1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu/timer.h" 24 #include "qemu/log.h" 25 #include "exec/page-vary.h" 26 #include "target/arm/idau.h" 27 #include "qemu/module.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "cpu.h" 31 #ifdef CONFIG_TCG 32 #include "hw/core/tcg-cpu-ops.h" 33 #endif /* CONFIG_TCG */ 34 #include "internals.h" 35 #include "exec/exec-all.h" 36 #include "hw/qdev-properties.h" 37 #if !defined(CONFIG_USER_ONLY) 38 #include "hw/loader.h" 39 #include "hw/boards.h" 40 #endif 41 #include "sysemu/tcg.h" 42 #include "sysemu/qtest.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_arm.h" 45 #include "disas/capstone.h" 46 #include "fpu/softfloat.h" 47 #include "cpregs.h" 48 49 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 50 { 51 ARMCPU *cpu = ARM_CPU(cs); 52 CPUARMState *env = &cpu->env; 53 54 if (is_a64(env)) { 55 env->pc = value; 56 env->thumb = false; 57 } else { 58 env->regs[15] = value & ~1; 59 env->thumb = value & 1; 60 } 61 } 62 63 #ifdef CONFIG_TCG 64 void arm_cpu_synchronize_from_tb(CPUState *cs, 65 const TranslationBlock *tb) 66 { 67 ARMCPU *cpu = ARM_CPU(cs); 68 CPUARMState *env = &cpu->env; 69 70 /* 71 * It's OK to look at env for the current mode here, because it's 72 * never possible for an AArch64 TB to chain to an AArch32 TB. 73 */ 74 if (is_a64(env)) { 75 env->pc = tb->pc; 76 } else { 77 env->regs[15] = tb->pc; 78 } 79 } 80 #endif /* CONFIG_TCG */ 81 82 static bool arm_cpu_has_work(CPUState *cs) 83 { 84 ARMCPU *cpu = ARM_CPU(cs); 85 86 return (cpu->power_state != PSCI_OFF) 87 && cs->interrupt_request & 88 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 89 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR 90 | CPU_INTERRUPT_EXITTB); 91 } 92 93 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 94 void *opaque) 95 { 96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 97 98 entry->hook = hook; 99 entry->opaque = opaque; 100 101 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 102 } 103 104 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 105 void *opaque) 106 { 107 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 108 109 entry->hook = hook; 110 entry->opaque = opaque; 111 112 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 113 } 114 115 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 116 { 117 /* Reset a single ARMCPRegInfo register */ 118 ARMCPRegInfo *ri = value; 119 ARMCPU *cpu = opaque; 120 121 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { 122 return; 123 } 124 125 if (ri->resetfn) { 126 ri->resetfn(&cpu->env, ri); 127 return; 128 } 129 130 /* A zero offset is never possible as it would be regs[0] 131 * so we use it to indicate that reset is being handled elsewhere. 132 * This is basically only used for fields in non-core coprocessors 133 * (like the pxa2xx ones). 134 */ 135 if (!ri->fieldoffset) { 136 return; 137 } 138 139 if (cpreg_field_is_64bit(ri)) { 140 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 141 } else { 142 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 143 } 144 } 145 146 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 147 { 148 /* Purely an assertion check: we've already done reset once, 149 * so now check that running the reset for the cpreg doesn't 150 * change its value. This traps bugs where two different cpregs 151 * both try to reset the same state field but to different values. 152 */ 153 ARMCPRegInfo *ri = value; 154 ARMCPU *cpu = opaque; 155 uint64_t oldvalue, newvalue; 156 157 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 158 return; 159 } 160 161 oldvalue = read_raw_cp_reg(&cpu->env, ri); 162 cp_reg_reset(key, value, opaque); 163 newvalue = read_raw_cp_reg(&cpu->env, ri); 164 assert(oldvalue == newvalue); 165 } 166 167 static void arm_cpu_reset(DeviceState *dev) 168 { 169 CPUState *s = CPU(dev); 170 ARMCPU *cpu = ARM_CPU(s); 171 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 172 CPUARMState *env = &cpu->env; 173 174 acc->parent_reset(dev); 175 176 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 177 178 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 179 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 180 181 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 182 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 183 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 184 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 185 186 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; 187 188 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 189 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 190 } 191 192 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 193 /* 64 bit CPUs always start in 64 bit mode */ 194 env->aarch64 = true; 195 #if defined(CONFIG_USER_ONLY) 196 env->pstate = PSTATE_MODE_EL0t; 197 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 198 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 199 /* Enable all PAC keys. */ 200 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 201 SCTLR_EnDA | SCTLR_EnDB); 202 /* Trap on btype=3 for PACIxSP. */ 203 env->cp15.sctlr_el[1] |= SCTLR_BT0; 204 /* and to the FP/Neon instructions */ 205 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 206 CPACR_EL1, FPEN, 3); 207 /* and to the SVE instructions, with default vector length */ 208 if (cpu_isar_feature(aa64_sve, cpu)) { 209 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 210 CPACR_EL1, ZEN, 3); 211 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; 212 } 213 /* and for SME instructions, with default vector length, and TPIDR2 */ 214 if (cpu_isar_feature(aa64_sme, cpu)) { 215 env->cp15.sctlr_el[1] |= SCTLR_EnTP2; 216 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 217 CPACR_EL1, SMEN, 3); 218 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; 219 if (cpu_isar_feature(aa64_sme_fa64, cpu)) { 220 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], 221 SMCR, FA64, 1); 222 } 223 } 224 /* 225 * Enable 48-bit address space (TODO: take reserved_va into account). 226 * Enable TBI0 but not TBI1. 227 * Note that this must match useronly_clean_ptr. 228 */ 229 env->cp15.tcr_el[1] = 5 | (1ULL << 37); 230 231 /* Enable MTE */ 232 if (cpu_isar_feature(aa64_mte, cpu)) { 233 /* Enable tag access, but leave TCF0 as No Effect (0). */ 234 env->cp15.sctlr_el[1] |= SCTLR_ATA0; 235 /* 236 * Exclude all tags, so that tag 0 is always used. 237 * This corresponds to Linux current->thread.gcr_incl = 0. 238 * 239 * Set RRND, so that helper_irg() will generate a seed later. 240 * Here in cpu_reset(), the crypto subsystem has not yet been 241 * initialized. 242 */ 243 env->cp15.gcr_el1 = 0x1ffff; 244 } 245 /* 246 * Disable access to SCXTNUM_EL0 from CSV2_1p2. 247 * This is not yet exposed from the Linux kernel in any way. 248 */ 249 env->cp15.sctlr_el[1] |= SCTLR_TSCXT; 250 #else 251 /* Reset into the highest available EL */ 252 if (arm_feature(env, ARM_FEATURE_EL3)) { 253 env->pstate = PSTATE_MODE_EL3h; 254 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 255 env->pstate = PSTATE_MODE_EL2h; 256 } else { 257 env->pstate = PSTATE_MODE_EL1h; 258 } 259 260 /* Sample rvbar at reset. */ 261 env->cp15.rvbar = cpu->rvbar_prop; 262 env->pc = env->cp15.rvbar; 263 #endif 264 } else { 265 #if defined(CONFIG_USER_ONLY) 266 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 267 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 268 CPACR, CP10, 3); 269 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 270 CPACR, CP11, 3); 271 #endif 272 } 273 274 #if defined(CONFIG_USER_ONLY) 275 env->uncached_cpsr = ARM_CPU_MODE_USR; 276 /* For user mode we must enable access to coprocessors */ 277 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 278 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 279 env->cp15.c15_cpar = 3; 280 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 281 env->cp15.c15_cpar = 1; 282 } 283 #else 284 285 /* 286 * If the highest available EL is EL2, AArch32 will start in Hyp 287 * mode; otherwise it starts in SVC. Note that if we start in 288 * AArch64 then these values in the uncached_cpsr will be ignored. 289 */ 290 if (arm_feature(env, ARM_FEATURE_EL2) && 291 !arm_feature(env, ARM_FEATURE_EL3)) { 292 env->uncached_cpsr = ARM_CPU_MODE_HYP; 293 } else { 294 env->uncached_cpsr = ARM_CPU_MODE_SVC; 295 } 296 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 297 298 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 299 * executing as AArch32 then check if highvecs are enabled and 300 * adjust the PC accordingly. 301 */ 302 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 303 env->regs[15] = 0xFFFF0000; 304 } 305 306 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 307 #endif 308 309 if (arm_feature(env, ARM_FEATURE_M)) { 310 #ifndef CONFIG_USER_ONLY 311 uint32_t initial_msp; /* Loaded from 0x0 */ 312 uint32_t initial_pc; /* Loaded from 0x4 */ 313 uint8_t *rom; 314 uint32_t vecbase; 315 #endif 316 317 if (cpu_isar_feature(aa32_lob, cpu)) { 318 /* 319 * LTPSIZE is constant 4 if MVE not implemented, and resets 320 * to an UNKNOWN value if MVE is implemented. We choose to 321 * always reset to 4. 322 */ 323 env->v7m.ltpsize = 4; 324 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ 325 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; 326 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; 327 } 328 329 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 330 env->v7m.secure = true; 331 } else { 332 /* This bit resets to 0 if security is supported, but 1 if 333 * it is not. The bit is not present in v7M, but we set it 334 * here so we can avoid having to make checks on it conditional 335 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 336 */ 337 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 338 /* 339 * Set NSACR to indicate "NS access permitted to everything"; 340 * this avoids having to have all the tests of it being 341 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 342 * v8.1M the guest-visible value of NSACR in a CPU without the 343 * Security Extension is 0xcff. 344 */ 345 env->v7m.nsacr = 0xcff; 346 } 347 348 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 349 * that it resets to 1, so QEMU always does that rather than making 350 * it dependent on CPU model. In v8M it is RES1. 351 */ 352 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 353 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 354 if (arm_feature(env, ARM_FEATURE_V8)) { 355 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 356 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 357 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 358 } 359 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 360 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 361 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 362 } 363 364 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 365 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 366 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 367 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 368 } 369 370 #ifndef CONFIG_USER_ONLY 371 /* Unlike A/R profile, M profile defines the reset LR value */ 372 env->regs[14] = 0xffffffff; 373 374 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 375 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; 376 377 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 378 vecbase = env->v7m.vecbase[env->v7m.secure]; 379 rom = rom_ptr_for_as(s->as, vecbase, 8); 380 if (rom) { 381 /* Address zero is covered by ROM which hasn't yet been 382 * copied into physical memory. 383 */ 384 initial_msp = ldl_p(rom); 385 initial_pc = ldl_p(rom + 4); 386 } else { 387 /* Address zero not covered by a ROM blob, or the ROM blob 388 * is in non-modifiable memory and this is a second reset after 389 * it got copied into memory. In the latter case, rom_ptr 390 * will return a NULL pointer and we should use ldl_phys instead. 391 */ 392 initial_msp = ldl_phys(s->as, vecbase); 393 initial_pc = ldl_phys(s->as, vecbase + 4); 394 } 395 396 qemu_log_mask(CPU_LOG_INT, 397 "Loaded reset SP 0x%x PC 0x%x from vector table\n", 398 initial_msp, initial_pc); 399 400 env->regs[13] = initial_msp & 0xFFFFFFFC; 401 env->regs[15] = initial_pc & ~1; 402 env->thumb = initial_pc & 1; 403 #else 404 /* 405 * For user mode we run non-secure and with access to the FPU. 406 * The FPU context is active (ie does not need further setup) 407 * and is owned by non-secure. 408 */ 409 env->v7m.secure = false; 410 env->v7m.nsacr = 0xcff; 411 env->v7m.cpacr[M_REG_NS] = 0xf0ffff; 412 env->v7m.fpccr[M_REG_S] &= 413 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); 414 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 415 #endif 416 } 417 418 /* M profile requires that reset clears the exclusive monitor; 419 * A profile does not, but clearing it makes more sense than having it 420 * set with an exclusive access on address zero. 421 */ 422 arm_clear_exclusive(env); 423 424 if (arm_feature(env, ARM_FEATURE_PMSA)) { 425 if (cpu->pmsav7_dregion > 0) { 426 if (arm_feature(env, ARM_FEATURE_V8)) { 427 memset(env->pmsav8.rbar[M_REG_NS], 0, 428 sizeof(*env->pmsav8.rbar[M_REG_NS]) 429 * cpu->pmsav7_dregion); 430 memset(env->pmsav8.rlar[M_REG_NS], 0, 431 sizeof(*env->pmsav8.rlar[M_REG_NS]) 432 * cpu->pmsav7_dregion); 433 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 434 memset(env->pmsav8.rbar[M_REG_S], 0, 435 sizeof(*env->pmsav8.rbar[M_REG_S]) 436 * cpu->pmsav7_dregion); 437 memset(env->pmsav8.rlar[M_REG_S], 0, 438 sizeof(*env->pmsav8.rlar[M_REG_S]) 439 * cpu->pmsav7_dregion); 440 } 441 } else if (arm_feature(env, ARM_FEATURE_V7)) { 442 memset(env->pmsav7.drbar, 0, 443 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 444 memset(env->pmsav7.drsr, 0, 445 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 446 memset(env->pmsav7.dracr, 0, 447 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 448 } 449 } 450 env->pmsav7.rnr[M_REG_NS] = 0; 451 env->pmsav7.rnr[M_REG_S] = 0; 452 env->pmsav8.mair0[M_REG_NS] = 0; 453 env->pmsav8.mair0[M_REG_S] = 0; 454 env->pmsav8.mair1[M_REG_NS] = 0; 455 env->pmsav8.mair1[M_REG_S] = 0; 456 } 457 458 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 459 if (cpu->sau_sregion > 0) { 460 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 461 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 462 } 463 env->sau.rnr = 0; 464 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 465 * the Cortex-M33 does. 466 */ 467 env->sau.ctrl = 0; 468 } 469 470 set_flush_to_zero(1, &env->vfp.standard_fp_status); 471 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 472 set_default_nan_mode(1, &env->vfp.standard_fp_status); 473 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 474 set_float_detect_tininess(float_tininess_before_rounding, 475 &env->vfp.fp_status); 476 set_float_detect_tininess(float_tininess_before_rounding, 477 &env->vfp.standard_fp_status); 478 set_float_detect_tininess(float_tininess_before_rounding, 479 &env->vfp.fp_status_f16); 480 set_float_detect_tininess(float_tininess_before_rounding, 481 &env->vfp.standard_fp_status_f16); 482 #ifndef CONFIG_USER_ONLY 483 if (kvm_enabled()) { 484 kvm_arm_reset_vcpu(cpu); 485 } 486 #endif 487 488 hw_breakpoint_update_all(cpu); 489 hw_watchpoint_update_all(cpu); 490 arm_rebuild_hflags(env); 491 } 492 493 #ifndef CONFIG_USER_ONLY 494 495 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 496 unsigned int target_el, 497 unsigned int cur_el, bool secure, 498 uint64_t hcr_el2) 499 { 500 CPUARMState *env = cs->env_ptr; 501 bool pstate_unmasked; 502 bool unmasked = false; 503 504 /* 505 * Don't take exceptions if they target a lower EL. 506 * This check should catch any exceptions that would not be taken 507 * but left pending. 508 */ 509 if (cur_el > target_el) { 510 return false; 511 } 512 513 switch (excp_idx) { 514 case EXCP_FIQ: 515 pstate_unmasked = !(env->daif & PSTATE_F); 516 break; 517 518 case EXCP_IRQ: 519 pstate_unmasked = !(env->daif & PSTATE_I); 520 break; 521 522 case EXCP_VFIQ: 523 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 524 /* VFIQs are only taken when hypervized. */ 525 return false; 526 } 527 return !(env->daif & PSTATE_F); 528 case EXCP_VIRQ: 529 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 530 /* VIRQs are only taken when hypervized. */ 531 return false; 532 } 533 return !(env->daif & PSTATE_I); 534 case EXCP_VSERR: 535 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { 536 /* VIRQs are only taken when hypervized. */ 537 return false; 538 } 539 return !(env->daif & PSTATE_A); 540 default: 541 g_assert_not_reached(); 542 } 543 544 /* 545 * Use the target EL, current execution state and SCR/HCR settings to 546 * determine whether the corresponding CPSR bit is used to mask the 547 * interrupt. 548 */ 549 if ((target_el > cur_el) && (target_el != 1)) { 550 /* Exceptions targeting a higher EL may not be maskable */ 551 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 552 /* 553 * 64-bit masking rules are simple: exceptions to EL3 554 * can't be masked, and exceptions to EL2 can only be 555 * masked from Secure state. The HCR and SCR settings 556 * don't affect the masking logic, only the interrupt routing. 557 */ 558 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) { 559 unmasked = true; 560 } 561 } else { 562 /* 563 * The old 32-bit-only environment has a more complicated 564 * masking setup. HCR and SCR bits not only affect interrupt 565 * routing but also change the behaviour of masking. 566 */ 567 bool hcr, scr; 568 569 switch (excp_idx) { 570 case EXCP_FIQ: 571 /* 572 * If FIQs are routed to EL3 or EL2 then there are cases where 573 * we override the CPSR.F in determining if the exception is 574 * masked or not. If neither of these are set then we fall back 575 * to the CPSR.F setting otherwise we further assess the state 576 * below. 577 */ 578 hcr = hcr_el2 & HCR_FMO; 579 scr = (env->cp15.scr_el3 & SCR_FIQ); 580 581 /* 582 * When EL3 is 32-bit, the SCR.FW bit controls whether the 583 * CPSR.F bit masks FIQ interrupts when taken in non-secure 584 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 585 * when non-secure but only when FIQs are only routed to EL3. 586 */ 587 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 588 break; 589 case EXCP_IRQ: 590 /* 591 * When EL3 execution state is 32-bit, if HCR.IMO is set then 592 * we may override the CPSR.I masking when in non-secure state. 593 * The SCR.IRQ setting has already been taken into consideration 594 * when setting the target EL, so it does not have a further 595 * affect here. 596 */ 597 hcr = hcr_el2 & HCR_IMO; 598 scr = false; 599 break; 600 default: 601 g_assert_not_reached(); 602 } 603 604 if ((scr || hcr) && !secure) { 605 unmasked = true; 606 } 607 } 608 } 609 610 /* 611 * The PSTATE bits only mask the interrupt if we have not overriden the 612 * ability above. 613 */ 614 return unmasked || pstate_unmasked; 615 } 616 617 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 618 { 619 CPUClass *cc = CPU_GET_CLASS(cs); 620 CPUARMState *env = cs->env_ptr; 621 uint32_t cur_el = arm_current_el(env); 622 bool secure = arm_is_secure(env); 623 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 624 uint32_t target_el; 625 uint32_t excp_idx; 626 627 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 628 629 if (interrupt_request & CPU_INTERRUPT_FIQ) { 630 excp_idx = EXCP_FIQ; 631 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 632 if (arm_excp_unmasked(cs, excp_idx, target_el, 633 cur_el, secure, hcr_el2)) { 634 goto found; 635 } 636 } 637 if (interrupt_request & CPU_INTERRUPT_HARD) { 638 excp_idx = EXCP_IRQ; 639 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 640 if (arm_excp_unmasked(cs, excp_idx, target_el, 641 cur_el, secure, hcr_el2)) { 642 goto found; 643 } 644 } 645 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 646 excp_idx = EXCP_VIRQ; 647 target_el = 1; 648 if (arm_excp_unmasked(cs, excp_idx, target_el, 649 cur_el, secure, hcr_el2)) { 650 goto found; 651 } 652 } 653 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 654 excp_idx = EXCP_VFIQ; 655 target_el = 1; 656 if (arm_excp_unmasked(cs, excp_idx, target_el, 657 cur_el, secure, hcr_el2)) { 658 goto found; 659 } 660 } 661 if (interrupt_request & CPU_INTERRUPT_VSERR) { 662 excp_idx = EXCP_VSERR; 663 target_el = 1; 664 if (arm_excp_unmasked(cs, excp_idx, target_el, 665 cur_el, secure, hcr_el2)) { 666 /* Taking a virtual abort clears HCR_EL2.VSE */ 667 env->cp15.hcr_el2 &= ~HCR_VSE; 668 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 669 goto found; 670 } 671 } 672 return false; 673 674 found: 675 cs->exception_index = excp_idx; 676 env->exception.target_el = target_el; 677 cc->tcg_ops->do_interrupt(cs); 678 return true; 679 } 680 #endif /* !CONFIG_USER_ONLY */ 681 682 void arm_cpu_update_virq(ARMCPU *cpu) 683 { 684 /* 685 * Update the interrupt level for VIRQ, which is the logical OR of 686 * the HCR_EL2.VI bit and the input line level from the GIC. 687 */ 688 CPUARMState *env = &cpu->env; 689 CPUState *cs = CPU(cpu); 690 691 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 692 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 693 694 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 695 if (new_state) { 696 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 697 } else { 698 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 699 } 700 } 701 } 702 703 void arm_cpu_update_vfiq(ARMCPU *cpu) 704 { 705 /* 706 * Update the interrupt level for VFIQ, which is the logical OR of 707 * the HCR_EL2.VF bit and the input line level from the GIC. 708 */ 709 CPUARMState *env = &cpu->env; 710 CPUState *cs = CPU(cpu); 711 712 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 713 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 714 715 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 716 if (new_state) { 717 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 718 } else { 719 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 720 } 721 } 722 } 723 724 void arm_cpu_update_vserr(ARMCPU *cpu) 725 { 726 /* 727 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. 728 */ 729 CPUARMState *env = &cpu->env; 730 CPUState *cs = CPU(cpu); 731 732 bool new_state = env->cp15.hcr_el2 & HCR_VSE; 733 734 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { 735 if (new_state) { 736 cpu_interrupt(cs, CPU_INTERRUPT_VSERR); 737 } else { 738 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 739 } 740 } 741 } 742 743 #ifndef CONFIG_USER_ONLY 744 static void arm_cpu_set_irq(void *opaque, int irq, int level) 745 { 746 ARMCPU *cpu = opaque; 747 CPUARMState *env = &cpu->env; 748 CPUState *cs = CPU(cpu); 749 static const int mask[] = { 750 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 751 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 752 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 753 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 754 }; 755 756 if (!arm_feature(env, ARM_FEATURE_EL2) && 757 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { 758 /* 759 * The GIC might tell us about VIRQ and VFIQ state, but if we don't 760 * have EL2 support we don't care. (Unless the guest is doing something 761 * silly this will only be calls saying "level is still 0".) 762 */ 763 return; 764 } 765 766 if (level) { 767 env->irq_line_state |= mask[irq]; 768 } else { 769 env->irq_line_state &= ~mask[irq]; 770 } 771 772 switch (irq) { 773 case ARM_CPU_VIRQ: 774 arm_cpu_update_virq(cpu); 775 break; 776 case ARM_CPU_VFIQ: 777 arm_cpu_update_vfiq(cpu); 778 break; 779 case ARM_CPU_IRQ: 780 case ARM_CPU_FIQ: 781 if (level) { 782 cpu_interrupt(cs, mask[irq]); 783 } else { 784 cpu_reset_interrupt(cs, mask[irq]); 785 } 786 break; 787 default: 788 g_assert_not_reached(); 789 } 790 } 791 792 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 793 { 794 #ifdef CONFIG_KVM 795 ARMCPU *cpu = opaque; 796 CPUARMState *env = &cpu->env; 797 CPUState *cs = CPU(cpu); 798 uint32_t linestate_bit; 799 int irq_id; 800 801 switch (irq) { 802 case ARM_CPU_IRQ: 803 irq_id = KVM_ARM_IRQ_CPU_IRQ; 804 linestate_bit = CPU_INTERRUPT_HARD; 805 break; 806 case ARM_CPU_FIQ: 807 irq_id = KVM_ARM_IRQ_CPU_FIQ; 808 linestate_bit = CPU_INTERRUPT_FIQ; 809 break; 810 default: 811 g_assert_not_reached(); 812 } 813 814 if (level) { 815 env->irq_line_state |= linestate_bit; 816 } else { 817 env->irq_line_state &= ~linestate_bit; 818 } 819 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 820 #endif 821 } 822 823 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 824 { 825 ARMCPU *cpu = ARM_CPU(cs); 826 CPUARMState *env = &cpu->env; 827 828 cpu_synchronize_state(cs); 829 return arm_cpu_data_is_big_endian(env); 830 } 831 832 #endif 833 834 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 835 { 836 ARMCPU *ac = ARM_CPU(cpu); 837 CPUARMState *env = &ac->env; 838 bool sctlr_b; 839 840 if (is_a64(env)) { 841 info->cap_arch = CS_ARCH_ARM64; 842 info->cap_insn_unit = 4; 843 info->cap_insn_split = 4; 844 } else { 845 int cap_mode; 846 if (env->thumb) { 847 info->cap_insn_unit = 2; 848 info->cap_insn_split = 4; 849 cap_mode = CS_MODE_THUMB; 850 } else { 851 info->cap_insn_unit = 4; 852 info->cap_insn_split = 4; 853 cap_mode = CS_MODE_ARM; 854 } 855 if (arm_feature(env, ARM_FEATURE_V8)) { 856 cap_mode |= CS_MODE_V8; 857 } 858 if (arm_feature(env, ARM_FEATURE_M)) { 859 cap_mode |= CS_MODE_MCLASS; 860 } 861 info->cap_arch = CS_ARCH_ARM; 862 info->cap_mode = cap_mode; 863 } 864 865 sctlr_b = arm_sctlr_b(env); 866 if (bswap_code(sctlr_b)) { 867 #if TARGET_BIG_ENDIAN 868 info->endian = BFD_ENDIAN_LITTLE; 869 #else 870 info->endian = BFD_ENDIAN_BIG; 871 #endif 872 } 873 info->flags &= ~INSN_ARM_BE32; 874 #ifndef CONFIG_USER_ONLY 875 if (sctlr_b) { 876 info->flags |= INSN_ARM_BE32; 877 } 878 #endif 879 } 880 881 #ifdef TARGET_AARCH64 882 883 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 884 { 885 ARMCPU *cpu = ARM_CPU(cs); 886 CPUARMState *env = &cpu->env; 887 uint32_t psr = pstate_read(env); 888 int i; 889 int el = arm_current_el(env); 890 const char *ns_status; 891 bool sve; 892 893 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 894 for (i = 0; i < 32; i++) { 895 if (i == 31) { 896 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 897 } else { 898 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 899 (i + 2) % 3 ? " " : "\n"); 900 } 901 } 902 903 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 904 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 905 } else { 906 ns_status = ""; 907 } 908 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 909 psr, 910 psr & PSTATE_N ? 'N' : '-', 911 psr & PSTATE_Z ? 'Z' : '-', 912 psr & PSTATE_C ? 'C' : '-', 913 psr & PSTATE_V ? 'V' : '-', 914 ns_status, 915 el, 916 psr & PSTATE_SP ? 'h' : 't'); 917 918 if (cpu_isar_feature(aa64_sme, cpu)) { 919 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", 920 env->svcr, 921 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), 922 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); 923 } 924 if (cpu_isar_feature(aa64_bti, cpu)) { 925 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 926 } 927 if (!(flags & CPU_DUMP_FPU)) { 928 qemu_fprintf(f, "\n"); 929 return; 930 } 931 if (fp_exception_el(env, el) != 0) { 932 qemu_fprintf(f, " FPU disabled\n"); 933 return; 934 } 935 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 936 vfp_get_fpcr(env), vfp_get_fpsr(env)); 937 938 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { 939 sve = sme_exception_el(env, el) == 0; 940 } else if (cpu_isar_feature(aa64_sve, cpu)) { 941 sve = sve_exception_el(env, el) == 0; 942 } else { 943 sve = false; 944 } 945 946 if (sve) { 947 int j, zcr_len = sve_vqm1_for_el(env, el); 948 949 for (i = 0; i <= FFR_PRED_NUM; i++) { 950 bool eol; 951 if (i == FFR_PRED_NUM) { 952 qemu_fprintf(f, "FFR="); 953 /* It's last, so end the line. */ 954 eol = true; 955 } else { 956 qemu_fprintf(f, "P%02d=", i); 957 switch (zcr_len) { 958 case 0: 959 eol = i % 8 == 7; 960 break; 961 case 1: 962 eol = i % 6 == 5; 963 break; 964 case 2: 965 case 3: 966 eol = i % 3 == 2; 967 break; 968 default: 969 /* More than one quadword per predicate. */ 970 eol = true; 971 break; 972 } 973 } 974 for (j = zcr_len / 4; j >= 0; j--) { 975 int digits; 976 if (j * 4 + 4 <= zcr_len + 1) { 977 digits = 16; 978 } else { 979 digits = (zcr_len % 4 + 1) * 4; 980 } 981 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 982 env->vfp.pregs[i].p[j], 983 j ? ":" : eol ? "\n" : " "); 984 } 985 } 986 987 for (i = 0; i < 32; i++) { 988 if (zcr_len == 0) { 989 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 990 i, env->vfp.zregs[i].d[1], 991 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 992 } else if (zcr_len == 1) { 993 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 994 ":%016" PRIx64 ":%016" PRIx64 "\n", 995 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 996 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 997 } else { 998 for (j = zcr_len; j >= 0; j--) { 999 bool odd = (zcr_len - j) % 2 != 0; 1000 if (j == zcr_len) { 1001 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 1002 } else if (!odd) { 1003 if (j > 0) { 1004 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 1005 } else { 1006 qemu_fprintf(f, " [%x]=", j); 1007 } 1008 } 1009 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 1010 env->vfp.zregs[i].d[j * 2 + 1], 1011 env->vfp.zregs[i].d[j * 2], 1012 odd || j == 0 ? "\n" : ":"); 1013 } 1014 } 1015 } 1016 } else { 1017 for (i = 0; i < 32; i++) { 1018 uint64_t *q = aa64_vfp_qreg(env, i); 1019 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1020 i, q[1], q[0], (i & 1 ? "\n" : " ")); 1021 } 1022 } 1023 } 1024 1025 #else 1026 1027 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1028 { 1029 g_assert_not_reached(); 1030 } 1031 1032 #endif 1033 1034 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1035 { 1036 ARMCPU *cpu = ARM_CPU(cs); 1037 CPUARMState *env = &cpu->env; 1038 int i; 1039 1040 if (is_a64(env)) { 1041 aarch64_cpu_dump_state(cs, f, flags); 1042 return; 1043 } 1044 1045 for (i = 0; i < 16; i++) { 1046 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 1047 if ((i % 4) == 3) { 1048 qemu_fprintf(f, "\n"); 1049 } else { 1050 qemu_fprintf(f, " "); 1051 } 1052 } 1053 1054 if (arm_feature(env, ARM_FEATURE_M)) { 1055 uint32_t xpsr = xpsr_read(env); 1056 const char *mode; 1057 const char *ns_status = ""; 1058 1059 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1060 ns_status = env->v7m.secure ? "S " : "NS "; 1061 } 1062 1063 if (xpsr & XPSR_EXCP) { 1064 mode = "handler"; 1065 } else { 1066 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 1067 mode = "unpriv-thread"; 1068 } else { 1069 mode = "priv-thread"; 1070 } 1071 } 1072 1073 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 1074 xpsr, 1075 xpsr & XPSR_N ? 'N' : '-', 1076 xpsr & XPSR_Z ? 'Z' : '-', 1077 xpsr & XPSR_C ? 'C' : '-', 1078 xpsr & XPSR_V ? 'V' : '-', 1079 xpsr & XPSR_T ? 'T' : 'A', 1080 ns_status, 1081 mode); 1082 } else { 1083 uint32_t psr = cpsr_read(env); 1084 const char *ns_status = ""; 1085 1086 if (arm_feature(env, ARM_FEATURE_EL3) && 1087 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 1088 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1089 } 1090 1091 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 1092 psr, 1093 psr & CPSR_N ? 'N' : '-', 1094 psr & CPSR_Z ? 'Z' : '-', 1095 psr & CPSR_C ? 'C' : '-', 1096 psr & CPSR_V ? 'V' : '-', 1097 psr & CPSR_T ? 'T' : 'A', 1098 ns_status, 1099 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 1100 } 1101 1102 if (flags & CPU_DUMP_FPU) { 1103 int numvfpregs = 0; 1104 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1105 numvfpregs = 32; 1106 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1107 numvfpregs = 16; 1108 } 1109 for (i = 0; i < numvfpregs; i++) { 1110 uint64_t v = *aa32_vfp_dreg(env, i); 1111 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1112 i * 2, (uint32_t)v, 1113 i * 2 + 1, (uint32_t)(v >> 32), 1114 i, v); 1115 } 1116 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1117 if (cpu_isar_feature(aa32_mve, cpu)) { 1118 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); 1119 } 1120 } 1121 } 1122 1123 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 1124 { 1125 uint32_t Aff1 = idx / clustersz; 1126 uint32_t Aff0 = idx % clustersz; 1127 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1128 } 1129 1130 static void arm_cpu_initfn(Object *obj) 1131 { 1132 ARMCPU *cpu = ARM_CPU(obj); 1133 1134 cpu_set_cpustate_pointers(cpu); 1135 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, 1136 NULL, g_free); 1137 1138 QLIST_INIT(&cpu->pre_el_change_hooks); 1139 QLIST_INIT(&cpu->el_change_hooks); 1140 1141 #ifdef CONFIG_USER_ONLY 1142 # ifdef TARGET_AARCH64 1143 /* 1144 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. 1145 * These values were chosen to fit within the default signal frame. 1146 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, 1147 * and our corresponding cpu property. 1148 */ 1149 cpu->sve_default_vq = 4; 1150 cpu->sme_default_vq = 2; 1151 # endif 1152 #else 1153 /* Our inbound IRQ and FIQ lines */ 1154 if (kvm_enabled()) { 1155 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1156 * the same interface as non-KVM CPUs. 1157 */ 1158 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1159 } else { 1160 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1161 } 1162 1163 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1164 ARRAY_SIZE(cpu->gt_timer_outputs)); 1165 1166 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1167 "gicv3-maintenance-interrupt", 1); 1168 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1169 "pmu-interrupt", 1); 1170 #endif 1171 1172 /* DTB consumers generally don't in fact care what the 'compatible' 1173 * string is, so always provide some string and trust that a hypothetical 1174 * picky DTB consumer will also provide a helpful error message. 1175 */ 1176 cpu->dtb_compatible = "qemu,unknown"; 1177 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ 1178 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1179 1180 if (tcg_enabled() || hvf_enabled()) { 1181 /* TCG and HVF implement PSCI 1.1 */ 1182 cpu->psci_version = QEMU_PSCI_VERSION_1_1; 1183 } 1184 } 1185 1186 static Property arm_cpu_gt_cntfrq_property = 1187 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1188 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1189 1190 static Property arm_cpu_reset_cbar_property = 1191 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1192 1193 static Property arm_cpu_reset_hivecs_property = 1194 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1195 1196 #ifndef CONFIG_USER_ONLY 1197 static Property arm_cpu_has_el2_property = 1198 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1199 1200 static Property arm_cpu_has_el3_property = 1201 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1202 #endif 1203 1204 static Property arm_cpu_cfgend_property = 1205 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1206 1207 static Property arm_cpu_has_vfp_property = 1208 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1209 1210 static Property arm_cpu_has_neon_property = 1211 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1212 1213 static Property arm_cpu_has_dsp_property = 1214 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1215 1216 static Property arm_cpu_has_mpu_property = 1217 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1218 1219 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1220 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1221 * the right value for that particular CPU type, and we don't want 1222 * to override that with an incorrect constant value. 1223 */ 1224 static Property arm_cpu_pmsav7_dregion_property = 1225 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1226 pmsav7_dregion, 1227 qdev_prop_uint32, uint32_t); 1228 1229 static bool arm_get_pmu(Object *obj, Error **errp) 1230 { 1231 ARMCPU *cpu = ARM_CPU(obj); 1232 1233 return cpu->has_pmu; 1234 } 1235 1236 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1237 { 1238 ARMCPU *cpu = ARM_CPU(obj); 1239 1240 if (value) { 1241 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1242 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1243 return; 1244 } 1245 set_feature(&cpu->env, ARM_FEATURE_PMU); 1246 } else { 1247 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1248 } 1249 cpu->has_pmu = value; 1250 } 1251 1252 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1253 { 1254 /* 1255 * The exact approach to calculating guest ticks is: 1256 * 1257 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1258 * NANOSECONDS_PER_SECOND); 1259 * 1260 * We don't do that. Rather we intentionally use integer division 1261 * truncation below and in the caller for the conversion of host monotonic 1262 * time to guest ticks to provide the exact inverse for the semantics of 1263 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1264 * it loses precision when representing frequencies where 1265 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1266 * provide an exact inverse leads to scheduling timers with negative 1267 * periods, which in turn leads to sticky behaviour in the guest. 1268 * 1269 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1270 * cannot become zero. 1271 */ 1272 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1273 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1274 } 1275 1276 void arm_cpu_post_init(Object *obj) 1277 { 1278 ARMCPU *cpu = ARM_CPU(obj); 1279 1280 /* M profile implies PMSA. We have to do this here rather than 1281 * in realize with the other feature-implication checks because 1282 * we look at the PMSA bit to see if we should add some properties. 1283 */ 1284 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1285 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1286 } 1287 1288 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1289 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1290 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1291 } 1292 1293 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1294 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1295 } 1296 1297 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1298 object_property_add_uint64_ptr(obj, "rvbar", 1299 &cpu->rvbar_prop, 1300 OBJ_PROP_FLAG_READWRITE); 1301 } 1302 1303 #ifndef CONFIG_USER_ONLY 1304 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1305 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1306 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1307 */ 1308 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1309 1310 object_property_add_link(obj, "secure-memory", 1311 TYPE_MEMORY_REGION, 1312 (Object **)&cpu->secure_memory, 1313 qdev_prop_allow_set_link_before_realize, 1314 OBJ_PROP_LINK_STRONG); 1315 } 1316 1317 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1318 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1319 } 1320 #endif 1321 1322 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1323 cpu->has_pmu = true; 1324 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1325 } 1326 1327 /* 1328 * Allow user to turn off VFP and Neon support, but only for TCG -- 1329 * KVM does not currently allow us to lie to the guest about its 1330 * ID/feature registers, so the guest always sees what the host has. 1331 */ 1332 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 1333 ? cpu_isar_feature(aa64_fp_simd, cpu) 1334 : cpu_isar_feature(aa32_vfp, cpu)) { 1335 cpu->has_vfp = true; 1336 if (!kvm_enabled()) { 1337 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); 1338 } 1339 } 1340 1341 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1342 cpu->has_neon = true; 1343 if (!kvm_enabled()) { 1344 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1345 } 1346 } 1347 1348 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1349 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1350 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1351 } 1352 1353 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1354 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1355 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1356 qdev_property_add_static(DEVICE(obj), 1357 &arm_cpu_pmsav7_dregion_property); 1358 } 1359 } 1360 1361 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1362 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1363 qdev_prop_allow_set_link_before_realize, 1364 OBJ_PROP_LINK_STRONG); 1365 /* 1366 * M profile: initial value of the Secure VTOR. We can't just use 1367 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1368 * the property to be set after realize. 1369 */ 1370 object_property_add_uint32_ptr(obj, "init-svtor", 1371 &cpu->init_svtor, 1372 OBJ_PROP_FLAG_READWRITE); 1373 } 1374 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1375 /* 1376 * Initial value of the NS VTOR (for cores without the Security 1377 * extension, this is the only VTOR) 1378 */ 1379 object_property_add_uint32_ptr(obj, "init-nsvtor", 1380 &cpu->init_nsvtor, 1381 OBJ_PROP_FLAG_READWRITE); 1382 } 1383 1384 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ 1385 object_property_add_uint32_ptr(obj, "psci-conduit", 1386 &cpu->psci_conduit, 1387 OBJ_PROP_FLAG_READWRITE); 1388 1389 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1390 1391 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1392 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1393 } 1394 1395 if (kvm_enabled()) { 1396 kvm_arm_add_vcpu_properties(obj); 1397 } 1398 1399 #ifndef CONFIG_USER_ONLY 1400 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1401 cpu_isar_feature(aa64_mte, cpu)) { 1402 object_property_add_link(obj, "tag-memory", 1403 TYPE_MEMORY_REGION, 1404 (Object **)&cpu->tag_memory, 1405 qdev_prop_allow_set_link_before_realize, 1406 OBJ_PROP_LINK_STRONG); 1407 1408 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1409 object_property_add_link(obj, "secure-tag-memory", 1410 TYPE_MEMORY_REGION, 1411 (Object **)&cpu->secure_tag_memory, 1412 qdev_prop_allow_set_link_before_realize, 1413 OBJ_PROP_LINK_STRONG); 1414 } 1415 } 1416 #endif 1417 } 1418 1419 static void arm_cpu_finalizefn(Object *obj) 1420 { 1421 ARMCPU *cpu = ARM_CPU(obj); 1422 ARMELChangeHook *hook, *next; 1423 1424 g_hash_table_destroy(cpu->cp_regs); 1425 1426 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1427 QLIST_REMOVE(hook, node); 1428 g_free(hook); 1429 } 1430 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1431 QLIST_REMOVE(hook, node); 1432 g_free(hook); 1433 } 1434 #ifndef CONFIG_USER_ONLY 1435 if (cpu->pmu_timer) { 1436 timer_free(cpu->pmu_timer); 1437 } 1438 #endif 1439 } 1440 1441 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1442 { 1443 Error *local_err = NULL; 1444 1445 #ifdef TARGET_AARCH64 1446 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1447 arm_cpu_sve_finalize(cpu, &local_err); 1448 if (local_err != NULL) { 1449 error_propagate(errp, local_err); 1450 return; 1451 } 1452 1453 arm_cpu_sme_finalize(cpu, &local_err); 1454 if (local_err != NULL) { 1455 error_propagate(errp, local_err); 1456 return; 1457 } 1458 1459 arm_cpu_pauth_finalize(cpu, &local_err); 1460 if (local_err != NULL) { 1461 error_propagate(errp, local_err); 1462 return; 1463 } 1464 1465 arm_cpu_lpa2_finalize(cpu, &local_err); 1466 if (local_err != NULL) { 1467 error_propagate(errp, local_err); 1468 return; 1469 } 1470 } 1471 #endif 1472 1473 if (kvm_enabled()) { 1474 kvm_arm_steal_time_finalize(cpu, &local_err); 1475 if (local_err != NULL) { 1476 error_propagate(errp, local_err); 1477 return; 1478 } 1479 } 1480 } 1481 1482 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1483 { 1484 CPUState *cs = CPU(dev); 1485 ARMCPU *cpu = ARM_CPU(dev); 1486 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1487 CPUARMState *env = &cpu->env; 1488 int pagebits; 1489 Error *local_err = NULL; 1490 bool no_aa32 = false; 1491 1492 /* If we needed to query the host kernel for the CPU features 1493 * then it's possible that might have failed in the initfn, but 1494 * this is the first point where we can report it. 1495 */ 1496 if (cpu->host_cpu_probe_failed) { 1497 if (!kvm_enabled() && !hvf_enabled()) { 1498 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); 1499 } else { 1500 error_setg(errp, "Failed to retrieve host CPU features"); 1501 } 1502 return; 1503 } 1504 1505 #ifndef CONFIG_USER_ONLY 1506 /* The NVIC and M-profile CPU are two halves of a single piece of 1507 * hardware; trying to use one without the other is a command line 1508 * error and will result in segfaults if not caught here. 1509 */ 1510 if (arm_feature(env, ARM_FEATURE_M)) { 1511 if (!env->nvic) { 1512 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1513 return; 1514 } 1515 } else { 1516 if (env->nvic) { 1517 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1518 return; 1519 } 1520 } 1521 1522 if (!tcg_enabled() && !qtest_enabled()) { 1523 /* 1524 * We assume that no accelerator except TCG (and the "not really an 1525 * accelerator" qtest) can handle these features, because Arm hardware 1526 * virtualization can't virtualize them. 1527 * 1528 * Catch all the cases which might cause us to create more than one 1529 * address space for the CPU (otherwise we will assert() later in 1530 * cpu_address_space_init()). 1531 */ 1532 if (arm_feature(env, ARM_FEATURE_M)) { 1533 error_setg(errp, 1534 "Cannot enable %s when using an M-profile guest CPU", 1535 current_accel_name()); 1536 return; 1537 } 1538 if (cpu->has_el3) { 1539 error_setg(errp, 1540 "Cannot enable %s when guest CPU has EL3 enabled", 1541 current_accel_name()); 1542 return; 1543 } 1544 if (cpu->tag_memory) { 1545 error_setg(errp, 1546 "Cannot enable %s when guest CPUs has MTE enabled", 1547 current_accel_name()); 1548 return; 1549 } 1550 } 1551 1552 { 1553 uint64_t scale; 1554 1555 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1556 if (!cpu->gt_cntfrq_hz) { 1557 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1558 cpu->gt_cntfrq_hz); 1559 return; 1560 } 1561 scale = gt_cntfrq_period_ns(cpu); 1562 } else { 1563 scale = GTIMER_SCALE; 1564 } 1565 1566 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1567 arm_gt_ptimer_cb, cpu); 1568 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1569 arm_gt_vtimer_cb, cpu); 1570 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1571 arm_gt_htimer_cb, cpu); 1572 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1573 arm_gt_stimer_cb, cpu); 1574 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1575 arm_gt_hvtimer_cb, cpu); 1576 } 1577 #endif 1578 1579 cpu_exec_realizefn(cs, &local_err); 1580 if (local_err != NULL) { 1581 error_propagate(errp, local_err); 1582 return; 1583 } 1584 1585 arm_cpu_finalize_features(cpu, &local_err); 1586 if (local_err != NULL) { 1587 error_propagate(errp, local_err); 1588 return; 1589 } 1590 1591 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1592 cpu->has_vfp != cpu->has_neon) { 1593 /* 1594 * This is an architectural requirement for AArch64; AArch32 is 1595 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1596 */ 1597 error_setg(errp, 1598 "AArch64 CPUs must have both VFP and Neon or neither"); 1599 return; 1600 } 1601 1602 if (!cpu->has_vfp) { 1603 uint64_t t; 1604 uint32_t u; 1605 1606 t = cpu->isar.id_aa64isar1; 1607 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1608 cpu->isar.id_aa64isar1 = t; 1609 1610 t = cpu->isar.id_aa64pfr0; 1611 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1612 cpu->isar.id_aa64pfr0 = t; 1613 1614 u = cpu->isar.id_isar6; 1615 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1616 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1617 cpu->isar.id_isar6 = u; 1618 1619 u = cpu->isar.mvfr0; 1620 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1621 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1622 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1623 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1624 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1625 if (!arm_feature(env, ARM_FEATURE_M)) { 1626 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1627 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1628 } 1629 cpu->isar.mvfr0 = u; 1630 1631 u = cpu->isar.mvfr1; 1632 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1633 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1634 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1635 if (arm_feature(env, ARM_FEATURE_M)) { 1636 u = FIELD_DP32(u, MVFR1, FP16, 0); 1637 } 1638 cpu->isar.mvfr1 = u; 1639 1640 u = cpu->isar.mvfr2; 1641 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1642 cpu->isar.mvfr2 = u; 1643 } 1644 1645 if (!cpu->has_neon) { 1646 uint64_t t; 1647 uint32_t u; 1648 1649 unset_feature(env, ARM_FEATURE_NEON); 1650 1651 t = cpu->isar.id_aa64isar0; 1652 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); 1653 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); 1654 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); 1655 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); 1656 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); 1657 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); 1658 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1659 cpu->isar.id_aa64isar0 = t; 1660 1661 t = cpu->isar.id_aa64isar1; 1662 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1663 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); 1664 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); 1665 cpu->isar.id_aa64isar1 = t; 1666 1667 t = cpu->isar.id_aa64pfr0; 1668 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1669 cpu->isar.id_aa64pfr0 = t; 1670 1671 u = cpu->isar.id_isar5; 1672 u = FIELD_DP32(u, ID_ISAR5, AES, 0); 1673 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); 1674 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); 1675 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1676 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1677 cpu->isar.id_isar5 = u; 1678 1679 u = cpu->isar.id_isar6; 1680 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1681 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1682 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1683 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); 1684 cpu->isar.id_isar6 = u; 1685 1686 if (!arm_feature(env, ARM_FEATURE_M)) { 1687 u = cpu->isar.mvfr1; 1688 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1689 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1690 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1691 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1692 cpu->isar.mvfr1 = u; 1693 1694 u = cpu->isar.mvfr2; 1695 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1696 cpu->isar.mvfr2 = u; 1697 } 1698 } 1699 1700 if (!cpu->has_neon && !cpu->has_vfp) { 1701 uint64_t t; 1702 uint32_t u; 1703 1704 t = cpu->isar.id_aa64isar0; 1705 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1706 cpu->isar.id_aa64isar0 = t; 1707 1708 t = cpu->isar.id_aa64isar1; 1709 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1710 cpu->isar.id_aa64isar1 = t; 1711 1712 u = cpu->isar.mvfr0; 1713 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1714 cpu->isar.mvfr0 = u; 1715 1716 /* Despite the name, this field covers both VFP and Neon */ 1717 u = cpu->isar.mvfr1; 1718 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1719 cpu->isar.mvfr1 = u; 1720 } 1721 1722 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1723 uint32_t u; 1724 1725 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1726 1727 u = cpu->isar.id_isar1; 1728 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1729 cpu->isar.id_isar1 = u; 1730 1731 u = cpu->isar.id_isar2; 1732 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1733 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1734 cpu->isar.id_isar2 = u; 1735 1736 u = cpu->isar.id_isar3; 1737 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1738 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1739 cpu->isar.id_isar3 = u; 1740 } 1741 1742 /* Some features automatically imply others: */ 1743 if (arm_feature(env, ARM_FEATURE_V8)) { 1744 if (arm_feature(env, ARM_FEATURE_M)) { 1745 set_feature(env, ARM_FEATURE_V7); 1746 } else { 1747 set_feature(env, ARM_FEATURE_V7VE); 1748 } 1749 } 1750 1751 /* 1752 * There exist AArch64 cpus without AArch32 support. When KVM 1753 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1754 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1755 * As a general principle, we also do not make ID register 1756 * consistency checks anywhere unless using TCG, because only 1757 * for TCG would a consistency-check failure be a QEMU bug. 1758 */ 1759 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1760 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1761 } 1762 1763 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1764 /* v7 Virtualization Extensions. In real hardware this implies 1765 * EL2 and also the presence of the Security Extensions. 1766 * For QEMU, for backwards-compatibility we implement some 1767 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1768 * include the various other features that V7VE implies. 1769 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1770 * Security Extensions is ARM_FEATURE_EL3. 1771 */ 1772 assert(!tcg_enabled() || no_aa32 || 1773 cpu_isar_feature(aa32_arm_div, cpu)); 1774 set_feature(env, ARM_FEATURE_LPAE); 1775 set_feature(env, ARM_FEATURE_V7); 1776 } 1777 if (arm_feature(env, ARM_FEATURE_V7)) { 1778 set_feature(env, ARM_FEATURE_VAPA); 1779 set_feature(env, ARM_FEATURE_THUMB2); 1780 set_feature(env, ARM_FEATURE_MPIDR); 1781 if (!arm_feature(env, ARM_FEATURE_M)) { 1782 set_feature(env, ARM_FEATURE_V6K); 1783 } else { 1784 set_feature(env, ARM_FEATURE_V6); 1785 } 1786 1787 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1788 * non-EL3 configs. This is needed by some legacy boards. 1789 */ 1790 set_feature(env, ARM_FEATURE_VBAR); 1791 } 1792 if (arm_feature(env, ARM_FEATURE_V6K)) { 1793 set_feature(env, ARM_FEATURE_V6); 1794 set_feature(env, ARM_FEATURE_MVFR); 1795 } 1796 if (arm_feature(env, ARM_FEATURE_V6)) { 1797 set_feature(env, ARM_FEATURE_V5); 1798 if (!arm_feature(env, ARM_FEATURE_M)) { 1799 assert(!tcg_enabled() || no_aa32 || 1800 cpu_isar_feature(aa32_jazelle, cpu)); 1801 set_feature(env, ARM_FEATURE_AUXCR); 1802 } 1803 } 1804 if (arm_feature(env, ARM_FEATURE_V5)) { 1805 set_feature(env, ARM_FEATURE_V4T); 1806 } 1807 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1808 set_feature(env, ARM_FEATURE_V7MP); 1809 } 1810 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1811 set_feature(env, ARM_FEATURE_CBAR); 1812 } 1813 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1814 !arm_feature(env, ARM_FEATURE_M)) { 1815 set_feature(env, ARM_FEATURE_THUMB_DSP); 1816 } 1817 1818 /* 1819 * We rely on no XScale CPU having VFP so we can use the same bits in the 1820 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1821 */ 1822 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || 1823 !cpu_isar_feature(aa32_vfp_simd, cpu) || 1824 !arm_feature(env, ARM_FEATURE_XSCALE)); 1825 1826 if (arm_feature(env, ARM_FEATURE_V7) && 1827 !arm_feature(env, ARM_FEATURE_M) && 1828 !arm_feature(env, ARM_FEATURE_PMSA)) { 1829 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1830 * can use 4K pages. 1831 */ 1832 pagebits = 12; 1833 } else { 1834 /* For CPUs which might have tiny 1K pages, or which have an 1835 * MPU and might have small region sizes, stick with 1K pages. 1836 */ 1837 pagebits = 10; 1838 } 1839 if (!set_preferred_target_page_bits(pagebits)) { 1840 /* This can only ever happen for hotplugging a CPU, or if 1841 * the board code incorrectly creates a CPU which it has 1842 * promised via minimum_page_size that it will not. 1843 */ 1844 error_setg(errp, "This CPU requires a smaller page size than the " 1845 "system is using"); 1846 return; 1847 } 1848 1849 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1850 * We don't support setting cluster ID ([16..23]) (known as Aff2 1851 * in later ARM ARM versions), or any of the higher affinity level fields, 1852 * so these bits always RAZ. 1853 */ 1854 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1855 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1856 ARM_DEFAULT_CPUS_PER_CLUSTER); 1857 } 1858 1859 if (cpu->reset_hivecs) { 1860 cpu->reset_sctlr |= (1 << 13); 1861 } 1862 1863 if (cpu->cfgend) { 1864 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1865 cpu->reset_sctlr |= SCTLR_EE; 1866 } else { 1867 cpu->reset_sctlr |= SCTLR_B; 1868 } 1869 } 1870 1871 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { 1872 /* If the has_el3 CPU property is disabled then we need to disable the 1873 * feature. 1874 */ 1875 unset_feature(env, ARM_FEATURE_EL3); 1876 1877 /* 1878 * Disable the security extension feature bits in the processor 1879 * feature registers as well. 1880 */ 1881 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); 1882 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); 1883 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 1884 ID_AA64PFR0, EL3, 0); 1885 } 1886 1887 if (!cpu->has_el2) { 1888 unset_feature(env, ARM_FEATURE_EL2); 1889 } 1890 1891 if (!cpu->has_pmu) { 1892 unset_feature(env, ARM_FEATURE_PMU); 1893 } 1894 if (arm_feature(env, ARM_FEATURE_PMU)) { 1895 pmu_init(cpu); 1896 1897 if (!kvm_enabled()) { 1898 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1899 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1900 } 1901 1902 #ifndef CONFIG_USER_ONLY 1903 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1904 cpu); 1905 #endif 1906 } else { 1907 cpu->isar.id_aa64dfr0 = 1908 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 1909 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 1910 cpu->pmceid0 = 0; 1911 cpu->pmceid1 = 0; 1912 } 1913 1914 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1915 /* 1916 * Disable the hypervisor feature bits in the processor feature 1917 * registers if we don't have EL2. 1918 */ 1919 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 1920 ID_AA64PFR0, EL2, 0); 1921 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, 1922 ID_PFR1, VIRTUALIZATION, 0); 1923 } 1924 1925 #ifndef CONFIG_USER_ONLY 1926 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { 1927 /* 1928 * Disable the MTE feature bits if we do not have tag-memory 1929 * provided by the machine. 1930 */ 1931 cpu->isar.id_aa64pfr1 = 1932 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); 1933 } 1934 #endif 1935 1936 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1937 * to false or by setting pmsav7-dregion to 0. 1938 */ 1939 if (!cpu->has_mpu) { 1940 cpu->pmsav7_dregion = 0; 1941 } 1942 if (cpu->pmsav7_dregion == 0) { 1943 cpu->has_mpu = false; 1944 } 1945 1946 if (arm_feature(env, ARM_FEATURE_PMSA) && 1947 arm_feature(env, ARM_FEATURE_V7)) { 1948 uint32_t nr = cpu->pmsav7_dregion; 1949 1950 if (nr > 0xff) { 1951 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1952 return; 1953 } 1954 1955 if (nr) { 1956 if (arm_feature(env, ARM_FEATURE_V8)) { 1957 /* PMSAv8 */ 1958 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1959 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1960 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1961 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1962 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1963 } 1964 } else { 1965 env->pmsav7.drbar = g_new0(uint32_t, nr); 1966 env->pmsav7.drsr = g_new0(uint32_t, nr); 1967 env->pmsav7.dracr = g_new0(uint32_t, nr); 1968 } 1969 } 1970 } 1971 1972 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1973 uint32_t nr = cpu->sau_sregion; 1974 1975 if (nr > 0xff) { 1976 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1977 return; 1978 } 1979 1980 if (nr) { 1981 env->sau.rbar = g_new0(uint32_t, nr); 1982 env->sau.rlar = g_new0(uint32_t, nr); 1983 } 1984 } 1985 1986 if (arm_feature(env, ARM_FEATURE_EL3)) { 1987 set_feature(env, ARM_FEATURE_VBAR); 1988 } 1989 1990 register_cp_regs_for_features(cpu); 1991 arm_cpu_register_gdb_regs_for_features(cpu); 1992 1993 init_cpreg_list(cpu); 1994 1995 #ifndef CONFIG_USER_ONLY 1996 MachineState *ms = MACHINE(qdev_get_machine()); 1997 unsigned int smp_cpus = ms->smp.cpus; 1998 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 1999 2000 /* 2001 * We must set cs->num_ases to the final value before 2002 * the first call to cpu_address_space_init. 2003 */ 2004 if (cpu->tag_memory != NULL) { 2005 cs->num_ases = 3 + has_secure; 2006 } else { 2007 cs->num_ases = 1 + has_secure; 2008 } 2009 2010 if (has_secure) { 2011 if (!cpu->secure_memory) { 2012 cpu->secure_memory = cs->memory; 2013 } 2014 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 2015 cpu->secure_memory); 2016 } 2017 2018 if (cpu->tag_memory != NULL) { 2019 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 2020 cpu->tag_memory); 2021 if (has_secure) { 2022 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 2023 cpu->secure_tag_memory); 2024 } 2025 } 2026 2027 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 2028 2029 /* No core_count specified, default to smp_cpus. */ 2030 if (cpu->core_count == -1) { 2031 cpu->core_count = smp_cpus; 2032 } 2033 #endif 2034 2035 if (tcg_enabled()) { 2036 int dcz_blocklen = 4 << cpu->dcz_blocksize; 2037 2038 /* 2039 * We only support DCZ blocklen that fits on one page. 2040 * 2041 * Architectually this is always true. However TARGET_PAGE_SIZE 2042 * is variable and, for compatibility with -machine virt-2.7, 2043 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 2044 * But even then, while the largest architectural DCZ blocklen 2045 * is 2KiB, no cpu actually uses such a large blocklen. 2046 */ 2047 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 2048 2049 /* 2050 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 2051 * both nibbles of each byte storing tag data may be written at once. 2052 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 2053 */ 2054 if (cpu_isar_feature(aa64_mte, cpu)) { 2055 assert(dcz_blocklen >= 2 * TAG_GRANULE); 2056 } 2057 } 2058 2059 qemu_init_vcpu(cs); 2060 cpu_reset(cs); 2061 2062 acc->parent_realize(dev, errp); 2063 } 2064 2065 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 2066 { 2067 ObjectClass *oc; 2068 char *typename; 2069 char **cpuname; 2070 const char *cpunamestr; 2071 2072 cpuname = g_strsplit(cpu_model, ",", 1); 2073 cpunamestr = cpuname[0]; 2074 #ifdef CONFIG_USER_ONLY 2075 /* For backwards compatibility usermode emulation allows "-cpu any", 2076 * which has the same semantics as "-cpu max". 2077 */ 2078 if (!strcmp(cpunamestr, "any")) { 2079 cpunamestr = "max"; 2080 } 2081 #endif 2082 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 2083 oc = object_class_by_name(typename); 2084 g_strfreev(cpuname); 2085 g_free(typename); 2086 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 2087 object_class_is_abstract(oc)) { 2088 return NULL; 2089 } 2090 return oc; 2091 } 2092 2093 static Property arm_cpu_properties[] = { 2094 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 2095 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2096 mp_affinity, ARM64_AFFINITY_INVALID), 2097 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2098 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2099 DEFINE_PROP_END_OF_LIST() 2100 }; 2101 2102 static gchar *arm_gdb_arch_name(CPUState *cs) 2103 { 2104 ARMCPU *cpu = ARM_CPU(cs); 2105 CPUARMState *env = &cpu->env; 2106 2107 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2108 return g_strdup("iwmmxt"); 2109 } 2110 return g_strdup("arm"); 2111 } 2112 2113 #ifndef CONFIG_USER_ONLY 2114 #include "hw/core/sysemu-cpu-ops.h" 2115 2116 static const struct SysemuCPUOps arm_sysemu_ops = { 2117 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, 2118 .asidx_from_attrs = arm_asidx_from_attrs, 2119 .write_elf32_note = arm_cpu_write_elf32_note, 2120 .write_elf64_note = arm_cpu_write_elf64_note, 2121 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, 2122 .legacy_vmsd = &vmstate_arm_cpu, 2123 }; 2124 #endif 2125 2126 #ifdef CONFIG_TCG 2127 static const struct TCGCPUOps arm_tcg_ops = { 2128 .initialize = arm_translate_init, 2129 .synchronize_from_tb = arm_cpu_synchronize_from_tb, 2130 .debug_excp_handler = arm_debug_excp_handler, 2131 2132 #ifdef CONFIG_USER_ONLY 2133 .record_sigsegv = arm_cpu_record_sigsegv, 2134 .record_sigbus = arm_cpu_record_sigbus, 2135 #else 2136 .tlb_fill = arm_cpu_tlb_fill, 2137 .cpu_exec_interrupt = arm_cpu_exec_interrupt, 2138 .do_interrupt = arm_cpu_do_interrupt, 2139 .do_transaction_failed = arm_cpu_do_transaction_failed, 2140 .do_unaligned_access = arm_cpu_do_unaligned_access, 2141 .adjust_watchpoint_address = arm_adjust_watchpoint_address, 2142 .debug_check_watchpoint = arm_debug_check_watchpoint, 2143 .debug_check_breakpoint = arm_debug_check_breakpoint, 2144 #endif /* !CONFIG_USER_ONLY */ 2145 }; 2146 #endif /* CONFIG_TCG */ 2147 2148 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2149 { 2150 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2151 CPUClass *cc = CPU_CLASS(acc); 2152 DeviceClass *dc = DEVICE_CLASS(oc); 2153 2154 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2155 &acc->parent_realize); 2156 2157 device_class_set_props(dc, arm_cpu_properties); 2158 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset); 2159 2160 cc->class_by_name = arm_cpu_class_by_name; 2161 cc->has_work = arm_cpu_has_work; 2162 cc->dump_state = arm_cpu_dump_state; 2163 cc->set_pc = arm_cpu_set_pc; 2164 cc->gdb_read_register = arm_cpu_gdb_read_register; 2165 cc->gdb_write_register = arm_cpu_gdb_write_register; 2166 #ifndef CONFIG_USER_ONLY 2167 cc->sysemu_ops = &arm_sysemu_ops; 2168 #endif 2169 cc->gdb_num_core_regs = 26; 2170 cc->gdb_core_xml_file = "arm-core.xml"; 2171 cc->gdb_arch_name = arm_gdb_arch_name; 2172 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2173 cc->gdb_stop_before_watchpoint = true; 2174 cc->disas_set_info = arm_disas_set_info; 2175 2176 #ifdef CONFIG_TCG 2177 cc->tcg_ops = &arm_tcg_ops; 2178 #endif /* CONFIG_TCG */ 2179 } 2180 2181 static void arm_cpu_instance_init(Object *obj) 2182 { 2183 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2184 2185 acc->info->initfn(obj); 2186 arm_cpu_post_init(obj); 2187 } 2188 2189 static void cpu_register_class_init(ObjectClass *oc, void *data) 2190 { 2191 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2192 2193 acc->info = data; 2194 } 2195 2196 void arm_cpu_register(const ARMCPUInfo *info) 2197 { 2198 TypeInfo type_info = { 2199 .parent = TYPE_ARM_CPU, 2200 .instance_size = sizeof(ARMCPU), 2201 .instance_align = __alignof__(ARMCPU), 2202 .instance_init = arm_cpu_instance_init, 2203 .class_size = sizeof(ARMCPUClass), 2204 .class_init = info->class_init ?: cpu_register_class_init, 2205 .class_data = (void *)info, 2206 }; 2207 2208 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2209 type_register(&type_info); 2210 g_free((void *)type_info.name); 2211 } 2212 2213 static const TypeInfo arm_cpu_type_info = { 2214 .name = TYPE_ARM_CPU, 2215 .parent = TYPE_CPU, 2216 .instance_size = sizeof(ARMCPU), 2217 .instance_align = __alignof__(ARMCPU), 2218 .instance_init = arm_cpu_initfn, 2219 .instance_finalize = arm_cpu_finalizefn, 2220 .abstract = true, 2221 .class_size = sizeof(ARMCPUClass), 2222 .class_init = arm_cpu_class_init, 2223 }; 2224 2225 static void arm_cpu_register_types(void) 2226 { 2227 type_register_static(&arm_cpu_type_info); 2228 } 2229 2230 type_init(arm_cpu_register_types) 2231