
383     set_float_detect_tininess(float_tininess_before_rounding,
384                               &env->vfp.fp_status_f16);
385 #ifndef CONFIG_USER_ONLY
386     if (kvm_enabled()) {
387         kvm_arm_reset_vcpu(cpu);
388     }
389 #endif
390 
391     hw_breakpoint_update_all(cpu);
392     hw_watchpoint_update_all(cpu);
393 }
394 
395 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
396 {
397     CPUClass *cc = CPU_GET_CLASS(cs);
398     CPUARMState *env = cs->env_ptr;
399     uint32_t cur_el = arm_current_el(env);
400     bool secure = arm_is_secure(env);
401     uint32_t target_el;
402     uint32_t excp_idx;
403     bool ret = false;
404 
405     if (interrupt_request & CPU_INTERRUPT_FIQ) {
406         excp_idx = EXCP_FIQ;
407         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
408         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
409             cs->exception_index = excp_idx;
410             env->exception.target_el = target_el;
411             cc->do_interrupt(cs);
412             ret = true;
413         }
414     }
415     if (interrupt_request & CPU_INTERRUPT_HARD) {
416         excp_idx = EXCP_IRQ;
417         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
418         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
419             cs->exception_index = excp_idx;
420             env->exception.target_el = target_el;
421             cc->do_interrupt(cs);
422             ret = true;
423         }
424     }
425     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
426         excp_idx = EXCP_VIRQ;
427         target_el = 1;
428         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
429             cs->exception_index = excp_idx;
430             env->exception.target_el = target_el;
431             cc->do_interrupt(cs);
432             ret = true;
433         }
434     }
435     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
436         excp_idx = EXCP_VFIQ;
437         target_el = 1;
438         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
439             cs->exception_index = excp_idx;
440             env->exception.target_el = target_el;
441             cc->do_interrupt(cs);
442             ret = true;
443         }
444     }
445 
446     return ret;
447 }
448 
449 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
450 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
451 {
452     CPUClass *cc = CPU_GET_CLASS(cs);
453     ARMCPU *cpu = ARM_CPU(cs);
454     CPUARMState *env = &cpu->env;
455     bool ret = false;
456 
457     /* ARMv7-M interrupt masking works differently than -A or -R.
458      * There is no FIQ/IRQ distinction. Instead of I and F bits
459      * masking FIQ and IRQ interrupts, an exception is taken only
460      * if it is higher priority than the current execution priority
461      * (which depends on state like BASEPRI, FAULTMASK and the
462      * currently active exception).
463      */
464     if (interrupt_request & CPU_INTERRUPT_HARD
465         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
466         cs->exception_index = EXCP_IRQ;
467         cc->do_interrupt(cs);
468         ret = true;
469     }
470     return ret;
471 }
472 #endif
473 
474 void arm_cpu_update_virq(ARMCPU *cpu)
475 {
476     /*
477      * Update the interrupt level for VIRQ, which is the logical OR of
478      * the HCR_EL2.VI bit and the input line level from the GIC.
479      */
480     CPUARMState *env = &cpu->env;
481     CPUState *cs = CPU(cpu);
482 
483     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
484         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
485 
486     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
487         if (new_state) {
488             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
489         } else {
490             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
491         }
492     }
493 }
494 
495 void arm_cpu_update_vfiq(ARMCPU *cpu)
496 {
497     /*
498      * Update the interrupt level for VFIQ, which is the logical OR of
499      * the HCR_EL2.VF bit and the input line level from the GIC.
500      */
501     CPUARMState *env = &cpu->env;
502     CPUState *cs = CPU(cpu);
503 
504     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
505         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
506 
507     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
508         if (new_state) {
509             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
510         } else {
511             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
512         }
513     }
514 }
515 
516 #ifndef CONFIG_USER_ONLY
517 static void arm_cpu_set_irq(void *opaque, int irq, int level)
518 {
519     ARMCPU *cpu = opaque;
520     CPUARMState *env = &cpu->env;
521     CPUState *cs = CPU(cpu);
522     static const int mask[] = {
523         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
524         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
525         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
526         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
527     };
528 
529     if (level) {
530         env->irq_line_state |= mask[irq];
531     } else {
532         env->irq_line_state &= ~mask[irq];
533     }
534 
535     switch (irq) {
536     case ARM_CPU_VIRQ:
537         assert(arm_feature(env, ARM_FEATURE_EL2));
538         arm_cpu_update_virq(cpu);
539         break;
540     case ARM_CPU_VFIQ:
541         assert(arm_feature(env, ARM_FEATURE_EL2));
542         arm_cpu_update_vfiq(cpu);
543         break;
544     case ARM_CPU_IRQ:
545     case ARM_CPU_FIQ:
546         if (level) {
547             cpu_interrupt(cs, mask[irq]);
548         } else {
549             cpu_reset_interrupt(cs, mask[irq]);
550         }
551         break;
552     default:
553         g_assert_not_reached();
554     }
555 }
556 
557 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
558 {
559 #ifdef CONFIG_KVM
560     ARMCPU *cpu = opaque;
561     CPUARMState *env = &cpu->env;
562     CPUState *cs = CPU(cpu);
563     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
564     uint32_t linestate_bit;
565 
566     switch (irq) {
567     case ARM_CPU_IRQ:
568         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
569         linestate_bit = CPU_INTERRUPT_HARD;
570         break;
571     case ARM_CPU_FIQ:
572         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
573         linestate_bit = CPU_INTERRUPT_FIQ;
574         break;
575     default:
576         g_assert_not_reached();
577     }
578 
579     if (level) {
580         env->irq_line_state |= linestate_bit;
581     } else {
582         env->irq_line_state &= ~linestate_bit;
583     }
584 
585     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
586     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
587 #endif
588 }
589 
590 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
591 {
592     ARMCPU *cpu = ARM_CPU(cs);
593     CPUARMState *env = &cpu->env;
594 
595     cpu_synchronize_state(cs);
596     return arm_cpu_data_is_big_endian(env);
597 }
598 
599 #endif
600 
601 static inline void set_feature(CPUARMState *env, int feature)
602 {
603     env->features |= 1ULL << feature;
604 }
605 
606 static inline void unset_feature(CPUARMState *env, int feature)
607 {
608     env->features &= ~(1ULL << feature);
609 }
610 
611 static int
612 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
613 {
614   return print_insn_arm(pc | 1, info);
615 }
616 
617 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
618 {
619     ARMCPU *ac = ARM_CPU(cpu);
620     CPUARMState *env = &ac->env;
621     bool sctlr_b;
622 
623     if (is_a64(env)) {
624         /* We might not be compiled with the A64 disassembler
625          * because it needs a C++ compiler. Leave print_insn
626          * unset in this case to use the caller default behaviour.
627          */
628 #if defined(CONFIG_ARM_A64_DIS)
629         info->print_insn = print_insn_arm_a64;
630 #endif
631         info->cap_arch = CS_ARCH_ARM64;
632         info->cap_insn_unit = 4;
633         info->cap_insn_split = 4;
634     } else {
635         int cap_mode;
636         if (env->thumb) {
637             info->print_insn = print_insn_thumb1;
638             info->cap_insn_unit = 2;
639             info->cap_insn_split = 4;
640             cap_mode = CS_MODE_THUMB;
641         } else {
642             info->print_insn = print_insn_arm;
643             info->cap_insn_unit = 4;
644             info->cap_insn_split = 4;
645             cap_mode = CS_MODE_ARM;
646         }
647         if (arm_feature(env, ARM_FEATURE_V8)) {
648             cap_mode |= CS_MODE_V8;
649         }
650         if (arm_feature(env, ARM_FEATURE_M)) {
651             cap_mode |= CS_MODE_MCLASS;
652         }
653         info->cap_arch = CS_ARCH_ARM;
654         info->cap_mode = cap_mode;
655     }
656 
657     sctlr_b = arm_sctlr_b(env);
658     if (bswap_code(sctlr_b)) {
659 #ifdef TARGET_WORDS_BIGENDIAN
660         info->endian = BFD_ENDIAN_LITTLE;
661 #else
662         info->endian = BFD_ENDIAN_BIG;
663 #endif
664     }
665     info->flags &= ~INSN_ARM_BE32;
666 #ifndef CONFIG_USER_ONLY
667     if (sctlr_b) {
668         info->flags |= INSN_ARM_BE32;
669     }
670 #endif
671 }
672 
673 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
674 {
675     uint32_t Aff1 = idx / clustersz;
676     uint32_t Aff0 = idx % clustersz;
677     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
678 }
679 
680 static void cpreg_hashtable_data_destroy(gpointer data)
681 {
682     /*
683      * Destroy function for cpu->cp_regs hashtable data entries.
684      * We must free the name string because it was g_strdup()ed in
685      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
686      * from r->name because we know we definitely allocated it.
687      */
688     ARMCPRegInfo *r = data;
689 
690     g_free((void *)r->name);
691     g_free(r);
692 }
693 
694 static void arm_cpu_initfn(Object *obj)
695 {
696     CPUState *cs = CPU(obj);
697     ARMCPU *cpu = ARM_CPU(obj);
698 
699     cs->env_ptr = &cpu->env;
700     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
701                                          g_free, cpreg_hashtable_data_destroy);
702 
703     QLIST_INIT(&cpu->pre_el_change_hooks);
704     QLIST_INIT(&cpu->el_change_hooks);
705 
706 #ifndef CONFIG_USER_ONLY
707     /* Our inbound IRQ and FIQ lines */
708     if (kvm_enabled()) {
709         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
710          * the same interface as non-KVM CPUs.
711          */
712         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
713     } else {
714         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
715     }
716 
717     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
718                        ARRAY_SIZE(cpu->gt_timer_outputs));
719 
720     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
721                              "gicv3-maintenance-interrupt", 1);
722     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
723                              "pmu-interrupt", 1);
724 #endif
725 
726     /* DTB consumers generally don't in fact care what the 'compatible'
727      * string is, so always provide some string and trust that a hypothetical
728      * picky DTB consumer will also provide a helpful error message.
729      */
730     cpu->dtb_compatible = "qemu,unknown";
731     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
732     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
733 
734     if (tcg_enabled()) {
735         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
736     }
737 }
738 
739 static Property arm_cpu_reset_cbar_property =
740             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
741 
742 static Property arm_cpu_reset_hivecs_property =
743             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
744 
745 static Property arm_cpu_rvbar_property =
746             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
747 
748 static Property arm_cpu_has_el2_property =
749             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
750 
751 static Property arm_cpu_has_el3_property =
752             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
753 
754 static Property arm_cpu_cfgend_property =
755             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
756 
757 /* use property name "pmu" to match other archs and virt tools */
758 static Property arm_cpu_has_pmu_property =
759             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
760 
761 static Property arm_cpu_has_mpu_property =
762             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
763 
764 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
765  * because the CPU initfn will have already set cpu->pmsav7_dregion to
766  * the right value for that particular CPU type, and we don't want
767  * to override that with an incorrect constant value.
768  */
769 static Property arm_cpu_pmsav7_dregion_property =
770             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
771                                            pmsav7_dregion,
772                                            qdev_prop_uint32, uint32_t);
773 
774 /* M profile: initial value of the Secure VTOR */
775 static Property arm_cpu_initsvtor_property =
776             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
777 
778 void arm_cpu_post_init(Object *obj)
779 {
780     ARMCPU *cpu = ARM_CPU(obj);
781 
782     /* M profile implies PMSA. We have to do this here rather than
783      * in realize with the other feature-implication checks because
784      * we look at the PMSA bit to see if we should add some properties.
785      */
786     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
787         set_feature(&cpu->env, ARM_FEATURE_PMSA);
788     }
789 
790     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
791         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
792         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
793                                  &error_abort);
794     }
795 
796     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
797         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
798                                  &error_abort);
799     }
800 
801     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
802         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
803                                  &error_abort);
804     }
805 
806     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
807         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
808          * prevent "has_el3" from existing on CPUs which cannot support EL3.
809          */
810         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
811                                  &error_abort);
812 
813 #ifndef CONFIG_USER_ONLY
814         object_property_add_link(obj, "secure-memory",
815                                  TYPE_MEMORY_REGION,
816                                  (Object **)&cpu->secure_memory,
817                                  qdev_prop_allow_set_link_before_realize,
818                                  OBJ_PROP_LINK_STRONG,
819                                  &error_abort);
820 #endif
821     }
822 
823     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
824         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
825                                  &error_abort);
826     }
827 
828     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
829         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
830                                  &error_abort);
831     }
832 
833     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
834         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
835                                  &error_abort);
836         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
837             qdev_property_add_static(DEVICE(obj),
838                                      &arm_cpu_pmsav7_dregion_property,
839                                      &error_abort);
840         }
841     }
842 
843     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
844         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
845                                  qdev_prop_allow_set_link_before_realize,
846                                  OBJ_PROP_LINK_STRONG,
847                                  &error_abort);
848         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
849                                  &error_abort);
850     }
851 
852     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
853                              &error_abort);
854 }
855 
856 static void arm_cpu_finalizefn(Object *obj)
857 {
858     ARMCPU *cpu = ARM_CPU(obj);
859     ARMELChangeHook *hook, *next;
860 
861     g_hash_table_destroy(cpu->cp_regs);
862 
863     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
864         QLIST_REMOVE(hook, node);
865         g_free(hook);
866     }
867     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
868         QLIST_REMOVE(hook, node);
869         g_free(hook);
870     }
871 #ifndef CONFIG_USER_ONLY
872     if (cpu->pmu_timer) {
873         timer_del(cpu->pmu_timer);
874         timer_deinit(cpu->pmu_timer);
875         timer_free(cpu->pmu_timer);
876     }
877 #endif
878 }
879 
880 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
881 {
882     CPUState *cs = CPU(dev);
883     ARMCPU *cpu = ARM_CPU(dev);
884     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
885     CPUARMState *env = &cpu->env;
886     int pagebits;
887     Error *local_err = NULL;
888     bool no_aa32 = false;
889 
890     /* If we needed to query the host kernel for the CPU features
891      * then it's possible that might have failed in the initfn, but
892      * this is the first point where we can report it.
893      */
894     if (cpu->host_cpu_probe_failed) {
895         if (!kvm_enabled()) {
896             error_setg(errp, "The 'host' CPU type can only be used with KVM");
897         } else {
898             error_setg(errp, "Failed to retrieve host CPU features");
899         }
900         return;
901     }
902 
903 #ifndef CONFIG_USER_ONLY
904     /* The NVIC and M-profile CPU are two halves of a single piece of
905      * hardware; trying to use one without the other is a command line
906      * error and will result in segfaults if not caught here.
907      */
908     if (arm_feature(env, ARM_FEATURE_M)) {
909         if (!env->nvic) {
910             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
911             return;
912         }
913     } else {
914         if (env->nvic) {
915             error_setg(errp, "This board can only be used with Cortex-M CPUs");
916             return;
917         }
918     }
919 
920     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
921                                            arm_gt_ptimer_cb, cpu);
922     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
923                                            arm_gt_vtimer_cb, cpu);
924     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
925                                           arm_gt_htimer_cb, cpu);
926     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
927                                           arm_gt_stimer_cb, cpu);
928 #endif
929 
930     cpu_exec_realizefn(cs, &local_err);
931     if (local_err != NULL) {
932         error_propagate(errp, local_err);
933         return;
934     }
935 
936     /* Some features automatically imply others: */
937     if (arm_feature(env, ARM_FEATURE_V8)) {
938         if (arm_feature(env, ARM_FEATURE_M)) {
939             set_feature(env, ARM_FEATURE_V7);
940         } else {
941             set_feature(env, ARM_FEATURE_V7VE);
942         }
943     }
944 
945     /*
946      * There exist AArch64 cpus without AArch32 support.  When KVM
947      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
948      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
949      */
950     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
951         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
952     }
953 
954     if (arm_feature(env, ARM_FEATURE_V7VE)) {
955         /* v7 Virtualization Extensions. In real hardware this implies
956          * EL2 and also the presence of the Security Extensions.
957          * For QEMU, for backwards-compatibility we implement some
958          * CPUs or CPU configs which have no actual EL2 or EL3 but do
959          * include the various other features that V7VE implies.
960          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
961          * Security Extensions is ARM_FEATURE_EL3.
962          */
963         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
964         set_feature(env, ARM_FEATURE_LPAE);
965         set_feature(env, ARM_FEATURE_V7);
966     }
967     if (arm_feature(env, ARM_FEATURE_V7)) {
968         set_feature(env, ARM_FEATURE_VAPA);
969         set_feature(env, ARM_FEATURE_THUMB2);
970         set_feature(env, ARM_FEATURE_MPIDR);
971         if (!arm_feature(env, ARM_FEATURE_M)) {
972             set_feature(env, ARM_FEATURE_V6K);
973         } else {
974             set_feature(env, ARM_FEATURE_V6);
975         }
976 
977         /* Always define VBAR for V7 CPUs even if it doesn't exist in
978          * non-EL3 configs. This is needed by some legacy boards.
979          */
980         set_feature(env, ARM_FEATURE_VBAR);
981     }
982     if (arm_feature(env, ARM_FEATURE_V6K)) {
983         set_feature(env, ARM_FEATURE_V6);
984         set_feature(env, ARM_FEATURE_MVFR);
985     }
986     if (arm_feature(env, ARM_FEATURE_V6)) {
987         set_feature(env, ARM_FEATURE_V5);
988         if (!arm_feature(env, ARM_FEATURE_M)) {
989             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
990             set_feature(env, ARM_FEATURE_AUXCR);
991         }
992     }
993     if (arm_feature(env, ARM_FEATURE_V5)) {
994         set_feature(env, ARM_FEATURE_V4T);
995     }
996     if (arm_feature(env, ARM_FEATURE_VFP4)) {
997         set_feature(env, ARM_FEATURE_VFP3);
998         set_feature(env, ARM_FEATURE_VFP_FP16);
999     }
1000     if (arm_feature(env, ARM_FEATURE_VFP3)) {
1001         set_feature(env, ARM_FEATURE_VFP);
1002     }
1003     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1004         set_feature(env, ARM_FEATURE_V7MP);
1005         set_feature(env, ARM_FEATURE_PXN);
1006     }
1007     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1008         set_feature(env, ARM_FEATURE_CBAR);
1009     }
1010     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1011         !arm_feature(env, ARM_FEATURE_M)) {
1012         set_feature(env, ARM_FEATURE_THUMB_DSP);
1013     }
1014 
1015     if (arm_feature(env, ARM_FEATURE_V7) &&
1016         !arm_feature(env, ARM_FEATURE_M) &&
1017         !arm_feature(env, ARM_FEATURE_PMSA)) {
1018         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1019          * can use 4K pages.
1020          */
1021         pagebits = 12;
1022     } else {
1023         /* For CPUs which might have tiny 1K pages, or which have an
1024          * MPU and might have small region sizes, stick with 1K pages.
1025          */
1026         pagebits = 10;
1027     }
1028     if (!set_preferred_target_page_bits(pagebits)) {
1029         /* This can only ever happen for hotplugging a CPU, or if
1030          * the board code incorrectly creates a CPU which it has
1031          * promised via minimum_page_size that it will not.
1032          */
1033         error_setg(errp, "This CPU requires a smaller page size than the "
1034                    "system is using");
1035         return;
1036     }
1037 
1038     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1039      * We don't support setting cluster ID ([16..23]) (known as Aff2
1040      * in later ARM ARM versions), or any of the higher affinity level fields,
1041      * so these bits always RAZ.
1042      */
1043     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1044         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1045                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1046     }
1047 
1048     if (cpu->reset_hivecs) {
1049             cpu->reset_sctlr |= (1 << 13);
1050     }
1051 
1052     if (cpu->cfgend) {
1053         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1054             cpu->reset_sctlr |= SCTLR_EE;
1055         } else {
1056             cpu->reset_sctlr |= SCTLR_B;
1057         }
1058     }
1059 
1060     if (!cpu->has_el3) {
1061         /* If the has_el3 CPU property is disabled then we need to disable the
1062          * feature.
1063          */
1064         unset_feature(env, ARM_FEATURE_EL3);
1065 
1066         /* Disable the security extension feature bits in the processor feature
1067          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1068          */
1069         cpu->id_pfr1 &= ~0xf0;
1070         cpu->isar.id_aa64pfr0 &= ~0xf000;
1071     }
1072 
1073     if (!cpu->has_el2) {
1074         unset_feature(env, ARM_FEATURE_EL2);
1075     }
1076 
1077     if (!cpu->has_pmu) {
1078         unset_feature(env, ARM_FEATURE_PMU);
1079     }
1080     if (arm_feature(env, ARM_FEATURE_PMU)) {
1081         pmu_init(cpu);
1082 
1083         if (!kvm_enabled()) {
1084             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1085             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1086         }
1087 
1088 #ifndef CONFIG_USER_ONLY
1089         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1090                 cpu);
1091 #endif
1092     } else {
1093         cpu->id_aa64dfr0 &= ~0xf00;
1094         cpu->pmceid0 = 0;
1095         cpu->pmceid1 = 0;
1096     }
1097 
1098     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1099         /* Disable the hypervisor feature bits in the processor feature
1100          * registers if we don't have EL2. These are id_pfr1[15:12] and
1101          * id_aa64pfr0_el1[11:8].
1102          */
1103         cpu->isar.id_aa64pfr0 &= ~0xf00;
1104         cpu->id_pfr1 &= ~0xf000;
1105     }
1106 
1107     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1108      * to false or by setting pmsav7-dregion to 0.
1109      */
1110     if (!cpu->has_mpu) {
1111         cpu->pmsav7_dregion = 0;
1112     }
1113     if (cpu->pmsav7_dregion == 0) {
1114         cpu->has_mpu = false;
1115     }
1116 
1117     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1118         arm_feature(env, ARM_FEATURE_V7)) {
1119         uint32_t nr = cpu->pmsav7_dregion;
1120 
1121         if (nr > 0xff) {
1122             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1123             return;
1124         }
1125 
1126         if (nr) {
1127             if (arm_feature(env, ARM_FEATURE_V8)) {
1128                 /* PMSAv8 */
1129                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1130                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1131                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1132                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1133                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1134                 }
1135             } else {
1136                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1137                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1138                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1139             }
1140         }
1141     }
1142 
1143     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1144         uint32_t nr = cpu->sau_sregion;
1145 
1146         if (nr > 0xff) {
1147             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1148             return;
1149         }
1150 
1151         if (nr) {
1152             env->sau.rbar = g_new0(uint32_t, nr);
1153             env->sau.rlar = g_new0(uint32_t, nr);
1154         }
1155     }
1156 
1157     if (arm_feature(env, ARM_FEATURE_EL3)) {
1158         set_feature(env, ARM_FEATURE_VBAR);
1159     }
1160 
1161     register_cp_regs_for_features(cpu);
1162     arm_cpu_register_gdb_regs_for_features(cpu);
1163 
1164     init_cpreg_list(cpu);
1165 
1166 #ifndef CONFIG_USER_ONLY
1167     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1168         cs->num_ases = 2;
1169 
1170         if (!cpu->secure_memory) {
1171             cpu->secure_memory = cs->memory;
1172         }
1173         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1174                                cpu->secure_memory);
1175     } else {
1176         cs->num_ases = 1;
1177     }
1178     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1179 
1180     /* No core_count specified, default to smp_cpus. */
1181     if (cpu->core_count == -1) {
1182         cpu->core_count = smp_cpus;
1183     }
1184 #endif
1185 
1186     qemu_init_vcpu(cs);
1187     cpu_reset(cs);
1188 
1189     acc->parent_realize(dev, errp);
1190 }
1191 
1192 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1193 {
1194     ObjectClass *oc;
1195     char *typename;
1196     char **cpuname;
1197     const char *cpunamestr;
1198 
1199     cpuname = g_strsplit(cpu_model, ",", 1);
1200     cpunamestr = cpuname[0];
1201 #ifdef CONFIG_USER_ONLY
1202     /* For backwards compatibility usermode emulation allows "-cpu any",
1203      * which has the same semantics as "-cpu max".
1204      */
1205     if (!strcmp(cpunamestr, "any")) {
1206         cpunamestr = "max";
1207     }
1208 #endif
1209     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1210     oc = object_class_by_name(typename);
1211     g_strfreev(cpuname);
1212     g_free(typename);
1213     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1214         object_class_is_abstract(oc)) {
1215         return NULL;
1216     }
1217     return oc;
1218 }
1219 
1220 /* CPU models. These are not needed for the AArch64 linux-user build. */
1221 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1222 
1223 static void arm926_initfn(Object *obj)
1224 {
1225     ARMCPU *cpu = ARM_CPU(obj);
1226 
1227     cpu->dtb_compatible = "arm,arm926";
1228     set_feature(&cpu->env, ARM_FEATURE_V5);
1229     set_feature(&cpu->env, ARM_FEATURE_VFP);
1230     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1231     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1232     cpu->midr = 0x41069265;
1233     cpu->reset_fpsid = 0x41011090;
1234     cpu->ctr = 0x1dd20d2;
1235     cpu->reset_sctlr = 0x00090078;
1236 
1237     /*
1238      * ARMv5 does not have the ID_ISAR registers, but we can still
1239      * set the field to indicate Jazelle support within QEMU.
1240      */
1241     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1242 }
1243 
1244 static void arm946_initfn(Object *obj)
1245 {
1246     ARMCPU *cpu = ARM_CPU(obj);
1247 
1248     cpu->dtb_compatible = "arm,arm946";
1249     set_feature(&cpu->env, ARM_FEATURE_V5);
1250     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1251     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1252     cpu->midr = 0x41059461;
1253     cpu->ctr = 0x0f004006;
1254     cpu->reset_sctlr = 0x00000078;
1255 }
1256 
1257 static void arm1026_initfn(Object *obj)
1258 {
1259     ARMCPU *cpu = ARM_CPU(obj);
1260 
1261     cpu->dtb_compatible = "arm,arm1026";
1262     set_feature(&cpu->env, ARM_FEATURE_V5);
1263     set_feature(&cpu->env, ARM_FEATURE_VFP);
1264     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1265     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1266     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1267     cpu->midr = 0x4106a262;
1268     cpu->reset_fpsid = 0x410110a0;
1269     cpu->ctr = 0x1dd20d2;
1270     cpu->reset_sctlr = 0x00090078;
1271     cpu->reset_auxcr = 1;
1272 
1273     /*
1274      * ARMv5 does not have the ID_ISAR registers, but we can still
1275      * set the field to indicate Jazelle support within QEMU.
1276      */
1277     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1278 
1279     {
1280         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1281         ARMCPRegInfo ifar = {
1282             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1283             .access = PL1_RW,
1284             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1285             .resetvalue = 0
1286         };
1287         define_one_arm_cp_reg(cpu, &ifar);
1288     }
1289 }
1290 
1291 static void arm1136_r2_initfn(Object *obj)
1292 {
1293     ARMCPU *cpu = ARM_CPU(obj);
1294     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1295      * older core than plain "arm1136". In particular this does not
1296      * have the v6K features.
1297      * These ID register values are correct for 1136 but may be wrong
1298      * for 1136_r2 (in particular r0p2 does not actually implement most
1299      * of the ID registers).
1300      */
1301 
1302     cpu->dtb_compatible = "arm,arm1136";
1303     set_feature(&cpu->env, ARM_FEATURE_V6);
1304     set_feature(&cpu->env, ARM_FEATURE_VFP);
1305     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1306     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1307     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1308     cpu->midr = 0x4107b362;
1309     cpu->reset_fpsid = 0x410120b4;
1310     cpu->isar.mvfr0 = 0x11111111;
1311     cpu->isar.mvfr1 = 0x00000000;
1312     cpu->ctr = 0x1dd20d2;
1313     cpu->reset_sctlr = 0x00050078;
1314     cpu->id_pfr0 = 0x111;
1315     cpu->id_pfr1 = 0x1;
1316     cpu->id_dfr0 = 0x2;
1317     cpu->id_afr0 = 0x3;
1318     cpu->id_mmfr0 = 0x01130003;
1319     cpu->id_mmfr1 = 0x10030302;
1320     cpu->id_mmfr2 = 0x01222110;
1321     cpu->isar.id_isar0 = 0x00140011;
1322     cpu->isar.id_isar1 = 0x12002111;
1323     cpu->isar.id_isar2 = 0x11231111;
1324     cpu->isar.id_isar3 = 0x01102131;
1325     cpu->isar.id_isar4 = 0x141;
1326     cpu->reset_auxcr = 7;
1327 }
1328 
1329 static void arm1136_initfn(Object *obj)
1330 {
1331     ARMCPU *cpu = ARM_CPU(obj);
1332 
1333     cpu->dtb_compatible = "arm,arm1136";
1334     set_feature(&cpu->env, ARM_FEATURE_V6K);
1335     set_feature(&cpu->env, ARM_FEATURE_V6);
1336     set_feature(&cpu->env, ARM_FEATURE_VFP);
1337     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1338     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1339     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1340     cpu->midr = 0x4117b363;
1341     cpu->reset_fpsid = 0x410120b4;
1342     cpu->isar.mvfr0 = 0x11111111;
1343     cpu->isar.mvfr1 = 0x00000000;
1344     cpu->ctr = 0x1dd20d2;
1345     cpu->reset_sctlr = 0x00050078;
1346     cpu->id_pfr0 = 0x111;
1347     cpu->id_pfr1 = 0x1;
1348     cpu->id_dfr0 = 0x2;
1349     cpu->id_afr0 = 0x3;
1350     cpu->id_mmfr0 = 0x01130003;
1351     cpu->id_mmfr1 = 0x10030302;
1352     cpu->id_mmfr2 = 0x01222110;
1353     cpu->isar.id_isar0 = 0x00140011;
1354     cpu->isar.id_isar1 = 0x12002111;
1355     cpu->isar.id_isar2 = 0x11231111;
1356     cpu->isar.id_isar3 = 0x01102131;
1357     cpu->isar.id_isar4 = 0x141;
1358     cpu->reset_auxcr = 7;
1359 }
1360 
1361 static void arm1176_initfn(Object *obj)
1362 {
1363     ARMCPU *cpu = ARM_CPU(obj);
1364 
1365     cpu->dtb_compatible = "arm,arm1176";
1366     set_feature(&cpu->env, ARM_FEATURE_V6K);
1367     set_feature(&cpu->env, ARM_FEATURE_VFP);
1368     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1369     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1370     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1371     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1372     set_feature(&cpu->env, ARM_FEATURE_EL3);
1373     cpu->midr = 0x410fb767;
1374     cpu->reset_fpsid = 0x410120b5;
1375     cpu->isar.mvfr0 = 0x11111111;
1376     cpu->isar.mvfr1 = 0x00000000;
1377     cpu->ctr = 0x1dd20d2;
1378     cpu->reset_sctlr = 0x00050078;
1379     cpu->id_pfr0 = 0x111;
1380     cpu->id_pfr1 = 0x11;
1381     cpu->id_dfr0 = 0x33;
1382     cpu->id_afr0 = 0;
1383     cpu->id_mmfr0 = 0x01130003;
1384     cpu->id_mmfr1 = 0x10030302;
1385     cpu->id_mmfr2 = 0x01222100;
1386     cpu->isar.id_isar0 = 0x0140011;
1387     cpu->isar.id_isar1 = 0x12002111;
1388     cpu->isar.id_isar2 = 0x11231121;
1389     cpu->isar.id_isar3 = 0x01102131;
1390     cpu->isar.id_isar4 = 0x01141;
1391     cpu->reset_auxcr = 7;
1392 }
1393 
1394 static void arm11mpcore_initfn(Object *obj)
1395 {
1396     ARMCPU *cpu = ARM_CPU(obj);
1397 
1398     cpu->dtb_compatible = "arm,arm11mpcore";
1399     set_feature(&cpu->env, ARM_FEATURE_V6K);
1400     set_feature(&cpu->env, ARM_FEATURE_VFP);
1401     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1402     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1403     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1404     cpu->midr = 0x410fb022;
1405     cpu->reset_fpsid = 0x410120b4;
1406     cpu->isar.mvfr0 = 0x11111111;
1407     cpu->isar.mvfr1 = 0x00000000;
1408     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1409     cpu->id_pfr0 = 0x111;
1410     cpu->id_pfr1 = 0x1;
1411     cpu->id_dfr0 = 0;
1412     cpu->id_afr0 = 0x2;
1413     cpu->id_mmfr0 = 0x01100103;
1414     cpu->id_mmfr1 = 0x10020302;
1415     cpu->id_mmfr2 = 0x01222000;
1416     cpu->isar.id_isar0 = 0x00100011;
1417     cpu->isar.id_isar1 = 0x12002111;
1418     cpu->isar.id_isar2 = 0x11221011;
1419     cpu->isar.id_isar3 = 0x01102131;
1420     cpu->isar.id_isar4 = 0x141;
1421     cpu->reset_auxcr = 1;
1422 }
1423 
1424 static void cortex_m0_initfn(Object *obj)
1425 {
1426     ARMCPU *cpu = ARM_CPU(obj);
1427     set_feature(&cpu->env, ARM_FEATURE_V6);
1428     set_feature(&cpu->env, ARM_FEATURE_M);
1429 
1430     cpu->midr = 0x410cc200;
1431 }
1432 
1433 static void cortex_m3_initfn(Object *obj)
1434 {
1435     ARMCPU *cpu = ARM_CPU(obj);
1436     set_feature(&cpu->env, ARM_FEATURE_V7);
1437     set_feature(&cpu->env, ARM_FEATURE_M);
1438     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1439     cpu->midr = 0x410fc231;
1440     cpu->pmsav7_dregion = 8;
1441     cpu->id_pfr0 = 0x00000030;
1442     cpu->id_pfr1 = 0x00000200;
1443     cpu->id_dfr0 = 0x00100000;
1444     cpu->id_afr0 = 0x00000000;
1445     cpu->id_mmfr0 = 0x00000030;
1446     cpu->id_mmfr1 = 0x00000000;
1447     cpu->id_mmfr2 = 0x00000000;
1448     cpu->id_mmfr3 = 0x00000000;
1449     cpu->isar.id_isar0 = 0x01141110;
1450     cpu->isar.id_isar1 = 0x02111000;
1451     cpu->isar.id_isar2 = 0x21112231;
1452     cpu->isar.id_isar3 = 0x01111110;
1453     cpu->isar.id_isar4 = 0x01310102;
1454     cpu->isar.id_isar5 = 0x00000000;
1455     cpu->isar.id_isar6 = 0x00000000;
1456 }
1457 
1458 static void cortex_m4_initfn(Object *obj)
1459 {
1460     ARMCPU *cpu = ARM_CPU(obj);
1461 
1462     set_feature(&cpu->env, ARM_FEATURE_V7);
1463     set_feature(&cpu->env, ARM_FEATURE_M);
1464     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1465     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1466     cpu->midr = 0x410fc240; /* r0p0 */
1467     cpu->pmsav7_dregion = 8;
1468     cpu->id_pfr0 = 0x00000030;
1469     cpu->id_pfr1 = 0x00000200;
1470     cpu->id_dfr0 = 0x00100000;
1471     cpu->id_afr0 = 0x00000000;
1472     cpu->id_mmfr0 = 0x00000030;
1473     cpu->id_mmfr1 = 0x00000000;
1474     cpu->id_mmfr2 = 0x00000000;
1475     cpu->id_mmfr3 = 0x00000000;
1476     cpu->isar.id_isar0 = 0x01141110;
1477     cpu->isar.id_isar1 = 0x02111000;
1478     cpu->isar.id_isar2 = 0x21112231;
1479     cpu->isar.id_isar3 = 0x01111110;
1480     cpu->isar.id_isar4 = 0x01310102;
1481     cpu->isar.id_isar5 = 0x00000000;
1482     cpu->isar.id_isar6 = 0x00000000;
1483 }
1484 
1485 static void cortex_m33_initfn(Object *obj)
1486 {
1487     ARMCPU *cpu = ARM_CPU(obj);
1488 
1489     set_feature(&cpu->env, ARM_FEATURE_V8);
1490     set_feature(&cpu->env, ARM_FEATURE_M);
1491     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1492     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1493     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1494     cpu->midr = 0x410fd213; /* r0p3 */
1495     cpu->pmsav7_dregion = 16;
1496     cpu->sau_sregion = 8;
1497     cpu->id_pfr0 = 0x00000030;
1498     cpu->id_pfr1 = 0x00000210;
1499     cpu->id_dfr0 = 0x00200000;
1500     cpu->id_afr0 = 0x00000000;
1501     cpu->id_mmfr0 = 0x00101F40;
1502     cpu->id_mmfr1 = 0x00000000;
1503     cpu->id_mmfr2 = 0x01000000;
1504     cpu->id_mmfr3 = 0x00000000;
1505     cpu->isar.id_isar0 = 0x01101110;
1506     cpu->isar.id_isar1 = 0x02212000;
1507     cpu->isar.id_isar2 = 0x20232232;
1508     cpu->isar.id_isar3 = 0x01111131;
1509     cpu->isar.id_isar4 = 0x01310132;
1510     cpu->isar.id_isar5 = 0x00000000;
1511     cpu->isar.id_isar6 = 0x00000000;
1512     cpu->clidr = 0x00000000;
1513     cpu->ctr = 0x8000c000;
1514 }
1515 
1516 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1517 {
1518     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1519     CPUClass *cc = CPU_CLASS(oc);
1520 
1521     acc->info = data;
1522 #ifndef CONFIG_USER_ONLY
1523     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1524 #endif
1525 
1526     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1527 }
1528 
1529 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1530     /* Dummy the TCM region regs for the moment */
1531     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1532       .access = PL1_RW, .type = ARM_CP_CONST },
1533     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1534       .access = PL1_RW, .type = ARM_CP_CONST },
1535     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1536       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1537     REGINFO_SENTINEL
1538 };
1539 
1540 static void cortex_r5_initfn(Object *obj)
1541 {
1542     ARMCPU *cpu = ARM_CPU(obj);
1543 
1544     set_feature(&cpu->env, ARM_FEATURE_V7);
1545     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1546     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1547     cpu->midr = 0x411fc153; /* r1p3 */
1548     cpu->id_pfr0 = 0x0131;
1549     cpu->id_pfr1 = 0x001;
1550     cpu->id_dfr0 = 0x010400;
1551     cpu->id_afr0 = 0x0;
1552     cpu->id_mmfr0 = 0x0210030;
1553     cpu->id_mmfr1 = 0x00000000;
1554     cpu->id_mmfr2 = 0x01200000;
1555     cpu->id_mmfr3 = 0x0211;
1556     cpu->isar.id_isar0 = 0x02101111;
1557     cpu->isar.id_isar1 = 0x13112111;
1558     cpu->isar.id_isar2 = 0x21232141;
1559     cpu->isar.id_isar3 = 0x01112131;
1560     cpu->isar.id_isar4 = 0x0010142;
1561     cpu->isar.id_isar5 = 0x0;
1562     cpu->isar.id_isar6 = 0x0;
1563     cpu->mp_is_up = true;
1564     cpu->pmsav7_dregion = 16;
1565     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1566 }
1567 
1568 static void cortex_r5f_initfn(Object *obj)
1569 {
1570     ARMCPU *cpu = ARM_CPU(obj);
1571 
1572     cortex_r5_initfn(obj);
1573     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1574 }
1575 
1576 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1577     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1578       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1579     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1580       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1581     REGINFO_SENTINEL
1582 };
1583 
1584 static void cortex_a8_initfn(Object *obj)
1585 {
1586     ARMCPU *cpu = ARM_CPU(obj);
1587 
1588     cpu->dtb_compatible = "arm,cortex-a8";
1589     set_feature(&cpu->env, ARM_FEATURE_V7);
1590     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1591     set_feature(&cpu->env, ARM_FEATURE_NEON);
1592     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1593     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1594     set_feature(&cpu->env, ARM_FEATURE_EL3);
1595     cpu->midr = 0x410fc080;
1596     cpu->reset_fpsid = 0x410330c0;
1597     cpu->isar.mvfr0 = 0x11110222;
1598     cpu->isar.mvfr1 = 0x00011111;
1599     cpu->ctr = 0x82048004;
1600     cpu->reset_sctlr = 0x00c50078;
1601     cpu->id_pfr0 = 0x1031;
1602     cpu->id_pfr1 = 0x11;
1603     cpu->id_dfr0 = 0x400;
1604     cpu->id_afr0 = 0;
1605     cpu->id_mmfr0 = 0x31100003;
1606     cpu->id_mmfr1 = 0x20000000;
1607     cpu->id_mmfr2 = 0x01202000;
1608     cpu->id_mmfr3 = 0x11;
1609     cpu->isar.id_isar0 = 0x00101111;
1610     cpu->isar.id_isar1 = 0x12112111;
1611     cpu->isar.id_isar2 = 0x21232031;
1612     cpu->isar.id_isar3 = 0x11112131;
1613     cpu->isar.id_isar4 = 0x00111142;
1614     cpu->dbgdidr = 0x15141000;
1615     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1616     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1617     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1618     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1619     cpu->reset_auxcr = 2;
1620     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1621 }
1622 
1623 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1624     /* power_control should be set to maximum latency. Again,
1625      * default to 0 and set by private hook
1626      */
1627     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1628       .access = PL1_RW, .resetvalue = 0,
1629       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1630     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1631       .access = PL1_RW, .resetvalue = 0,
1632       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1633     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1634       .access = PL1_RW, .resetvalue = 0,
1635       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1636     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1637       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1638     /* TLB lockdown control */
1639     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1640       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1641     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1642       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1643     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1644       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1645     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1646       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1647     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1648       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1649     REGINFO_SENTINEL
1650 };
1651 
1652 static void cortex_a9_initfn(Object *obj)
1653 {
1654     ARMCPU *cpu = ARM_CPU(obj);
1655 
1656     cpu->dtb_compatible = "arm,cortex-a9";
1657     set_feature(&cpu->env, ARM_FEATURE_V7);
1658     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1659     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1660     set_feature(&cpu->env, ARM_FEATURE_NEON);
1661     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1662     set_feature(&cpu->env, ARM_FEATURE_EL3);
1663     /* Note that A9 supports the MP extensions even for
1664      * A9UP and single-core A9MP (which are both different
1665      * and valid configurations; we don't model A9UP).
1666      */
1667     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1668     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1669     cpu->midr = 0x410fc090;
1670     cpu->reset_fpsid = 0x41033090;
1671     cpu->isar.mvfr0 = 0x11110222;
1672     cpu->isar.mvfr1 = 0x01111111;
1673     cpu->ctr = 0x80038003;
1674     cpu->reset_sctlr = 0x00c50078;
1675     cpu->id_pfr0 = 0x1031;
1676     cpu->id_pfr1 = 0x11;
1677     cpu->id_dfr0 = 0x000;
1678     cpu->id_afr0 = 0;
1679     cpu->id_mmfr0 = 0x00100103;
1680     cpu->id_mmfr1 = 0x20000000;
1681     cpu->id_mmfr2 = 0x01230000;
1682     cpu->id_mmfr3 = 0x00002111;
1683     cpu->isar.id_isar0 = 0x00101111;
1684     cpu->isar.id_isar1 = 0x13112111;
1685     cpu->isar.id_isar2 = 0x21232041;
1686     cpu->isar.id_isar3 = 0x11112131;
1687     cpu->isar.id_isar4 = 0x00111142;
1688     cpu->dbgdidr = 0x35141000;
1689     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1690     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1691     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1692     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1693 }
1694 
1695 #ifndef CONFIG_USER_ONLY
1696 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697 {
1698     /* Linux wants the number of processors from here.
1699      * Might as well set the interrupt-controller bit too.
1700      */
1701     return ((smp_cpus - 1) << 24) | (1 << 23);
1702 }
1703 #endif
1704 
1705 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1706 #ifndef CONFIG_USER_ONLY
1707     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1708       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1709       .writefn = arm_cp_write_ignore, },
1710 #endif
1711     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1712       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1713     REGINFO_SENTINEL
1714 };
1715 
1716 static void cortex_a7_initfn(Object *obj)
1717 {
1718     ARMCPU *cpu = ARM_CPU(obj);
1719 
1720     cpu->dtb_compatible = "arm,cortex-a7";
1721     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1722     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1723     set_feature(&cpu->env, ARM_FEATURE_NEON);
1724     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1725     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1726     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1727     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1728     set_feature(&cpu->env, ARM_FEATURE_EL2);
1729     set_feature(&cpu->env, ARM_FEATURE_EL3);
1730     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1731     cpu->midr = 0x410fc075;
1732     cpu->reset_fpsid = 0x41023075;
1733     cpu->isar.mvfr0 = 0x10110222;
1734     cpu->isar.mvfr1 = 0x11111111;
1735     cpu->ctr = 0x84448003;
1736     cpu->reset_sctlr = 0x00c50078;
1737     cpu->id_pfr0 = 0x00001131;
1738     cpu->id_pfr1 = 0x00011011;
1739     cpu->id_dfr0 = 0x02010555;
1740     cpu->id_afr0 = 0x00000000;
1741     cpu->id_mmfr0 = 0x10101105;
1742     cpu->id_mmfr1 = 0x40000000;
1743     cpu->id_mmfr2 = 0x01240000;
1744     cpu->id_mmfr3 = 0x02102211;
1745     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1746      * table 4-41 gives 0x02101110, which includes the arm div insns.
1747      */
1748     cpu->isar.id_isar0 = 0x02101110;
1749     cpu->isar.id_isar1 = 0x13112111;
1750     cpu->isar.id_isar2 = 0x21232041;
1751     cpu->isar.id_isar3 = 0x11112131;
1752     cpu->isar.id_isar4 = 0x10011142;
1753     cpu->dbgdidr = 0x3515f005;
1754     cpu->clidr = 0x0a200023;
1755     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1756     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1757     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1758     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1759 }
1760 
1761 static void cortex_a15_initfn(Object *obj)
1762 {
1763     ARMCPU *cpu = ARM_CPU(obj);
1764 
1765     cpu->dtb_compatible = "arm,cortex-a15";
1766     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1767     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1768     set_feature(&cpu->env, ARM_FEATURE_NEON);
1769     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1770     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1771     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1772     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1773     set_feature(&cpu->env, ARM_FEATURE_EL2);
1774     set_feature(&cpu->env, ARM_FEATURE_EL3);
1775     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1776     cpu->midr = 0x412fc0f1;
1777     cpu->reset_fpsid = 0x410430f0;
1778     cpu->isar.mvfr0 = 0x10110222;
1779     cpu->isar.mvfr1 = 0x11111111;
1780     cpu->ctr = 0x8444c004;
1781     cpu->reset_sctlr = 0x00c50078;
1782     cpu->id_pfr0 = 0x00001131;
1783     cpu->id_pfr1 = 0x00011011;
1784     cpu->id_dfr0 = 0x02010555;
1785     cpu->id_afr0 = 0x00000000;
1786     cpu->id_mmfr0 = 0x10201105;
1787     cpu->id_mmfr1 = 0x20000000;
1788     cpu->id_mmfr2 = 0x01240000;
1789     cpu->id_mmfr3 = 0x02102211;
1790     cpu->isar.id_isar0 = 0x02101110;
1791     cpu->isar.id_isar1 = 0x13112111;
1792     cpu->isar.id_isar2 = 0x21232041;
1793     cpu->isar.id_isar3 = 0x11112131;
1794     cpu->isar.id_isar4 = 0x10011142;
1795     cpu->dbgdidr = 0x3515f021;
1796     cpu->clidr = 0x0a200023;
1797     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1798     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1799     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1800     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1801 }
1802 
1803 static void ti925t_initfn(Object *obj)
1804 {
1805     ARMCPU *cpu = ARM_CPU(obj);
1806     set_feature(&cpu->env, ARM_FEATURE_V4T);
1807     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1808     cpu->midr = ARM_CPUID_TI925T;
1809     cpu->ctr = 0x5109149;
1810     cpu->reset_sctlr = 0x00000070;
1811 }
1812 
1813 static void sa1100_initfn(Object *obj)
1814 {
1815     ARMCPU *cpu = ARM_CPU(obj);
1816 
1817     cpu->dtb_compatible = "intel,sa1100";
1818     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1819     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1820     cpu->midr = 0x4401A11B;
1821     cpu->reset_sctlr = 0x00000070;
1822 }
1823 
1824 static void sa1110_initfn(Object *obj)
1825 {
1826     ARMCPU *cpu = ARM_CPU(obj);
1827     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1828     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1829     cpu->midr = 0x6901B119;
1830     cpu->reset_sctlr = 0x00000070;
1831 }
1832 
1833 static void pxa250_initfn(Object *obj)
1834 {
1835     ARMCPU *cpu = ARM_CPU(obj);
1836 
1837     cpu->dtb_compatible = "marvell,xscale";
1838     set_feature(&cpu->env, ARM_FEATURE_V5);
1839     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1840     cpu->midr = 0x69052100;
1841     cpu->ctr = 0xd172172;
1842     cpu->reset_sctlr = 0x00000078;
1843 }
1844 
1845 static void pxa255_initfn(Object *obj)
1846 {
1847     ARMCPU *cpu = ARM_CPU(obj);
1848 
1849     cpu->dtb_compatible = "marvell,xscale";
1850     set_feature(&cpu->env, ARM_FEATURE_V5);
1851     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1852     cpu->midr = 0x69052d00;
1853     cpu->ctr = 0xd172172;
1854     cpu->reset_sctlr = 0x00000078;
1855 }
1856 
1857 static void pxa260_initfn(Object *obj)
1858 {
1859     ARMCPU *cpu = ARM_CPU(obj);
1860 
1861     cpu->dtb_compatible = "marvell,xscale";
1862     set_feature(&cpu->env, ARM_FEATURE_V5);
1863     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1864     cpu->midr = 0x69052903;
1865     cpu->ctr = 0xd172172;
1866     cpu->reset_sctlr = 0x00000078;
1867 }
1868 
1869 static void pxa261_initfn(Object *obj)
1870 {
1871     ARMCPU *cpu = ARM_CPU(obj);
1872 
1873     cpu->dtb_compatible = "marvell,xscale";
1874     set_feature(&cpu->env, ARM_FEATURE_V5);
1875     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1876     cpu->midr = 0x69052d05;
1877     cpu->ctr = 0xd172172;
1878     cpu->reset_sctlr = 0x00000078;
1879 }
1880 
1881 static void pxa262_initfn(Object *obj)
1882 {
1883     ARMCPU *cpu = ARM_CPU(obj);
1884 
1885     cpu->dtb_compatible = "marvell,xscale";
1886     set_feature(&cpu->env, ARM_FEATURE_V5);
1887     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1888     cpu->midr = 0x69052d06;
1889     cpu->ctr = 0xd172172;
1890     cpu->reset_sctlr = 0x00000078;
1891 }
1892 
1893 static void pxa270a0_initfn(Object *obj)
1894 {
1895     ARMCPU *cpu = ARM_CPU(obj);
1896 
1897     cpu->dtb_compatible = "marvell,xscale";
1898     set_feature(&cpu->env, ARM_FEATURE_V5);
1899     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1900     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1901     cpu->midr = 0x69054110;
1902     cpu->ctr = 0xd172172;
1903     cpu->reset_sctlr = 0x00000078;
1904 }
1905 
1906 static void pxa270a1_initfn(Object *obj)
1907 {
1908     ARMCPU *cpu = ARM_CPU(obj);
1909 
1910     cpu->dtb_compatible = "marvell,xscale";
1911     set_feature(&cpu->env, ARM_FEATURE_V5);
1912     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1913     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1914     cpu->midr = 0x69054111;
1915     cpu->ctr = 0xd172172;
1916     cpu->reset_sctlr = 0x00000078;
1917 }
1918 
1919 static void pxa270b0_initfn(Object *obj)
1920 {
1921     ARMCPU *cpu = ARM_CPU(obj);
1922 
1923     cpu->dtb_compatible = "marvell,xscale";
1924     set_feature(&cpu->env, ARM_FEATURE_V5);
1925     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1926     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1927     cpu->midr = 0x69054112;
1928     cpu->ctr = 0xd172172;
1929     cpu->reset_sctlr = 0x00000078;
1930 }
1931 
1932 static void pxa270b1_initfn(Object *obj)
1933 {
1934     ARMCPU *cpu = ARM_CPU(obj);
1935 
1936     cpu->dtb_compatible = "marvell,xscale";
1937     set_feature(&cpu->env, ARM_FEATURE_V5);
1938     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1939     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1940     cpu->midr = 0x69054113;
1941     cpu->ctr = 0xd172172;
1942     cpu->reset_sctlr = 0x00000078;
1943 }
1944 
1945 static void pxa270c0_initfn(Object *obj)
1946 {
1947     ARMCPU *cpu = ARM_CPU(obj);
1948 
1949     cpu->dtb_compatible = "marvell,xscale";
1950     set_feature(&cpu->env, ARM_FEATURE_V5);
1951     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1952     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1953     cpu->midr = 0x69054114;
1954     cpu->ctr = 0xd172172;
1955     cpu->reset_sctlr = 0x00000078;
1956 }
1957 
1958 static void pxa270c5_initfn(Object *obj)
1959 {
1960     ARMCPU *cpu = ARM_CPU(obj);
1961 
1962     cpu->dtb_compatible = "marvell,xscale";
1963     set_feature(&cpu->env, ARM_FEATURE_V5);
1964     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1965     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1966     cpu->midr = 0x69054117;
1967     cpu->ctr = 0xd172172;
1968     cpu->reset_sctlr = 0x00000078;
1969 }
1970 
1971 #ifndef TARGET_AARCH64
1972 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1973  * otherwise, a CPU with as many features enabled as our emulation supports.
1974  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1975  * this only needs to handle 32 bits.
1976  */
1977 static void arm_max_initfn(Object *obj)
1978 {
1979     ARMCPU *cpu = ARM_CPU(obj);
1980 
1981     if (kvm_enabled()) {
1982         kvm_arm_set_cpu_features_from_host(cpu);
1983     } else {
1984         cortex_a15_initfn(obj);
1985 #ifdef CONFIG_USER_ONLY
1986         /* We don't set these in system emulation mode for the moment,
1987          * since we don't correctly set (all of) the ID registers to
1988          * advertise them.
1989          */
1990         set_feature(&cpu->env, ARM_FEATURE_V8);
1991         {
1992             uint32_t t;
1993 
1994             t = cpu->isar.id_isar5;
1995             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1996             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1997             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1998             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1999             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2000             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2001             cpu->isar.id_isar5 = t;
2002 
2003             t = cpu->isar.id_isar6;
2004             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2005             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2006             cpu->isar.id_isar6 = t;
2007 
2008             t = cpu->id_mmfr4;
2009             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2010             cpu->id_mmfr4 = t;
2011         }
2012 #endif
2013     }
2014 }
2015 #endif
2016 
2017 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2018 
2019 struct ARMCPUInfo {
2020     const char *name;
2021     void (*initfn)(Object *obj);
2022     void (*class_init)(ObjectClass *oc, void *data);
2023 };
2024 
2025 static const ARMCPUInfo arm_cpus[] = {
2026 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2027     { .name = "arm926",      .initfn = arm926_initfn },
2028     { .name = "arm946",      .initfn = arm946_initfn },
2029     { .name = "arm1026",     .initfn = arm1026_initfn },
2030     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2031      * older core than plain "arm1136". In particular this does not
2032      * have the v6K features.
2033      */
2034     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2035     { .name = "arm1136",     .initfn = arm1136_initfn },
2036     { .name = "arm1176",     .initfn = arm1176_initfn },
2037     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2038     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2039                              .class_init = arm_v7m_class_init },
2040     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2041                              .class_init = arm_v7m_class_init },
2042     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2043                              .class_init = arm_v7m_class_init },
2044     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2045                              .class_init = arm_v7m_class_init },
2046     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2047     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2048     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2049     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2050     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2051     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2052     { .name = "ti925t",      .initfn = ti925t_initfn },
2053     { .name = "sa1100",      .initfn = sa1100_initfn },
2054     { .name = "sa1110",      .initfn = sa1110_initfn },
2055     { .name = "pxa250",      .initfn = pxa250_initfn },
2056     { .name = "pxa255",      .initfn = pxa255_initfn },
2057     { .name = "pxa260",      .initfn = pxa260_initfn },
2058     { .name = "pxa261",      .initfn = pxa261_initfn },
2059     { .name = "pxa262",      .initfn = pxa262_initfn },
2060     /* "pxa270" is an alias for "pxa270-a0" */
2061     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2062     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2063     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2064     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2065     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2066     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2067     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2068 #ifndef TARGET_AARCH64
2069     { .name = "max",         .initfn = arm_max_initfn },
2070 #endif
2071 #ifdef CONFIG_USER_ONLY
2072     { .name = "any",         .initfn = arm_max_initfn },
2073 #endif
2074 #endif
2075     { .name = NULL }
2076 };
2077 
2078 static Property arm_cpu_properties[] = {
2079     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2080     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2081     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2082     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2083                         mp_affinity, ARM64_AFFINITY_INVALID),
2084     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2085     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2086     DEFINE_PROP_END_OF_LIST()
2087 };
2088 
2089 #ifdef CONFIG_USER_ONLY
2090 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2091                                     int rw, int mmu_idx)
2092 {
2093     ARMCPU *cpu = ARM_CPU(cs);
2094     CPUARMState *env = &cpu->env;
2095 
2096     env->exception.vaddress = address;
2097     if (rw == 2) {
2098         cs->exception_index = EXCP_PREFETCH_ABORT;
2099     } else {
2100         cs->exception_index = EXCP_DATA_ABORT;
2101     }
2102     return 1;
2103 }
2104 #endif
2105 
2106 static gchar *arm_gdb_arch_name(CPUState *cs)
2107 {
2108     ARMCPU *cpu = ARM_CPU(cs);
2109     CPUARMState *env = &cpu->env;
2110 
2111     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2112         return g_strdup("iwmmxt");
2113     }
2114     return g_strdup("arm");
2115 }
2116 
2117 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2118 {
2119     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2120     CPUClass *cc = CPU_CLASS(acc);
2121     DeviceClass *dc = DEVICE_CLASS(oc);
2122 
2123     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2124                                     &acc->parent_realize);
2125     dc->props = arm_cpu_properties;
2126 
2127     acc->parent_reset = cc->reset;
2128     cc->reset = arm_cpu_reset;
2129 
2130     cc->class_by_name = arm_cpu_class_by_name;
2131     cc->has_work = arm_cpu_has_work;
2132     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2133     cc->dump_state = arm_cpu_dump_state;
2134     cc->set_pc = arm_cpu_set_pc;
2135     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2136     cc->gdb_read_register = arm_cpu_gdb_read_register;
2137     cc->gdb_write_register = arm_cpu_gdb_write_register;
2138 #ifdef CONFIG_USER_ONLY
2139     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2140 #else
2141     cc->do_interrupt = arm_cpu_do_interrupt;
2142     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2143     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2144     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2145     cc->asidx_from_attrs = arm_asidx_from_attrs;
2146     cc->vmsd = &vmstate_arm_cpu;
2147     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2148     cc->write_elf64_note = arm_cpu_write_elf64_note;
2149     cc->write_elf32_note = arm_cpu_write_elf32_note;
2150 #endif
2151     cc->gdb_num_core_regs = 26;
2152     cc->gdb_core_xml_file = "arm-core.xml";
2153     cc->gdb_arch_name = arm_gdb_arch_name;
2154     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2155     cc->gdb_stop_before_watchpoint = true;
2156     cc->debug_excp_handler = arm_debug_excp_handler;
2157     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2158 #if !defined(CONFIG_USER_ONLY)
2159     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2160 #endif
2161 
2162     cc->disas_set_info = arm_disas_set_info;
2163 #ifdef CONFIG_TCG
2164     cc->tcg_initialize = arm_translate_init;
2165 #endif
2166 }
2167 
2168 #ifdef CONFIG_KVM
2169 static void arm_host_initfn(Object *obj)
2170 {
2171     ARMCPU *cpu = ARM_CPU(obj);
2172 
2173     kvm_arm_set_cpu_features_from_host(cpu);
2174     arm_cpu_post_init(obj);
2175 }
2176 
2177 static const TypeInfo host_arm_cpu_type_info = {
2178     .name = TYPE_ARM_HOST_CPU,
2179 #ifdef TARGET_AARCH64
2180     .parent = TYPE_AARCH64_CPU,
2181 #else
2182     .parent = TYPE_ARM_CPU,
2183 #endif
2184     .instance_init = arm_host_initfn,
2185 };
2186 
2187 #endif
2188 
2189 static void arm_cpu_instance_init(Object *obj)
2190 {
2191     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2192 
2193     acc->info->initfn(obj);
2194     arm_cpu_post_init(obj);
2195 }
2196 
2197 static void cpu_register_class_init(ObjectClass *oc, void *data)
2198 {
2199     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2200 
2201     acc->info = data;
2202 }
2203 
2204 static void cpu_register(const ARMCPUInfo *info)
2205 {
2206     TypeInfo type_info = {
2207         .parent = TYPE_ARM_CPU,
2208         .instance_size = sizeof(ARMCPU),
2209         .instance_init = arm_cpu_instance_init,
2210         .class_size = sizeof(ARMCPUClass),
2211         .class_init = info->class_init ?: cpu_register_class_init,
2212         .class_data = (void *)info,
2213     };
2214 
2215     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2216     type_register(&type_info);
2217     g_free((void *)type_info.name);
2218 }
2219 
2220 static const TypeInfo arm_cpu_type_info = {
2221     .name = TYPE_ARM_CPU,
2222     .parent = TYPE_CPU,
2223     .instance_size = sizeof(ARMCPU),
2224     .instance_init = arm_cpu_initfn,
2225     .instance_finalize = arm_cpu_finalizefn,
2226     .abstract = true,
2227     .class_size = sizeof(ARMCPUClass),
2228     .class_init = arm_cpu_class_init,
2229 };
2230 
2231 static const TypeInfo idau_interface_type_info = {
2232     .name = TYPE_IDAU_INTERFACE,
2233     .parent = TYPE_INTERFACE,
2234     .class_size = sizeof(IDAUInterfaceClass),
2235 };
2236 
2237 static void arm_cpu_register_types(void)
2238 {
2239     const ARMCPUInfo *info = arm_cpus;
2240 
2241     type_register_static(&arm_cpu_type_info);
2242     type_register_static(&idau_interface_type_info);
2243 
2244     while (info->name) {
2245         cpu_register(info);
2246         info++;
2247     }
2248 
2249 #ifdef CONFIG_KVM
2250     type_register_static(&host_arm_cpu_type_info);
2251 #endif
2252 }
2253 
2254 type_init(arm_cpu_register_types)
2255