xref: /openbmc/qemu/target/arm/cpu.c (revision 4dabf395)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with reasonable vector length */
199         if (cpu_isar_feature(aa64_sve, cpu)) {
200             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201         }
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          */
207         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209         /* Reset into the highest available EL */
210         if (arm_feature(env, ARM_FEATURE_EL3)) {
211             env->pstate = PSTATE_MODE_EL3h;
212         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213             env->pstate = PSTATE_MODE_EL2h;
214         } else {
215             env->pstate = PSTATE_MODE_EL1h;
216         }
217         env->pc = cpu->rvbar;
218 #endif
219     } else {
220 #if defined(CONFIG_USER_ONLY)
221         /* Userspace expects access to cp10 and cp11 for FP/Neon */
222         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224     }
225 
226 #if defined(CONFIG_USER_ONLY)
227     env->uncached_cpsr = ARM_CPU_MODE_USR;
228     /* For user mode we must enable access to coprocessors */
229     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->cp15.c15_cpar = 3;
232     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233         env->cp15.c15_cpar = 1;
234     }
235 #else
236 
237     /*
238      * If the highest available EL is EL2, AArch32 will start in Hyp
239      * mode; otherwise it starts in SVC. Note that if we start in
240      * AArch64 then these values in the uncached_cpsr will be ignored.
241      */
242     if (arm_feature(env, ARM_FEATURE_EL2) &&
243         !arm_feature(env, ARM_FEATURE_EL3)) {
244         env->uncached_cpsr = ARM_CPU_MODE_HYP;
245     } else {
246         env->uncached_cpsr = ARM_CPU_MODE_SVC;
247     }
248     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249 
250     if (arm_feature(env, ARM_FEATURE_M)) {
251         uint32_t initial_msp; /* Loaded from 0x0 */
252         uint32_t initial_pc; /* Loaded from 0x4 */
253         uint8_t *rom;
254         uint32_t vecbase;
255 
256         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257             env->v7m.secure = true;
258         } else {
259             /* This bit resets to 0 if security is supported, but 1 if
260              * it is not. The bit is not present in v7M, but we set it
261              * here so we can avoid having to make checks on it conditional
262              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263              */
264             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265             /*
266              * Set NSACR to indicate "NS access permitted to everything";
267              * this avoids having to have all the tests of it being
268              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
269              * v8.1M the guest-visible value of NSACR in a CPU without the
270              * Security Extension is 0xcff.
271              */
272             env->v7m.nsacr = 0xcff;
273         }
274 
275         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
276          * that it resets to 1, so QEMU always does that rather than making
277          * it dependent on CPU model. In v8M it is RES1.
278          */
279         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
280         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
281         if (arm_feature(env, ARM_FEATURE_V8)) {
282             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
283             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
284             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
285         }
286         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
289         }
290 
291         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
292             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
293             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
294                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
295         }
296         /* Unlike A/R profile, M profile defines the reset LR value */
297         env->regs[14] = 0xffffffff;
298 
299         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
300 
301         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
302         vecbase = env->v7m.vecbase[env->v7m.secure];
303         rom = rom_ptr(vecbase, 8);
304         if (rom) {
305             /* Address zero is covered by ROM which hasn't yet been
306              * copied into physical memory.
307              */
308             initial_msp = ldl_p(rom);
309             initial_pc = ldl_p(rom + 4);
310         } else {
311             /* Address zero not covered by a ROM blob, or the ROM blob
312              * is in non-modifiable memory and this is a second reset after
313              * it got copied into memory. In the latter case, rom_ptr
314              * will return a NULL pointer and we should use ldl_phys instead.
315              */
316             initial_msp = ldl_phys(s->as, vecbase);
317             initial_pc = ldl_phys(s->as, vecbase + 4);
318         }
319 
320         env->regs[13] = initial_msp & 0xFFFFFFFC;
321         env->regs[15] = initial_pc & ~1;
322         env->thumb = initial_pc & 1;
323     }
324 
325     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
326      * executing as AArch32 then check if highvecs are enabled and
327      * adjust the PC accordingly.
328      */
329     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
330         env->regs[15] = 0xFFFF0000;
331     }
332 
333     /* M profile requires that reset clears the exclusive monitor;
334      * A profile does not, but clearing it makes more sense than having it
335      * set with an exclusive access on address zero.
336      */
337     arm_clear_exclusive(env);
338 
339     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
340 #endif
341 
342     if (arm_feature(env, ARM_FEATURE_PMSA)) {
343         if (cpu->pmsav7_dregion > 0) {
344             if (arm_feature(env, ARM_FEATURE_V8)) {
345                 memset(env->pmsav8.rbar[M_REG_NS], 0,
346                        sizeof(*env->pmsav8.rbar[M_REG_NS])
347                        * cpu->pmsav7_dregion);
348                 memset(env->pmsav8.rlar[M_REG_NS], 0,
349                        sizeof(*env->pmsav8.rlar[M_REG_NS])
350                        * cpu->pmsav7_dregion);
351                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
352                     memset(env->pmsav8.rbar[M_REG_S], 0,
353                            sizeof(*env->pmsav8.rbar[M_REG_S])
354                            * cpu->pmsav7_dregion);
355                     memset(env->pmsav8.rlar[M_REG_S], 0,
356                            sizeof(*env->pmsav8.rlar[M_REG_S])
357                            * cpu->pmsav7_dregion);
358                 }
359             } else if (arm_feature(env, ARM_FEATURE_V7)) {
360                 memset(env->pmsav7.drbar, 0,
361                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
362                 memset(env->pmsav7.drsr, 0,
363                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
364                 memset(env->pmsav7.dracr, 0,
365                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
366             }
367         }
368         env->pmsav7.rnr[M_REG_NS] = 0;
369         env->pmsav7.rnr[M_REG_S] = 0;
370         env->pmsav8.mair0[M_REG_NS] = 0;
371         env->pmsav8.mair0[M_REG_S] = 0;
372         env->pmsav8.mair1[M_REG_NS] = 0;
373         env->pmsav8.mair1[M_REG_S] = 0;
374     }
375 
376     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
377         if (cpu->sau_sregion > 0) {
378             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
379             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
380         }
381         env->sau.rnr = 0;
382         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
383          * the Cortex-M33 does.
384          */
385         env->sau.ctrl = 0;
386     }
387 
388     set_flush_to_zero(1, &env->vfp.standard_fp_status);
389     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
390     set_default_nan_mode(1, &env->vfp.standard_fp_status);
391     set_float_detect_tininess(float_tininess_before_rounding,
392                               &env->vfp.fp_status);
393     set_float_detect_tininess(float_tininess_before_rounding,
394                               &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status_f16);
397 #ifndef CONFIG_USER_ONLY
398     if (kvm_enabled()) {
399         kvm_arm_reset_vcpu(cpu);
400     }
401 #endif
402 
403     hw_breakpoint_update_all(cpu);
404     hw_watchpoint_update_all(cpu);
405     arm_rebuild_hflags(env);
406 }
407 
408 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
409                                      unsigned int target_el,
410                                      unsigned int cur_el, bool secure,
411                                      uint64_t hcr_el2)
412 {
413     CPUARMState *env = cs->env_ptr;
414     bool pstate_unmasked;
415     bool unmasked = false;
416 
417     /*
418      * Don't take exceptions if they target a lower EL.
419      * This check should catch any exceptions that would not be taken
420      * but left pending.
421      */
422     if (cur_el > target_el) {
423         return false;
424     }
425 
426     switch (excp_idx) {
427     case EXCP_FIQ:
428         pstate_unmasked = !(env->daif & PSTATE_F);
429         break;
430 
431     case EXCP_IRQ:
432         pstate_unmasked = !(env->daif & PSTATE_I);
433         break;
434 
435     case EXCP_VFIQ:
436         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
437             /* VFIQs are only taken when hypervized and non-secure.  */
438             return false;
439         }
440         return !(env->daif & PSTATE_F);
441     case EXCP_VIRQ:
442         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
443             /* VIRQs are only taken when hypervized and non-secure.  */
444             return false;
445         }
446         return !(env->daif & PSTATE_I);
447     default:
448         g_assert_not_reached();
449     }
450 
451     /*
452      * Use the target EL, current execution state and SCR/HCR settings to
453      * determine whether the corresponding CPSR bit is used to mask the
454      * interrupt.
455      */
456     if ((target_el > cur_el) && (target_el != 1)) {
457         /* Exceptions targeting a higher EL may not be maskable */
458         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
459             /*
460              * 64-bit masking rules are simple: exceptions to EL3
461              * can't be masked, and exceptions to EL2 can only be
462              * masked from Secure state. The HCR and SCR settings
463              * don't affect the masking logic, only the interrupt routing.
464              */
465             if (target_el == 3 || !secure) {
466                 unmasked = true;
467             }
468         } else {
469             /*
470              * The old 32-bit-only environment has a more complicated
471              * masking setup. HCR and SCR bits not only affect interrupt
472              * routing but also change the behaviour of masking.
473              */
474             bool hcr, scr;
475 
476             switch (excp_idx) {
477             case EXCP_FIQ:
478                 /*
479                  * If FIQs are routed to EL3 or EL2 then there are cases where
480                  * we override the CPSR.F in determining if the exception is
481                  * masked or not. If neither of these are set then we fall back
482                  * to the CPSR.F setting otherwise we further assess the state
483                  * below.
484                  */
485                 hcr = hcr_el2 & HCR_FMO;
486                 scr = (env->cp15.scr_el3 & SCR_FIQ);
487 
488                 /*
489                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
490                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
491                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
492                  * when non-secure but only when FIQs are only routed to EL3.
493                  */
494                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
495                 break;
496             case EXCP_IRQ:
497                 /*
498                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
499                  * we may override the CPSR.I masking when in non-secure state.
500                  * The SCR.IRQ setting has already been taken into consideration
501                  * when setting the target EL, so it does not have a further
502                  * affect here.
503                  */
504                 hcr = hcr_el2 & HCR_IMO;
505                 scr = false;
506                 break;
507             default:
508                 g_assert_not_reached();
509             }
510 
511             if ((scr || hcr) && !secure) {
512                 unmasked = true;
513             }
514         }
515     }
516 
517     /*
518      * The PSTATE bits only mask the interrupt if we have not overriden the
519      * ability above.
520      */
521     return unmasked || pstate_unmasked;
522 }
523 
524 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
525 {
526     CPUClass *cc = CPU_GET_CLASS(cs);
527     CPUARMState *env = cs->env_ptr;
528     uint32_t cur_el = arm_current_el(env);
529     bool secure = arm_is_secure(env);
530     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
531     uint32_t target_el;
532     uint32_t excp_idx;
533 
534     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
535 
536     if (interrupt_request & CPU_INTERRUPT_FIQ) {
537         excp_idx = EXCP_FIQ;
538         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
539         if (arm_excp_unmasked(cs, excp_idx, target_el,
540                               cur_el, secure, hcr_el2)) {
541             goto found;
542         }
543     }
544     if (interrupt_request & CPU_INTERRUPT_HARD) {
545         excp_idx = EXCP_IRQ;
546         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
547         if (arm_excp_unmasked(cs, excp_idx, target_el,
548                               cur_el, secure, hcr_el2)) {
549             goto found;
550         }
551     }
552     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
553         excp_idx = EXCP_VIRQ;
554         target_el = 1;
555         if (arm_excp_unmasked(cs, excp_idx, target_el,
556                               cur_el, secure, hcr_el2)) {
557             goto found;
558         }
559     }
560     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
561         excp_idx = EXCP_VFIQ;
562         target_el = 1;
563         if (arm_excp_unmasked(cs, excp_idx, target_el,
564                               cur_el, secure, hcr_el2)) {
565             goto found;
566         }
567     }
568     return false;
569 
570  found:
571     cs->exception_index = excp_idx;
572     env->exception.target_el = target_el;
573     cc->do_interrupt(cs);
574     return true;
575 }
576 
577 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
578 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
579 {
580     CPUClass *cc = CPU_GET_CLASS(cs);
581     ARMCPU *cpu = ARM_CPU(cs);
582     CPUARMState *env = &cpu->env;
583     bool ret = false;
584 
585     /* ARMv7-M interrupt masking works differently than -A or -R.
586      * There is no FIQ/IRQ distinction. Instead of I and F bits
587      * masking FIQ and IRQ interrupts, an exception is taken only
588      * if it is higher priority than the current execution priority
589      * (which depends on state like BASEPRI, FAULTMASK and the
590      * currently active exception).
591      */
592     if (interrupt_request & CPU_INTERRUPT_HARD
593         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
594         cs->exception_index = EXCP_IRQ;
595         cc->do_interrupt(cs);
596         ret = true;
597     }
598     return ret;
599 }
600 #endif
601 
602 void arm_cpu_update_virq(ARMCPU *cpu)
603 {
604     /*
605      * Update the interrupt level for VIRQ, which is the logical OR of
606      * the HCR_EL2.VI bit and the input line level from the GIC.
607      */
608     CPUARMState *env = &cpu->env;
609     CPUState *cs = CPU(cpu);
610 
611     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
612         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
613 
614     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
615         if (new_state) {
616             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
617         } else {
618             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
619         }
620     }
621 }
622 
623 void arm_cpu_update_vfiq(ARMCPU *cpu)
624 {
625     /*
626      * Update the interrupt level for VFIQ, which is the logical OR of
627      * the HCR_EL2.VF bit and the input line level from the GIC.
628      */
629     CPUARMState *env = &cpu->env;
630     CPUState *cs = CPU(cpu);
631 
632     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
633         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
634 
635     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
636         if (new_state) {
637             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
638         } else {
639             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
640         }
641     }
642 }
643 
644 #ifndef CONFIG_USER_ONLY
645 static void arm_cpu_set_irq(void *opaque, int irq, int level)
646 {
647     ARMCPU *cpu = opaque;
648     CPUARMState *env = &cpu->env;
649     CPUState *cs = CPU(cpu);
650     static const int mask[] = {
651         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
652         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
653         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
654         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
655     };
656 
657     if (level) {
658         env->irq_line_state |= mask[irq];
659     } else {
660         env->irq_line_state &= ~mask[irq];
661     }
662 
663     switch (irq) {
664     case ARM_CPU_VIRQ:
665         assert(arm_feature(env, ARM_FEATURE_EL2));
666         arm_cpu_update_virq(cpu);
667         break;
668     case ARM_CPU_VFIQ:
669         assert(arm_feature(env, ARM_FEATURE_EL2));
670         arm_cpu_update_vfiq(cpu);
671         break;
672     case ARM_CPU_IRQ:
673     case ARM_CPU_FIQ:
674         if (level) {
675             cpu_interrupt(cs, mask[irq]);
676         } else {
677             cpu_reset_interrupt(cs, mask[irq]);
678         }
679         break;
680     default:
681         g_assert_not_reached();
682     }
683 }
684 
685 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
686 {
687 #ifdef CONFIG_KVM
688     ARMCPU *cpu = opaque;
689     CPUARMState *env = &cpu->env;
690     CPUState *cs = CPU(cpu);
691     uint32_t linestate_bit;
692     int irq_id;
693 
694     switch (irq) {
695     case ARM_CPU_IRQ:
696         irq_id = KVM_ARM_IRQ_CPU_IRQ;
697         linestate_bit = CPU_INTERRUPT_HARD;
698         break;
699     case ARM_CPU_FIQ:
700         irq_id = KVM_ARM_IRQ_CPU_FIQ;
701         linestate_bit = CPU_INTERRUPT_FIQ;
702         break;
703     default:
704         g_assert_not_reached();
705     }
706 
707     if (level) {
708         env->irq_line_state |= linestate_bit;
709     } else {
710         env->irq_line_state &= ~linestate_bit;
711     }
712     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
713 #endif
714 }
715 
716 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
717 {
718     ARMCPU *cpu = ARM_CPU(cs);
719     CPUARMState *env = &cpu->env;
720 
721     cpu_synchronize_state(cs);
722     return arm_cpu_data_is_big_endian(env);
723 }
724 
725 #endif
726 
727 static inline void set_feature(CPUARMState *env, int feature)
728 {
729     env->features |= 1ULL << feature;
730 }
731 
732 static inline void unset_feature(CPUARMState *env, int feature)
733 {
734     env->features &= ~(1ULL << feature);
735 }
736 
737 static int
738 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
739 {
740   return print_insn_arm(pc | 1, info);
741 }
742 
743 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
744 {
745     ARMCPU *ac = ARM_CPU(cpu);
746     CPUARMState *env = &ac->env;
747     bool sctlr_b;
748 
749     if (is_a64(env)) {
750         /* We might not be compiled with the A64 disassembler
751          * because it needs a C++ compiler. Leave print_insn
752          * unset in this case to use the caller default behaviour.
753          */
754 #if defined(CONFIG_ARM_A64_DIS)
755         info->print_insn = print_insn_arm_a64;
756 #endif
757         info->cap_arch = CS_ARCH_ARM64;
758         info->cap_insn_unit = 4;
759         info->cap_insn_split = 4;
760     } else {
761         int cap_mode;
762         if (env->thumb) {
763             info->print_insn = print_insn_thumb1;
764             info->cap_insn_unit = 2;
765             info->cap_insn_split = 4;
766             cap_mode = CS_MODE_THUMB;
767         } else {
768             info->print_insn = print_insn_arm;
769             info->cap_insn_unit = 4;
770             info->cap_insn_split = 4;
771             cap_mode = CS_MODE_ARM;
772         }
773         if (arm_feature(env, ARM_FEATURE_V8)) {
774             cap_mode |= CS_MODE_V8;
775         }
776         if (arm_feature(env, ARM_FEATURE_M)) {
777             cap_mode |= CS_MODE_MCLASS;
778         }
779         info->cap_arch = CS_ARCH_ARM;
780         info->cap_mode = cap_mode;
781     }
782 
783     sctlr_b = arm_sctlr_b(env);
784     if (bswap_code(sctlr_b)) {
785 #ifdef TARGET_WORDS_BIGENDIAN
786         info->endian = BFD_ENDIAN_LITTLE;
787 #else
788         info->endian = BFD_ENDIAN_BIG;
789 #endif
790     }
791     info->flags &= ~INSN_ARM_BE32;
792 #ifndef CONFIG_USER_ONLY
793     if (sctlr_b) {
794         info->flags |= INSN_ARM_BE32;
795     }
796 #endif
797 }
798 
799 #ifdef TARGET_AARCH64
800 
801 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
802 {
803     ARMCPU *cpu = ARM_CPU(cs);
804     CPUARMState *env = &cpu->env;
805     uint32_t psr = pstate_read(env);
806     int i;
807     int el = arm_current_el(env);
808     const char *ns_status;
809 
810     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
811     for (i = 0; i < 32; i++) {
812         if (i == 31) {
813             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
814         } else {
815             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
816                          (i + 2) % 3 ? " " : "\n");
817         }
818     }
819 
820     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
821         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
822     } else {
823         ns_status = "";
824     }
825     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
826                  psr,
827                  psr & PSTATE_N ? 'N' : '-',
828                  psr & PSTATE_Z ? 'Z' : '-',
829                  psr & PSTATE_C ? 'C' : '-',
830                  psr & PSTATE_V ? 'V' : '-',
831                  ns_status,
832                  el,
833                  psr & PSTATE_SP ? 'h' : 't');
834 
835     if (cpu_isar_feature(aa64_bti, cpu)) {
836         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
837     }
838     if (!(flags & CPU_DUMP_FPU)) {
839         qemu_fprintf(f, "\n");
840         return;
841     }
842     if (fp_exception_el(env, el) != 0) {
843         qemu_fprintf(f, "    FPU disabled\n");
844         return;
845     }
846     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
847                  vfp_get_fpcr(env), vfp_get_fpsr(env));
848 
849     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
850         int j, zcr_len = sve_zcr_len_for_el(env, el);
851 
852         for (i = 0; i <= FFR_PRED_NUM; i++) {
853             bool eol;
854             if (i == FFR_PRED_NUM) {
855                 qemu_fprintf(f, "FFR=");
856                 /* It's last, so end the line.  */
857                 eol = true;
858             } else {
859                 qemu_fprintf(f, "P%02d=", i);
860                 switch (zcr_len) {
861                 case 0:
862                     eol = i % 8 == 7;
863                     break;
864                 case 1:
865                     eol = i % 6 == 5;
866                     break;
867                 case 2:
868                 case 3:
869                     eol = i % 3 == 2;
870                     break;
871                 default:
872                     /* More than one quadword per predicate.  */
873                     eol = true;
874                     break;
875                 }
876             }
877             for (j = zcr_len / 4; j >= 0; j--) {
878                 int digits;
879                 if (j * 4 + 4 <= zcr_len + 1) {
880                     digits = 16;
881                 } else {
882                     digits = (zcr_len % 4 + 1) * 4;
883                 }
884                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
885                              env->vfp.pregs[i].p[j],
886                              j ? ":" : eol ? "\n" : " ");
887             }
888         }
889 
890         for (i = 0; i < 32; i++) {
891             if (zcr_len == 0) {
892                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
893                              i, env->vfp.zregs[i].d[1],
894                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
895             } else if (zcr_len == 1) {
896                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
897                              ":%016" PRIx64 ":%016" PRIx64 "\n",
898                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
899                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
900             } else {
901                 for (j = zcr_len; j >= 0; j--) {
902                     bool odd = (zcr_len - j) % 2 != 0;
903                     if (j == zcr_len) {
904                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
905                     } else if (!odd) {
906                         if (j > 0) {
907                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
908                         } else {
909                             qemu_fprintf(f, "     [%x]=", j);
910                         }
911                     }
912                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
913                                  env->vfp.zregs[i].d[j * 2 + 1],
914                                  env->vfp.zregs[i].d[j * 2],
915                                  odd || j == 0 ? "\n" : ":");
916                 }
917             }
918         }
919     } else {
920         for (i = 0; i < 32; i++) {
921             uint64_t *q = aa64_vfp_qreg(env, i);
922             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
923                          i, q[1], q[0], (i & 1 ? "\n" : " "));
924         }
925     }
926 }
927 
928 #else
929 
930 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
931 {
932     g_assert_not_reached();
933 }
934 
935 #endif
936 
937 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
938 {
939     ARMCPU *cpu = ARM_CPU(cs);
940     CPUARMState *env = &cpu->env;
941     int i;
942 
943     if (is_a64(env)) {
944         aarch64_cpu_dump_state(cs, f, flags);
945         return;
946     }
947 
948     for (i = 0; i < 16; i++) {
949         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
950         if ((i % 4) == 3) {
951             qemu_fprintf(f, "\n");
952         } else {
953             qemu_fprintf(f, " ");
954         }
955     }
956 
957     if (arm_feature(env, ARM_FEATURE_M)) {
958         uint32_t xpsr = xpsr_read(env);
959         const char *mode;
960         const char *ns_status = "";
961 
962         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
963             ns_status = env->v7m.secure ? "S " : "NS ";
964         }
965 
966         if (xpsr & XPSR_EXCP) {
967             mode = "handler";
968         } else {
969             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
970                 mode = "unpriv-thread";
971             } else {
972                 mode = "priv-thread";
973             }
974         }
975 
976         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
977                      xpsr,
978                      xpsr & XPSR_N ? 'N' : '-',
979                      xpsr & XPSR_Z ? 'Z' : '-',
980                      xpsr & XPSR_C ? 'C' : '-',
981                      xpsr & XPSR_V ? 'V' : '-',
982                      xpsr & XPSR_T ? 'T' : 'A',
983                      ns_status,
984                      mode);
985     } else {
986         uint32_t psr = cpsr_read(env);
987         const char *ns_status = "";
988 
989         if (arm_feature(env, ARM_FEATURE_EL3) &&
990             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
991             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
992         }
993 
994         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
995                      psr,
996                      psr & CPSR_N ? 'N' : '-',
997                      psr & CPSR_Z ? 'Z' : '-',
998                      psr & CPSR_C ? 'C' : '-',
999                      psr & CPSR_V ? 'V' : '-',
1000                      psr & CPSR_T ? 'T' : 'A',
1001                      ns_status,
1002                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1003     }
1004 
1005     if (flags & CPU_DUMP_FPU) {
1006         int numvfpregs = 0;
1007         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1008             numvfpregs = 32;
1009         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1010             numvfpregs = 16;
1011         }
1012         for (i = 0; i < numvfpregs; i++) {
1013             uint64_t v = *aa32_vfp_dreg(env, i);
1014             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1015                          i * 2, (uint32_t)v,
1016                          i * 2 + 1, (uint32_t)(v >> 32),
1017                          i, v);
1018         }
1019         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1020     }
1021 }
1022 
1023 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024 {
1025     uint32_t Aff1 = idx / clustersz;
1026     uint32_t Aff0 = idx % clustersz;
1027     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1028 }
1029 
1030 static void cpreg_hashtable_data_destroy(gpointer data)
1031 {
1032     /*
1033      * Destroy function for cpu->cp_regs hashtable data entries.
1034      * We must free the name string because it was g_strdup()ed in
1035      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1036      * from r->name because we know we definitely allocated it.
1037      */
1038     ARMCPRegInfo *r = data;
1039 
1040     g_free((void *)r->name);
1041     g_free(r);
1042 }
1043 
1044 static void arm_cpu_initfn(Object *obj)
1045 {
1046     ARMCPU *cpu = ARM_CPU(obj);
1047 
1048     cpu_set_cpustate_pointers(cpu);
1049     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1050                                          g_free, cpreg_hashtable_data_destroy);
1051 
1052     QLIST_INIT(&cpu->pre_el_change_hooks);
1053     QLIST_INIT(&cpu->el_change_hooks);
1054 
1055 #ifndef CONFIG_USER_ONLY
1056     /* Our inbound IRQ and FIQ lines */
1057     if (kvm_enabled()) {
1058         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1059          * the same interface as non-KVM CPUs.
1060          */
1061         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1062     } else {
1063         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1064     }
1065 
1066     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1067                        ARRAY_SIZE(cpu->gt_timer_outputs));
1068 
1069     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1070                              "gicv3-maintenance-interrupt", 1);
1071     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1072                              "pmu-interrupt", 1);
1073 #endif
1074 
1075     /* DTB consumers generally don't in fact care what the 'compatible'
1076      * string is, so always provide some string and trust that a hypothetical
1077      * picky DTB consumer will also provide a helpful error message.
1078      */
1079     cpu->dtb_compatible = "qemu,unknown";
1080     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1081     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1082 
1083     if (tcg_enabled()) {
1084         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1085     }
1086 }
1087 
1088 static Property arm_cpu_gt_cntfrq_property =
1089             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1090                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1091 
1092 static Property arm_cpu_reset_cbar_property =
1093             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1094 
1095 static Property arm_cpu_reset_hivecs_property =
1096             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1097 
1098 static Property arm_cpu_rvbar_property =
1099             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1100 
1101 #ifndef CONFIG_USER_ONLY
1102 static Property arm_cpu_has_el2_property =
1103             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1104 
1105 static Property arm_cpu_has_el3_property =
1106             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1107 #endif
1108 
1109 static Property arm_cpu_cfgend_property =
1110             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1111 
1112 static Property arm_cpu_has_vfp_property =
1113             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1114 
1115 static Property arm_cpu_has_neon_property =
1116             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1117 
1118 static Property arm_cpu_has_dsp_property =
1119             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1120 
1121 static Property arm_cpu_has_mpu_property =
1122             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1123 
1124 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1125  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1126  * the right value for that particular CPU type, and we don't want
1127  * to override that with an incorrect constant value.
1128  */
1129 static Property arm_cpu_pmsav7_dregion_property =
1130             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1131                                            pmsav7_dregion,
1132                                            qdev_prop_uint32, uint32_t);
1133 
1134 static bool arm_get_pmu(Object *obj, Error **errp)
1135 {
1136     ARMCPU *cpu = ARM_CPU(obj);
1137 
1138     return cpu->has_pmu;
1139 }
1140 
1141 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1142 {
1143     ARMCPU *cpu = ARM_CPU(obj);
1144 
1145     if (value) {
1146         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1147             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1148             return;
1149         }
1150         set_feature(&cpu->env, ARM_FEATURE_PMU);
1151     } else {
1152         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1153     }
1154     cpu->has_pmu = value;
1155 }
1156 
1157 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1158 {
1159     /*
1160      * The exact approach to calculating guest ticks is:
1161      *
1162      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1163      *              NANOSECONDS_PER_SECOND);
1164      *
1165      * We don't do that. Rather we intentionally use integer division
1166      * truncation below and in the caller for the conversion of host monotonic
1167      * time to guest ticks to provide the exact inverse for the semantics of
1168      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1169      * it loses precision when representing frequencies where
1170      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1171      * provide an exact inverse leads to scheduling timers with negative
1172      * periods, which in turn leads to sticky behaviour in the guest.
1173      *
1174      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1175      * cannot become zero.
1176      */
1177     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1178       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1179 }
1180 
1181 void arm_cpu_post_init(Object *obj)
1182 {
1183     ARMCPU *cpu = ARM_CPU(obj);
1184 
1185     /* M profile implies PMSA. We have to do this here rather than
1186      * in realize with the other feature-implication checks because
1187      * we look at the PMSA bit to see if we should add some properties.
1188      */
1189     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1190         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1191     }
1192 
1193     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1194         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1195         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1196     }
1197 
1198     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1199         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1200     }
1201 
1202     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1203         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1204     }
1205 
1206 #ifndef CONFIG_USER_ONLY
1207     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1208         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1209          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1210          */
1211         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1212 
1213         object_property_add_link(obj, "secure-memory",
1214                                  TYPE_MEMORY_REGION,
1215                                  (Object **)&cpu->secure_memory,
1216                                  qdev_prop_allow_set_link_before_realize,
1217                                  OBJ_PROP_LINK_STRONG,
1218                                  &error_abort);
1219     }
1220 
1221     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1222         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1223     }
1224 #endif
1225 
1226     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1227         cpu->has_pmu = true;
1228         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1229                                  &error_abort);
1230     }
1231 
1232     /*
1233      * Allow user to turn off VFP and Neon support, but only for TCG --
1234      * KVM does not currently allow us to lie to the guest about its
1235      * ID/feature registers, so the guest always sees what the host has.
1236      */
1237     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1238         ? cpu_isar_feature(aa64_fp_simd, cpu)
1239         : cpu_isar_feature(aa32_vfp, cpu)) {
1240         cpu->has_vfp = true;
1241         if (!kvm_enabled()) {
1242             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1243         }
1244     }
1245 
1246     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1247         cpu->has_neon = true;
1248         if (!kvm_enabled()) {
1249             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1250         }
1251     }
1252 
1253     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1254         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1255         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1256     }
1257 
1258     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1259         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1260         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1261             qdev_property_add_static(DEVICE(obj),
1262                                      &arm_cpu_pmsav7_dregion_property);
1263         }
1264     }
1265 
1266     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1267         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1268                                  qdev_prop_allow_set_link_before_realize,
1269                                  OBJ_PROP_LINK_STRONG,
1270                                  &error_abort);
1271         /*
1272          * M profile: initial value of the Secure VTOR. We can't just use
1273          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1274          * the property to be set after realize.
1275          */
1276         object_property_add_uint32_ptr(obj, "init-svtor",
1277                                        &cpu->init_svtor,
1278                                        OBJ_PROP_FLAG_READWRITE, &error_abort);
1279     }
1280 
1281     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1282 
1283     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1284         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1285     }
1286 }
1287 
1288 static void arm_cpu_finalizefn(Object *obj)
1289 {
1290     ARMCPU *cpu = ARM_CPU(obj);
1291     ARMELChangeHook *hook, *next;
1292 
1293     g_hash_table_destroy(cpu->cp_regs);
1294 
1295     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1296         QLIST_REMOVE(hook, node);
1297         g_free(hook);
1298     }
1299     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1300         QLIST_REMOVE(hook, node);
1301         g_free(hook);
1302     }
1303 #ifndef CONFIG_USER_ONLY
1304     if (cpu->pmu_timer) {
1305         timer_del(cpu->pmu_timer);
1306         timer_deinit(cpu->pmu_timer);
1307         timer_free(cpu->pmu_timer);
1308     }
1309 #endif
1310 }
1311 
1312 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1313 {
1314     Error *local_err = NULL;
1315 
1316     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1317         arm_cpu_sve_finalize(cpu, &local_err);
1318         if (local_err != NULL) {
1319             error_propagate(errp, local_err);
1320             return;
1321         }
1322     }
1323 }
1324 
1325 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1326 {
1327     CPUState *cs = CPU(dev);
1328     ARMCPU *cpu = ARM_CPU(dev);
1329     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1330     CPUARMState *env = &cpu->env;
1331     int pagebits;
1332     Error *local_err = NULL;
1333     bool no_aa32 = false;
1334 
1335     /* If we needed to query the host kernel for the CPU features
1336      * then it's possible that might have failed in the initfn, but
1337      * this is the first point where we can report it.
1338      */
1339     if (cpu->host_cpu_probe_failed) {
1340         if (!kvm_enabled()) {
1341             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1342         } else {
1343             error_setg(errp, "Failed to retrieve host CPU features");
1344         }
1345         return;
1346     }
1347 
1348 #ifndef CONFIG_USER_ONLY
1349     /* The NVIC and M-profile CPU are two halves of a single piece of
1350      * hardware; trying to use one without the other is a command line
1351      * error and will result in segfaults if not caught here.
1352      */
1353     if (arm_feature(env, ARM_FEATURE_M)) {
1354         if (!env->nvic) {
1355             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1356             return;
1357         }
1358     } else {
1359         if (env->nvic) {
1360             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1361             return;
1362         }
1363     }
1364 
1365     {
1366         uint64_t scale;
1367 
1368         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1369             if (!cpu->gt_cntfrq_hz) {
1370                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1371                            cpu->gt_cntfrq_hz);
1372                 return;
1373             }
1374             scale = gt_cntfrq_period_ns(cpu);
1375         } else {
1376             scale = GTIMER_SCALE;
1377         }
1378 
1379         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1380                                                arm_gt_ptimer_cb, cpu);
1381         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1382                                                arm_gt_vtimer_cb, cpu);
1383         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1384                                               arm_gt_htimer_cb, cpu);
1385         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1386                                               arm_gt_stimer_cb, cpu);
1387         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1388                                                   arm_gt_hvtimer_cb, cpu);
1389     }
1390 #endif
1391 
1392     cpu_exec_realizefn(cs, &local_err);
1393     if (local_err != NULL) {
1394         error_propagate(errp, local_err);
1395         return;
1396     }
1397 
1398     arm_cpu_finalize_features(cpu, &local_err);
1399     if (local_err != NULL) {
1400         error_propagate(errp, local_err);
1401         return;
1402     }
1403 
1404     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1405         cpu->has_vfp != cpu->has_neon) {
1406         /*
1407          * This is an architectural requirement for AArch64; AArch32 is
1408          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1409          */
1410         error_setg(errp,
1411                    "AArch64 CPUs must have both VFP and Neon or neither");
1412         return;
1413     }
1414 
1415     if (!cpu->has_vfp) {
1416         uint64_t t;
1417         uint32_t u;
1418 
1419         t = cpu->isar.id_aa64isar1;
1420         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1421         cpu->isar.id_aa64isar1 = t;
1422 
1423         t = cpu->isar.id_aa64pfr0;
1424         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1425         cpu->isar.id_aa64pfr0 = t;
1426 
1427         u = cpu->isar.id_isar6;
1428         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1429         cpu->isar.id_isar6 = u;
1430 
1431         u = cpu->isar.mvfr0;
1432         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1433         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1434         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1435         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1436         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1437         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1438         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1439         cpu->isar.mvfr0 = u;
1440 
1441         u = cpu->isar.mvfr1;
1442         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1443         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1444         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1445         cpu->isar.mvfr1 = u;
1446 
1447         u = cpu->isar.mvfr2;
1448         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1449         cpu->isar.mvfr2 = u;
1450     }
1451 
1452     if (!cpu->has_neon) {
1453         uint64_t t;
1454         uint32_t u;
1455 
1456         unset_feature(env, ARM_FEATURE_NEON);
1457 
1458         t = cpu->isar.id_aa64isar0;
1459         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1460         cpu->isar.id_aa64isar0 = t;
1461 
1462         t = cpu->isar.id_aa64isar1;
1463         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1464         cpu->isar.id_aa64isar1 = t;
1465 
1466         t = cpu->isar.id_aa64pfr0;
1467         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1468         cpu->isar.id_aa64pfr0 = t;
1469 
1470         u = cpu->isar.id_isar5;
1471         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1472         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1473         cpu->isar.id_isar5 = u;
1474 
1475         u = cpu->isar.id_isar6;
1476         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1477         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1478         cpu->isar.id_isar6 = u;
1479 
1480         u = cpu->isar.mvfr1;
1481         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1482         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1483         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1484         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1485         cpu->isar.mvfr1 = u;
1486 
1487         u = cpu->isar.mvfr2;
1488         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1489         cpu->isar.mvfr2 = u;
1490     }
1491 
1492     if (!cpu->has_neon && !cpu->has_vfp) {
1493         uint64_t t;
1494         uint32_t u;
1495 
1496         t = cpu->isar.id_aa64isar0;
1497         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1498         cpu->isar.id_aa64isar0 = t;
1499 
1500         t = cpu->isar.id_aa64isar1;
1501         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1502         cpu->isar.id_aa64isar1 = t;
1503 
1504         u = cpu->isar.mvfr0;
1505         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1506         cpu->isar.mvfr0 = u;
1507 
1508         /* Despite the name, this field covers both VFP and Neon */
1509         u = cpu->isar.mvfr1;
1510         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1511         cpu->isar.mvfr1 = u;
1512     }
1513 
1514     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1515         uint32_t u;
1516 
1517         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1518 
1519         u = cpu->isar.id_isar1;
1520         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1521         cpu->isar.id_isar1 = u;
1522 
1523         u = cpu->isar.id_isar2;
1524         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1525         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1526         cpu->isar.id_isar2 = u;
1527 
1528         u = cpu->isar.id_isar3;
1529         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1530         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1531         cpu->isar.id_isar3 = u;
1532     }
1533 
1534     /* Some features automatically imply others: */
1535     if (arm_feature(env, ARM_FEATURE_V8)) {
1536         if (arm_feature(env, ARM_FEATURE_M)) {
1537             set_feature(env, ARM_FEATURE_V7);
1538         } else {
1539             set_feature(env, ARM_FEATURE_V7VE);
1540         }
1541     }
1542 
1543     /*
1544      * There exist AArch64 cpus without AArch32 support.  When KVM
1545      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1546      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1547      * As a general principle, we also do not make ID register
1548      * consistency checks anywhere unless using TCG, because only
1549      * for TCG would a consistency-check failure be a QEMU bug.
1550      */
1551     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1552         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1553     }
1554 
1555     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1556         /* v7 Virtualization Extensions. In real hardware this implies
1557          * EL2 and also the presence of the Security Extensions.
1558          * For QEMU, for backwards-compatibility we implement some
1559          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1560          * include the various other features that V7VE implies.
1561          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1562          * Security Extensions is ARM_FEATURE_EL3.
1563          */
1564         assert(!tcg_enabled() || no_aa32 ||
1565                cpu_isar_feature(aa32_arm_div, cpu));
1566         set_feature(env, ARM_FEATURE_LPAE);
1567         set_feature(env, ARM_FEATURE_V7);
1568     }
1569     if (arm_feature(env, ARM_FEATURE_V7)) {
1570         set_feature(env, ARM_FEATURE_VAPA);
1571         set_feature(env, ARM_FEATURE_THUMB2);
1572         set_feature(env, ARM_FEATURE_MPIDR);
1573         if (!arm_feature(env, ARM_FEATURE_M)) {
1574             set_feature(env, ARM_FEATURE_V6K);
1575         } else {
1576             set_feature(env, ARM_FEATURE_V6);
1577         }
1578 
1579         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1580          * non-EL3 configs. This is needed by some legacy boards.
1581          */
1582         set_feature(env, ARM_FEATURE_VBAR);
1583     }
1584     if (arm_feature(env, ARM_FEATURE_V6K)) {
1585         set_feature(env, ARM_FEATURE_V6);
1586         set_feature(env, ARM_FEATURE_MVFR);
1587     }
1588     if (arm_feature(env, ARM_FEATURE_V6)) {
1589         set_feature(env, ARM_FEATURE_V5);
1590         if (!arm_feature(env, ARM_FEATURE_M)) {
1591             assert(!tcg_enabled() || no_aa32 ||
1592                    cpu_isar_feature(aa32_jazelle, cpu));
1593             set_feature(env, ARM_FEATURE_AUXCR);
1594         }
1595     }
1596     if (arm_feature(env, ARM_FEATURE_V5)) {
1597         set_feature(env, ARM_FEATURE_V4T);
1598     }
1599     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1600         set_feature(env, ARM_FEATURE_V7MP);
1601         set_feature(env, ARM_FEATURE_PXN);
1602     }
1603     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1604         set_feature(env, ARM_FEATURE_CBAR);
1605     }
1606     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1607         !arm_feature(env, ARM_FEATURE_M)) {
1608         set_feature(env, ARM_FEATURE_THUMB_DSP);
1609     }
1610 
1611     /*
1612      * We rely on no XScale CPU having VFP so we can use the same bits in the
1613      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1614      */
1615     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1616            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1617            !arm_feature(env, ARM_FEATURE_XSCALE));
1618 
1619     if (arm_feature(env, ARM_FEATURE_V7) &&
1620         !arm_feature(env, ARM_FEATURE_M) &&
1621         !arm_feature(env, ARM_FEATURE_PMSA)) {
1622         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1623          * can use 4K pages.
1624          */
1625         pagebits = 12;
1626     } else {
1627         /* For CPUs which might have tiny 1K pages, or which have an
1628          * MPU and might have small region sizes, stick with 1K pages.
1629          */
1630         pagebits = 10;
1631     }
1632     if (!set_preferred_target_page_bits(pagebits)) {
1633         /* This can only ever happen for hotplugging a CPU, or if
1634          * the board code incorrectly creates a CPU which it has
1635          * promised via minimum_page_size that it will not.
1636          */
1637         error_setg(errp, "This CPU requires a smaller page size than the "
1638                    "system is using");
1639         return;
1640     }
1641 
1642     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1643      * We don't support setting cluster ID ([16..23]) (known as Aff2
1644      * in later ARM ARM versions), or any of the higher affinity level fields,
1645      * so these bits always RAZ.
1646      */
1647     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1648         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1649                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1650     }
1651 
1652     if (cpu->reset_hivecs) {
1653             cpu->reset_sctlr |= (1 << 13);
1654     }
1655 
1656     if (cpu->cfgend) {
1657         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1658             cpu->reset_sctlr |= SCTLR_EE;
1659         } else {
1660             cpu->reset_sctlr |= SCTLR_B;
1661         }
1662     }
1663 
1664     if (!cpu->has_el3) {
1665         /* If the has_el3 CPU property is disabled then we need to disable the
1666          * feature.
1667          */
1668         unset_feature(env, ARM_FEATURE_EL3);
1669 
1670         /* Disable the security extension feature bits in the processor feature
1671          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1672          */
1673         cpu->id_pfr1 &= ~0xf0;
1674         cpu->isar.id_aa64pfr0 &= ~0xf000;
1675     }
1676 
1677     if (!cpu->has_el2) {
1678         unset_feature(env, ARM_FEATURE_EL2);
1679     }
1680 
1681     if (!cpu->has_pmu) {
1682         unset_feature(env, ARM_FEATURE_PMU);
1683     }
1684     if (arm_feature(env, ARM_FEATURE_PMU)) {
1685         pmu_init(cpu);
1686 
1687         if (!kvm_enabled()) {
1688             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1689             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1690         }
1691 
1692 #ifndef CONFIG_USER_ONLY
1693         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1694                 cpu);
1695 #endif
1696     } else {
1697         cpu->isar.id_aa64dfr0 =
1698             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1699         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1700         cpu->pmceid0 = 0;
1701         cpu->pmceid1 = 0;
1702     }
1703 
1704     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1705         /* Disable the hypervisor feature bits in the processor feature
1706          * registers if we don't have EL2. These are id_pfr1[15:12] and
1707          * id_aa64pfr0_el1[11:8].
1708          */
1709         cpu->isar.id_aa64pfr0 &= ~0xf00;
1710         cpu->id_pfr1 &= ~0xf000;
1711     }
1712 
1713     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1714      * to false or by setting pmsav7-dregion to 0.
1715      */
1716     if (!cpu->has_mpu) {
1717         cpu->pmsav7_dregion = 0;
1718     }
1719     if (cpu->pmsav7_dregion == 0) {
1720         cpu->has_mpu = false;
1721     }
1722 
1723     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1724         arm_feature(env, ARM_FEATURE_V7)) {
1725         uint32_t nr = cpu->pmsav7_dregion;
1726 
1727         if (nr > 0xff) {
1728             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1729             return;
1730         }
1731 
1732         if (nr) {
1733             if (arm_feature(env, ARM_FEATURE_V8)) {
1734                 /* PMSAv8 */
1735                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1736                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1737                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1738                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1739                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1740                 }
1741             } else {
1742                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1743                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1744                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1745             }
1746         }
1747     }
1748 
1749     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1750         uint32_t nr = cpu->sau_sregion;
1751 
1752         if (nr > 0xff) {
1753             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1754             return;
1755         }
1756 
1757         if (nr) {
1758             env->sau.rbar = g_new0(uint32_t, nr);
1759             env->sau.rlar = g_new0(uint32_t, nr);
1760         }
1761     }
1762 
1763     if (arm_feature(env, ARM_FEATURE_EL3)) {
1764         set_feature(env, ARM_FEATURE_VBAR);
1765     }
1766 
1767     register_cp_regs_for_features(cpu);
1768     arm_cpu_register_gdb_regs_for_features(cpu);
1769 
1770     init_cpreg_list(cpu);
1771 
1772 #ifndef CONFIG_USER_ONLY
1773     MachineState *ms = MACHINE(qdev_get_machine());
1774     unsigned int smp_cpus = ms->smp.cpus;
1775 
1776     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1777         cs->num_ases = 2;
1778 
1779         if (!cpu->secure_memory) {
1780             cpu->secure_memory = cs->memory;
1781         }
1782         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1783                                cpu->secure_memory);
1784     } else {
1785         cs->num_ases = 1;
1786     }
1787     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1788 
1789     /* No core_count specified, default to smp_cpus. */
1790     if (cpu->core_count == -1) {
1791         cpu->core_count = smp_cpus;
1792     }
1793 #endif
1794 
1795     qemu_init_vcpu(cs);
1796     cpu_reset(cs);
1797 
1798     acc->parent_realize(dev, errp);
1799 }
1800 
1801 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1802 {
1803     ObjectClass *oc;
1804     char *typename;
1805     char **cpuname;
1806     const char *cpunamestr;
1807 
1808     cpuname = g_strsplit(cpu_model, ",", 1);
1809     cpunamestr = cpuname[0];
1810 #ifdef CONFIG_USER_ONLY
1811     /* For backwards compatibility usermode emulation allows "-cpu any",
1812      * which has the same semantics as "-cpu max".
1813      */
1814     if (!strcmp(cpunamestr, "any")) {
1815         cpunamestr = "max";
1816     }
1817 #endif
1818     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1819     oc = object_class_by_name(typename);
1820     g_strfreev(cpuname);
1821     g_free(typename);
1822     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1823         object_class_is_abstract(oc)) {
1824         return NULL;
1825     }
1826     return oc;
1827 }
1828 
1829 /* CPU models. These are not needed for the AArch64 linux-user build. */
1830 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1831 
1832 static void arm926_initfn(Object *obj)
1833 {
1834     ARMCPU *cpu = ARM_CPU(obj);
1835 
1836     cpu->dtb_compatible = "arm,arm926";
1837     set_feature(&cpu->env, ARM_FEATURE_V5);
1838     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1839     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1840     cpu->midr = 0x41069265;
1841     cpu->reset_fpsid = 0x41011090;
1842     cpu->ctr = 0x1dd20d2;
1843     cpu->reset_sctlr = 0x00090078;
1844 
1845     /*
1846      * ARMv5 does not have the ID_ISAR registers, but we can still
1847      * set the field to indicate Jazelle support within QEMU.
1848      */
1849     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1850     /*
1851      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1852      * support even though ARMv5 doesn't have this register.
1853      */
1854     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1855     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1856     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1857 }
1858 
1859 static void arm946_initfn(Object *obj)
1860 {
1861     ARMCPU *cpu = ARM_CPU(obj);
1862 
1863     cpu->dtb_compatible = "arm,arm946";
1864     set_feature(&cpu->env, ARM_FEATURE_V5);
1865     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1866     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1867     cpu->midr = 0x41059461;
1868     cpu->ctr = 0x0f004006;
1869     cpu->reset_sctlr = 0x00000078;
1870 }
1871 
1872 static void arm1026_initfn(Object *obj)
1873 {
1874     ARMCPU *cpu = ARM_CPU(obj);
1875 
1876     cpu->dtb_compatible = "arm,arm1026";
1877     set_feature(&cpu->env, ARM_FEATURE_V5);
1878     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1879     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1880     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1881     cpu->midr = 0x4106a262;
1882     cpu->reset_fpsid = 0x410110a0;
1883     cpu->ctr = 0x1dd20d2;
1884     cpu->reset_sctlr = 0x00090078;
1885     cpu->reset_auxcr = 1;
1886 
1887     /*
1888      * ARMv5 does not have the ID_ISAR registers, but we can still
1889      * set the field to indicate Jazelle support within QEMU.
1890      */
1891     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1892     /*
1893      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1894      * support even though ARMv5 doesn't have this register.
1895      */
1896     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1897     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1898     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1899 
1900     {
1901         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1902         ARMCPRegInfo ifar = {
1903             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1904             .access = PL1_RW,
1905             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1906             .resetvalue = 0
1907         };
1908         define_one_arm_cp_reg(cpu, &ifar);
1909     }
1910 }
1911 
1912 static void arm1136_r2_initfn(Object *obj)
1913 {
1914     ARMCPU *cpu = ARM_CPU(obj);
1915     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1916      * older core than plain "arm1136". In particular this does not
1917      * have the v6K features.
1918      * These ID register values are correct for 1136 but may be wrong
1919      * for 1136_r2 (in particular r0p2 does not actually implement most
1920      * of the ID registers).
1921      */
1922 
1923     cpu->dtb_compatible = "arm,arm1136";
1924     set_feature(&cpu->env, ARM_FEATURE_V6);
1925     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1926     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1927     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1928     cpu->midr = 0x4107b362;
1929     cpu->reset_fpsid = 0x410120b4;
1930     cpu->isar.mvfr0 = 0x11111111;
1931     cpu->isar.mvfr1 = 0x00000000;
1932     cpu->ctr = 0x1dd20d2;
1933     cpu->reset_sctlr = 0x00050078;
1934     cpu->id_pfr0 = 0x111;
1935     cpu->id_pfr1 = 0x1;
1936     cpu->isar.id_dfr0 = 0x2;
1937     cpu->id_afr0 = 0x3;
1938     cpu->isar.id_mmfr0 = 0x01130003;
1939     cpu->isar.id_mmfr1 = 0x10030302;
1940     cpu->isar.id_mmfr2 = 0x01222110;
1941     cpu->isar.id_isar0 = 0x00140011;
1942     cpu->isar.id_isar1 = 0x12002111;
1943     cpu->isar.id_isar2 = 0x11231111;
1944     cpu->isar.id_isar3 = 0x01102131;
1945     cpu->isar.id_isar4 = 0x141;
1946     cpu->reset_auxcr = 7;
1947 }
1948 
1949 static void arm1136_initfn(Object *obj)
1950 {
1951     ARMCPU *cpu = ARM_CPU(obj);
1952 
1953     cpu->dtb_compatible = "arm,arm1136";
1954     set_feature(&cpu->env, ARM_FEATURE_V6K);
1955     set_feature(&cpu->env, ARM_FEATURE_V6);
1956     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1957     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1958     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1959     cpu->midr = 0x4117b363;
1960     cpu->reset_fpsid = 0x410120b4;
1961     cpu->isar.mvfr0 = 0x11111111;
1962     cpu->isar.mvfr1 = 0x00000000;
1963     cpu->ctr = 0x1dd20d2;
1964     cpu->reset_sctlr = 0x00050078;
1965     cpu->id_pfr0 = 0x111;
1966     cpu->id_pfr1 = 0x1;
1967     cpu->isar.id_dfr0 = 0x2;
1968     cpu->id_afr0 = 0x3;
1969     cpu->isar.id_mmfr0 = 0x01130003;
1970     cpu->isar.id_mmfr1 = 0x10030302;
1971     cpu->isar.id_mmfr2 = 0x01222110;
1972     cpu->isar.id_isar0 = 0x00140011;
1973     cpu->isar.id_isar1 = 0x12002111;
1974     cpu->isar.id_isar2 = 0x11231111;
1975     cpu->isar.id_isar3 = 0x01102131;
1976     cpu->isar.id_isar4 = 0x141;
1977     cpu->reset_auxcr = 7;
1978 }
1979 
1980 static void arm1176_initfn(Object *obj)
1981 {
1982     ARMCPU *cpu = ARM_CPU(obj);
1983 
1984     cpu->dtb_compatible = "arm,arm1176";
1985     set_feature(&cpu->env, ARM_FEATURE_V6K);
1986     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1987     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1988     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1989     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1990     set_feature(&cpu->env, ARM_FEATURE_EL3);
1991     cpu->midr = 0x410fb767;
1992     cpu->reset_fpsid = 0x410120b5;
1993     cpu->isar.mvfr0 = 0x11111111;
1994     cpu->isar.mvfr1 = 0x00000000;
1995     cpu->ctr = 0x1dd20d2;
1996     cpu->reset_sctlr = 0x00050078;
1997     cpu->id_pfr0 = 0x111;
1998     cpu->id_pfr1 = 0x11;
1999     cpu->isar.id_dfr0 = 0x33;
2000     cpu->id_afr0 = 0;
2001     cpu->isar.id_mmfr0 = 0x01130003;
2002     cpu->isar.id_mmfr1 = 0x10030302;
2003     cpu->isar.id_mmfr2 = 0x01222100;
2004     cpu->isar.id_isar0 = 0x0140011;
2005     cpu->isar.id_isar1 = 0x12002111;
2006     cpu->isar.id_isar2 = 0x11231121;
2007     cpu->isar.id_isar3 = 0x01102131;
2008     cpu->isar.id_isar4 = 0x01141;
2009     cpu->reset_auxcr = 7;
2010 }
2011 
2012 static void arm11mpcore_initfn(Object *obj)
2013 {
2014     ARMCPU *cpu = ARM_CPU(obj);
2015 
2016     cpu->dtb_compatible = "arm,arm11mpcore";
2017     set_feature(&cpu->env, ARM_FEATURE_V6K);
2018     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2019     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2020     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2021     cpu->midr = 0x410fb022;
2022     cpu->reset_fpsid = 0x410120b4;
2023     cpu->isar.mvfr0 = 0x11111111;
2024     cpu->isar.mvfr1 = 0x00000000;
2025     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2026     cpu->id_pfr0 = 0x111;
2027     cpu->id_pfr1 = 0x1;
2028     cpu->isar.id_dfr0 = 0;
2029     cpu->id_afr0 = 0x2;
2030     cpu->isar.id_mmfr0 = 0x01100103;
2031     cpu->isar.id_mmfr1 = 0x10020302;
2032     cpu->isar.id_mmfr2 = 0x01222000;
2033     cpu->isar.id_isar0 = 0x00100011;
2034     cpu->isar.id_isar1 = 0x12002111;
2035     cpu->isar.id_isar2 = 0x11221011;
2036     cpu->isar.id_isar3 = 0x01102131;
2037     cpu->isar.id_isar4 = 0x141;
2038     cpu->reset_auxcr = 1;
2039 }
2040 
2041 static void cortex_m0_initfn(Object *obj)
2042 {
2043     ARMCPU *cpu = ARM_CPU(obj);
2044     set_feature(&cpu->env, ARM_FEATURE_V6);
2045     set_feature(&cpu->env, ARM_FEATURE_M);
2046 
2047     cpu->midr = 0x410cc200;
2048 }
2049 
2050 static void cortex_m3_initfn(Object *obj)
2051 {
2052     ARMCPU *cpu = ARM_CPU(obj);
2053     set_feature(&cpu->env, ARM_FEATURE_V7);
2054     set_feature(&cpu->env, ARM_FEATURE_M);
2055     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2056     cpu->midr = 0x410fc231;
2057     cpu->pmsav7_dregion = 8;
2058     cpu->id_pfr0 = 0x00000030;
2059     cpu->id_pfr1 = 0x00000200;
2060     cpu->isar.id_dfr0 = 0x00100000;
2061     cpu->id_afr0 = 0x00000000;
2062     cpu->isar.id_mmfr0 = 0x00000030;
2063     cpu->isar.id_mmfr1 = 0x00000000;
2064     cpu->isar.id_mmfr2 = 0x00000000;
2065     cpu->isar.id_mmfr3 = 0x00000000;
2066     cpu->isar.id_isar0 = 0x01141110;
2067     cpu->isar.id_isar1 = 0x02111000;
2068     cpu->isar.id_isar2 = 0x21112231;
2069     cpu->isar.id_isar3 = 0x01111110;
2070     cpu->isar.id_isar4 = 0x01310102;
2071     cpu->isar.id_isar5 = 0x00000000;
2072     cpu->isar.id_isar6 = 0x00000000;
2073 }
2074 
2075 static void cortex_m4_initfn(Object *obj)
2076 {
2077     ARMCPU *cpu = ARM_CPU(obj);
2078 
2079     set_feature(&cpu->env, ARM_FEATURE_V7);
2080     set_feature(&cpu->env, ARM_FEATURE_M);
2081     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2082     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2083     cpu->midr = 0x410fc240; /* r0p0 */
2084     cpu->pmsav7_dregion = 8;
2085     cpu->isar.mvfr0 = 0x10110021;
2086     cpu->isar.mvfr1 = 0x11000011;
2087     cpu->isar.mvfr2 = 0x00000000;
2088     cpu->id_pfr0 = 0x00000030;
2089     cpu->id_pfr1 = 0x00000200;
2090     cpu->isar.id_dfr0 = 0x00100000;
2091     cpu->id_afr0 = 0x00000000;
2092     cpu->isar.id_mmfr0 = 0x00000030;
2093     cpu->isar.id_mmfr1 = 0x00000000;
2094     cpu->isar.id_mmfr2 = 0x00000000;
2095     cpu->isar.id_mmfr3 = 0x00000000;
2096     cpu->isar.id_isar0 = 0x01141110;
2097     cpu->isar.id_isar1 = 0x02111000;
2098     cpu->isar.id_isar2 = 0x21112231;
2099     cpu->isar.id_isar3 = 0x01111110;
2100     cpu->isar.id_isar4 = 0x01310102;
2101     cpu->isar.id_isar5 = 0x00000000;
2102     cpu->isar.id_isar6 = 0x00000000;
2103 }
2104 
2105 static void cortex_m7_initfn(Object *obj)
2106 {
2107     ARMCPU *cpu = ARM_CPU(obj);
2108 
2109     set_feature(&cpu->env, ARM_FEATURE_V7);
2110     set_feature(&cpu->env, ARM_FEATURE_M);
2111     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2112     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2113     cpu->midr = 0x411fc272; /* r1p2 */
2114     cpu->pmsav7_dregion = 8;
2115     cpu->isar.mvfr0 = 0x10110221;
2116     cpu->isar.mvfr1 = 0x12000011;
2117     cpu->isar.mvfr2 = 0x00000040;
2118     cpu->id_pfr0 = 0x00000030;
2119     cpu->id_pfr1 = 0x00000200;
2120     cpu->isar.id_dfr0 = 0x00100000;
2121     cpu->id_afr0 = 0x00000000;
2122     cpu->isar.id_mmfr0 = 0x00100030;
2123     cpu->isar.id_mmfr1 = 0x00000000;
2124     cpu->isar.id_mmfr2 = 0x01000000;
2125     cpu->isar.id_mmfr3 = 0x00000000;
2126     cpu->isar.id_isar0 = 0x01101110;
2127     cpu->isar.id_isar1 = 0x02112000;
2128     cpu->isar.id_isar2 = 0x20232231;
2129     cpu->isar.id_isar3 = 0x01111131;
2130     cpu->isar.id_isar4 = 0x01310132;
2131     cpu->isar.id_isar5 = 0x00000000;
2132     cpu->isar.id_isar6 = 0x00000000;
2133 }
2134 
2135 static void cortex_m33_initfn(Object *obj)
2136 {
2137     ARMCPU *cpu = ARM_CPU(obj);
2138 
2139     set_feature(&cpu->env, ARM_FEATURE_V8);
2140     set_feature(&cpu->env, ARM_FEATURE_M);
2141     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2142     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2143     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2144     cpu->midr = 0x410fd213; /* r0p3 */
2145     cpu->pmsav7_dregion = 16;
2146     cpu->sau_sregion = 8;
2147     cpu->isar.mvfr0 = 0x10110021;
2148     cpu->isar.mvfr1 = 0x11000011;
2149     cpu->isar.mvfr2 = 0x00000040;
2150     cpu->id_pfr0 = 0x00000030;
2151     cpu->id_pfr1 = 0x00000210;
2152     cpu->isar.id_dfr0 = 0x00200000;
2153     cpu->id_afr0 = 0x00000000;
2154     cpu->isar.id_mmfr0 = 0x00101F40;
2155     cpu->isar.id_mmfr1 = 0x00000000;
2156     cpu->isar.id_mmfr2 = 0x01000000;
2157     cpu->isar.id_mmfr3 = 0x00000000;
2158     cpu->isar.id_isar0 = 0x01101110;
2159     cpu->isar.id_isar1 = 0x02212000;
2160     cpu->isar.id_isar2 = 0x20232232;
2161     cpu->isar.id_isar3 = 0x01111131;
2162     cpu->isar.id_isar4 = 0x01310132;
2163     cpu->isar.id_isar5 = 0x00000000;
2164     cpu->isar.id_isar6 = 0x00000000;
2165     cpu->clidr = 0x00000000;
2166     cpu->ctr = 0x8000c000;
2167 }
2168 
2169 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2170 {
2171     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2172     CPUClass *cc = CPU_CLASS(oc);
2173 
2174     acc->info = data;
2175 #ifndef CONFIG_USER_ONLY
2176     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2177 #endif
2178 
2179     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2180 }
2181 
2182 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2183     /* Dummy the TCM region regs for the moment */
2184     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2185       .access = PL1_RW, .type = ARM_CP_CONST },
2186     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2187       .access = PL1_RW, .type = ARM_CP_CONST },
2188     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2189       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2190     REGINFO_SENTINEL
2191 };
2192 
2193 static void cortex_r5_initfn(Object *obj)
2194 {
2195     ARMCPU *cpu = ARM_CPU(obj);
2196 
2197     set_feature(&cpu->env, ARM_FEATURE_V7);
2198     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2199     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2200     set_feature(&cpu->env, ARM_FEATURE_PMU);
2201     cpu->midr = 0x411fc153; /* r1p3 */
2202     cpu->id_pfr0 = 0x0131;
2203     cpu->id_pfr1 = 0x001;
2204     cpu->isar.id_dfr0 = 0x010400;
2205     cpu->id_afr0 = 0x0;
2206     cpu->isar.id_mmfr0 = 0x0210030;
2207     cpu->isar.id_mmfr1 = 0x00000000;
2208     cpu->isar.id_mmfr2 = 0x01200000;
2209     cpu->isar.id_mmfr3 = 0x0211;
2210     cpu->isar.id_isar0 = 0x02101111;
2211     cpu->isar.id_isar1 = 0x13112111;
2212     cpu->isar.id_isar2 = 0x21232141;
2213     cpu->isar.id_isar3 = 0x01112131;
2214     cpu->isar.id_isar4 = 0x0010142;
2215     cpu->isar.id_isar5 = 0x0;
2216     cpu->isar.id_isar6 = 0x0;
2217     cpu->mp_is_up = true;
2218     cpu->pmsav7_dregion = 16;
2219     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2220 }
2221 
2222 static void cortex_r5f_initfn(Object *obj)
2223 {
2224     ARMCPU *cpu = ARM_CPU(obj);
2225 
2226     cortex_r5_initfn(obj);
2227     cpu->isar.mvfr0 = 0x10110221;
2228     cpu->isar.mvfr1 = 0x00000011;
2229 }
2230 
2231 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2232     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2233       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2234     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2235       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2236     REGINFO_SENTINEL
2237 };
2238 
2239 static void cortex_a8_initfn(Object *obj)
2240 {
2241     ARMCPU *cpu = ARM_CPU(obj);
2242 
2243     cpu->dtb_compatible = "arm,cortex-a8";
2244     set_feature(&cpu->env, ARM_FEATURE_V7);
2245     set_feature(&cpu->env, ARM_FEATURE_NEON);
2246     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2247     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2248     set_feature(&cpu->env, ARM_FEATURE_EL3);
2249     cpu->midr = 0x410fc080;
2250     cpu->reset_fpsid = 0x410330c0;
2251     cpu->isar.mvfr0 = 0x11110222;
2252     cpu->isar.mvfr1 = 0x00011111;
2253     cpu->ctr = 0x82048004;
2254     cpu->reset_sctlr = 0x00c50078;
2255     cpu->id_pfr0 = 0x1031;
2256     cpu->id_pfr1 = 0x11;
2257     cpu->isar.id_dfr0 = 0x400;
2258     cpu->id_afr0 = 0;
2259     cpu->isar.id_mmfr0 = 0x31100003;
2260     cpu->isar.id_mmfr1 = 0x20000000;
2261     cpu->isar.id_mmfr2 = 0x01202000;
2262     cpu->isar.id_mmfr3 = 0x11;
2263     cpu->isar.id_isar0 = 0x00101111;
2264     cpu->isar.id_isar1 = 0x12112111;
2265     cpu->isar.id_isar2 = 0x21232031;
2266     cpu->isar.id_isar3 = 0x11112131;
2267     cpu->isar.id_isar4 = 0x00111142;
2268     cpu->isar.dbgdidr = 0x15141000;
2269     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2270     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2271     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2272     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2273     cpu->reset_auxcr = 2;
2274     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2275 }
2276 
2277 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2278     /* power_control should be set to maximum latency. Again,
2279      * default to 0 and set by private hook
2280      */
2281     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2282       .access = PL1_RW, .resetvalue = 0,
2283       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2284     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2285       .access = PL1_RW, .resetvalue = 0,
2286       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2287     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2288       .access = PL1_RW, .resetvalue = 0,
2289       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2290     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2291       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2292     /* TLB lockdown control */
2293     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2294       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2295     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2296       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2297     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2298       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2299     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2300       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2301     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2302       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2303     REGINFO_SENTINEL
2304 };
2305 
2306 static void cortex_a9_initfn(Object *obj)
2307 {
2308     ARMCPU *cpu = ARM_CPU(obj);
2309 
2310     cpu->dtb_compatible = "arm,cortex-a9";
2311     set_feature(&cpu->env, ARM_FEATURE_V7);
2312     set_feature(&cpu->env, ARM_FEATURE_NEON);
2313     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2314     set_feature(&cpu->env, ARM_FEATURE_EL3);
2315     /* Note that A9 supports the MP extensions even for
2316      * A9UP and single-core A9MP (which are both different
2317      * and valid configurations; we don't model A9UP).
2318      */
2319     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2320     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2321     cpu->midr = 0x410fc090;
2322     cpu->reset_fpsid = 0x41033090;
2323     cpu->isar.mvfr0 = 0x11110222;
2324     cpu->isar.mvfr1 = 0x01111111;
2325     cpu->ctr = 0x80038003;
2326     cpu->reset_sctlr = 0x00c50078;
2327     cpu->id_pfr0 = 0x1031;
2328     cpu->id_pfr1 = 0x11;
2329     cpu->isar.id_dfr0 = 0x000;
2330     cpu->id_afr0 = 0;
2331     cpu->isar.id_mmfr0 = 0x00100103;
2332     cpu->isar.id_mmfr1 = 0x20000000;
2333     cpu->isar.id_mmfr2 = 0x01230000;
2334     cpu->isar.id_mmfr3 = 0x00002111;
2335     cpu->isar.id_isar0 = 0x00101111;
2336     cpu->isar.id_isar1 = 0x13112111;
2337     cpu->isar.id_isar2 = 0x21232041;
2338     cpu->isar.id_isar3 = 0x11112131;
2339     cpu->isar.id_isar4 = 0x00111142;
2340     cpu->isar.dbgdidr = 0x35141000;
2341     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2342     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2343     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2344     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2345 }
2346 
2347 #ifndef CONFIG_USER_ONLY
2348 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2349 {
2350     MachineState *ms = MACHINE(qdev_get_machine());
2351 
2352     /* Linux wants the number of processors from here.
2353      * Might as well set the interrupt-controller bit too.
2354      */
2355     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2356 }
2357 #endif
2358 
2359 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2360 #ifndef CONFIG_USER_ONLY
2361     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2362       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2363       .writefn = arm_cp_write_ignore, },
2364 #endif
2365     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2366       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2367     REGINFO_SENTINEL
2368 };
2369 
2370 static void cortex_a7_initfn(Object *obj)
2371 {
2372     ARMCPU *cpu = ARM_CPU(obj);
2373 
2374     cpu->dtb_compatible = "arm,cortex-a7";
2375     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2376     set_feature(&cpu->env, ARM_FEATURE_NEON);
2377     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2378     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2379     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2380     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2381     set_feature(&cpu->env, ARM_FEATURE_EL2);
2382     set_feature(&cpu->env, ARM_FEATURE_EL3);
2383     set_feature(&cpu->env, ARM_FEATURE_PMU);
2384     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2385     cpu->midr = 0x410fc075;
2386     cpu->reset_fpsid = 0x41023075;
2387     cpu->isar.mvfr0 = 0x10110222;
2388     cpu->isar.mvfr1 = 0x11111111;
2389     cpu->ctr = 0x84448003;
2390     cpu->reset_sctlr = 0x00c50078;
2391     cpu->id_pfr0 = 0x00001131;
2392     cpu->id_pfr1 = 0x00011011;
2393     cpu->isar.id_dfr0 = 0x02010555;
2394     cpu->id_afr0 = 0x00000000;
2395     cpu->isar.id_mmfr0 = 0x10101105;
2396     cpu->isar.id_mmfr1 = 0x40000000;
2397     cpu->isar.id_mmfr2 = 0x01240000;
2398     cpu->isar.id_mmfr3 = 0x02102211;
2399     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2400      * table 4-41 gives 0x02101110, which includes the arm div insns.
2401      */
2402     cpu->isar.id_isar0 = 0x02101110;
2403     cpu->isar.id_isar1 = 0x13112111;
2404     cpu->isar.id_isar2 = 0x21232041;
2405     cpu->isar.id_isar3 = 0x11112131;
2406     cpu->isar.id_isar4 = 0x10011142;
2407     cpu->isar.dbgdidr = 0x3515f005;
2408     cpu->clidr = 0x0a200023;
2409     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2410     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2411     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2412     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2413 }
2414 
2415 static void cortex_a15_initfn(Object *obj)
2416 {
2417     ARMCPU *cpu = ARM_CPU(obj);
2418 
2419     cpu->dtb_compatible = "arm,cortex-a15";
2420     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2421     set_feature(&cpu->env, ARM_FEATURE_NEON);
2422     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2423     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2424     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2425     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2426     set_feature(&cpu->env, ARM_FEATURE_EL2);
2427     set_feature(&cpu->env, ARM_FEATURE_EL3);
2428     set_feature(&cpu->env, ARM_FEATURE_PMU);
2429     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2430     cpu->midr = 0x412fc0f1;
2431     cpu->reset_fpsid = 0x410430f0;
2432     cpu->isar.mvfr0 = 0x10110222;
2433     cpu->isar.mvfr1 = 0x11111111;
2434     cpu->ctr = 0x8444c004;
2435     cpu->reset_sctlr = 0x00c50078;
2436     cpu->id_pfr0 = 0x00001131;
2437     cpu->id_pfr1 = 0x00011011;
2438     cpu->isar.id_dfr0 = 0x02010555;
2439     cpu->id_afr0 = 0x00000000;
2440     cpu->isar.id_mmfr0 = 0x10201105;
2441     cpu->isar.id_mmfr1 = 0x20000000;
2442     cpu->isar.id_mmfr2 = 0x01240000;
2443     cpu->isar.id_mmfr3 = 0x02102211;
2444     cpu->isar.id_isar0 = 0x02101110;
2445     cpu->isar.id_isar1 = 0x13112111;
2446     cpu->isar.id_isar2 = 0x21232041;
2447     cpu->isar.id_isar3 = 0x11112131;
2448     cpu->isar.id_isar4 = 0x10011142;
2449     cpu->isar.dbgdidr = 0x3515f021;
2450     cpu->clidr = 0x0a200023;
2451     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2452     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2453     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2454     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2455 }
2456 
2457 static void ti925t_initfn(Object *obj)
2458 {
2459     ARMCPU *cpu = ARM_CPU(obj);
2460     set_feature(&cpu->env, ARM_FEATURE_V4T);
2461     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2462     cpu->midr = ARM_CPUID_TI925T;
2463     cpu->ctr = 0x5109149;
2464     cpu->reset_sctlr = 0x00000070;
2465 }
2466 
2467 static void sa1100_initfn(Object *obj)
2468 {
2469     ARMCPU *cpu = ARM_CPU(obj);
2470 
2471     cpu->dtb_compatible = "intel,sa1100";
2472     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2473     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2474     cpu->midr = 0x4401A11B;
2475     cpu->reset_sctlr = 0x00000070;
2476 }
2477 
2478 static void sa1110_initfn(Object *obj)
2479 {
2480     ARMCPU *cpu = ARM_CPU(obj);
2481     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2482     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2483     cpu->midr = 0x6901B119;
2484     cpu->reset_sctlr = 0x00000070;
2485 }
2486 
2487 static void pxa250_initfn(Object *obj)
2488 {
2489     ARMCPU *cpu = ARM_CPU(obj);
2490 
2491     cpu->dtb_compatible = "marvell,xscale";
2492     set_feature(&cpu->env, ARM_FEATURE_V5);
2493     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2494     cpu->midr = 0x69052100;
2495     cpu->ctr = 0xd172172;
2496     cpu->reset_sctlr = 0x00000078;
2497 }
2498 
2499 static void pxa255_initfn(Object *obj)
2500 {
2501     ARMCPU *cpu = ARM_CPU(obj);
2502 
2503     cpu->dtb_compatible = "marvell,xscale";
2504     set_feature(&cpu->env, ARM_FEATURE_V5);
2505     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2506     cpu->midr = 0x69052d00;
2507     cpu->ctr = 0xd172172;
2508     cpu->reset_sctlr = 0x00000078;
2509 }
2510 
2511 static void pxa260_initfn(Object *obj)
2512 {
2513     ARMCPU *cpu = ARM_CPU(obj);
2514 
2515     cpu->dtb_compatible = "marvell,xscale";
2516     set_feature(&cpu->env, ARM_FEATURE_V5);
2517     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2518     cpu->midr = 0x69052903;
2519     cpu->ctr = 0xd172172;
2520     cpu->reset_sctlr = 0x00000078;
2521 }
2522 
2523 static void pxa261_initfn(Object *obj)
2524 {
2525     ARMCPU *cpu = ARM_CPU(obj);
2526 
2527     cpu->dtb_compatible = "marvell,xscale";
2528     set_feature(&cpu->env, ARM_FEATURE_V5);
2529     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2530     cpu->midr = 0x69052d05;
2531     cpu->ctr = 0xd172172;
2532     cpu->reset_sctlr = 0x00000078;
2533 }
2534 
2535 static void pxa262_initfn(Object *obj)
2536 {
2537     ARMCPU *cpu = ARM_CPU(obj);
2538 
2539     cpu->dtb_compatible = "marvell,xscale";
2540     set_feature(&cpu->env, ARM_FEATURE_V5);
2541     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2542     cpu->midr = 0x69052d06;
2543     cpu->ctr = 0xd172172;
2544     cpu->reset_sctlr = 0x00000078;
2545 }
2546 
2547 static void pxa270a0_initfn(Object *obj)
2548 {
2549     ARMCPU *cpu = ARM_CPU(obj);
2550 
2551     cpu->dtb_compatible = "marvell,xscale";
2552     set_feature(&cpu->env, ARM_FEATURE_V5);
2553     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2554     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2555     cpu->midr = 0x69054110;
2556     cpu->ctr = 0xd172172;
2557     cpu->reset_sctlr = 0x00000078;
2558 }
2559 
2560 static void pxa270a1_initfn(Object *obj)
2561 {
2562     ARMCPU *cpu = ARM_CPU(obj);
2563 
2564     cpu->dtb_compatible = "marvell,xscale";
2565     set_feature(&cpu->env, ARM_FEATURE_V5);
2566     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2567     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2568     cpu->midr = 0x69054111;
2569     cpu->ctr = 0xd172172;
2570     cpu->reset_sctlr = 0x00000078;
2571 }
2572 
2573 static void pxa270b0_initfn(Object *obj)
2574 {
2575     ARMCPU *cpu = ARM_CPU(obj);
2576 
2577     cpu->dtb_compatible = "marvell,xscale";
2578     set_feature(&cpu->env, ARM_FEATURE_V5);
2579     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2580     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2581     cpu->midr = 0x69054112;
2582     cpu->ctr = 0xd172172;
2583     cpu->reset_sctlr = 0x00000078;
2584 }
2585 
2586 static void pxa270b1_initfn(Object *obj)
2587 {
2588     ARMCPU *cpu = ARM_CPU(obj);
2589 
2590     cpu->dtb_compatible = "marvell,xscale";
2591     set_feature(&cpu->env, ARM_FEATURE_V5);
2592     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2593     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2594     cpu->midr = 0x69054113;
2595     cpu->ctr = 0xd172172;
2596     cpu->reset_sctlr = 0x00000078;
2597 }
2598 
2599 static void pxa270c0_initfn(Object *obj)
2600 {
2601     ARMCPU *cpu = ARM_CPU(obj);
2602 
2603     cpu->dtb_compatible = "marvell,xscale";
2604     set_feature(&cpu->env, ARM_FEATURE_V5);
2605     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2606     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2607     cpu->midr = 0x69054114;
2608     cpu->ctr = 0xd172172;
2609     cpu->reset_sctlr = 0x00000078;
2610 }
2611 
2612 static void pxa270c5_initfn(Object *obj)
2613 {
2614     ARMCPU *cpu = ARM_CPU(obj);
2615 
2616     cpu->dtb_compatible = "marvell,xscale";
2617     set_feature(&cpu->env, ARM_FEATURE_V5);
2618     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2619     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2620     cpu->midr = 0x69054117;
2621     cpu->ctr = 0xd172172;
2622     cpu->reset_sctlr = 0x00000078;
2623 }
2624 
2625 #ifndef TARGET_AARCH64
2626 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2627  * otherwise, a CPU with as many features enabled as our emulation supports.
2628  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2629  * this only needs to handle 32 bits.
2630  */
2631 static void arm_max_initfn(Object *obj)
2632 {
2633     ARMCPU *cpu = ARM_CPU(obj);
2634 
2635     if (kvm_enabled()) {
2636         kvm_arm_set_cpu_features_from_host(cpu);
2637         kvm_arm_add_vcpu_properties(obj);
2638     } else {
2639         cortex_a15_initfn(obj);
2640 
2641         /* old-style VFP short-vector support */
2642         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2643 
2644 #ifdef CONFIG_USER_ONLY
2645         /* We don't set these in system emulation mode for the moment,
2646          * since we don't correctly set (all of) the ID registers to
2647          * advertise them.
2648          */
2649         set_feature(&cpu->env, ARM_FEATURE_V8);
2650         {
2651             uint32_t t;
2652 
2653             t = cpu->isar.id_isar5;
2654             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2655             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2656             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2657             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2658             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2659             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2660             cpu->isar.id_isar5 = t;
2661 
2662             t = cpu->isar.id_isar6;
2663             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2664             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2665             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2666             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2667             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2668             cpu->isar.id_isar6 = t;
2669 
2670             t = cpu->isar.mvfr1;
2671             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2672             cpu->isar.mvfr1 = t;
2673 
2674             t = cpu->isar.mvfr2;
2675             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2676             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2677             cpu->isar.mvfr2 = t;
2678 
2679             t = cpu->isar.id_mmfr3;
2680             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2681             cpu->isar.id_mmfr3 = t;
2682 
2683             t = cpu->isar.id_mmfr4;
2684             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2685             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2686             t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2687             cpu->isar.id_mmfr4 = t;
2688         }
2689 #endif
2690     }
2691 }
2692 #endif
2693 
2694 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2695 
2696 struct ARMCPUInfo {
2697     const char *name;
2698     void (*initfn)(Object *obj);
2699     void (*class_init)(ObjectClass *oc, void *data);
2700 };
2701 
2702 static const ARMCPUInfo arm_cpus[] = {
2703 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2704     { .name = "arm926",      .initfn = arm926_initfn },
2705     { .name = "arm946",      .initfn = arm946_initfn },
2706     { .name = "arm1026",     .initfn = arm1026_initfn },
2707     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2708      * older core than plain "arm1136". In particular this does not
2709      * have the v6K features.
2710      */
2711     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2712     { .name = "arm1136",     .initfn = arm1136_initfn },
2713     { .name = "arm1176",     .initfn = arm1176_initfn },
2714     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2715     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2716                              .class_init = arm_v7m_class_init },
2717     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2718                              .class_init = arm_v7m_class_init },
2719     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2720                              .class_init = arm_v7m_class_init },
2721     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2722                              .class_init = arm_v7m_class_init },
2723     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2724                              .class_init = arm_v7m_class_init },
2725     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2726     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2727     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2728     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2729     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2730     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2731     { .name = "ti925t",      .initfn = ti925t_initfn },
2732     { .name = "sa1100",      .initfn = sa1100_initfn },
2733     { .name = "sa1110",      .initfn = sa1110_initfn },
2734     { .name = "pxa250",      .initfn = pxa250_initfn },
2735     { .name = "pxa255",      .initfn = pxa255_initfn },
2736     { .name = "pxa260",      .initfn = pxa260_initfn },
2737     { .name = "pxa261",      .initfn = pxa261_initfn },
2738     { .name = "pxa262",      .initfn = pxa262_initfn },
2739     /* "pxa270" is an alias for "pxa270-a0" */
2740     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2741     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2742     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2743     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2744     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2745     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2746     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2747 #ifndef TARGET_AARCH64
2748     { .name = "max",         .initfn = arm_max_initfn },
2749 #endif
2750 #ifdef CONFIG_USER_ONLY
2751     { .name = "any",         .initfn = arm_max_initfn },
2752 #endif
2753 #endif
2754     { .name = NULL }
2755 };
2756 
2757 static Property arm_cpu_properties[] = {
2758     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2759     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2760     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2761     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2762                         mp_affinity, ARM64_AFFINITY_INVALID),
2763     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2764     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2765     DEFINE_PROP_END_OF_LIST()
2766 };
2767 
2768 static gchar *arm_gdb_arch_name(CPUState *cs)
2769 {
2770     ARMCPU *cpu = ARM_CPU(cs);
2771     CPUARMState *env = &cpu->env;
2772 
2773     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2774         return g_strdup("iwmmxt");
2775     }
2776     return g_strdup("arm");
2777 }
2778 
2779 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2780 {
2781     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2782     CPUClass *cc = CPU_CLASS(acc);
2783     DeviceClass *dc = DEVICE_CLASS(oc);
2784 
2785     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2786                                     &acc->parent_realize);
2787 
2788     device_class_set_props(dc, arm_cpu_properties);
2789     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2790 
2791     cc->class_by_name = arm_cpu_class_by_name;
2792     cc->has_work = arm_cpu_has_work;
2793     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2794     cc->dump_state = arm_cpu_dump_state;
2795     cc->set_pc = arm_cpu_set_pc;
2796     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2797     cc->gdb_read_register = arm_cpu_gdb_read_register;
2798     cc->gdb_write_register = arm_cpu_gdb_write_register;
2799 #ifndef CONFIG_USER_ONLY
2800     cc->do_interrupt = arm_cpu_do_interrupt;
2801     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2802     cc->asidx_from_attrs = arm_asidx_from_attrs;
2803     cc->vmsd = &vmstate_arm_cpu;
2804     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2805     cc->write_elf64_note = arm_cpu_write_elf64_note;
2806     cc->write_elf32_note = arm_cpu_write_elf32_note;
2807 #endif
2808     cc->gdb_num_core_regs = 26;
2809     cc->gdb_core_xml_file = "arm-core.xml";
2810     cc->gdb_arch_name = arm_gdb_arch_name;
2811     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2812     cc->gdb_stop_before_watchpoint = true;
2813     cc->disas_set_info = arm_disas_set_info;
2814 #ifdef CONFIG_TCG
2815     cc->tcg_initialize = arm_translate_init;
2816     cc->tlb_fill = arm_cpu_tlb_fill;
2817     cc->debug_excp_handler = arm_debug_excp_handler;
2818     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2819 #if !defined(CONFIG_USER_ONLY)
2820     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2821     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2822     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2823 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2824 #endif
2825 }
2826 
2827 #ifdef CONFIG_KVM
2828 static void arm_host_initfn(Object *obj)
2829 {
2830     ARMCPU *cpu = ARM_CPU(obj);
2831 
2832     kvm_arm_set_cpu_features_from_host(cpu);
2833     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2834         aarch64_add_sve_properties(obj);
2835     }
2836     kvm_arm_add_vcpu_properties(obj);
2837     arm_cpu_post_init(obj);
2838 }
2839 
2840 static const TypeInfo host_arm_cpu_type_info = {
2841     .name = TYPE_ARM_HOST_CPU,
2842 #ifdef TARGET_AARCH64
2843     .parent = TYPE_AARCH64_CPU,
2844 #else
2845     .parent = TYPE_ARM_CPU,
2846 #endif
2847     .instance_init = arm_host_initfn,
2848 };
2849 
2850 #endif
2851 
2852 static void arm_cpu_instance_init(Object *obj)
2853 {
2854     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2855 
2856     acc->info->initfn(obj);
2857     arm_cpu_post_init(obj);
2858 }
2859 
2860 static void cpu_register_class_init(ObjectClass *oc, void *data)
2861 {
2862     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2863 
2864     acc->info = data;
2865 }
2866 
2867 static void cpu_register(const ARMCPUInfo *info)
2868 {
2869     TypeInfo type_info = {
2870         .parent = TYPE_ARM_CPU,
2871         .instance_size = sizeof(ARMCPU),
2872         .instance_init = arm_cpu_instance_init,
2873         .class_size = sizeof(ARMCPUClass),
2874         .class_init = info->class_init ?: cpu_register_class_init,
2875         .class_data = (void *)info,
2876     };
2877 
2878     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2879     type_register(&type_info);
2880     g_free((void *)type_info.name);
2881 }
2882 
2883 static const TypeInfo arm_cpu_type_info = {
2884     .name = TYPE_ARM_CPU,
2885     .parent = TYPE_CPU,
2886     .instance_size = sizeof(ARMCPU),
2887     .instance_init = arm_cpu_initfn,
2888     .instance_finalize = arm_cpu_finalizefn,
2889     .abstract = true,
2890     .class_size = sizeof(ARMCPUClass),
2891     .class_init = arm_cpu_class_init,
2892 };
2893 
2894 static const TypeInfo idau_interface_type_info = {
2895     .name = TYPE_IDAU_INTERFACE,
2896     .parent = TYPE_INTERFACE,
2897     .class_size = sizeof(IDAUInterfaceClass),
2898 };
2899 
2900 static void arm_cpu_register_types(void)
2901 {
2902     const ARMCPUInfo *info = arm_cpus;
2903 
2904     type_register_static(&arm_cpu_type_info);
2905     type_register_static(&idau_interface_type_info);
2906 
2907     while (info->name) {
2908         cpu_register(info);
2909         info++;
2910     }
2911 
2912 #ifdef CONFIG_KVM
2913     type_register_static(&host_arm_cpu_type_info);
2914 #endif
2915 }
2916 
2917 type_init(arm_cpu_register_types)
2918