xref: /openbmc/qemu/target/arm/cpu.c (revision 49d755d0)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qapi/error.h"
24 #include "qapi/visitor.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 #include "disas/capstone.h"
37 #include "fpu/softfloat.h"
38 
39 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
40 {
41     ARMCPU *cpu = ARM_CPU(cs);
42     CPUARMState *env = &cpu->env;
43 
44     if (is_a64(env)) {
45         env->pc = value;
46         env->thumb = 0;
47     } else {
48         env->regs[15] = value & ~1;
49         env->thumb = value & 1;
50     }
51 }
52 
53 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
54 {
55     ARMCPU *cpu = ARM_CPU(cs);
56     CPUARMState *env = &cpu->env;
57 
58     /*
59      * It's OK to look at env for the current mode here, because it's
60      * never possible for an AArch64 TB to chain to an AArch32 TB.
61      */
62     if (is_a64(env)) {
63         env->pc = tb->pc;
64     } else {
65         env->regs[15] = tb->pc;
66     }
67 }
68 
69 static bool arm_cpu_has_work(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72 
73     return (cpu->power_state != PSCI_OFF)
74         && cs->interrupt_request &
75         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
76          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
77          | CPU_INTERRUPT_EXITTB);
78 }
79 
80 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
81                                  void *opaque)
82 {
83     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
84 
85     entry->hook = hook;
86     entry->opaque = opaque;
87 
88     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
89 }
90 
91 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
92                                  void *opaque)
93 {
94     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 
96     entry->hook = hook;
97     entry->opaque = opaque;
98 
99     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
100 }
101 
102 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
103 {
104     /* Reset a single ARMCPRegInfo register */
105     ARMCPRegInfo *ri = value;
106     ARMCPU *cpu = opaque;
107 
108     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
109         return;
110     }
111 
112     if (ri->resetfn) {
113         ri->resetfn(&cpu->env, ri);
114         return;
115     }
116 
117     /* A zero offset is never possible as it would be regs[0]
118      * so we use it to indicate that reset is being handled elsewhere.
119      * This is basically only used for fields in non-core coprocessors
120      * (like the pxa2xx ones).
121      */
122     if (!ri->fieldoffset) {
123         return;
124     }
125 
126     if (cpreg_field_is_64bit(ri)) {
127         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
128     } else {
129         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
130     }
131 }
132 
133 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
134 {
135     /* Purely an assertion check: we've already done reset once,
136      * so now check that running the reset for the cpreg doesn't
137      * change its value. This traps bugs where two different cpregs
138      * both try to reset the same state field but to different values.
139      */
140     ARMCPRegInfo *ri = value;
141     ARMCPU *cpu = opaque;
142     uint64_t oldvalue, newvalue;
143 
144     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
145         return;
146     }
147 
148     oldvalue = read_raw_cp_reg(&cpu->env, ri);
149     cp_reg_reset(key, value, opaque);
150     newvalue = read_raw_cp_reg(&cpu->env, ri);
151     assert(oldvalue == newvalue);
152 }
153 
154 /* CPUClass::reset() */
155 static void arm_cpu_reset(CPUState *s)
156 {
157     ARMCPU *cpu = ARM_CPU(s);
158     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
159     CPUARMState *env = &cpu->env;
160 
161     acc->parent_reset(s);
162 
163     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
164 
165     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
166     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
167 
168     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
169     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
170     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
171     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
172 
173     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
174     s->halted = cpu->start_powered_off;
175 
176     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
177         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
178     }
179 
180     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
181         /* 64 bit CPUs always start in 64 bit mode */
182         env->aarch64 = 1;
183 #if defined(CONFIG_USER_ONLY)
184         env->pstate = PSTATE_MODE_EL0t;
185         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
186         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
187         /* Enable all PAC keys.  */
188         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
189                                   SCTLR_EnDA | SCTLR_EnDB);
190         /* Enable all PAC instructions */
191         env->cp15.hcr_el2 |= HCR_API;
192         env->cp15.scr_el3 |= SCR_API;
193         /* and to the FP/Neon instructions */
194         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195         /* and to the SVE instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197         env->cp15.cptr_el[3] |= CPTR_EZ;
198         /* with maximum vector length */
199         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
200         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
201         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          */
207         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209         /* Reset into the highest available EL */
210         if (arm_feature(env, ARM_FEATURE_EL3)) {
211             env->pstate = PSTATE_MODE_EL3h;
212         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213             env->pstate = PSTATE_MODE_EL2h;
214         } else {
215             env->pstate = PSTATE_MODE_EL1h;
216         }
217         env->pc = cpu->rvbar;
218 #endif
219     } else {
220 #if defined(CONFIG_USER_ONLY)
221         /* Userspace expects access to cp10 and cp11 for FP/Neon */
222         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224     }
225 
226 #if defined(CONFIG_USER_ONLY)
227     env->uncached_cpsr = ARM_CPU_MODE_USR;
228     /* For user mode we must enable access to coprocessors */
229     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->cp15.c15_cpar = 3;
232     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233         env->cp15.c15_cpar = 1;
234     }
235 #else
236 
237     /*
238      * If the highest available EL is EL2, AArch32 will start in Hyp
239      * mode; otherwise it starts in SVC. Note that if we start in
240      * AArch64 then these values in the uncached_cpsr will be ignored.
241      */
242     if (arm_feature(env, ARM_FEATURE_EL2) &&
243         !arm_feature(env, ARM_FEATURE_EL3)) {
244         env->uncached_cpsr = ARM_CPU_MODE_HYP;
245     } else {
246         env->uncached_cpsr = ARM_CPU_MODE_SVC;
247     }
248     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249 
250     if (arm_feature(env, ARM_FEATURE_M)) {
251         uint32_t initial_msp; /* Loaded from 0x0 */
252         uint32_t initial_pc; /* Loaded from 0x4 */
253         uint8_t *rom;
254         uint32_t vecbase;
255 
256         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257             env->v7m.secure = true;
258         } else {
259             /* This bit resets to 0 if security is supported, but 1 if
260              * it is not. The bit is not present in v7M, but we set it
261              * here so we can avoid having to make checks on it conditional
262              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263              */
264             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265         }
266 
267         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
268          * that it resets to 1, so QEMU always does that rather than making
269          * it dependent on CPU model. In v8M it is RES1.
270          */
271         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
272         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
273         if (arm_feature(env, ARM_FEATURE_V8)) {
274             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
275             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
276             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
277         }
278         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
279             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
280             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
281         }
282 
283         if (arm_feature(env, ARM_FEATURE_VFP)) {
284             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
285             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
286                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
287         }
288         /* Unlike A/R profile, M profile defines the reset LR value */
289         env->regs[14] = 0xffffffff;
290 
291         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
292 
293         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
294         vecbase = env->v7m.vecbase[env->v7m.secure];
295         rom = rom_ptr(vecbase, 8);
296         if (rom) {
297             /* Address zero is covered by ROM which hasn't yet been
298              * copied into physical memory.
299              */
300             initial_msp = ldl_p(rom);
301             initial_pc = ldl_p(rom + 4);
302         } else {
303             /* Address zero not covered by a ROM blob, or the ROM blob
304              * is in non-modifiable memory and this is a second reset after
305              * it got copied into memory. In the latter case, rom_ptr
306              * will return a NULL pointer and we should use ldl_phys instead.
307              */
308             initial_msp = ldl_phys(s->as, vecbase);
309             initial_pc = ldl_phys(s->as, vecbase + 4);
310         }
311 
312         env->regs[13] = initial_msp & 0xFFFFFFFC;
313         env->regs[15] = initial_pc & ~1;
314         env->thumb = initial_pc & 1;
315     }
316 
317     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
318      * executing as AArch32 then check if highvecs are enabled and
319      * adjust the PC accordingly.
320      */
321     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
322         env->regs[15] = 0xFFFF0000;
323     }
324 
325     /* M profile requires that reset clears the exclusive monitor;
326      * A profile does not, but clearing it makes more sense than having it
327      * set with an exclusive access on address zero.
328      */
329     arm_clear_exclusive(env);
330 
331     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
332 #endif
333 
334     if (arm_feature(env, ARM_FEATURE_PMSA)) {
335         if (cpu->pmsav7_dregion > 0) {
336             if (arm_feature(env, ARM_FEATURE_V8)) {
337                 memset(env->pmsav8.rbar[M_REG_NS], 0,
338                        sizeof(*env->pmsav8.rbar[M_REG_NS])
339                        * cpu->pmsav7_dregion);
340                 memset(env->pmsav8.rlar[M_REG_NS], 0,
341                        sizeof(*env->pmsav8.rlar[M_REG_NS])
342                        * cpu->pmsav7_dregion);
343                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
344                     memset(env->pmsav8.rbar[M_REG_S], 0,
345                            sizeof(*env->pmsav8.rbar[M_REG_S])
346                            * cpu->pmsav7_dregion);
347                     memset(env->pmsav8.rlar[M_REG_S], 0,
348                            sizeof(*env->pmsav8.rlar[M_REG_S])
349                            * cpu->pmsav7_dregion);
350                 }
351             } else if (arm_feature(env, ARM_FEATURE_V7)) {
352                 memset(env->pmsav7.drbar, 0,
353                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
354                 memset(env->pmsav7.drsr, 0,
355                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
356                 memset(env->pmsav7.dracr, 0,
357                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
358             }
359         }
360         env->pmsav7.rnr[M_REG_NS] = 0;
361         env->pmsav7.rnr[M_REG_S] = 0;
362         env->pmsav8.mair0[M_REG_NS] = 0;
363         env->pmsav8.mair0[M_REG_S] = 0;
364         env->pmsav8.mair1[M_REG_NS] = 0;
365         env->pmsav8.mair1[M_REG_S] = 0;
366     }
367 
368     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
369         if (cpu->sau_sregion > 0) {
370             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
371             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
372         }
373         env->sau.rnr = 0;
374         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
375          * the Cortex-M33 does.
376          */
377         env->sau.ctrl = 0;
378     }
379 
380     set_flush_to_zero(1, &env->vfp.standard_fp_status);
381     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
382     set_default_nan_mode(1, &env->vfp.standard_fp_status);
383     set_float_detect_tininess(float_tininess_before_rounding,
384                               &env->vfp.fp_status);
385     set_float_detect_tininess(float_tininess_before_rounding,
386                               &env->vfp.standard_fp_status);
387     set_float_detect_tininess(float_tininess_before_rounding,
388                               &env->vfp.fp_status_f16);
389 #ifndef CONFIG_USER_ONLY
390     if (kvm_enabled()) {
391         kvm_arm_reset_vcpu(cpu);
392     }
393 #endif
394 
395     hw_breakpoint_update_all(cpu);
396     hw_watchpoint_update_all(cpu);
397 }
398 
399 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
400 {
401     CPUClass *cc = CPU_GET_CLASS(cs);
402     CPUARMState *env = cs->env_ptr;
403     uint32_t cur_el = arm_current_el(env);
404     bool secure = arm_is_secure(env);
405     uint32_t target_el;
406     uint32_t excp_idx;
407     bool ret = false;
408 
409     if (interrupt_request & CPU_INTERRUPT_FIQ) {
410         excp_idx = EXCP_FIQ;
411         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
412         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
413             cs->exception_index = excp_idx;
414             env->exception.target_el = target_el;
415             cc->do_interrupt(cs);
416             ret = true;
417         }
418     }
419     if (interrupt_request & CPU_INTERRUPT_HARD) {
420         excp_idx = EXCP_IRQ;
421         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
422         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
423             cs->exception_index = excp_idx;
424             env->exception.target_el = target_el;
425             cc->do_interrupt(cs);
426             ret = true;
427         }
428     }
429     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
430         excp_idx = EXCP_VIRQ;
431         target_el = 1;
432         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
433             cs->exception_index = excp_idx;
434             env->exception.target_el = target_el;
435             cc->do_interrupt(cs);
436             ret = true;
437         }
438     }
439     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
440         excp_idx = EXCP_VFIQ;
441         target_el = 1;
442         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
443             cs->exception_index = excp_idx;
444             env->exception.target_el = target_el;
445             cc->do_interrupt(cs);
446             ret = true;
447         }
448     }
449 
450     return ret;
451 }
452 
453 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
454 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
455 {
456     CPUClass *cc = CPU_GET_CLASS(cs);
457     ARMCPU *cpu = ARM_CPU(cs);
458     CPUARMState *env = &cpu->env;
459     bool ret = false;
460 
461     /* ARMv7-M interrupt masking works differently than -A or -R.
462      * There is no FIQ/IRQ distinction. Instead of I and F bits
463      * masking FIQ and IRQ interrupts, an exception is taken only
464      * if it is higher priority than the current execution priority
465      * (which depends on state like BASEPRI, FAULTMASK and the
466      * currently active exception).
467      */
468     if (interrupt_request & CPU_INTERRUPT_HARD
469         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
470         cs->exception_index = EXCP_IRQ;
471         cc->do_interrupt(cs);
472         ret = true;
473     }
474     return ret;
475 }
476 #endif
477 
478 void arm_cpu_update_virq(ARMCPU *cpu)
479 {
480     /*
481      * Update the interrupt level for VIRQ, which is the logical OR of
482      * the HCR_EL2.VI bit and the input line level from the GIC.
483      */
484     CPUARMState *env = &cpu->env;
485     CPUState *cs = CPU(cpu);
486 
487     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
488         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
489 
490     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
491         if (new_state) {
492             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
493         } else {
494             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
495         }
496     }
497 }
498 
499 void arm_cpu_update_vfiq(ARMCPU *cpu)
500 {
501     /*
502      * Update the interrupt level for VFIQ, which is the logical OR of
503      * the HCR_EL2.VF bit and the input line level from the GIC.
504      */
505     CPUARMState *env = &cpu->env;
506     CPUState *cs = CPU(cpu);
507 
508     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
509         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
510 
511     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
512         if (new_state) {
513             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
514         } else {
515             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
516         }
517     }
518 }
519 
520 #ifndef CONFIG_USER_ONLY
521 static void arm_cpu_set_irq(void *opaque, int irq, int level)
522 {
523     ARMCPU *cpu = opaque;
524     CPUARMState *env = &cpu->env;
525     CPUState *cs = CPU(cpu);
526     static const int mask[] = {
527         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
528         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
529         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
530         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
531     };
532 
533     if (level) {
534         env->irq_line_state |= mask[irq];
535     } else {
536         env->irq_line_state &= ~mask[irq];
537     }
538 
539     switch (irq) {
540     case ARM_CPU_VIRQ:
541         assert(arm_feature(env, ARM_FEATURE_EL2));
542         arm_cpu_update_virq(cpu);
543         break;
544     case ARM_CPU_VFIQ:
545         assert(arm_feature(env, ARM_FEATURE_EL2));
546         arm_cpu_update_vfiq(cpu);
547         break;
548     case ARM_CPU_IRQ:
549     case ARM_CPU_FIQ:
550         if (level) {
551             cpu_interrupt(cs, mask[irq]);
552         } else {
553             cpu_reset_interrupt(cs, mask[irq]);
554         }
555         break;
556     default:
557         g_assert_not_reached();
558     }
559 }
560 
561 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
562 {
563 #ifdef CONFIG_KVM
564     ARMCPU *cpu = opaque;
565     CPUARMState *env = &cpu->env;
566     CPUState *cs = CPU(cpu);
567     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
568     uint32_t linestate_bit;
569 
570     switch (irq) {
571     case ARM_CPU_IRQ:
572         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
573         linestate_bit = CPU_INTERRUPT_HARD;
574         break;
575     case ARM_CPU_FIQ:
576         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
577         linestate_bit = CPU_INTERRUPT_FIQ;
578         break;
579     default:
580         g_assert_not_reached();
581     }
582 
583     if (level) {
584         env->irq_line_state |= linestate_bit;
585     } else {
586         env->irq_line_state &= ~linestate_bit;
587     }
588 
589     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
590     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
591 #endif
592 }
593 
594 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
595 {
596     ARMCPU *cpu = ARM_CPU(cs);
597     CPUARMState *env = &cpu->env;
598 
599     cpu_synchronize_state(cs);
600     return arm_cpu_data_is_big_endian(env);
601 }
602 
603 #endif
604 
605 static inline void set_feature(CPUARMState *env, int feature)
606 {
607     env->features |= 1ULL << feature;
608 }
609 
610 static inline void unset_feature(CPUARMState *env, int feature)
611 {
612     env->features &= ~(1ULL << feature);
613 }
614 
615 static int
616 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
617 {
618   return print_insn_arm(pc | 1, info);
619 }
620 
621 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
622 {
623     ARMCPU *ac = ARM_CPU(cpu);
624     CPUARMState *env = &ac->env;
625     bool sctlr_b;
626 
627     if (is_a64(env)) {
628         /* We might not be compiled with the A64 disassembler
629          * because it needs a C++ compiler. Leave print_insn
630          * unset in this case to use the caller default behaviour.
631          */
632 #if defined(CONFIG_ARM_A64_DIS)
633         info->print_insn = print_insn_arm_a64;
634 #endif
635         info->cap_arch = CS_ARCH_ARM64;
636         info->cap_insn_unit = 4;
637         info->cap_insn_split = 4;
638     } else {
639         int cap_mode;
640         if (env->thumb) {
641             info->print_insn = print_insn_thumb1;
642             info->cap_insn_unit = 2;
643             info->cap_insn_split = 4;
644             cap_mode = CS_MODE_THUMB;
645         } else {
646             info->print_insn = print_insn_arm;
647             info->cap_insn_unit = 4;
648             info->cap_insn_split = 4;
649             cap_mode = CS_MODE_ARM;
650         }
651         if (arm_feature(env, ARM_FEATURE_V8)) {
652             cap_mode |= CS_MODE_V8;
653         }
654         if (arm_feature(env, ARM_FEATURE_M)) {
655             cap_mode |= CS_MODE_MCLASS;
656         }
657         info->cap_arch = CS_ARCH_ARM;
658         info->cap_mode = cap_mode;
659     }
660 
661     sctlr_b = arm_sctlr_b(env);
662     if (bswap_code(sctlr_b)) {
663 #ifdef TARGET_WORDS_BIGENDIAN
664         info->endian = BFD_ENDIAN_LITTLE;
665 #else
666         info->endian = BFD_ENDIAN_BIG;
667 #endif
668     }
669     info->flags &= ~INSN_ARM_BE32;
670 #ifndef CONFIG_USER_ONLY
671     if (sctlr_b) {
672         info->flags |= INSN_ARM_BE32;
673     }
674 #endif
675 }
676 
677 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
678 {
679     uint32_t Aff1 = idx / clustersz;
680     uint32_t Aff0 = idx % clustersz;
681     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
682 }
683 
684 static void cpreg_hashtable_data_destroy(gpointer data)
685 {
686     /*
687      * Destroy function for cpu->cp_regs hashtable data entries.
688      * We must free the name string because it was g_strdup()ed in
689      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
690      * from r->name because we know we definitely allocated it.
691      */
692     ARMCPRegInfo *r = data;
693 
694     g_free((void *)r->name);
695     g_free(r);
696 }
697 
698 static void arm_cpu_initfn(Object *obj)
699 {
700     CPUState *cs = CPU(obj);
701     ARMCPU *cpu = ARM_CPU(obj);
702 
703     cs->env_ptr = &cpu->env;
704     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
705                                          g_free, cpreg_hashtable_data_destroy);
706 
707     QLIST_INIT(&cpu->pre_el_change_hooks);
708     QLIST_INIT(&cpu->el_change_hooks);
709 
710 #ifndef CONFIG_USER_ONLY
711     /* Our inbound IRQ and FIQ lines */
712     if (kvm_enabled()) {
713         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
714          * the same interface as non-KVM CPUs.
715          */
716         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
717     } else {
718         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
719     }
720 
721     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
722                        ARRAY_SIZE(cpu->gt_timer_outputs));
723 
724     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
725                              "gicv3-maintenance-interrupt", 1);
726     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
727                              "pmu-interrupt", 1);
728 #endif
729 
730     /* DTB consumers generally don't in fact care what the 'compatible'
731      * string is, so always provide some string and trust that a hypothetical
732      * picky DTB consumer will also provide a helpful error message.
733      */
734     cpu->dtb_compatible = "qemu,unknown";
735     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
736     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
737 
738     if (tcg_enabled()) {
739         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
740     }
741 }
742 
743 static Property arm_cpu_reset_cbar_property =
744             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
745 
746 static Property arm_cpu_reset_hivecs_property =
747             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
748 
749 static Property arm_cpu_rvbar_property =
750             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
751 
752 static Property arm_cpu_has_el2_property =
753             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
754 
755 static Property arm_cpu_has_el3_property =
756             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
757 
758 static Property arm_cpu_cfgend_property =
759             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
760 
761 /* use property name "pmu" to match other archs and virt tools */
762 static Property arm_cpu_has_pmu_property =
763             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
764 
765 static Property arm_cpu_has_mpu_property =
766             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
767 
768 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
769  * because the CPU initfn will have already set cpu->pmsav7_dregion to
770  * the right value for that particular CPU type, and we don't want
771  * to override that with an incorrect constant value.
772  */
773 static Property arm_cpu_pmsav7_dregion_property =
774             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
775                                            pmsav7_dregion,
776                                            qdev_prop_uint32, uint32_t);
777 
778 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
779                                void *opaque, Error **errp)
780 {
781     ARMCPU *cpu = ARM_CPU(obj);
782 
783     visit_type_uint32(v, name, &cpu->init_svtor, errp);
784 }
785 
786 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
787                                void *opaque, Error **errp)
788 {
789     ARMCPU *cpu = ARM_CPU(obj);
790 
791     visit_type_uint32(v, name, &cpu->init_svtor, errp);
792 }
793 
794 void arm_cpu_post_init(Object *obj)
795 {
796     ARMCPU *cpu = ARM_CPU(obj);
797 
798     /* M profile implies PMSA. We have to do this here rather than
799      * in realize with the other feature-implication checks because
800      * we look at the PMSA bit to see if we should add some properties.
801      */
802     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
803         set_feature(&cpu->env, ARM_FEATURE_PMSA);
804     }
805 
806     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
807         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
808         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
809                                  &error_abort);
810     }
811 
812     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
813         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
814                                  &error_abort);
815     }
816 
817     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
818         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
819                                  &error_abort);
820     }
821 
822     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
823         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
824          * prevent "has_el3" from existing on CPUs which cannot support EL3.
825          */
826         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
827                                  &error_abort);
828 
829 #ifndef CONFIG_USER_ONLY
830         object_property_add_link(obj, "secure-memory",
831                                  TYPE_MEMORY_REGION,
832                                  (Object **)&cpu->secure_memory,
833                                  qdev_prop_allow_set_link_before_realize,
834                                  OBJ_PROP_LINK_STRONG,
835                                  &error_abort);
836 #endif
837     }
838 
839     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
840         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
841                                  &error_abort);
842     }
843 
844     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
845         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
846                                  &error_abort);
847     }
848 
849     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
850         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
851                                  &error_abort);
852         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
853             qdev_property_add_static(DEVICE(obj),
854                                      &arm_cpu_pmsav7_dregion_property,
855                                      &error_abort);
856         }
857     }
858 
859     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
860         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
861                                  qdev_prop_allow_set_link_before_realize,
862                                  OBJ_PROP_LINK_STRONG,
863                                  &error_abort);
864         /*
865          * M profile: initial value of the Secure VTOR. We can't just use
866          * a simple DEFINE_PROP_UINT32 for this because we want to permit
867          * the property to be set after realize.
868          */
869         object_property_add(obj, "init-svtor", "uint32",
870                             arm_get_init_svtor, arm_set_init_svtor,
871                             NULL, NULL, &error_abort);
872     }
873 
874     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
875                              &error_abort);
876 }
877 
878 static void arm_cpu_finalizefn(Object *obj)
879 {
880     ARMCPU *cpu = ARM_CPU(obj);
881     ARMELChangeHook *hook, *next;
882 
883     g_hash_table_destroy(cpu->cp_regs);
884 
885     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
886         QLIST_REMOVE(hook, node);
887         g_free(hook);
888     }
889     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
890         QLIST_REMOVE(hook, node);
891         g_free(hook);
892     }
893 #ifndef CONFIG_USER_ONLY
894     if (cpu->pmu_timer) {
895         timer_del(cpu->pmu_timer);
896         timer_deinit(cpu->pmu_timer);
897         timer_free(cpu->pmu_timer);
898     }
899 #endif
900 }
901 
902 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
903 {
904     CPUState *cs = CPU(dev);
905     ARMCPU *cpu = ARM_CPU(dev);
906     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
907     CPUARMState *env = &cpu->env;
908     int pagebits;
909     Error *local_err = NULL;
910     bool no_aa32 = false;
911 
912     /* If we needed to query the host kernel for the CPU features
913      * then it's possible that might have failed in the initfn, but
914      * this is the first point where we can report it.
915      */
916     if (cpu->host_cpu_probe_failed) {
917         if (!kvm_enabled()) {
918             error_setg(errp, "The 'host' CPU type can only be used with KVM");
919         } else {
920             error_setg(errp, "Failed to retrieve host CPU features");
921         }
922         return;
923     }
924 
925 #ifndef CONFIG_USER_ONLY
926     /* The NVIC and M-profile CPU are two halves of a single piece of
927      * hardware; trying to use one without the other is a command line
928      * error and will result in segfaults if not caught here.
929      */
930     if (arm_feature(env, ARM_FEATURE_M)) {
931         if (!env->nvic) {
932             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
933             return;
934         }
935     } else {
936         if (env->nvic) {
937             error_setg(errp, "This board can only be used with Cortex-M CPUs");
938             return;
939         }
940     }
941 
942     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
943                                            arm_gt_ptimer_cb, cpu);
944     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
945                                            arm_gt_vtimer_cb, cpu);
946     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
947                                           arm_gt_htimer_cb, cpu);
948     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
949                                           arm_gt_stimer_cb, cpu);
950 #endif
951 
952     cpu_exec_realizefn(cs, &local_err);
953     if (local_err != NULL) {
954         error_propagate(errp, local_err);
955         return;
956     }
957 
958     /* Some features automatically imply others: */
959     if (arm_feature(env, ARM_FEATURE_V8)) {
960         if (arm_feature(env, ARM_FEATURE_M)) {
961             set_feature(env, ARM_FEATURE_V7);
962         } else {
963             set_feature(env, ARM_FEATURE_V7VE);
964         }
965     }
966 
967     /*
968      * There exist AArch64 cpus without AArch32 support.  When KVM
969      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
970      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
971      */
972     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
973         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
974     }
975 
976     if (arm_feature(env, ARM_FEATURE_V7VE)) {
977         /* v7 Virtualization Extensions. In real hardware this implies
978          * EL2 and also the presence of the Security Extensions.
979          * For QEMU, for backwards-compatibility we implement some
980          * CPUs or CPU configs which have no actual EL2 or EL3 but do
981          * include the various other features that V7VE implies.
982          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
983          * Security Extensions is ARM_FEATURE_EL3.
984          */
985         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
986         set_feature(env, ARM_FEATURE_LPAE);
987         set_feature(env, ARM_FEATURE_V7);
988     }
989     if (arm_feature(env, ARM_FEATURE_V7)) {
990         set_feature(env, ARM_FEATURE_VAPA);
991         set_feature(env, ARM_FEATURE_THUMB2);
992         set_feature(env, ARM_FEATURE_MPIDR);
993         if (!arm_feature(env, ARM_FEATURE_M)) {
994             set_feature(env, ARM_FEATURE_V6K);
995         } else {
996             set_feature(env, ARM_FEATURE_V6);
997         }
998 
999         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1000          * non-EL3 configs. This is needed by some legacy boards.
1001          */
1002         set_feature(env, ARM_FEATURE_VBAR);
1003     }
1004     if (arm_feature(env, ARM_FEATURE_V6K)) {
1005         set_feature(env, ARM_FEATURE_V6);
1006         set_feature(env, ARM_FEATURE_MVFR);
1007     }
1008     if (arm_feature(env, ARM_FEATURE_V6)) {
1009         set_feature(env, ARM_FEATURE_V5);
1010         if (!arm_feature(env, ARM_FEATURE_M)) {
1011             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1012             set_feature(env, ARM_FEATURE_AUXCR);
1013         }
1014     }
1015     if (arm_feature(env, ARM_FEATURE_V5)) {
1016         set_feature(env, ARM_FEATURE_V4T);
1017     }
1018     if (arm_feature(env, ARM_FEATURE_VFP4)) {
1019         set_feature(env, ARM_FEATURE_VFP3);
1020     }
1021     if (arm_feature(env, ARM_FEATURE_VFP3)) {
1022         set_feature(env, ARM_FEATURE_VFP);
1023     }
1024     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1025         set_feature(env, ARM_FEATURE_V7MP);
1026         set_feature(env, ARM_FEATURE_PXN);
1027     }
1028     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1029         set_feature(env, ARM_FEATURE_CBAR);
1030     }
1031     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1032         !arm_feature(env, ARM_FEATURE_M)) {
1033         set_feature(env, ARM_FEATURE_THUMB_DSP);
1034     }
1035 
1036     /*
1037      * We rely on no XScale CPU having VFP so we can use the same bits in the
1038      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1039      */
1040     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1041              arm_feature(env, ARM_FEATURE_XSCALE)));
1042 
1043     if (arm_feature(env, ARM_FEATURE_V7) &&
1044         !arm_feature(env, ARM_FEATURE_M) &&
1045         !arm_feature(env, ARM_FEATURE_PMSA)) {
1046         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1047          * can use 4K pages.
1048          */
1049         pagebits = 12;
1050     } else {
1051         /* For CPUs which might have tiny 1K pages, or which have an
1052          * MPU and might have small region sizes, stick with 1K pages.
1053          */
1054         pagebits = 10;
1055     }
1056     if (!set_preferred_target_page_bits(pagebits)) {
1057         /* This can only ever happen for hotplugging a CPU, or if
1058          * the board code incorrectly creates a CPU which it has
1059          * promised via minimum_page_size that it will not.
1060          */
1061         error_setg(errp, "This CPU requires a smaller page size than the "
1062                    "system is using");
1063         return;
1064     }
1065 
1066     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1067      * We don't support setting cluster ID ([16..23]) (known as Aff2
1068      * in later ARM ARM versions), or any of the higher affinity level fields,
1069      * so these bits always RAZ.
1070      */
1071     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1072         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1073                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1074     }
1075 
1076     if (cpu->reset_hivecs) {
1077             cpu->reset_sctlr |= (1 << 13);
1078     }
1079 
1080     if (cpu->cfgend) {
1081         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1082             cpu->reset_sctlr |= SCTLR_EE;
1083         } else {
1084             cpu->reset_sctlr |= SCTLR_B;
1085         }
1086     }
1087 
1088     if (!cpu->has_el3) {
1089         /* If the has_el3 CPU property is disabled then we need to disable the
1090          * feature.
1091          */
1092         unset_feature(env, ARM_FEATURE_EL3);
1093 
1094         /* Disable the security extension feature bits in the processor feature
1095          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1096          */
1097         cpu->id_pfr1 &= ~0xf0;
1098         cpu->isar.id_aa64pfr0 &= ~0xf000;
1099     }
1100 
1101     if (!cpu->has_el2) {
1102         unset_feature(env, ARM_FEATURE_EL2);
1103     }
1104 
1105     if (!cpu->has_pmu) {
1106         unset_feature(env, ARM_FEATURE_PMU);
1107     }
1108     if (arm_feature(env, ARM_FEATURE_PMU)) {
1109         pmu_init(cpu);
1110 
1111         if (!kvm_enabled()) {
1112             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1113             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1114         }
1115 
1116 #ifndef CONFIG_USER_ONLY
1117         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1118                 cpu);
1119 #endif
1120     } else {
1121         cpu->id_aa64dfr0 &= ~0xf00;
1122         cpu->id_dfr0 &= ~(0xf << 24);
1123         cpu->pmceid0 = 0;
1124         cpu->pmceid1 = 0;
1125     }
1126 
1127     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1128         /* Disable the hypervisor feature bits in the processor feature
1129          * registers if we don't have EL2. These are id_pfr1[15:12] and
1130          * id_aa64pfr0_el1[11:8].
1131          */
1132         cpu->isar.id_aa64pfr0 &= ~0xf00;
1133         cpu->id_pfr1 &= ~0xf000;
1134     }
1135 
1136     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1137      * to false or by setting pmsav7-dregion to 0.
1138      */
1139     if (!cpu->has_mpu) {
1140         cpu->pmsav7_dregion = 0;
1141     }
1142     if (cpu->pmsav7_dregion == 0) {
1143         cpu->has_mpu = false;
1144     }
1145 
1146     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1147         arm_feature(env, ARM_FEATURE_V7)) {
1148         uint32_t nr = cpu->pmsav7_dregion;
1149 
1150         if (nr > 0xff) {
1151             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1152             return;
1153         }
1154 
1155         if (nr) {
1156             if (arm_feature(env, ARM_FEATURE_V8)) {
1157                 /* PMSAv8 */
1158                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1159                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1160                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1161                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1162                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1163                 }
1164             } else {
1165                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1166                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1167                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1168             }
1169         }
1170     }
1171 
1172     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1173         uint32_t nr = cpu->sau_sregion;
1174 
1175         if (nr > 0xff) {
1176             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1177             return;
1178         }
1179 
1180         if (nr) {
1181             env->sau.rbar = g_new0(uint32_t, nr);
1182             env->sau.rlar = g_new0(uint32_t, nr);
1183         }
1184     }
1185 
1186     if (arm_feature(env, ARM_FEATURE_EL3)) {
1187         set_feature(env, ARM_FEATURE_VBAR);
1188     }
1189 
1190     register_cp_regs_for_features(cpu);
1191     arm_cpu_register_gdb_regs_for_features(cpu);
1192 
1193     init_cpreg_list(cpu);
1194 
1195 #ifndef CONFIG_USER_ONLY
1196     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1197         cs->num_ases = 2;
1198 
1199         if (!cpu->secure_memory) {
1200             cpu->secure_memory = cs->memory;
1201         }
1202         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1203                                cpu->secure_memory);
1204     } else {
1205         cs->num_ases = 1;
1206     }
1207     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1208 
1209     /* No core_count specified, default to smp_cpus. */
1210     if (cpu->core_count == -1) {
1211         cpu->core_count = smp_cpus;
1212     }
1213 #endif
1214 
1215     qemu_init_vcpu(cs);
1216     cpu_reset(cs);
1217 
1218     acc->parent_realize(dev, errp);
1219 }
1220 
1221 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1222 {
1223     ObjectClass *oc;
1224     char *typename;
1225     char **cpuname;
1226     const char *cpunamestr;
1227 
1228     cpuname = g_strsplit(cpu_model, ",", 1);
1229     cpunamestr = cpuname[0];
1230 #ifdef CONFIG_USER_ONLY
1231     /* For backwards compatibility usermode emulation allows "-cpu any",
1232      * which has the same semantics as "-cpu max".
1233      */
1234     if (!strcmp(cpunamestr, "any")) {
1235         cpunamestr = "max";
1236     }
1237 #endif
1238     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1239     oc = object_class_by_name(typename);
1240     g_strfreev(cpuname);
1241     g_free(typename);
1242     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1243         object_class_is_abstract(oc)) {
1244         return NULL;
1245     }
1246     return oc;
1247 }
1248 
1249 /* CPU models. These are not needed for the AArch64 linux-user build. */
1250 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1251 
1252 static void arm926_initfn(Object *obj)
1253 {
1254     ARMCPU *cpu = ARM_CPU(obj);
1255 
1256     cpu->dtb_compatible = "arm,arm926";
1257     set_feature(&cpu->env, ARM_FEATURE_V5);
1258     set_feature(&cpu->env, ARM_FEATURE_VFP);
1259     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1260     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1261     cpu->midr = 0x41069265;
1262     cpu->reset_fpsid = 0x41011090;
1263     cpu->ctr = 0x1dd20d2;
1264     cpu->reset_sctlr = 0x00090078;
1265 
1266     /*
1267      * ARMv5 does not have the ID_ISAR registers, but we can still
1268      * set the field to indicate Jazelle support within QEMU.
1269      */
1270     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1271 }
1272 
1273 static void arm946_initfn(Object *obj)
1274 {
1275     ARMCPU *cpu = ARM_CPU(obj);
1276 
1277     cpu->dtb_compatible = "arm,arm946";
1278     set_feature(&cpu->env, ARM_FEATURE_V5);
1279     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1280     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1281     cpu->midr = 0x41059461;
1282     cpu->ctr = 0x0f004006;
1283     cpu->reset_sctlr = 0x00000078;
1284 }
1285 
1286 static void arm1026_initfn(Object *obj)
1287 {
1288     ARMCPU *cpu = ARM_CPU(obj);
1289 
1290     cpu->dtb_compatible = "arm,arm1026";
1291     set_feature(&cpu->env, ARM_FEATURE_V5);
1292     set_feature(&cpu->env, ARM_FEATURE_VFP);
1293     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1294     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1295     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1296     cpu->midr = 0x4106a262;
1297     cpu->reset_fpsid = 0x410110a0;
1298     cpu->ctr = 0x1dd20d2;
1299     cpu->reset_sctlr = 0x00090078;
1300     cpu->reset_auxcr = 1;
1301 
1302     /*
1303      * ARMv5 does not have the ID_ISAR registers, but we can still
1304      * set the field to indicate Jazelle support within QEMU.
1305      */
1306     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1307 
1308     {
1309         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1310         ARMCPRegInfo ifar = {
1311             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1312             .access = PL1_RW,
1313             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1314             .resetvalue = 0
1315         };
1316         define_one_arm_cp_reg(cpu, &ifar);
1317     }
1318 }
1319 
1320 static void arm1136_r2_initfn(Object *obj)
1321 {
1322     ARMCPU *cpu = ARM_CPU(obj);
1323     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1324      * older core than plain "arm1136". In particular this does not
1325      * have the v6K features.
1326      * These ID register values are correct for 1136 but may be wrong
1327      * for 1136_r2 (in particular r0p2 does not actually implement most
1328      * of the ID registers).
1329      */
1330 
1331     cpu->dtb_compatible = "arm,arm1136";
1332     set_feature(&cpu->env, ARM_FEATURE_V6);
1333     set_feature(&cpu->env, ARM_FEATURE_VFP);
1334     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1335     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1336     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1337     cpu->midr = 0x4107b362;
1338     cpu->reset_fpsid = 0x410120b4;
1339     cpu->isar.mvfr0 = 0x11111111;
1340     cpu->isar.mvfr1 = 0x00000000;
1341     cpu->ctr = 0x1dd20d2;
1342     cpu->reset_sctlr = 0x00050078;
1343     cpu->id_pfr0 = 0x111;
1344     cpu->id_pfr1 = 0x1;
1345     cpu->id_dfr0 = 0x2;
1346     cpu->id_afr0 = 0x3;
1347     cpu->id_mmfr0 = 0x01130003;
1348     cpu->id_mmfr1 = 0x10030302;
1349     cpu->id_mmfr2 = 0x01222110;
1350     cpu->isar.id_isar0 = 0x00140011;
1351     cpu->isar.id_isar1 = 0x12002111;
1352     cpu->isar.id_isar2 = 0x11231111;
1353     cpu->isar.id_isar3 = 0x01102131;
1354     cpu->isar.id_isar4 = 0x141;
1355     cpu->reset_auxcr = 7;
1356 }
1357 
1358 static void arm1136_initfn(Object *obj)
1359 {
1360     ARMCPU *cpu = ARM_CPU(obj);
1361 
1362     cpu->dtb_compatible = "arm,arm1136";
1363     set_feature(&cpu->env, ARM_FEATURE_V6K);
1364     set_feature(&cpu->env, ARM_FEATURE_V6);
1365     set_feature(&cpu->env, ARM_FEATURE_VFP);
1366     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1367     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1368     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1369     cpu->midr = 0x4117b363;
1370     cpu->reset_fpsid = 0x410120b4;
1371     cpu->isar.mvfr0 = 0x11111111;
1372     cpu->isar.mvfr1 = 0x00000000;
1373     cpu->ctr = 0x1dd20d2;
1374     cpu->reset_sctlr = 0x00050078;
1375     cpu->id_pfr0 = 0x111;
1376     cpu->id_pfr1 = 0x1;
1377     cpu->id_dfr0 = 0x2;
1378     cpu->id_afr0 = 0x3;
1379     cpu->id_mmfr0 = 0x01130003;
1380     cpu->id_mmfr1 = 0x10030302;
1381     cpu->id_mmfr2 = 0x01222110;
1382     cpu->isar.id_isar0 = 0x00140011;
1383     cpu->isar.id_isar1 = 0x12002111;
1384     cpu->isar.id_isar2 = 0x11231111;
1385     cpu->isar.id_isar3 = 0x01102131;
1386     cpu->isar.id_isar4 = 0x141;
1387     cpu->reset_auxcr = 7;
1388 }
1389 
1390 static void arm1176_initfn(Object *obj)
1391 {
1392     ARMCPU *cpu = ARM_CPU(obj);
1393 
1394     cpu->dtb_compatible = "arm,arm1176";
1395     set_feature(&cpu->env, ARM_FEATURE_V6K);
1396     set_feature(&cpu->env, ARM_FEATURE_VFP);
1397     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1398     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1399     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1400     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1401     set_feature(&cpu->env, ARM_FEATURE_EL3);
1402     cpu->midr = 0x410fb767;
1403     cpu->reset_fpsid = 0x410120b5;
1404     cpu->isar.mvfr0 = 0x11111111;
1405     cpu->isar.mvfr1 = 0x00000000;
1406     cpu->ctr = 0x1dd20d2;
1407     cpu->reset_sctlr = 0x00050078;
1408     cpu->id_pfr0 = 0x111;
1409     cpu->id_pfr1 = 0x11;
1410     cpu->id_dfr0 = 0x33;
1411     cpu->id_afr0 = 0;
1412     cpu->id_mmfr0 = 0x01130003;
1413     cpu->id_mmfr1 = 0x10030302;
1414     cpu->id_mmfr2 = 0x01222100;
1415     cpu->isar.id_isar0 = 0x0140011;
1416     cpu->isar.id_isar1 = 0x12002111;
1417     cpu->isar.id_isar2 = 0x11231121;
1418     cpu->isar.id_isar3 = 0x01102131;
1419     cpu->isar.id_isar4 = 0x01141;
1420     cpu->reset_auxcr = 7;
1421 }
1422 
1423 static void arm11mpcore_initfn(Object *obj)
1424 {
1425     ARMCPU *cpu = ARM_CPU(obj);
1426 
1427     cpu->dtb_compatible = "arm,arm11mpcore";
1428     set_feature(&cpu->env, ARM_FEATURE_V6K);
1429     set_feature(&cpu->env, ARM_FEATURE_VFP);
1430     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1431     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1432     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1433     cpu->midr = 0x410fb022;
1434     cpu->reset_fpsid = 0x410120b4;
1435     cpu->isar.mvfr0 = 0x11111111;
1436     cpu->isar.mvfr1 = 0x00000000;
1437     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1438     cpu->id_pfr0 = 0x111;
1439     cpu->id_pfr1 = 0x1;
1440     cpu->id_dfr0 = 0;
1441     cpu->id_afr0 = 0x2;
1442     cpu->id_mmfr0 = 0x01100103;
1443     cpu->id_mmfr1 = 0x10020302;
1444     cpu->id_mmfr2 = 0x01222000;
1445     cpu->isar.id_isar0 = 0x00100011;
1446     cpu->isar.id_isar1 = 0x12002111;
1447     cpu->isar.id_isar2 = 0x11221011;
1448     cpu->isar.id_isar3 = 0x01102131;
1449     cpu->isar.id_isar4 = 0x141;
1450     cpu->reset_auxcr = 1;
1451 }
1452 
1453 static void cortex_m0_initfn(Object *obj)
1454 {
1455     ARMCPU *cpu = ARM_CPU(obj);
1456     set_feature(&cpu->env, ARM_FEATURE_V6);
1457     set_feature(&cpu->env, ARM_FEATURE_M);
1458 
1459     cpu->midr = 0x410cc200;
1460 }
1461 
1462 static void cortex_m3_initfn(Object *obj)
1463 {
1464     ARMCPU *cpu = ARM_CPU(obj);
1465     set_feature(&cpu->env, ARM_FEATURE_V7);
1466     set_feature(&cpu->env, ARM_FEATURE_M);
1467     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1468     cpu->midr = 0x410fc231;
1469     cpu->pmsav7_dregion = 8;
1470     cpu->id_pfr0 = 0x00000030;
1471     cpu->id_pfr1 = 0x00000200;
1472     cpu->id_dfr0 = 0x00100000;
1473     cpu->id_afr0 = 0x00000000;
1474     cpu->id_mmfr0 = 0x00000030;
1475     cpu->id_mmfr1 = 0x00000000;
1476     cpu->id_mmfr2 = 0x00000000;
1477     cpu->id_mmfr3 = 0x00000000;
1478     cpu->isar.id_isar0 = 0x01141110;
1479     cpu->isar.id_isar1 = 0x02111000;
1480     cpu->isar.id_isar2 = 0x21112231;
1481     cpu->isar.id_isar3 = 0x01111110;
1482     cpu->isar.id_isar4 = 0x01310102;
1483     cpu->isar.id_isar5 = 0x00000000;
1484     cpu->isar.id_isar6 = 0x00000000;
1485 }
1486 
1487 static void cortex_m4_initfn(Object *obj)
1488 {
1489     ARMCPU *cpu = ARM_CPU(obj);
1490 
1491     set_feature(&cpu->env, ARM_FEATURE_V7);
1492     set_feature(&cpu->env, ARM_FEATURE_M);
1493     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1494     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1495     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1496     cpu->midr = 0x410fc240; /* r0p0 */
1497     cpu->pmsav7_dregion = 8;
1498     cpu->isar.mvfr0 = 0x10110021;
1499     cpu->isar.mvfr1 = 0x11000011;
1500     cpu->isar.mvfr2 = 0x00000000;
1501     cpu->id_pfr0 = 0x00000030;
1502     cpu->id_pfr1 = 0x00000200;
1503     cpu->id_dfr0 = 0x00100000;
1504     cpu->id_afr0 = 0x00000000;
1505     cpu->id_mmfr0 = 0x00000030;
1506     cpu->id_mmfr1 = 0x00000000;
1507     cpu->id_mmfr2 = 0x00000000;
1508     cpu->id_mmfr3 = 0x00000000;
1509     cpu->isar.id_isar0 = 0x01141110;
1510     cpu->isar.id_isar1 = 0x02111000;
1511     cpu->isar.id_isar2 = 0x21112231;
1512     cpu->isar.id_isar3 = 0x01111110;
1513     cpu->isar.id_isar4 = 0x01310102;
1514     cpu->isar.id_isar5 = 0x00000000;
1515     cpu->isar.id_isar6 = 0x00000000;
1516 }
1517 
1518 static void cortex_m33_initfn(Object *obj)
1519 {
1520     ARMCPU *cpu = ARM_CPU(obj);
1521 
1522     set_feature(&cpu->env, ARM_FEATURE_V8);
1523     set_feature(&cpu->env, ARM_FEATURE_M);
1524     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1525     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1526     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1527     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1528     cpu->midr = 0x410fd213; /* r0p3 */
1529     cpu->pmsav7_dregion = 16;
1530     cpu->sau_sregion = 8;
1531     cpu->isar.mvfr0 = 0x10110021;
1532     cpu->isar.mvfr1 = 0x11000011;
1533     cpu->isar.mvfr2 = 0x00000040;
1534     cpu->id_pfr0 = 0x00000030;
1535     cpu->id_pfr1 = 0x00000210;
1536     cpu->id_dfr0 = 0x00200000;
1537     cpu->id_afr0 = 0x00000000;
1538     cpu->id_mmfr0 = 0x00101F40;
1539     cpu->id_mmfr1 = 0x00000000;
1540     cpu->id_mmfr2 = 0x01000000;
1541     cpu->id_mmfr3 = 0x00000000;
1542     cpu->isar.id_isar0 = 0x01101110;
1543     cpu->isar.id_isar1 = 0x02212000;
1544     cpu->isar.id_isar2 = 0x20232232;
1545     cpu->isar.id_isar3 = 0x01111131;
1546     cpu->isar.id_isar4 = 0x01310132;
1547     cpu->isar.id_isar5 = 0x00000000;
1548     cpu->isar.id_isar6 = 0x00000000;
1549     cpu->clidr = 0x00000000;
1550     cpu->ctr = 0x8000c000;
1551 }
1552 
1553 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1554 {
1555     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1556     CPUClass *cc = CPU_CLASS(oc);
1557 
1558     acc->info = data;
1559 #ifndef CONFIG_USER_ONLY
1560     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1561 #endif
1562 
1563     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1564 }
1565 
1566 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1567     /* Dummy the TCM region regs for the moment */
1568     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1569       .access = PL1_RW, .type = ARM_CP_CONST },
1570     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1571       .access = PL1_RW, .type = ARM_CP_CONST },
1572     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1573       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1574     REGINFO_SENTINEL
1575 };
1576 
1577 static void cortex_r5_initfn(Object *obj)
1578 {
1579     ARMCPU *cpu = ARM_CPU(obj);
1580 
1581     set_feature(&cpu->env, ARM_FEATURE_V7);
1582     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1583     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1584     cpu->midr = 0x411fc153; /* r1p3 */
1585     cpu->id_pfr0 = 0x0131;
1586     cpu->id_pfr1 = 0x001;
1587     cpu->id_dfr0 = 0x010400;
1588     cpu->id_afr0 = 0x0;
1589     cpu->id_mmfr0 = 0x0210030;
1590     cpu->id_mmfr1 = 0x00000000;
1591     cpu->id_mmfr2 = 0x01200000;
1592     cpu->id_mmfr3 = 0x0211;
1593     cpu->isar.id_isar0 = 0x02101111;
1594     cpu->isar.id_isar1 = 0x13112111;
1595     cpu->isar.id_isar2 = 0x21232141;
1596     cpu->isar.id_isar3 = 0x01112131;
1597     cpu->isar.id_isar4 = 0x0010142;
1598     cpu->isar.id_isar5 = 0x0;
1599     cpu->isar.id_isar6 = 0x0;
1600     cpu->mp_is_up = true;
1601     cpu->pmsav7_dregion = 16;
1602     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1603 }
1604 
1605 static void cortex_r5f_initfn(Object *obj)
1606 {
1607     ARMCPU *cpu = ARM_CPU(obj);
1608 
1609     cortex_r5_initfn(obj);
1610     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1611 }
1612 
1613 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1614     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1615       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1616     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1617       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1618     REGINFO_SENTINEL
1619 };
1620 
1621 static void cortex_a8_initfn(Object *obj)
1622 {
1623     ARMCPU *cpu = ARM_CPU(obj);
1624 
1625     cpu->dtb_compatible = "arm,cortex-a8";
1626     set_feature(&cpu->env, ARM_FEATURE_V7);
1627     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1628     set_feature(&cpu->env, ARM_FEATURE_NEON);
1629     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1630     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1631     set_feature(&cpu->env, ARM_FEATURE_EL3);
1632     cpu->midr = 0x410fc080;
1633     cpu->reset_fpsid = 0x410330c0;
1634     cpu->isar.mvfr0 = 0x11110222;
1635     cpu->isar.mvfr1 = 0x00011111;
1636     cpu->ctr = 0x82048004;
1637     cpu->reset_sctlr = 0x00c50078;
1638     cpu->id_pfr0 = 0x1031;
1639     cpu->id_pfr1 = 0x11;
1640     cpu->id_dfr0 = 0x400;
1641     cpu->id_afr0 = 0;
1642     cpu->id_mmfr0 = 0x31100003;
1643     cpu->id_mmfr1 = 0x20000000;
1644     cpu->id_mmfr2 = 0x01202000;
1645     cpu->id_mmfr3 = 0x11;
1646     cpu->isar.id_isar0 = 0x00101111;
1647     cpu->isar.id_isar1 = 0x12112111;
1648     cpu->isar.id_isar2 = 0x21232031;
1649     cpu->isar.id_isar3 = 0x11112131;
1650     cpu->isar.id_isar4 = 0x00111142;
1651     cpu->dbgdidr = 0x15141000;
1652     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1653     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1654     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1655     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1656     cpu->reset_auxcr = 2;
1657     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1658 }
1659 
1660 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1661     /* power_control should be set to maximum latency. Again,
1662      * default to 0 and set by private hook
1663      */
1664     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1665       .access = PL1_RW, .resetvalue = 0,
1666       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1667     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1668       .access = PL1_RW, .resetvalue = 0,
1669       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1670     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1671       .access = PL1_RW, .resetvalue = 0,
1672       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1673     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1674       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1675     /* TLB lockdown control */
1676     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1677       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1678     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1679       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1680     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1681       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1682     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1683       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1684     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1685       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1686     REGINFO_SENTINEL
1687 };
1688 
1689 static void cortex_a9_initfn(Object *obj)
1690 {
1691     ARMCPU *cpu = ARM_CPU(obj);
1692 
1693     cpu->dtb_compatible = "arm,cortex-a9";
1694     set_feature(&cpu->env, ARM_FEATURE_V7);
1695     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1696     set_feature(&cpu->env, ARM_FEATURE_NEON);
1697     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1698     set_feature(&cpu->env, ARM_FEATURE_EL3);
1699     /* Note that A9 supports the MP extensions even for
1700      * A9UP and single-core A9MP (which are both different
1701      * and valid configurations; we don't model A9UP).
1702      */
1703     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1704     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1705     cpu->midr = 0x410fc090;
1706     cpu->reset_fpsid = 0x41033090;
1707     cpu->isar.mvfr0 = 0x11110222;
1708     cpu->isar.mvfr1 = 0x01111111;
1709     cpu->ctr = 0x80038003;
1710     cpu->reset_sctlr = 0x00c50078;
1711     cpu->id_pfr0 = 0x1031;
1712     cpu->id_pfr1 = 0x11;
1713     cpu->id_dfr0 = 0x000;
1714     cpu->id_afr0 = 0;
1715     cpu->id_mmfr0 = 0x00100103;
1716     cpu->id_mmfr1 = 0x20000000;
1717     cpu->id_mmfr2 = 0x01230000;
1718     cpu->id_mmfr3 = 0x00002111;
1719     cpu->isar.id_isar0 = 0x00101111;
1720     cpu->isar.id_isar1 = 0x13112111;
1721     cpu->isar.id_isar2 = 0x21232041;
1722     cpu->isar.id_isar3 = 0x11112131;
1723     cpu->isar.id_isar4 = 0x00111142;
1724     cpu->dbgdidr = 0x35141000;
1725     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1726     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1727     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1728     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1729 }
1730 
1731 #ifndef CONFIG_USER_ONLY
1732 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1733 {
1734     /* Linux wants the number of processors from here.
1735      * Might as well set the interrupt-controller bit too.
1736      */
1737     return ((smp_cpus - 1) << 24) | (1 << 23);
1738 }
1739 #endif
1740 
1741 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1742 #ifndef CONFIG_USER_ONLY
1743     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1744       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1745       .writefn = arm_cp_write_ignore, },
1746 #endif
1747     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1748       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1749     REGINFO_SENTINEL
1750 };
1751 
1752 static void cortex_a7_initfn(Object *obj)
1753 {
1754     ARMCPU *cpu = ARM_CPU(obj);
1755 
1756     cpu->dtb_compatible = "arm,cortex-a7";
1757     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1758     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1759     set_feature(&cpu->env, ARM_FEATURE_NEON);
1760     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1761     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1762     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1763     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1764     set_feature(&cpu->env, ARM_FEATURE_EL2);
1765     set_feature(&cpu->env, ARM_FEATURE_EL3);
1766     set_feature(&cpu->env, ARM_FEATURE_PMU);
1767     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1768     cpu->midr = 0x410fc075;
1769     cpu->reset_fpsid = 0x41023075;
1770     cpu->isar.mvfr0 = 0x10110222;
1771     cpu->isar.mvfr1 = 0x11111111;
1772     cpu->ctr = 0x84448003;
1773     cpu->reset_sctlr = 0x00c50078;
1774     cpu->id_pfr0 = 0x00001131;
1775     cpu->id_pfr1 = 0x00011011;
1776     cpu->id_dfr0 = 0x02010555;
1777     cpu->id_afr0 = 0x00000000;
1778     cpu->id_mmfr0 = 0x10101105;
1779     cpu->id_mmfr1 = 0x40000000;
1780     cpu->id_mmfr2 = 0x01240000;
1781     cpu->id_mmfr3 = 0x02102211;
1782     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1783      * table 4-41 gives 0x02101110, which includes the arm div insns.
1784      */
1785     cpu->isar.id_isar0 = 0x02101110;
1786     cpu->isar.id_isar1 = 0x13112111;
1787     cpu->isar.id_isar2 = 0x21232041;
1788     cpu->isar.id_isar3 = 0x11112131;
1789     cpu->isar.id_isar4 = 0x10011142;
1790     cpu->dbgdidr = 0x3515f005;
1791     cpu->clidr = 0x0a200023;
1792     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1793     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1794     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1795     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1796 }
1797 
1798 static void cortex_a15_initfn(Object *obj)
1799 {
1800     ARMCPU *cpu = ARM_CPU(obj);
1801 
1802     cpu->dtb_compatible = "arm,cortex-a15";
1803     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1804     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1805     set_feature(&cpu->env, ARM_FEATURE_NEON);
1806     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1807     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1808     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1809     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1810     set_feature(&cpu->env, ARM_FEATURE_EL2);
1811     set_feature(&cpu->env, ARM_FEATURE_EL3);
1812     set_feature(&cpu->env, ARM_FEATURE_PMU);
1813     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1814     cpu->midr = 0x412fc0f1;
1815     cpu->reset_fpsid = 0x410430f0;
1816     cpu->isar.mvfr0 = 0x10110222;
1817     cpu->isar.mvfr1 = 0x11111111;
1818     cpu->ctr = 0x8444c004;
1819     cpu->reset_sctlr = 0x00c50078;
1820     cpu->id_pfr0 = 0x00001131;
1821     cpu->id_pfr1 = 0x00011011;
1822     cpu->id_dfr0 = 0x02010555;
1823     cpu->id_afr0 = 0x00000000;
1824     cpu->id_mmfr0 = 0x10201105;
1825     cpu->id_mmfr1 = 0x20000000;
1826     cpu->id_mmfr2 = 0x01240000;
1827     cpu->id_mmfr3 = 0x02102211;
1828     cpu->isar.id_isar0 = 0x02101110;
1829     cpu->isar.id_isar1 = 0x13112111;
1830     cpu->isar.id_isar2 = 0x21232041;
1831     cpu->isar.id_isar3 = 0x11112131;
1832     cpu->isar.id_isar4 = 0x10011142;
1833     cpu->dbgdidr = 0x3515f021;
1834     cpu->clidr = 0x0a200023;
1835     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1836     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1837     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1838     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1839 }
1840 
1841 static void ti925t_initfn(Object *obj)
1842 {
1843     ARMCPU *cpu = ARM_CPU(obj);
1844     set_feature(&cpu->env, ARM_FEATURE_V4T);
1845     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1846     cpu->midr = ARM_CPUID_TI925T;
1847     cpu->ctr = 0x5109149;
1848     cpu->reset_sctlr = 0x00000070;
1849 }
1850 
1851 static void sa1100_initfn(Object *obj)
1852 {
1853     ARMCPU *cpu = ARM_CPU(obj);
1854 
1855     cpu->dtb_compatible = "intel,sa1100";
1856     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1857     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1858     cpu->midr = 0x4401A11B;
1859     cpu->reset_sctlr = 0x00000070;
1860 }
1861 
1862 static void sa1110_initfn(Object *obj)
1863 {
1864     ARMCPU *cpu = ARM_CPU(obj);
1865     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1866     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1867     cpu->midr = 0x6901B119;
1868     cpu->reset_sctlr = 0x00000070;
1869 }
1870 
1871 static void pxa250_initfn(Object *obj)
1872 {
1873     ARMCPU *cpu = ARM_CPU(obj);
1874 
1875     cpu->dtb_compatible = "marvell,xscale";
1876     set_feature(&cpu->env, ARM_FEATURE_V5);
1877     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1878     cpu->midr = 0x69052100;
1879     cpu->ctr = 0xd172172;
1880     cpu->reset_sctlr = 0x00000078;
1881 }
1882 
1883 static void pxa255_initfn(Object *obj)
1884 {
1885     ARMCPU *cpu = ARM_CPU(obj);
1886 
1887     cpu->dtb_compatible = "marvell,xscale";
1888     set_feature(&cpu->env, ARM_FEATURE_V5);
1889     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1890     cpu->midr = 0x69052d00;
1891     cpu->ctr = 0xd172172;
1892     cpu->reset_sctlr = 0x00000078;
1893 }
1894 
1895 static void pxa260_initfn(Object *obj)
1896 {
1897     ARMCPU *cpu = ARM_CPU(obj);
1898 
1899     cpu->dtb_compatible = "marvell,xscale";
1900     set_feature(&cpu->env, ARM_FEATURE_V5);
1901     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1902     cpu->midr = 0x69052903;
1903     cpu->ctr = 0xd172172;
1904     cpu->reset_sctlr = 0x00000078;
1905 }
1906 
1907 static void pxa261_initfn(Object *obj)
1908 {
1909     ARMCPU *cpu = ARM_CPU(obj);
1910 
1911     cpu->dtb_compatible = "marvell,xscale";
1912     set_feature(&cpu->env, ARM_FEATURE_V5);
1913     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1914     cpu->midr = 0x69052d05;
1915     cpu->ctr = 0xd172172;
1916     cpu->reset_sctlr = 0x00000078;
1917 }
1918 
1919 static void pxa262_initfn(Object *obj)
1920 {
1921     ARMCPU *cpu = ARM_CPU(obj);
1922 
1923     cpu->dtb_compatible = "marvell,xscale";
1924     set_feature(&cpu->env, ARM_FEATURE_V5);
1925     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1926     cpu->midr = 0x69052d06;
1927     cpu->ctr = 0xd172172;
1928     cpu->reset_sctlr = 0x00000078;
1929 }
1930 
1931 static void pxa270a0_initfn(Object *obj)
1932 {
1933     ARMCPU *cpu = ARM_CPU(obj);
1934 
1935     cpu->dtb_compatible = "marvell,xscale";
1936     set_feature(&cpu->env, ARM_FEATURE_V5);
1937     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1938     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1939     cpu->midr = 0x69054110;
1940     cpu->ctr = 0xd172172;
1941     cpu->reset_sctlr = 0x00000078;
1942 }
1943 
1944 static void pxa270a1_initfn(Object *obj)
1945 {
1946     ARMCPU *cpu = ARM_CPU(obj);
1947 
1948     cpu->dtb_compatible = "marvell,xscale";
1949     set_feature(&cpu->env, ARM_FEATURE_V5);
1950     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1951     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1952     cpu->midr = 0x69054111;
1953     cpu->ctr = 0xd172172;
1954     cpu->reset_sctlr = 0x00000078;
1955 }
1956 
1957 static void pxa270b0_initfn(Object *obj)
1958 {
1959     ARMCPU *cpu = ARM_CPU(obj);
1960 
1961     cpu->dtb_compatible = "marvell,xscale";
1962     set_feature(&cpu->env, ARM_FEATURE_V5);
1963     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1964     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1965     cpu->midr = 0x69054112;
1966     cpu->ctr = 0xd172172;
1967     cpu->reset_sctlr = 0x00000078;
1968 }
1969 
1970 static void pxa270b1_initfn(Object *obj)
1971 {
1972     ARMCPU *cpu = ARM_CPU(obj);
1973 
1974     cpu->dtb_compatible = "marvell,xscale";
1975     set_feature(&cpu->env, ARM_FEATURE_V5);
1976     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1977     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1978     cpu->midr = 0x69054113;
1979     cpu->ctr = 0xd172172;
1980     cpu->reset_sctlr = 0x00000078;
1981 }
1982 
1983 static void pxa270c0_initfn(Object *obj)
1984 {
1985     ARMCPU *cpu = ARM_CPU(obj);
1986 
1987     cpu->dtb_compatible = "marvell,xscale";
1988     set_feature(&cpu->env, ARM_FEATURE_V5);
1989     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1990     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1991     cpu->midr = 0x69054114;
1992     cpu->ctr = 0xd172172;
1993     cpu->reset_sctlr = 0x00000078;
1994 }
1995 
1996 static void pxa270c5_initfn(Object *obj)
1997 {
1998     ARMCPU *cpu = ARM_CPU(obj);
1999 
2000     cpu->dtb_compatible = "marvell,xscale";
2001     set_feature(&cpu->env, ARM_FEATURE_V5);
2002     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2003     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2004     cpu->midr = 0x69054117;
2005     cpu->ctr = 0xd172172;
2006     cpu->reset_sctlr = 0x00000078;
2007 }
2008 
2009 #ifndef TARGET_AARCH64
2010 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2011  * otherwise, a CPU with as many features enabled as our emulation supports.
2012  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2013  * this only needs to handle 32 bits.
2014  */
2015 static void arm_max_initfn(Object *obj)
2016 {
2017     ARMCPU *cpu = ARM_CPU(obj);
2018 
2019     if (kvm_enabled()) {
2020         kvm_arm_set_cpu_features_from_host(cpu);
2021     } else {
2022         cortex_a15_initfn(obj);
2023 #ifdef CONFIG_USER_ONLY
2024         /* We don't set these in system emulation mode for the moment,
2025          * since we don't correctly set (all of) the ID registers to
2026          * advertise them.
2027          */
2028         set_feature(&cpu->env, ARM_FEATURE_V8);
2029         {
2030             uint32_t t;
2031 
2032             t = cpu->isar.id_isar5;
2033             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2034             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2035             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2036             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2037             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2038             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2039             cpu->isar.id_isar5 = t;
2040 
2041             t = cpu->isar.id_isar6;
2042             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2043             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2044             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2045             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2046             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2047             cpu->isar.id_isar6 = t;
2048 
2049             t = cpu->isar.mvfr2;
2050             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2051             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2052             cpu->isar.mvfr2 = t;
2053 
2054             t = cpu->id_mmfr4;
2055             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2056             cpu->id_mmfr4 = t;
2057         }
2058 #endif
2059     }
2060 }
2061 #endif
2062 
2063 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2064 
2065 struct ARMCPUInfo {
2066     const char *name;
2067     void (*initfn)(Object *obj);
2068     void (*class_init)(ObjectClass *oc, void *data);
2069 };
2070 
2071 static const ARMCPUInfo arm_cpus[] = {
2072 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2073     { .name = "arm926",      .initfn = arm926_initfn },
2074     { .name = "arm946",      .initfn = arm946_initfn },
2075     { .name = "arm1026",     .initfn = arm1026_initfn },
2076     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2077      * older core than plain "arm1136". In particular this does not
2078      * have the v6K features.
2079      */
2080     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2081     { .name = "arm1136",     .initfn = arm1136_initfn },
2082     { .name = "arm1176",     .initfn = arm1176_initfn },
2083     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2084     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2085                              .class_init = arm_v7m_class_init },
2086     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2087                              .class_init = arm_v7m_class_init },
2088     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2089                              .class_init = arm_v7m_class_init },
2090     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2091                              .class_init = arm_v7m_class_init },
2092     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2093     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2094     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2095     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2096     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2097     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2098     { .name = "ti925t",      .initfn = ti925t_initfn },
2099     { .name = "sa1100",      .initfn = sa1100_initfn },
2100     { .name = "sa1110",      .initfn = sa1110_initfn },
2101     { .name = "pxa250",      .initfn = pxa250_initfn },
2102     { .name = "pxa255",      .initfn = pxa255_initfn },
2103     { .name = "pxa260",      .initfn = pxa260_initfn },
2104     { .name = "pxa261",      .initfn = pxa261_initfn },
2105     { .name = "pxa262",      .initfn = pxa262_initfn },
2106     /* "pxa270" is an alias for "pxa270-a0" */
2107     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2108     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2109     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2110     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2111     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2112     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2113     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2114 #ifndef TARGET_AARCH64
2115     { .name = "max",         .initfn = arm_max_initfn },
2116 #endif
2117 #ifdef CONFIG_USER_ONLY
2118     { .name = "any",         .initfn = arm_max_initfn },
2119 #endif
2120 #endif
2121     { .name = NULL }
2122 };
2123 
2124 static Property arm_cpu_properties[] = {
2125     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2126     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2127     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2128     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2129                         mp_affinity, ARM64_AFFINITY_INVALID),
2130     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2131     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2132     DEFINE_PROP_END_OF_LIST()
2133 };
2134 
2135 static gchar *arm_gdb_arch_name(CPUState *cs)
2136 {
2137     ARMCPU *cpu = ARM_CPU(cs);
2138     CPUARMState *env = &cpu->env;
2139 
2140     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2141         return g_strdup("iwmmxt");
2142     }
2143     return g_strdup("arm");
2144 }
2145 
2146 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2147 {
2148     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2149     CPUClass *cc = CPU_CLASS(acc);
2150     DeviceClass *dc = DEVICE_CLASS(oc);
2151 
2152     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2153                                     &acc->parent_realize);
2154     dc->props = arm_cpu_properties;
2155 
2156     acc->parent_reset = cc->reset;
2157     cc->reset = arm_cpu_reset;
2158 
2159     cc->class_by_name = arm_cpu_class_by_name;
2160     cc->has_work = arm_cpu_has_work;
2161     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2162     cc->dump_state = arm_cpu_dump_state;
2163     cc->set_pc = arm_cpu_set_pc;
2164     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2165     cc->gdb_read_register = arm_cpu_gdb_read_register;
2166     cc->gdb_write_register = arm_cpu_gdb_write_register;
2167 #ifndef CONFIG_USER_ONLY
2168     cc->do_interrupt = arm_cpu_do_interrupt;
2169     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2170     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2171     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2172     cc->asidx_from_attrs = arm_asidx_from_attrs;
2173     cc->vmsd = &vmstate_arm_cpu;
2174     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2175     cc->write_elf64_note = arm_cpu_write_elf64_note;
2176     cc->write_elf32_note = arm_cpu_write_elf32_note;
2177 #endif
2178     cc->gdb_num_core_regs = 26;
2179     cc->gdb_core_xml_file = "arm-core.xml";
2180     cc->gdb_arch_name = arm_gdb_arch_name;
2181     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2182     cc->gdb_stop_before_watchpoint = true;
2183     cc->debug_excp_handler = arm_debug_excp_handler;
2184     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2185 #if !defined(CONFIG_USER_ONLY)
2186     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2187 #endif
2188 
2189     cc->disas_set_info = arm_disas_set_info;
2190 #ifdef CONFIG_TCG
2191     cc->tcg_initialize = arm_translate_init;
2192     cc->tlb_fill = arm_cpu_tlb_fill;
2193 #endif
2194 }
2195 
2196 #ifdef CONFIG_KVM
2197 static void arm_host_initfn(Object *obj)
2198 {
2199     ARMCPU *cpu = ARM_CPU(obj);
2200 
2201     kvm_arm_set_cpu_features_from_host(cpu);
2202     arm_cpu_post_init(obj);
2203 }
2204 
2205 static const TypeInfo host_arm_cpu_type_info = {
2206     .name = TYPE_ARM_HOST_CPU,
2207 #ifdef TARGET_AARCH64
2208     .parent = TYPE_AARCH64_CPU,
2209 #else
2210     .parent = TYPE_ARM_CPU,
2211 #endif
2212     .instance_init = arm_host_initfn,
2213 };
2214 
2215 #endif
2216 
2217 static void arm_cpu_instance_init(Object *obj)
2218 {
2219     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2220 
2221     acc->info->initfn(obj);
2222     arm_cpu_post_init(obj);
2223 }
2224 
2225 static void cpu_register_class_init(ObjectClass *oc, void *data)
2226 {
2227     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2228 
2229     acc->info = data;
2230 }
2231 
2232 static void cpu_register(const ARMCPUInfo *info)
2233 {
2234     TypeInfo type_info = {
2235         .parent = TYPE_ARM_CPU,
2236         .instance_size = sizeof(ARMCPU),
2237         .instance_init = arm_cpu_instance_init,
2238         .class_size = sizeof(ARMCPUClass),
2239         .class_init = info->class_init ?: cpu_register_class_init,
2240         .class_data = (void *)info,
2241     };
2242 
2243     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2244     type_register(&type_info);
2245     g_free((void *)type_info.name);
2246 }
2247 
2248 static const TypeInfo arm_cpu_type_info = {
2249     .name = TYPE_ARM_CPU,
2250     .parent = TYPE_CPU,
2251     .instance_size = sizeof(ARMCPU),
2252     .instance_init = arm_cpu_initfn,
2253     .instance_finalize = arm_cpu_finalizefn,
2254     .abstract = true,
2255     .class_size = sizeof(ARMCPUClass),
2256     .class_init = arm_cpu_class_init,
2257 };
2258 
2259 static const TypeInfo idau_interface_type_info = {
2260     .name = TYPE_IDAU_INTERFACE,
2261     .parent = TYPE_INTERFACE,
2262     .class_size = sizeof(IDAUInterfaceClass),
2263 };
2264 
2265 static void arm_cpu_register_types(void)
2266 {
2267     const ARMCPUInfo *info = arm_cpus;
2268 
2269     type_register_static(&arm_cpu_type_info);
2270     type_register_static(&idau_interface_type_info);
2271 
2272     while (info->name) {
2273         cpu_register(info);
2274         info++;
2275     }
2276 
2277 #ifdef CONFIG_KVM
2278     type_register_static(&host_arm_cpu_type_info);
2279 #endif
2280 }
2281 
2282 type_init(arm_cpu_register_types)
2283