xref: /openbmc/qemu/target/arm/cpu.c (revision 4e999bf4)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
53 
54 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55 {
56     ARMCPU *cpu = ARM_CPU(cs);
57     CPUARMState *env = &cpu->env;
58 
59     if (is_a64(env)) {
60         env->pc = value;
61         env->thumb = false;
62     } else {
63         env->regs[15] = value & ~1;
64         env->thumb = value & 1;
65     }
66 }
67 
68 static vaddr arm_cpu_get_pc(CPUState *cs)
69 {
70     ARMCPU *cpu = ARM_CPU(cs);
71     CPUARMState *env = &cpu->env;
72 
73     if (is_a64(env)) {
74         return env->pc;
75     } else {
76         return env->regs[15];
77     }
78 }
79 
80 #ifdef CONFIG_TCG
81 void arm_cpu_synchronize_from_tb(CPUState *cs,
82                                  const TranslationBlock *tb)
83 {
84     /* The program counter is always up to date with CF_PCREL. */
85     if (!(tb_cflags(tb) & CF_PCREL)) {
86         CPUARMState *env = cpu_env(cs);
87         /*
88          * It's OK to look at env for the current mode here, because it's
89          * never possible for an AArch64 TB to chain to an AArch32 TB.
90          */
91         if (is_a64(env)) {
92             env->pc = tb->pc;
93         } else {
94             env->regs[15] = tb->pc;
95         }
96     }
97 }
98 
99 void arm_restore_state_to_opc(CPUState *cs,
100                               const TranslationBlock *tb,
101                               const uint64_t *data)
102 {
103     CPUARMState *env = cpu_env(cs);
104 
105     if (is_a64(env)) {
106         if (tb_cflags(tb) & CF_PCREL) {
107             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108         } else {
109             env->pc = data[0];
110         }
111         env->condexec_bits = 0;
112         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113     } else {
114         if (tb_cflags(tb) & CF_PCREL) {
115             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116         } else {
117             env->regs[15] = data[0];
118         }
119         env->condexec_bits = data[1];
120         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121     }
122 }
123 #endif /* CONFIG_TCG */
124 
125 static bool arm_cpu_has_work(CPUState *cs)
126 {
127     ARMCPU *cpu = ARM_CPU(cs);
128 
129     return (cpu->power_state != PSCI_OFF)
130         && cs->interrupt_request &
131         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
132          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
133          | CPU_INTERRUPT_EXITTB);
134 }
135 
136 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
137 {
138     return arm_env_mmu_index(cpu_env(cs));
139 }
140 
141 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
142                                  void *opaque)
143 {
144     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
145 
146     entry->hook = hook;
147     entry->opaque = opaque;
148 
149     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
150 }
151 
152 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
153                                  void *opaque)
154 {
155     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
156 
157     entry->hook = hook;
158     entry->opaque = opaque;
159 
160     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
161 }
162 
163 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
164 {
165     /* Reset a single ARMCPRegInfo register */
166     ARMCPRegInfo *ri = value;
167     ARMCPU *cpu = opaque;
168 
169     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
170         return;
171     }
172 
173     if (ri->resetfn) {
174         ri->resetfn(&cpu->env, ri);
175         return;
176     }
177 
178     /* A zero offset is never possible as it would be regs[0]
179      * so we use it to indicate that reset is being handled elsewhere.
180      * This is basically only used for fields in non-core coprocessors
181      * (like the pxa2xx ones).
182      */
183     if (!ri->fieldoffset) {
184         return;
185     }
186 
187     if (cpreg_field_is_64bit(ri)) {
188         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
189     } else {
190         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
191     }
192 }
193 
194 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
195 {
196     /* Purely an assertion check: we've already done reset once,
197      * so now check that running the reset for the cpreg doesn't
198      * change its value. This traps bugs where two different cpregs
199      * both try to reset the same state field but to different values.
200      */
201     ARMCPRegInfo *ri = value;
202     ARMCPU *cpu = opaque;
203     uint64_t oldvalue, newvalue;
204 
205     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
206         return;
207     }
208 
209     oldvalue = read_raw_cp_reg(&cpu->env, ri);
210     cp_reg_reset(key, value, opaque);
211     newvalue = read_raw_cp_reg(&cpu->env, ri);
212     assert(oldvalue == newvalue);
213 }
214 
215 static void arm_cpu_reset_hold(Object *obj)
216 {
217     CPUState *s = CPU(obj);
218     ARMCPU *cpu = ARM_CPU(s);
219     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
220     CPUARMState *env = &cpu->env;
221 
222     if (acc->parent_phases.hold) {
223         acc->parent_phases.hold(obj);
224     }
225 
226     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
227 
228     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
229     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
230 
231     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
232     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
233     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
234     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
235 
236     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
237 
238     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
239         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
240     }
241 
242     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
243         /* 64 bit CPUs always start in 64 bit mode */
244         env->aarch64 = true;
245 #if defined(CONFIG_USER_ONLY)
246         env->pstate = PSTATE_MODE_EL0t;
247         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
248         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
249         /* Enable all PAC keys.  */
250         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
251                                   SCTLR_EnDA | SCTLR_EnDB);
252         /* Trap on btype=3 for PACIxSP. */
253         env->cp15.sctlr_el[1] |= SCTLR_BT0;
254         /* Trap on implementation defined registers. */
255         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
256             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
257         }
258         /* and to the FP/Neon instructions */
259         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260                                          CPACR_EL1, FPEN, 3);
261         /* and to the SVE instructions, with default vector length */
262         if (cpu_isar_feature(aa64_sve, cpu)) {
263             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
264                                              CPACR_EL1, ZEN, 3);
265             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
266         }
267         /* and for SME instructions, with default vector length, and TPIDR2 */
268         if (cpu_isar_feature(aa64_sme, cpu)) {
269             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
270             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
271                                              CPACR_EL1, SMEN, 3);
272             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
273             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
274                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
275                                                  SMCR, FA64, 1);
276             }
277         }
278         /*
279          * Enable 48-bit address space (TODO: take reserved_va into account).
280          * Enable TBI0 but not TBI1.
281          * Note that this must match useronly_clean_ptr.
282          */
283         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
284 
285         /* Enable MTE */
286         if (cpu_isar_feature(aa64_mte, cpu)) {
287             /* Enable tag access, but leave TCF0 as No Effect (0). */
288             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
289             /*
290              * Exclude all tags, so that tag 0 is always used.
291              * This corresponds to Linux current->thread.gcr_incl = 0.
292              *
293              * Set RRND, so that helper_irg() will generate a seed later.
294              * Here in cpu_reset(), the crypto subsystem has not yet been
295              * initialized.
296              */
297             env->cp15.gcr_el1 = 0x1ffff;
298         }
299         /*
300          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
301          * This is not yet exposed from the Linux kernel in any way.
302          */
303         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
304         /* Disable access to Debug Communication Channel (DCC). */
305         env->cp15.mdscr_el1 |= 1 << 12;
306         /* Enable FEAT_MOPS */
307         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
308 #else
309         /* Reset into the highest available EL */
310         if (arm_feature(env, ARM_FEATURE_EL3)) {
311             env->pstate = PSTATE_MODE_EL3h;
312         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
313             env->pstate = PSTATE_MODE_EL2h;
314         } else {
315             env->pstate = PSTATE_MODE_EL1h;
316         }
317 
318         /* Sample rvbar at reset.  */
319         env->cp15.rvbar = cpu->rvbar_prop;
320         env->pc = env->cp15.rvbar;
321 #endif
322     } else {
323 #if defined(CONFIG_USER_ONLY)
324         /* Userspace expects access to cp10 and cp11 for FP/Neon */
325         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
326                                          CPACR, CP10, 3);
327         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
328                                          CPACR, CP11, 3);
329 #endif
330         if (arm_feature(env, ARM_FEATURE_V8)) {
331             env->cp15.rvbar = cpu->rvbar_prop;
332             env->regs[15] = cpu->rvbar_prop;
333         }
334     }
335 
336 #if defined(CONFIG_USER_ONLY)
337     env->uncached_cpsr = ARM_CPU_MODE_USR;
338     /* For user mode we must enable access to coprocessors */
339     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
340     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
341         env->cp15.c15_cpar = 3;
342     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
343         env->cp15.c15_cpar = 1;
344     }
345 #else
346 
347     /*
348      * If the highest available EL is EL2, AArch32 will start in Hyp
349      * mode; otherwise it starts in SVC. Note that if we start in
350      * AArch64 then these values in the uncached_cpsr will be ignored.
351      */
352     if (arm_feature(env, ARM_FEATURE_EL2) &&
353         !arm_feature(env, ARM_FEATURE_EL3)) {
354         env->uncached_cpsr = ARM_CPU_MODE_HYP;
355     } else {
356         env->uncached_cpsr = ARM_CPU_MODE_SVC;
357     }
358     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
359 
360     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
361      * executing as AArch32 then check if highvecs are enabled and
362      * adjust the PC accordingly.
363      */
364     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
365         env->regs[15] = 0xFFFF0000;
366     }
367 
368     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
369 #endif
370 
371     if (arm_feature(env, ARM_FEATURE_M)) {
372 #ifndef CONFIG_USER_ONLY
373         uint32_t initial_msp; /* Loaded from 0x0 */
374         uint32_t initial_pc; /* Loaded from 0x4 */
375         uint8_t *rom;
376         uint32_t vecbase;
377 #endif
378 
379         if (cpu_isar_feature(aa32_lob, cpu)) {
380             /*
381              * LTPSIZE is constant 4 if MVE not implemented, and resets
382              * to an UNKNOWN value if MVE is implemented. We choose to
383              * always reset to 4.
384              */
385             env->v7m.ltpsize = 4;
386             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
387             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
388             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
389         }
390 
391         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
392             env->v7m.secure = true;
393         } else {
394             /* This bit resets to 0 if security is supported, but 1 if
395              * it is not. The bit is not present in v7M, but we set it
396              * here so we can avoid having to make checks on it conditional
397              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
398              */
399             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
400             /*
401              * Set NSACR to indicate "NS access permitted to everything";
402              * this avoids having to have all the tests of it being
403              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
404              * v8.1M the guest-visible value of NSACR in a CPU without the
405              * Security Extension is 0xcff.
406              */
407             env->v7m.nsacr = 0xcff;
408         }
409 
410         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
411          * that it resets to 1, so QEMU always does that rather than making
412          * it dependent on CPU model. In v8M it is RES1.
413          */
414         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
415         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
416         if (arm_feature(env, ARM_FEATURE_V8)) {
417             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
418             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
419             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
420         }
421         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
422             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
423             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
424         }
425 
426         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
427             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
428             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
429                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
430         }
431 
432 #ifndef CONFIG_USER_ONLY
433         /* Unlike A/R profile, M profile defines the reset LR value */
434         env->regs[14] = 0xffffffff;
435 
436         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
437         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
438 
439         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
440         vecbase = env->v7m.vecbase[env->v7m.secure];
441         rom = rom_ptr_for_as(s->as, vecbase, 8);
442         if (rom) {
443             /* Address zero is covered by ROM which hasn't yet been
444              * copied into physical memory.
445              */
446             initial_msp = ldl_p(rom);
447             initial_pc = ldl_p(rom + 4);
448         } else {
449             /* Address zero not covered by a ROM blob, or the ROM blob
450              * is in non-modifiable memory and this is a second reset after
451              * it got copied into memory. In the latter case, rom_ptr
452              * will return a NULL pointer and we should use ldl_phys instead.
453              */
454             initial_msp = ldl_phys(s->as, vecbase);
455             initial_pc = ldl_phys(s->as, vecbase + 4);
456         }
457 
458         qemu_log_mask(CPU_LOG_INT,
459                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
460                       initial_msp, initial_pc);
461 
462         env->regs[13] = initial_msp & 0xFFFFFFFC;
463         env->regs[15] = initial_pc & ~1;
464         env->thumb = initial_pc & 1;
465 #else
466         /*
467          * For user mode we run non-secure and with access to the FPU.
468          * The FPU context is active (ie does not need further setup)
469          * and is owned by non-secure.
470          */
471         env->v7m.secure = false;
472         env->v7m.nsacr = 0xcff;
473         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
474         env->v7m.fpccr[M_REG_S] &=
475             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
476         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
477 #endif
478     }
479 
480     /* M profile requires that reset clears the exclusive monitor;
481      * A profile does not, but clearing it makes more sense than having it
482      * set with an exclusive access on address zero.
483      */
484     arm_clear_exclusive(env);
485 
486     if (arm_feature(env, ARM_FEATURE_PMSA)) {
487         if (cpu->pmsav7_dregion > 0) {
488             if (arm_feature(env, ARM_FEATURE_V8)) {
489                 memset(env->pmsav8.rbar[M_REG_NS], 0,
490                        sizeof(*env->pmsav8.rbar[M_REG_NS])
491                        * cpu->pmsav7_dregion);
492                 memset(env->pmsav8.rlar[M_REG_NS], 0,
493                        sizeof(*env->pmsav8.rlar[M_REG_NS])
494                        * cpu->pmsav7_dregion);
495                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
496                     memset(env->pmsav8.rbar[M_REG_S], 0,
497                            sizeof(*env->pmsav8.rbar[M_REG_S])
498                            * cpu->pmsav7_dregion);
499                     memset(env->pmsav8.rlar[M_REG_S], 0,
500                            sizeof(*env->pmsav8.rlar[M_REG_S])
501                            * cpu->pmsav7_dregion);
502                 }
503             } else if (arm_feature(env, ARM_FEATURE_V7)) {
504                 memset(env->pmsav7.drbar, 0,
505                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
506                 memset(env->pmsav7.drsr, 0,
507                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
508                 memset(env->pmsav7.dracr, 0,
509                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
510             }
511         }
512 
513         if (cpu->pmsav8r_hdregion > 0) {
514             memset(env->pmsav8.hprbar, 0,
515                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
516             memset(env->pmsav8.hprlar, 0,
517                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
518         }
519 
520         env->pmsav7.rnr[M_REG_NS] = 0;
521         env->pmsav7.rnr[M_REG_S] = 0;
522         env->pmsav8.mair0[M_REG_NS] = 0;
523         env->pmsav8.mair0[M_REG_S] = 0;
524         env->pmsav8.mair1[M_REG_NS] = 0;
525         env->pmsav8.mair1[M_REG_S] = 0;
526     }
527 
528     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
529         if (cpu->sau_sregion > 0) {
530             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
531             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
532         }
533         env->sau.rnr = 0;
534         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
535          * the Cortex-M33 does.
536          */
537         env->sau.ctrl = 0;
538     }
539 
540     set_flush_to_zero(1, &env->vfp.standard_fp_status);
541     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
542     set_default_nan_mode(1, &env->vfp.standard_fp_status);
543     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
544     set_float_detect_tininess(float_tininess_before_rounding,
545                               &env->vfp.fp_status);
546     set_float_detect_tininess(float_tininess_before_rounding,
547                               &env->vfp.standard_fp_status);
548     set_float_detect_tininess(float_tininess_before_rounding,
549                               &env->vfp.fp_status_f16);
550     set_float_detect_tininess(float_tininess_before_rounding,
551                               &env->vfp.standard_fp_status_f16);
552 #ifndef CONFIG_USER_ONLY
553     if (kvm_enabled()) {
554         kvm_arm_reset_vcpu(cpu);
555     }
556 #endif
557 
558     if (tcg_enabled()) {
559         hw_breakpoint_update_all(cpu);
560         hw_watchpoint_update_all(cpu);
561 
562         arm_rebuild_hflags(env);
563     }
564 }
565 
566 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
567 {
568     ARMCPU *cpu = ARM_CPU(cpustate);
569     CPUARMState *env = &cpu->env;
570     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
571     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
572 
573     /*
574      * Check we have the EL we're aiming for. If that is the
575      * highest implemented EL, then cpu_reset has already done
576      * all the work.
577      */
578     switch (target_el) {
579     case 3:
580         assert(have_el3);
581         return;
582     case 2:
583         assert(have_el2);
584         if (!have_el3) {
585             return;
586         }
587         break;
588     case 1:
589         if (!have_el3 && !have_el2) {
590             return;
591         }
592         break;
593     default:
594         g_assert_not_reached();
595     }
596 
597     if (have_el3) {
598         /*
599          * Set the EL3 state so code can run at EL2. This should match
600          * the requirements set by Linux in its booting spec.
601          */
602         if (env->aarch64) {
603             env->cp15.scr_el3 |= SCR_RW;
604             if (cpu_isar_feature(aa64_pauth, cpu)) {
605                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
606             }
607             if (cpu_isar_feature(aa64_mte, cpu)) {
608                 env->cp15.scr_el3 |= SCR_ATA;
609             }
610             if (cpu_isar_feature(aa64_sve, cpu)) {
611                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
612                 env->vfp.zcr_el[3] = 0xf;
613             }
614             if (cpu_isar_feature(aa64_sme, cpu)) {
615                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
616                 env->cp15.scr_el3 |= SCR_ENTP2;
617                 env->vfp.smcr_el[3] = 0xf;
618             }
619             if (cpu_isar_feature(aa64_hcx, cpu)) {
620                 env->cp15.scr_el3 |= SCR_HXEN;
621             }
622             if (cpu_isar_feature(aa64_fgt, cpu)) {
623                 env->cp15.scr_el3 |= SCR_FGTEN;
624             }
625         }
626 
627         if (target_el == 2) {
628             /* If the guest is at EL2 then Linux expects the HVC insn to work */
629             env->cp15.scr_el3 |= SCR_HCE;
630         }
631 
632         /* Put CPU into non-secure state */
633         env->cp15.scr_el3 |= SCR_NS;
634         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
635         env->cp15.nsacr |= 3 << 10;
636     }
637 
638     if (have_el2 && target_el < 2) {
639         /* Set EL2 state so code can run at EL1. */
640         if (env->aarch64) {
641             env->cp15.hcr_el2 |= HCR_RW;
642         }
643     }
644 
645     /* Set the CPU to the desired state */
646     if (env->aarch64) {
647         env->pstate = aarch64_pstate_mode(target_el, true);
648     } else {
649         static const uint32_t mode_for_el[] = {
650             0,
651             ARM_CPU_MODE_SVC,
652             ARM_CPU_MODE_HYP,
653             ARM_CPU_MODE_SVC,
654         };
655 
656         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
657     }
658 }
659 
660 
661 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
662 
663 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
664                                      unsigned int target_el,
665                                      unsigned int cur_el, bool secure,
666                                      uint64_t hcr_el2)
667 {
668     CPUARMState *env = cpu_env(cs);
669     bool pstate_unmasked;
670     bool unmasked = false;
671 
672     /*
673      * Don't take exceptions if they target a lower EL.
674      * This check should catch any exceptions that would not be taken
675      * but left pending.
676      */
677     if (cur_el > target_el) {
678         return false;
679     }
680 
681     switch (excp_idx) {
682     case EXCP_FIQ:
683         pstate_unmasked = !(env->daif & PSTATE_F);
684         break;
685 
686     case EXCP_IRQ:
687         pstate_unmasked = !(env->daif & PSTATE_I);
688         break;
689 
690     case EXCP_VFIQ:
691         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
692             /* VFIQs are only taken when hypervized.  */
693             return false;
694         }
695         return !(env->daif & PSTATE_F);
696     case EXCP_VIRQ:
697         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
698             /* VIRQs are only taken when hypervized.  */
699             return false;
700         }
701         return !(env->daif & PSTATE_I);
702     case EXCP_VSERR:
703         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
704             /* VIRQs are only taken when hypervized.  */
705             return false;
706         }
707         return !(env->daif & PSTATE_A);
708     default:
709         g_assert_not_reached();
710     }
711 
712     /*
713      * Use the target EL, current execution state and SCR/HCR settings to
714      * determine whether the corresponding CPSR bit is used to mask the
715      * interrupt.
716      */
717     if ((target_el > cur_el) && (target_el != 1)) {
718         /* Exceptions targeting a higher EL may not be maskable */
719         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
720             switch (target_el) {
721             case 2:
722                 /*
723                  * According to ARM DDI 0487H.a, an interrupt can be masked
724                  * when HCR_E2H and HCR_TGE are both set regardless of the
725                  * current Security state. Note that we need to revisit this
726                  * part again once we need to support NMI.
727                  */
728                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
729                         unmasked = true;
730                 }
731                 break;
732             case 3:
733                 /* Interrupt cannot be masked when the target EL is 3 */
734                 unmasked = true;
735                 break;
736             default:
737                 g_assert_not_reached();
738             }
739         } else {
740             /*
741              * The old 32-bit-only environment has a more complicated
742              * masking setup. HCR and SCR bits not only affect interrupt
743              * routing but also change the behaviour of masking.
744              */
745             bool hcr, scr;
746 
747             switch (excp_idx) {
748             case EXCP_FIQ:
749                 /*
750                  * If FIQs are routed to EL3 or EL2 then there are cases where
751                  * we override the CPSR.F in determining if the exception is
752                  * masked or not. If neither of these are set then we fall back
753                  * to the CPSR.F setting otherwise we further assess the state
754                  * below.
755                  */
756                 hcr = hcr_el2 & HCR_FMO;
757                 scr = (env->cp15.scr_el3 & SCR_FIQ);
758 
759                 /*
760                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
761                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
762                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
763                  * when non-secure but only when FIQs are only routed to EL3.
764                  */
765                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
766                 break;
767             case EXCP_IRQ:
768                 /*
769                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
770                  * we may override the CPSR.I masking when in non-secure state.
771                  * The SCR.IRQ setting has already been taken into consideration
772                  * when setting the target EL, so it does not have a further
773                  * affect here.
774                  */
775                 hcr = hcr_el2 & HCR_IMO;
776                 scr = false;
777                 break;
778             default:
779                 g_assert_not_reached();
780             }
781 
782             if ((scr || hcr) && !secure) {
783                 unmasked = true;
784             }
785         }
786     }
787 
788     /*
789      * The PSTATE bits only mask the interrupt if we have not overridden the
790      * ability above.
791      */
792     return unmasked || pstate_unmasked;
793 }
794 
795 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
796 {
797     CPUClass *cc = CPU_GET_CLASS(cs);
798     CPUARMState *env = cpu_env(cs);
799     uint32_t cur_el = arm_current_el(env);
800     bool secure = arm_is_secure(env);
801     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
802     uint32_t target_el;
803     uint32_t excp_idx;
804 
805     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
806 
807     if (interrupt_request & CPU_INTERRUPT_FIQ) {
808         excp_idx = EXCP_FIQ;
809         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
810         if (arm_excp_unmasked(cs, excp_idx, target_el,
811                               cur_el, secure, hcr_el2)) {
812             goto found;
813         }
814     }
815     if (interrupt_request & CPU_INTERRUPT_HARD) {
816         excp_idx = EXCP_IRQ;
817         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
818         if (arm_excp_unmasked(cs, excp_idx, target_el,
819                               cur_el, secure, hcr_el2)) {
820             goto found;
821         }
822     }
823     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
824         excp_idx = EXCP_VIRQ;
825         target_el = 1;
826         if (arm_excp_unmasked(cs, excp_idx, target_el,
827                               cur_el, secure, hcr_el2)) {
828             goto found;
829         }
830     }
831     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
832         excp_idx = EXCP_VFIQ;
833         target_el = 1;
834         if (arm_excp_unmasked(cs, excp_idx, target_el,
835                               cur_el, secure, hcr_el2)) {
836             goto found;
837         }
838     }
839     if (interrupt_request & CPU_INTERRUPT_VSERR) {
840         excp_idx = EXCP_VSERR;
841         target_el = 1;
842         if (arm_excp_unmasked(cs, excp_idx, target_el,
843                               cur_el, secure, hcr_el2)) {
844             /* Taking a virtual abort clears HCR_EL2.VSE */
845             env->cp15.hcr_el2 &= ~HCR_VSE;
846             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
847             goto found;
848         }
849     }
850     return false;
851 
852  found:
853     cs->exception_index = excp_idx;
854     env->exception.target_el = target_el;
855     cc->tcg_ops->do_interrupt(cs);
856     return true;
857 }
858 
859 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
860 
861 void arm_cpu_update_virq(ARMCPU *cpu)
862 {
863     /*
864      * Update the interrupt level for VIRQ, which is the logical OR of
865      * the HCR_EL2.VI bit and the input line level from the GIC.
866      */
867     CPUARMState *env = &cpu->env;
868     CPUState *cs = CPU(cpu);
869 
870     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
871         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
872 
873     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
874         if (new_state) {
875             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
876         } else {
877             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
878         }
879     }
880 }
881 
882 void arm_cpu_update_vfiq(ARMCPU *cpu)
883 {
884     /*
885      * Update the interrupt level for VFIQ, which is the logical OR of
886      * the HCR_EL2.VF bit and the input line level from the GIC.
887      */
888     CPUARMState *env = &cpu->env;
889     CPUState *cs = CPU(cpu);
890 
891     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
892         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
893 
894     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
895         if (new_state) {
896             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
897         } else {
898             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
899         }
900     }
901 }
902 
903 void arm_cpu_update_vserr(ARMCPU *cpu)
904 {
905     /*
906      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
907      */
908     CPUARMState *env = &cpu->env;
909     CPUState *cs = CPU(cpu);
910 
911     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
912 
913     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
914         if (new_state) {
915             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
916         } else {
917             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
918         }
919     }
920 }
921 
922 #ifndef CONFIG_USER_ONLY
923 static void arm_cpu_set_irq(void *opaque, int irq, int level)
924 {
925     ARMCPU *cpu = opaque;
926     CPUARMState *env = &cpu->env;
927     CPUState *cs = CPU(cpu);
928     static const int mask[] = {
929         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
930         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
931         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
932         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
933     };
934 
935     if (!arm_feature(env, ARM_FEATURE_EL2) &&
936         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
937         /*
938          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
939          * have EL2 support we don't care. (Unless the guest is doing something
940          * silly this will only be calls saying "level is still 0".)
941          */
942         return;
943     }
944 
945     if (level) {
946         env->irq_line_state |= mask[irq];
947     } else {
948         env->irq_line_state &= ~mask[irq];
949     }
950 
951     switch (irq) {
952     case ARM_CPU_VIRQ:
953         arm_cpu_update_virq(cpu);
954         break;
955     case ARM_CPU_VFIQ:
956         arm_cpu_update_vfiq(cpu);
957         break;
958     case ARM_CPU_IRQ:
959     case ARM_CPU_FIQ:
960         if (level) {
961             cpu_interrupt(cs, mask[irq]);
962         } else {
963             cpu_reset_interrupt(cs, mask[irq]);
964         }
965         break;
966     default:
967         g_assert_not_reached();
968     }
969 }
970 
971 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
972 {
973 #ifdef CONFIG_KVM
974     ARMCPU *cpu = opaque;
975     CPUARMState *env = &cpu->env;
976     CPUState *cs = CPU(cpu);
977     uint32_t linestate_bit;
978     int irq_id;
979 
980     switch (irq) {
981     case ARM_CPU_IRQ:
982         irq_id = KVM_ARM_IRQ_CPU_IRQ;
983         linestate_bit = CPU_INTERRUPT_HARD;
984         break;
985     case ARM_CPU_FIQ:
986         irq_id = KVM_ARM_IRQ_CPU_FIQ;
987         linestate_bit = CPU_INTERRUPT_FIQ;
988         break;
989     default:
990         g_assert_not_reached();
991     }
992 
993     if (level) {
994         env->irq_line_state |= linestate_bit;
995     } else {
996         env->irq_line_state &= ~linestate_bit;
997     }
998     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
999 #endif
1000 }
1001 
1002 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1003 {
1004     ARMCPU *cpu = ARM_CPU(cs);
1005     CPUARMState *env = &cpu->env;
1006 
1007     cpu_synchronize_state(cs);
1008     return arm_cpu_data_is_big_endian(env);
1009 }
1010 
1011 #endif
1012 
1013 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1014 {
1015     ARMCPU *ac = ARM_CPU(cpu);
1016     CPUARMState *env = &ac->env;
1017     bool sctlr_b;
1018 
1019     if (is_a64(env)) {
1020         info->cap_arch = CS_ARCH_ARM64;
1021         info->cap_insn_unit = 4;
1022         info->cap_insn_split = 4;
1023     } else {
1024         int cap_mode;
1025         if (env->thumb) {
1026             info->cap_insn_unit = 2;
1027             info->cap_insn_split = 4;
1028             cap_mode = CS_MODE_THUMB;
1029         } else {
1030             info->cap_insn_unit = 4;
1031             info->cap_insn_split = 4;
1032             cap_mode = CS_MODE_ARM;
1033         }
1034         if (arm_feature(env, ARM_FEATURE_V8)) {
1035             cap_mode |= CS_MODE_V8;
1036         }
1037         if (arm_feature(env, ARM_FEATURE_M)) {
1038             cap_mode |= CS_MODE_MCLASS;
1039         }
1040         info->cap_arch = CS_ARCH_ARM;
1041         info->cap_mode = cap_mode;
1042     }
1043 
1044     sctlr_b = arm_sctlr_b(env);
1045     if (bswap_code(sctlr_b)) {
1046 #if TARGET_BIG_ENDIAN
1047         info->endian = BFD_ENDIAN_LITTLE;
1048 #else
1049         info->endian = BFD_ENDIAN_BIG;
1050 #endif
1051     }
1052     info->flags &= ~INSN_ARM_BE32;
1053 #ifndef CONFIG_USER_ONLY
1054     if (sctlr_b) {
1055         info->flags |= INSN_ARM_BE32;
1056     }
1057 #endif
1058 }
1059 
1060 #ifdef TARGET_AARCH64
1061 
1062 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1063 {
1064     ARMCPU *cpu = ARM_CPU(cs);
1065     CPUARMState *env = &cpu->env;
1066     uint32_t psr = pstate_read(env);
1067     int i, j;
1068     int el = arm_current_el(env);
1069     uint64_t hcr = arm_hcr_el2_eff(env);
1070     const char *ns_status;
1071     bool sve;
1072 
1073     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1074     for (i = 0; i < 32; i++) {
1075         if (i == 31) {
1076             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1077         } else {
1078             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1079                          (i + 2) % 3 ? " " : "\n");
1080         }
1081     }
1082 
1083     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1084         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1085     } else {
1086         ns_status = "";
1087     }
1088     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1089                  psr,
1090                  psr & PSTATE_N ? 'N' : '-',
1091                  psr & PSTATE_Z ? 'Z' : '-',
1092                  psr & PSTATE_C ? 'C' : '-',
1093                  psr & PSTATE_V ? 'V' : '-',
1094                  ns_status,
1095                  el,
1096                  psr & PSTATE_SP ? 'h' : 't');
1097 
1098     if (cpu_isar_feature(aa64_sme, cpu)) {
1099         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1100                      env->svcr,
1101                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1102                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1103     }
1104     if (cpu_isar_feature(aa64_bti, cpu)) {
1105         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1106     }
1107     qemu_fprintf(f, "%s%s%s",
1108                  (hcr & HCR_NV) ? " NV" : "",
1109                  (hcr & HCR_NV1) ? " NV1" : "",
1110                  (hcr & HCR_NV2) ? " NV2" : "");
1111     if (!(flags & CPU_DUMP_FPU)) {
1112         qemu_fprintf(f, "\n");
1113         return;
1114     }
1115     if (fp_exception_el(env, el) != 0) {
1116         qemu_fprintf(f, "    FPU disabled\n");
1117         return;
1118     }
1119     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1120                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1121 
1122     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1123         sve = sme_exception_el(env, el) == 0;
1124     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1125         sve = sve_exception_el(env, el) == 0;
1126     } else {
1127         sve = false;
1128     }
1129 
1130     if (sve) {
1131         int zcr_len = sve_vqm1_for_el(env, el);
1132 
1133         for (i = 0; i <= FFR_PRED_NUM; i++) {
1134             bool eol;
1135             if (i == FFR_PRED_NUM) {
1136                 qemu_fprintf(f, "FFR=");
1137                 /* It's last, so end the line.  */
1138                 eol = true;
1139             } else {
1140                 qemu_fprintf(f, "P%02d=", i);
1141                 switch (zcr_len) {
1142                 case 0:
1143                     eol = i % 8 == 7;
1144                     break;
1145                 case 1:
1146                     eol = i % 6 == 5;
1147                     break;
1148                 case 2:
1149                 case 3:
1150                     eol = i % 3 == 2;
1151                     break;
1152                 default:
1153                     /* More than one quadword per predicate.  */
1154                     eol = true;
1155                     break;
1156                 }
1157             }
1158             for (j = zcr_len / 4; j >= 0; j--) {
1159                 int digits;
1160                 if (j * 4 + 4 <= zcr_len + 1) {
1161                     digits = 16;
1162                 } else {
1163                     digits = (zcr_len % 4 + 1) * 4;
1164                 }
1165                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1166                              env->vfp.pregs[i].p[j],
1167                              j ? ":" : eol ? "\n" : " ");
1168             }
1169         }
1170 
1171         if (zcr_len == 0) {
1172             /*
1173              * With vl=16, there are only 37 columns per register,
1174              * so output two registers per line.
1175              */
1176             for (i = 0; i < 32; i++) {
1177                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1178                              i, env->vfp.zregs[i].d[1],
1179                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1180             }
1181         } else {
1182             for (i = 0; i < 32; i++) {
1183                 qemu_fprintf(f, "Z%02d=", i);
1184                 for (j = zcr_len; j >= 0; j--) {
1185                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1186                                  env->vfp.zregs[i].d[j * 2 + 1],
1187                                  env->vfp.zregs[i].d[j * 2 + 0],
1188                                  j ? ":" : "\n");
1189                 }
1190             }
1191         }
1192     } else {
1193         for (i = 0; i < 32; i++) {
1194             uint64_t *q = aa64_vfp_qreg(env, i);
1195             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1196                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1197         }
1198     }
1199 
1200     if (cpu_isar_feature(aa64_sme, cpu) &&
1201         FIELD_EX64(env->svcr, SVCR, ZA) &&
1202         sme_exception_el(env, el) == 0) {
1203         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1204         int svl = (zcr_len + 1) * 16;
1205         int svl_lg10 = svl < 100 ? 2 : 3;
1206 
1207         for (i = 0; i < svl; i++) {
1208             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1209             for (j = zcr_len; j >= 0; --j) {
1210                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1211                              env->zarray[i].d[2 * j + 1],
1212                              env->zarray[i].d[2 * j],
1213                              j ? ':' : '\n');
1214             }
1215         }
1216     }
1217 }
1218 
1219 #else
1220 
1221 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1222 {
1223     g_assert_not_reached();
1224 }
1225 
1226 #endif
1227 
1228 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1229 {
1230     ARMCPU *cpu = ARM_CPU(cs);
1231     CPUARMState *env = &cpu->env;
1232     int i;
1233 
1234     if (is_a64(env)) {
1235         aarch64_cpu_dump_state(cs, f, flags);
1236         return;
1237     }
1238 
1239     for (i = 0; i < 16; i++) {
1240         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1241         if ((i % 4) == 3) {
1242             qemu_fprintf(f, "\n");
1243         } else {
1244             qemu_fprintf(f, " ");
1245         }
1246     }
1247 
1248     if (arm_feature(env, ARM_FEATURE_M)) {
1249         uint32_t xpsr = xpsr_read(env);
1250         const char *mode;
1251         const char *ns_status = "";
1252 
1253         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1254             ns_status = env->v7m.secure ? "S " : "NS ";
1255         }
1256 
1257         if (xpsr & XPSR_EXCP) {
1258             mode = "handler";
1259         } else {
1260             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1261                 mode = "unpriv-thread";
1262             } else {
1263                 mode = "priv-thread";
1264             }
1265         }
1266 
1267         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1268                      xpsr,
1269                      xpsr & XPSR_N ? 'N' : '-',
1270                      xpsr & XPSR_Z ? 'Z' : '-',
1271                      xpsr & XPSR_C ? 'C' : '-',
1272                      xpsr & XPSR_V ? 'V' : '-',
1273                      xpsr & XPSR_T ? 'T' : 'A',
1274                      ns_status,
1275                      mode);
1276     } else {
1277         uint32_t psr = cpsr_read(env);
1278         const char *ns_status = "";
1279 
1280         if (arm_feature(env, ARM_FEATURE_EL3) &&
1281             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1282             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1283         }
1284 
1285         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1286                      psr,
1287                      psr & CPSR_N ? 'N' : '-',
1288                      psr & CPSR_Z ? 'Z' : '-',
1289                      psr & CPSR_C ? 'C' : '-',
1290                      psr & CPSR_V ? 'V' : '-',
1291                      psr & CPSR_T ? 'T' : 'A',
1292                      ns_status,
1293                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1294     }
1295 
1296     if (flags & CPU_DUMP_FPU) {
1297         int numvfpregs = 0;
1298         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1299             numvfpregs = 32;
1300         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1301             numvfpregs = 16;
1302         }
1303         for (i = 0; i < numvfpregs; i++) {
1304             uint64_t v = *aa32_vfp_dreg(env, i);
1305             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1306                          i * 2, (uint32_t)v,
1307                          i * 2 + 1, (uint32_t)(v >> 32),
1308                          i, v);
1309         }
1310         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1311         if (cpu_isar_feature(aa32_mve, cpu)) {
1312             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1313         }
1314     }
1315 }
1316 
1317 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1318 {
1319     uint32_t Aff1 = idx / clustersz;
1320     uint32_t Aff0 = idx % clustersz;
1321     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1322 }
1323 
1324 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1325 {
1326     return cpu->mp_affinity;
1327 }
1328 
1329 static void arm_cpu_initfn(Object *obj)
1330 {
1331     ARMCPU *cpu = ARM_CPU(obj);
1332 
1333     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1334                                          NULL, g_free);
1335 
1336     QLIST_INIT(&cpu->pre_el_change_hooks);
1337     QLIST_INIT(&cpu->el_change_hooks);
1338 
1339 #ifdef CONFIG_USER_ONLY
1340 # ifdef TARGET_AARCH64
1341     /*
1342      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1343      * These values were chosen to fit within the default signal frame.
1344      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1345      * and our corresponding cpu property.
1346      */
1347     cpu->sve_default_vq = 4;
1348     cpu->sme_default_vq = 2;
1349 # endif
1350 #else
1351     /* Our inbound IRQ and FIQ lines */
1352     if (kvm_enabled()) {
1353         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1354          * the same interface as non-KVM CPUs.
1355          */
1356         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1357     } else {
1358         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1359     }
1360 
1361     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1362                        ARRAY_SIZE(cpu->gt_timer_outputs));
1363 
1364     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1365                              "gicv3-maintenance-interrupt", 1);
1366     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1367                              "pmu-interrupt", 1);
1368 #endif
1369 
1370     /* DTB consumers generally don't in fact care what the 'compatible'
1371      * string is, so always provide some string and trust that a hypothetical
1372      * picky DTB consumer will also provide a helpful error message.
1373      */
1374     cpu->dtb_compatible = "qemu,unknown";
1375     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1376     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1377 
1378     if (tcg_enabled() || hvf_enabled()) {
1379         /* TCG and HVF implement PSCI 1.1 */
1380         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1381     }
1382 }
1383 
1384 static Property arm_cpu_gt_cntfrq_property =
1385             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1386                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1387 
1388 static Property arm_cpu_reset_cbar_property =
1389             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1390 
1391 static Property arm_cpu_reset_hivecs_property =
1392             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1393 
1394 #ifndef CONFIG_USER_ONLY
1395 static Property arm_cpu_has_el2_property =
1396             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1397 
1398 static Property arm_cpu_has_el3_property =
1399             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1400 #endif
1401 
1402 static Property arm_cpu_cfgend_property =
1403             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1404 
1405 static Property arm_cpu_has_vfp_property =
1406             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1407 
1408 static Property arm_cpu_has_vfp_d32_property =
1409             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1410 
1411 static Property arm_cpu_has_neon_property =
1412             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1413 
1414 static Property arm_cpu_has_dsp_property =
1415             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1416 
1417 static Property arm_cpu_has_mpu_property =
1418             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1419 
1420 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1421  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1422  * the right value for that particular CPU type, and we don't want
1423  * to override that with an incorrect constant value.
1424  */
1425 static Property arm_cpu_pmsav7_dregion_property =
1426             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1427                                            pmsav7_dregion,
1428                                            qdev_prop_uint32, uint32_t);
1429 
1430 static bool arm_get_pmu(Object *obj, Error **errp)
1431 {
1432     ARMCPU *cpu = ARM_CPU(obj);
1433 
1434     return cpu->has_pmu;
1435 }
1436 
1437 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1438 {
1439     ARMCPU *cpu = ARM_CPU(obj);
1440 
1441     if (value) {
1442         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1443             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1444             return;
1445         }
1446         set_feature(&cpu->env, ARM_FEATURE_PMU);
1447     } else {
1448         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1449     }
1450     cpu->has_pmu = value;
1451 }
1452 
1453 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1454 {
1455     /*
1456      * The exact approach to calculating guest ticks is:
1457      *
1458      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1459      *              NANOSECONDS_PER_SECOND);
1460      *
1461      * We don't do that. Rather we intentionally use integer division
1462      * truncation below and in the caller for the conversion of host monotonic
1463      * time to guest ticks to provide the exact inverse for the semantics of
1464      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1465      * it loses precision when representing frequencies where
1466      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1467      * provide an exact inverse leads to scheduling timers with negative
1468      * periods, which in turn leads to sticky behaviour in the guest.
1469      *
1470      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1471      * cannot become zero.
1472      */
1473     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1474       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1475 }
1476 
1477 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1478 {
1479     CPUARMState *env = &cpu->env;
1480     bool no_aa32 = false;
1481 
1482     /*
1483      * Some features automatically imply others: set the feature
1484      * bits explicitly for these cases.
1485      */
1486 
1487     if (arm_feature(env, ARM_FEATURE_M)) {
1488         set_feature(env, ARM_FEATURE_PMSA);
1489     }
1490 
1491     if (arm_feature(env, ARM_FEATURE_V8)) {
1492         if (arm_feature(env, ARM_FEATURE_M)) {
1493             set_feature(env, ARM_FEATURE_V7);
1494         } else {
1495             set_feature(env, ARM_FEATURE_V7VE);
1496         }
1497     }
1498 
1499     /*
1500      * There exist AArch64 cpus without AArch32 support.  When KVM
1501      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1502      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1503      * As a general principle, we also do not make ID register
1504      * consistency checks anywhere unless using TCG, because only
1505      * for TCG would a consistency-check failure be a QEMU bug.
1506      */
1507     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1508         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1509     }
1510 
1511     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1512         /*
1513          * v7 Virtualization Extensions. In real hardware this implies
1514          * EL2 and also the presence of the Security Extensions.
1515          * For QEMU, for backwards-compatibility we implement some
1516          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1517          * include the various other features that V7VE implies.
1518          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1519          * Security Extensions is ARM_FEATURE_EL3.
1520          */
1521         assert(!tcg_enabled() || no_aa32 ||
1522                cpu_isar_feature(aa32_arm_div, cpu));
1523         set_feature(env, ARM_FEATURE_LPAE);
1524         set_feature(env, ARM_FEATURE_V7);
1525     }
1526     if (arm_feature(env, ARM_FEATURE_V7)) {
1527         set_feature(env, ARM_FEATURE_VAPA);
1528         set_feature(env, ARM_FEATURE_THUMB2);
1529         set_feature(env, ARM_FEATURE_MPIDR);
1530         if (!arm_feature(env, ARM_FEATURE_M)) {
1531             set_feature(env, ARM_FEATURE_V6K);
1532         } else {
1533             set_feature(env, ARM_FEATURE_V6);
1534         }
1535 
1536         /*
1537          * Always define VBAR for V7 CPUs even if it doesn't exist in
1538          * non-EL3 configs. This is needed by some legacy boards.
1539          */
1540         set_feature(env, ARM_FEATURE_VBAR);
1541     }
1542     if (arm_feature(env, ARM_FEATURE_V6K)) {
1543         set_feature(env, ARM_FEATURE_V6);
1544         set_feature(env, ARM_FEATURE_MVFR);
1545     }
1546     if (arm_feature(env, ARM_FEATURE_V6)) {
1547         set_feature(env, ARM_FEATURE_V5);
1548         if (!arm_feature(env, ARM_FEATURE_M)) {
1549             assert(!tcg_enabled() || no_aa32 ||
1550                    cpu_isar_feature(aa32_jazelle, cpu));
1551             set_feature(env, ARM_FEATURE_AUXCR);
1552         }
1553     }
1554     if (arm_feature(env, ARM_FEATURE_V5)) {
1555         set_feature(env, ARM_FEATURE_V4T);
1556     }
1557     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1558         set_feature(env, ARM_FEATURE_V7MP);
1559     }
1560     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1561         set_feature(env, ARM_FEATURE_CBAR);
1562     }
1563     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1564         !arm_feature(env, ARM_FEATURE_M)) {
1565         set_feature(env, ARM_FEATURE_THUMB_DSP);
1566     }
1567 }
1568 
1569 void arm_cpu_post_init(Object *obj)
1570 {
1571     ARMCPU *cpu = ARM_CPU(obj);
1572 
1573     /*
1574      * Some features imply others. Figure this out now, because we
1575      * are going to look at the feature bits in deciding which
1576      * properties to add.
1577      */
1578     arm_cpu_propagate_feature_implications(cpu);
1579 
1580     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1581         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1582         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1583     }
1584 
1585     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1586         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1587     }
1588 
1589     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1590         object_property_add_uint64_ptr(obj, "rvbar",
1591                                        &cpu->rvbar_prop,
1592                                        OBJ_PROP_FLAG_READWRITE);
1593     }
1594 
1595 #ifndef CONFIG_USER_ONLY
1596     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1597         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1598          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1599          */
1600         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1601 
1602         object_property_add_link(obj, "secure-memory",
1603                                  TYPE_MEMORY_REGION,
1604                                  (Object **)&cpu->secure_memory,
1605                                  qdev_prop_allow_set_link_before_realize,
1606                                  OBJ_PROP_LINK_STRONG);
1607     }
1608 
1609     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1610         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1611     }
1612 #endif
1613 
1614     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1615         cpu->has_pmu = true;
1616         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1617     }
1618 
1619     /*
1620      * Allow user to turn off VFP and Neon support, but only for TCG --
1621      * KVM does not currently allow us to lie to the guest about its
1622      * ID/feature registers, so the guest always sees what the host has.
1623      */
1624     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1625         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1626             cpu->has_vfp = true;
1627             cpu->has_vfp_d32 = true;
1628             if (tcg_enabled() || qtest_enabled()) {
1629                 qdev_property_add_static(DEVICE(obj),
1630                                          &arm_cpu_has_vfp_property);
1631             }
1632         }
1633     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1634         cpu->has_vfp = true;
1635         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1636             cpu->has_vfp_d32 = true;
1637             /*
1638              * The permitted values of the SIMDReg bits [3:0] on
1639              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1640              * make sure that has_vfp_d32 can not be set to false.
1641              */
1642             if ((tcg_enabled() || qtest_enabled())
1643                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1644                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1645                 qdev_property_add_static(DEVICE(obj),
1646                                          &arm_cpu_has_vfp_d32_property);
1647             }
1648         }
1649     }
1650 
1651     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1652         cpu->has_neon = true;
1653         if (!kvm_enabled()) {
1654             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1655         }
1656     }
1657 
1658     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1659         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1660         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1661     }
1662 
1663     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1664         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1665         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1666             qdev_property_add_static(DEVICE(obj),
1667                                      &arm_cpu_pmsav7_dregion_property);
1668         }
1669     }
1670 
1671     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1672         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1673                                  qdev_prop_allow_set_link_before_realize,
1674                                  OBJ_PROP_LINK_STRONG);
1675         /*
1676          * M profile: initial value of the Secure VTOR. We can't just use
1677          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1678          * the property to be set after realize.
1679          */
1680         object_property_add_uint32_ptr(obj, "init-svtor",
1681                                        &cpu->init_svtor,
1682                                        OBJ_PROP_FLAG_READWRITE);
1683     }
1684     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1685         /*
1686          * Initial value of the NS VTOR (for cores without the Security
1687          * extension, this is the only VTOR)
1688          */
1689         object_property_add_uint32_ptr(obj, "init-nsvtor",
1690                                        &cpu->init_nsvtor,
1691                                        OBJ_PROP_FLAG_READWRITE);
1692     }
1693 
1694     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1695     object_property_add_uint32_ptr(obj, "psci-conduit",
1696                                    &cpu->psci_conduit,
1697                                    OBJ_PROP_FLAG_READWRITE);
1698 
1699     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1700 
1701     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1702         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1703     }
1704 
1705     if (kvm_enabled()) {
1706         kvm_arm_add_vcpu_properties(cpu);
1707     }
1708 
1709 #ifndef CONFIG_USER_ONLY
1710     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1711         cpu_isar_feature(aa64_mte, cpu)) {
1712         object_property_add_link(obj, "tag-memory",
1713                                  TYPE_MEMORY_REGION,
1714                                  (Object **)&cpu->tag_memory,
1715                                  qdev_prop_allow_set_link_before_realize,
1716                                  OBJ_PROP_LINK_STRONG);
1717 
1718         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1719             object_property_add_link(obj, "secure-tag-memory",
1720                                      TYPE_MEMORY_REGION,
1721                                      (Object **)&cpu->secure_tag_memory,
1722                                      qdev_prop_allow_set_link_before_realize,
1723                                      OBJ_PROP_LINK_STRONG);
1724         }
1725     }
1726 #endif
1727 }
1728 
1729 static void arm_cpu_finalizefn(Object *obj)
1730 {
1731     ARMCPU *cpu = ARM_CPU(obj);
1732     ARMELChangeHook *hook, *next;
1733 
1734     g_hash_table_destroy(cpu->cp_regs);
1735 
1736     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1737         QLIST_REMOVE(hook, node);
1738         g_free(hook);
1739     }
1740     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1741         QLIST_REMOVE(hook, node);
1742         g_free(hook);
1743     }
1744 #ifndef CONFIG_USER_ONLY
1745     if (cpu->pmu_timer) {
1746         timer_free(cpu->pmu_timer);
1747     }
1748 #endif
1749 }
1750 
1751 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1752 {
1753     Error *local_err = NULL;
1754 
1755 #ifdef TARGET_AARCH64
1756     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1757         arm_cpu_sve_finalize(cpu, &local_err);
1758         if (local_err != NULL) {
1759             error_propagate(errp, local_err);
1760             return;
1761         }
1762 
1763         /*
1764          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1765          * FEAT_SME_FA64 is present). However our implementation currently
1766          * assumes it, so if the user asked for sve=off then turn off SME also.
1767          * (KVM doesn't currently support SME at all.)
1768          */
1769         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1770             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1771         }
1772 
1773         arm_cpu_sme_finalize(cpu, &local_err);
1774         if (local_err != NULL) {
1775             error_propagate(errp, local_err);
1776             return;
1777         }
1778 
1779         arm_cpu_pauth_finalize(cpu, &local_err);
1780         if (local_err != NULL) {
1781             error_propagate(errp, local_err);
1782             return;
1783         }
1784 
1785         arm_cpu_lpa2_finalize(cpu, &local_err);
1786         if (local_err != NULL) {
1787             error_propagate(errp, local_err);
1788             return;
1789         }
1790     }
1791 #endif
1792 
1793     if (kvm_enabled()) {
1794         kvm_arm_steal_time_finalize(cpu, &local_err);
1795         if (local_err != NULL) {
1796             error_propagate(errp, local_err);
1797             return;
1798         }
1799     }
1800 }
1801 
1802 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1803 {
1804     CPUState *cs = CPU(dev);
1805     ARMCPU *cpu = ARM_CPU(dev);
1806     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1807     CPUARMState *env = &cpu->env;
1808     int pagebits;
1809     Error *local_err = NULL;
1810 
1811 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1812     /* Use pc-relative instructions in system-mode */
1813     cs->tcg_cflags |= CF_PCREL;
1814 #endif
1815 
1816     /* If we needed to query the host kernel for the CPU features
1817      * then it's possible that might have failed in the initfn, but
1818      * this is the first point where we can report it.
1819      */
1820     if (cpu->host_cpu_probe_failed) {
1821         if (!kvm_enabled() && !hvf_enabled()) {
1822             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1823         } else {
1824             error_setg(errp, "Failed to retrieve host CPU features");
1825         }
1826         return;
1827     }
1828 
1829 #ifndef CONFIG_USER_ONLY
1830     /* The NVIC and M-profile CPU are two halves of a single piece of
1831      * hardware; trying to use one without the other is a command line
1832      * error and will result in segfaults if not caught here.
1833      */
1834     if (arm_feature(env, ARM_FEATURE_M)) {
1835         if (!env->nvic) {
1836             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1837             return;
1838         }
1839     } else {
1840         if (env->nvic) {
1841             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1842             return;
1843         }
1844     }
1845 
1846     if (!tcg_enabled() && !qtest_enabled()) {
1847         /*
1848          * We assume that no accelerator except TCG (and the "not really an
1849          * accelerator" qtest) can handle these features, because Arm hardware
1850          * virtualization can't virtualize them.
1851          *
1852          * Catch all the cases which might cause us to create more than one
1853          * address space for the CPU (otherwise we will assert() later in
1854          * cpu_address_space_init()).
1855          */
1856         if (arm_feature(env, ARM_FEATURE_M)) {
1857             error_setg(errp,
1858                        "Cannot enable %s when using an M-profile guest CPU",
1859                        current_accel_name());
1860             return;
1861         }
1862         if (cpu->has_el3) {
1863             error_setg(errp,
1864                        "Cannot enable %s when guest CPU has EL3 enabled",
1865                        current_accel_name());
1866             return;
1867         }
1868         if (cpu->tag_memory) {
1869             error_setg(errp,
1870                        "Cannot enable %s when guest CPUs has MTE enabled",
1871                        current_accel_name());
1872             return;
1873         }
1874     }
1875 
1876     {
1877         uint64_t scale;
1878 
1879         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1880             if (!cpu->gt_cntfrq_hz) {
1881                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1882                            cpu->gt_cntfrq_hz);
1883                 return;
1884             }
1885             scale = gt_cntfrq_period_ns(cpu);
1886         } else {
1887             scale = GTIMER_SCALE;
1888         }
1889 
1890         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1891                                                arm_gt_ptimer_cb, cpu);
1892         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1893                                                arm_gt_vtimer_cb, cpu);
1894         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1895                                               arm_gt_htimer_cb, cpu);
1896         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1897                                               arm_gt_stimer_cb, cpu);
1898         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1899                                                   arm_gt_hvtimer_cb, cpu);
1900     }
1901 #endif
1902 
1903     cpu_exec_realizefn(cs, &local_err);
1904     if (local_err != NULL) {
1905         error_propagate(errp, local_err);
1906         return;
1907     }
1908 
1909     arm_cpu_finalize_features(cpu, &local_err);
1910     if (local_err != NULL) {
1911         error_propagate(errp, local_err);
1912         return;
1913     }
1914 
1915 #ifdef CONFIG_USER_ONLY
1916     /*
1917      * User mode relies on IC IVAU instructions to catch modification of
1918      * dual-mapped code.
1919      *
1920      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1921      * IC IVAU even if the emulated processor does not normally require it.
1922      */
1923     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1924 #endif
1925 
1926     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1927         cpu->has_vfp != cpu->has_neon) {
1928         /*
1929          * This is an architectural requirement for AArch64; AArch32 is
1930          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1931          */
1932         error_setg(errp,
1933                    "AArch64 CPUs must have both VFP and Neon or neither");
1934         return;
1935     }
1936 
1937     if (cpu->has_vfp_d32 != cpu->has_neon) {
1938         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1939         return;
1940     }
1941 
1942    if (!cpu->has_vfp_d32) {
1943         uint32_t u;
1944 
1945         u = cpu->isar.mvfr0;
1946         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1947         cpu->isar.mvfr0 = u;
1948     }
1949 
1950     if (!cpu->has_vfp) {
1951         uint64_t t;
1952         uint32_t u;
1953 
1954         t = cpu->isar.id_aa64isar1;
1955         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1956         cpu->isar.id_aa64isar1 = t;
1957 
1958         t = cpu->isar.id_aa64pfr0;
1959         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1960         cpu->isar.id_aa64pfr0 = t;
1961 
1962         u = cpu->isar.id_isar6;
1963         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1964         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1965         cpu->isar.id_isar6 = u;
1966 
1967         u = cpu->isar.mvfr0;
1968         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1969         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1970         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1971         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1972         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1973         if (!arm_feature(env, ARM_FEATURE_M)) {
1974             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1975             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1976         }
1977         cpu->isar.mvfr0 = u;
1978 
1979         u = cpu->isar.mvfr1;
1980         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1981         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1982         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1983         if (arm_feature(env, ARM_FEATURE_M)) {
1984             u = FIELD_DP32(u, MVFR1, FP16, 0);
1985         }
1986         cpu->isar.mvfr1 = u;
1987 
1988         u = cpu->isar.mvfr2;
1989         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1990         cpu->isar.mvfr2 = u;
1991     }
1992 
1993     if (!cpu->has_neon) {
1994         uint64_t t;
1995         uint32_t u;
1996 
1997         unset_feature(env, ARM_FEATURE_NEON);
1998 
1999         t = cpu->isar.id_aa64isar0;
2000         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2001         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2002         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2003         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2004         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2005         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2006         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2007         cpu->isar.id_aa64isar0 = t;
2008 
2009         t = cpu->isar.id_aa64isar1;
2010         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2011         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2012         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2013         cpu->isar.id_aa64isar1 = t;
2014 
2015         t = cpu->isar.id_aa64pfr0;
2016         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2017         cpu->isar.id_aa64pfr0 = t;
2018 
2019         u = cpu->isar.id_isar5;
2020         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2021         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2022         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2023         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2024         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2025         cpu->isar.id_isar5 = u;
2026 
2027         u = cpu->isar.id_isar6;
2028         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2029         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2030         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2031         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2032         cpu->isar.id_isar6 = u;
2033 
2034         if (!arm_feature(env, ARM_FEATURE_M)) {
2035             u = cpu->isar.mvfr1;
2036             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2037             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2038             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2039             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2040             cpu->isar.mvfr1 = u;
2041 
2042             u = cpu->isar.mvfr2;
2043             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2044             cpu->isar.mvfr2 = u;
2045         }
2046     }
2047 
2048     if (!cpu->has_neon && !cpu->has_vfp) {
2049         uint64_t t;
2050         uint32_t u;
2051 
2052         t = cpu->isar.id_aa64isar0;
2053         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2054         cpu->isar.id_aa64isar0 = t;
2055 
2056         t = cpu->isar.id_aa64isar1;
2057         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2058         cpu->isar.id_aa64isar1 = t;
2059 
2060         u = cpu->isar.mvfr0;
2061         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2062         cpu->isar.mvfr0 = u;
2063 
2064         /* Despite the name, this field covers both VFP and Neon */
2065         u = cpu->isar.mvfr1;
2066         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2067         cpu->isar.mvfr1 = u;
2068     }
2069 
2070     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2071         uint32_t u;
2072 
2073         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2074 
2075         u = cpu->isar.id_isar1;
2076         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2077         cpu->isar.id_isar1 = u;
2078 
2079         u = cpu->isar.id_isar2;
2080         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2081         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2082         cpu->isar.id_isar2 = u;
2083 
2084         u = cpu->isar.id_isar3;
2085         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2086         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2087         cpu->isar.id_isar3 = u;
2088     }
2089 
2090 
2091     /*
2092      * We rely on no XScale CPU having VFP so we can use the same bits in the
2093      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2094      */
2095     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2096            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2097            !arm_feature(env, ARM_FEATURE_XSCALE));
2098 
2099     if (arm_feature(env, ARM_FEATURE_V7) &&
2100         !arm_feature(env, ARM_FEATURE_M) &&
2101         !arm_feature(env, ARM_FEATURE_PMSA)) {
2102         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2103          * can use 4K pages.
2104          */
2105         pagebits = 12;
2106     } else {
2107         /* For CPUs which might have tiny 1K pages, or which have an
2108          * MPU and might have small region sizes, stick with 1K pages.
2109          */
2110         pagebits = 10;
2111     }
2112     if (!set_preferred_target_page_bits(pagebits)) {
2113         /* This can only ever happen for hotplugging a CPU, or if
2114          * the board code incorrectly creates a CPU which it has
2115          * promised via minimum_page_size that it will not.
2116          */
2117         error_setg(errp, "This CPU requires a smaller page size than the "
2118                    "system is using");
2119         return;
2120     }
2121 
2122     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2123      * We don't support setting cluster ID ([16..23]) (known as Aff2
2124      * in later ARM ARM versions), or any of the higher affinity level fields,
2125      * so these bits always RAZ.
2126      */
2127     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2128         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2129                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2130     }
2131 
2132     if (cpu->reset_hivecs) {
2133             cpu->reset_sctlr |= (1 << 13);
2134     }
2135 
2136     if (cpu->cfgend) {
2137         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2138             cpu->reset_sctlr |= SCTLR_EE;
2139         } else {
2140             cpu->reset_sctlr |= SCTLR_B;
2141         }
2142     }
2143 
2144     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2145         /* If the has_el3 CPU property is disabled then we need to disable the
2146          * feature.
2147          */
2148         unset_feature(env, ARM_FEATURE_EL3);
2149 
2150         /*
2151          * Disable the security extension feature bits in the processor
2152          * feature registers as well.
2153          */
2154         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2155         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2156         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2157                                            ID_AA64PFR0, EL3, 0);
2158 
2159         /* Disable the realm management extension, which requires EL3. */
2160         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2161                                            ID_AA64PFR0, RME, 0);
2162     }
2163 
2164     if (!cpu->has_el2) {
2165         unset_feature(env, ARM_FEATURE_EL2);
2166     }
2167 
2168     if (!cpu->has_pmu) {
2169         unset_feature(env, ARM_FEATURE_PMU);
2170     }
2171     if (arm_feature(env, ARM_FEATURE_PMU)) {
2172         pmu_init(cpu);
2173 
2174         if (!kvm_enabled()) {
2175             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2176             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2177         }
2178 
2179 #ifndef CONFIG_USER_ONLY
2180         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2181                 cpu);
2182 #endif
2183     } else {
2184         cpu->isar.id_aa64dfr0 =
2185             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2186         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2187         cpu->pmceid0 = 0;
2188         cpu->pmceid1 = 0;
2189     }
2190 
2191     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2192         /*
2193          * Disable the hypervisor feature bits in the processor feature
2194          * registers if we don't have EL2.
2195          */
2196         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2197                                            ID_AA64PFR0, EL2, 0);
2198         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2199                                        ID_PFR1, VIRTUALIZATION, 0);
2200     }
2201 
2202     if (cpu_isar_feature(aa64_mte, cpu)) {
2203         /*
2204          * The architectural range of GM blocksize is 2-6, however qemu
2205          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2206          */
2207         if (tcg_enabled()) {
2208             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2209         }
2210 
2211 #ifndef CONFIG_USER_ONLY
2212         /*
2213          * If we do not have tag-memory provided by the machine,
2214          * reduce MTE support to instructions enabled at EL0.
2215          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2216          */
2217         if (cpu->tag_memory == NULL) {
2218             cpu->isar.id_aa64pfr1 =
2219                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2220         }
2221 #endif
2222     }
2223 
2224     if (tcg_enabled()) {
2225         /*
2226          * Don't report some architectural features in the ID registers
2227          * where TCG does not yet implement it (not even a minimal
2228          * stub version). This avoids guests falling over when they
2229          * try to access the non-existent system registers for them.
2230          */
2231         /* FEAT_SPE (Statistical Profiling Extension) */
2232         cpu->isar.id_aa64dfr0 =
2233             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2234         /* FEAT_TRBE (Trace Buffer Extension) */
2235         cpu->isar.id_aa64dfr0 =
2236             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2237         /* FEAT_TRF (Self-hosted Trace Extension) */
2238         cpu->isar.id_aa64dfr0 =
2239             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2240         cpu->isar.id_dfr0 =
2241             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2242         /* Trace Macrocell system register access */
2243         cpu->isar.id_aa64dfr0 =
2244             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2245         cpu->isar.id_dfr0 =
2246             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2247         /* Memory mapped trace */
2248         cpu->isar.id_dfr0 =
2249             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2250         /* FEAT_AMU (Activity Monitors Extension) */
2251         cpu->isar.id_aa64pfr0 =
2252             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2253         cpu->isar.id_pfr0 =
2254             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2255         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2256         cpu->isar.id_aa64pfr0 =
2257             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2258     }
2259 
2260     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2261      * to false or by setting pmsav7-dregion to 0.
2262      */
2263     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2264         cpu->has_mpu = false;
2265         cpu->pmsav7_dregion = 0;
2266         cpu->pmsav8r_hdregion = 0;
2267     }
2268 
2269     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2270         arm_feature(env, ARM_FEATURE_V7)) {
2271         uint32_t nr = cpu->pmsav7_dregion;
2272 
2273         if (nr > 0xff) {
2274             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2275             return;
2276         }
2277 
2278         if (nr) {
2279             if (arm_feature(env, ARM_FEATURE_V8)) {
2280                 /* PMSAv8 */
2281                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2282                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2283                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2284                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2285                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2286                 }
2287             } else {
2288                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2289                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2290                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2291             }
2292         }
2293 
2294         if (cpu->pmsav8r_hdregion > 0xff) {
2295             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2296                               cpu->pmsav8r_hdregion);
2297             return;
2298         }
2299 
2300         if (cpu->pmsav8r_hdregion) {
2301             env->pmsav8.hprbar = g_new0(uint32_t,
2302                                         cpu->pmsav8r_hdregion);
2303             env->pmsav8.hprlar = g_new0(uint32_t,
2304                                         cpu->pmsav8r_hdregion);
2305         }
2306     }
2307 
2308     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2309         uint32_t nr = cpu->sau_sregion;
2310 
2311         if (nr > 0xff) {
2312             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2313             return;
2314         }
2315 
2316         if (nr) {
2317             env->sau.rbar = g_new0(uint32_t, nr);
2318             env->sau.rlar = g_new0(uint32_t, nr);
2319         }
2320     }
2321 
2322     if (arm_feature(env, ARM_FEATURE_EL3)) {
2323         set_feature(env, ARM_FEATURE_VBAR);
2324     }
2325 
2326 #ifndef CONFIG_USER_ONLY
2327     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2328         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2329     }
2330 #endif
2331 
2332     register_cp_regs_for_features(cpu);
2333     arm_cpu_register_gdb_regs_for_features(cpu);
2334 
2335     init_cpreg_list(cpu);
2336 
2337 #ifndef CONFIG_USER_ONLY
2338     MachineState *ms = MACHINE(qdev_get_machine());
2339     unsigned int smp_cpus = ms->smp.cpus;
2340     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2341 
2342     /*
2343      * We must set cs->num_ases to the final value before
2344      * the first call to cpu_address_space_init.
2345      */
2346     if (cpu->tag_memory != NULL) {
2347         cs->num_ases = 3 + has_secure;
2348     } else {
2349         cs->num_ases = 1 + has_secure;
2350     }
2351 
2352     if (has_secure) {
2353         if (!cpu->secure_memory) {
2354             cpu->secure_memory = cs->memory;
2355         }
2356         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2357                                cpu->secure_memory);
2358     }
2359 
2360     if (cpu->tag_memory != NULL) {
2361         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2362                                cpu->tag_memory);
2363         if (has_secure) {
2364             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2365                                    cpu->secure_tag_memory);
2366         }
2367     }
2368 
2369     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2370 
2371     /* No core_count specified, default to smp_cpus. */
2372     if (cpu->core_count == -1) {
2373         cpu->core_count = smp_cpus;
2374     }
2375 #endif
2376 
2377     if (tcg_enabled()) {
2378         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2379 
2380         /*
2381          * We only support DCZ blocklen that fits on one page.
2382          *
2383          * Architectually this is always true.  However TARGET_PAGE_SIZE
2384          * is variable and, for compatibility with -machine virt-2.7,
2385          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2386          * But even then, while the largest architectural DCZ blocklen
2387          * is 2KiB, no cpu actually uses such a large blocklen.
2388          */
2389         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2390 
2391         /*
2392          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2393          * both nibbles of each byte storing tag data may be written at once.
2394          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2395          */
2396         if (cpu_isar_feature(aa64_mte, cpu)) {
2397             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2398         }
2399     }
2400 
2401     qemu_init_vcpu(cs);
2402     cpu_reset(cs);
2403 
2404     acc->parent_realize(dev, errp);
2405 }
2406 
2407 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2408 {
2409     ObjectClass *oc;
2410     char *typename;
2411     char **cpuname;
2412     const char *cpunamestr;
2413 
2414     cpuname = g_strsplit(cpu_model, ",", 1);
2415     cpunamestr = cpuname[0];
2416 #ifdef CONFIG_USER_ONLY
2417     /* For backwards compatibility usermode emulation allows "-cpu any",
2418      * which has the same semantics as "-cpu max".
2419      */
2420     if (!strcmp(cpunamestr, "any")) {
2421         cpunamestr = "max";
2422     }
2423 #endif
2424     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2425     oc = object_class_by_name(typename);
2426     g_strfreev(cpuname);
2427     g_free(typename);
2428 
2429     return oc;
2430 }
2431 
2432 static Property arm_cpu_properties[] = {
2433     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2434     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2435                         mp_affinity, ARM64_AFFINITY_INVALID),
2436     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2437     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2438     DEFINE_PROP_END_OF_LIST()
2439 };
2440 
2441 static const gchar *arm_gdb_arch_name(CPUState *cs)
2442 {
2443     ARMCPU *cpu = ARM_CPU(cs);
2444     CPUARMState *env = &cpu->env;
2445 
2446     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2447         return "iwmmxt";
2448     }
2449     return "arm";
2450 }
2451 
2452 #ifndef CONFIG_USER_ONLY
2453 #include "hw/core/sysemu-cpu-ops.h"
2454 
2455 static const struct SysemuCPUOps arm_sysemu_ops = {
2456     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2457     .asidx_from_attrs = arm_asidx_from_attrs,
2458     .write_elf32_note = arm_cpu_write_elf32_note,
2459     .write_elf64_note = arm_cpu_write_elf64_note,
2460     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2461     .legacy_vmsd = &vmstate_arm_cpu,
2462 };
2463 #endif
2464 
2465 #ifdef CONFIG_TCG
2466 static const TCGCPUOps arm_tcg_ops = {
2467     .initialize = arm_translate_init,
2468     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2469     .debug_excp_handler = arm_debug_excp_handler,
2470     .restore_state_to_opc = arm_restore_state_to_opc,
2471 
2472 #ifdef CONFIG_USER_ONLY
2473     .record_sigsegv = arm_cpu_record_sigsegv,
2474     .record_sigbus = arm_cpu_record_sigbus,
2475 #else
2476     .tlb_fill = arm_cpu_tlb_fill,
2477     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2478     .do_interrupt = arm_cpu_do_interrupt,
2479     .do_transaction_failed = arm_cpu_do_transaction_failed,
2480     .do_unaligned_access = arm_cpu_do_unaligned_access,
2481     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2482     .debug_check_watchpoint = arm_debug_check_watchpoint,
2483     .debug_check_breakpoint = arm_debug_check_breakpoint,
2484 #endif /* !CONFIG_USER_ONLY */
2485 };
2486 #endif /* CONFIG_TCG */
2487 
2488 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2489 {
2490     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2491     CPUClass *cc = CPU_CLASS(acc);
2492     DeviceClass *dc = DEVICE_CLASS(oc);
2493     ResettableClass *rc = RESETTABLE_CLASS(oc);
2494 
2495     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2496                                     &acc->parent_realize);
2497 
2498     device_class_set_props(dc, arm_cpu_properties);
2499 
2500     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2501                                        &acc->parent_phases);
2502 
2503     cc->class_by_name = arm_cpu_class_by_name;
2504     cc->has_work = arm_cpu_has_work;
2505     cc->mmu_index = arm_cpu_mmu_index;
2506     cc->dump_state = arm_cpu_dump_state;
2507     cc->set_pc = arm_cpu_set_pc;
2508     cc->get_pc = arm_cpu_get_pc;
2509     cc->gdb_read_register = arm_cpu_gdb_read_register;
2510     cc->gdb_write_register = arm_cpu_gdb_write_register;
2511 #ifndef CONFIG_USER_ONLY
2512     cc->sysemu_ops = &arm_sysemu_ops;
2513 #endif
2514     cc->gdb_num_core_regs = 26;
2515     cc->gdb_arch_name = arm_gdb_arch_name;
2516     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2517     cc->gdb_stop_before_watchpoint = true;
2518     cc->disas_set_info = arm_disas_set_info;
2519 
2520 #ifdef CONFIG_TCG
2521     cc->tcg_ops = &arm_tcg_ops;
2522 #endif /* CONFIG_TCG */
2523 }
2524 
2525 static void arm_cpu_instance_init(Object *obj)
2526 {
2527     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2528 
2529     acc->info->initfn(obj);
2530     arm_cpu_post_init(obj);
2531 }
2532 
2533 static void cpu_register_class_init(ObjectClass *oc, void *data)
2534 {
2535     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2536     CPUClass *cc = CPU_CLASS(acc);
2537 
2538     acc->info = data;
2539     cc->gdb_core_xml_file = "arm-core.xml";
2540 }
2541 
2542 void arm_cpu_register(const ARMCPUInfo *info)
2543 {
2544     TypeInfo type_info = {
2545         .parent = TYPE_ARM_CPU,
2546         .instance_init = arm_cpu_instance_init,
2547         .class_init = info->class_init ?: cpu_register_class_init,
2548         .class_data = (void *)info,
2549     };
2550 
2551     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2552     type_register(&type_info);
2553     g_free((void *)type_info.name);
2554 }
2555 
2556 static const TypeInfo arm_cpu_type_info = {
2557     .name = TYPE_ARM_CPU,
2558     .parent = TYPE_CPU,
2559     .instance_size = sizeof(ARMCPU),
2560     .instance_align = __alignof__(ARMCPU),
2561     .instance_init = arm_cpu_initfn,
2562     .instance_finalize = arm_cpu_finalizefn,
2563     .abstract = true,
2564     .class_size = sizeof(ARMCPUClass),
2565     .class_init = arm_cpu_class_init,
2566 };
2567 
2568 static void arm_cpu_register_types(void)
2569 {
2570     type_register_static(&arm_cpu_type_info);
2571 }
2572 
2573 type_init(arm_cpu_register_types)
2574