xref: /openbmc/qemu/target/arm/cpu.c (revision 438c78da)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167         /* and to the SVE instructions */
168         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169         env->cp15.cptr_el[3] |= CPTR_EZ;
170         /* with maximum vector length */
171         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175         /* Reset into the highest available EL */
176         if (arm_feature(env, ARM_FEATURE_EL3)) {
177             env->pstate = PSTATE_MODE_EL3h;
178         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179             env->pstate = PSTATE_MODE_EL2h;
180         } else {
181             env->pstate = PSTATE_MODE_EL1h;
182         }
183         env->pc = cpu->rvbar;
184 #endif
185     } else {
186 #if defined(CONFIG_USER_ONLY)
187         /* Userspace expects access to cp10 and cp11 for FP/Neon */
188         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
190     }
191 
192 #if defined(CONFIG_USER_ONLY)
193     env->uncached_cpsr = ARM_CPU_MODE_USR;
194     /* For user mode we must enable access to coprocessors */
195     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197         env->cp15.c15_cpar = 3;
198     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199         env->cp15.c15_cpar = 1;
200     }
201 #else
202 
203     /*
204      * If the highest available EL is EL2, AArch32 will start in Hyp
205      * mode; otherwise it starts in SVC. Note that if we start in
206      * AArch64 then these values in the uncached_cpsr will be ignored.
207      */
208     if (arm_feature(env, ARM_FEATURE_EL2) &&
209         !arm_feature(env, ARM_FEATURE_EL3)) {
210         env->uncached_cpsr = ARM_CPU_MODE_HYP;
211     } else {
212         env->uncached_cpsr = ARM_CPU_MODE_SVC;
213     }
214     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
215 
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         uint32_t initial_msp; /* Loaded from 0x0 */
218         uint32_t initial_pc; /* Loaded from 0x4 */
219         uint8_t *rom;
220         uint32_t vecbase;
221 
222         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223             env->v7m.secure = true;
224         } else {
225             /* This bit resets to 0 if security is supported, but 1 if
226              * it is not. The bit is not present in v7M, but we set it
227              * here so we can avoid having to make checks on it conditional
228              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
229              */
230             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
231         }
232 
233         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234          * that it resets to 1, so QEMU always does that rather than making
235          * it dependent on CPU model. In v8M it is RES1.
236          */
237         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239         if (arm_feature(env, ARM_FEATURE_V8)) {
240             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
243         }
244         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
247         }
248 
249         /* Unlike A/R profile, M profile defines the reset LR value */
250         env->regs[14] = 0xffffffff;
251 
252         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
253 
254         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255         vecbase = env->v7m.vecbase[env->v7m.secure];
256         rom = rom_ptr(vecbase, 8);
257         if (rom) {
258             /* Address zero is covered by ROM which hasn't yet been
259              * copied into physical memory.
260              */
261             initial_msp = ldl_p(rom);
262             initial_pc = ldl_p(rom + 4);
263         } else {
264             /* Address zero not covered by a ROM blob, or the ROM blob
265              * is in non-modifiable memory and this is a second reset after
266              * it got copied into memory. In the latter case, rom_ptr
267              * will return a NULL pointer and we should use ldl_phys instead.
268              */
269             initial_msp = ldl_phys(s->as, vecbase);
270             initial_pc = ldl_phys(s->as, vecbase + 4);
271         }
272 
273         env->regs[13] = initial_msp & 0xFFFFFFFC;
274         env->regs[15] = initial_pc & ~1;
275         env->thumb = initial_pc & 1;
276     }
277 
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285 
286     /* M profile requires that reset clears the exclusive monitor;
287      * A profile does not, but clearing it makes more sense than having it
288      * set with an exclusive access on address zero.
289      */
290     arm_clear_exclusive(env);
291 
292     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
294 
295     if (arm_feature(env, ARM_FEATURE_PMSA)) {
296         if (cpu->pmsav7_dregion > 0) {
297             if (arm_feature(env, ARM_FEATURE_V8)) {
298                 memset(env->pmsav8.rbar[M_REG_NS], 0,
299                        sizeof(*env->pmsav8.rbar[M_REG_NS])
300                        * cpu->pmsav7_dregion);
301                 memset(env->pmsav8.rlar[M_REG_NS], 0,
302                        sizeof(*env->pmsav8.rlar[M_REG_NS])
303                        * cpu->pmsav7_dregion);
304                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305                     memset(env->pmsav8.rbar[M_REG_S], 0,
306                            sizeof(*env->pmsav8.rbar[M_REG_S])
307                            * cpu->pmsav7_dregion);
308                     memset(env->pmsav8.rlar[M_REG_S], 0,
309                            sizeof(*env->pmsav8.rlar[M_REG_S])
310                            * cpu->pmsav7_dregion);
311                 }
312             } else if (arm_feature(env, ARM_FEATURE_V7)) {
313                 memset(env->pmsav7.drbar, 0,
314                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315                 memset(env->pmsav7.drsr, 0,
316                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317                 memset(env->pmsav7.dracr, 0,
318                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
319             }
320         }
321         env->pmsav7.rnr[M_REG_NS] = 0;
322         env->pmsav7.rnr[M_REG_S] = 0;
323         env->pmsav8.mair0[M_REG_NS] = 0;
324         env->pmsav8.mair0[M_REG_S] = 0;
325         env->pmsav8.mair1[M_REG_NS] = 0;
326         env->pmsav8.mair1[M_REG_S] = 0;
327     }
328 
329     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330         if (cpu->sau_sregion > 0) {
331             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
333         }
334         env->sau.rnr = 0;
335         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336          * the Cortex-M33 does.
337          */
338         env->sau.ctrl = 0;
339     }
340 
341     set_flush_to_zero(1, &env->vfp.standard_fp_status);
342     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343     set_default_nan_mode(1, &env->vfp.standard_fp_status);
344     set_float_detect_tininess(float_tininess_before_rounding,
345                               &env->vfp.fp_status);
346     set_float_detect_tininess(float_tininess_before_rounding,
347                               &env->vfp.standard_fp_status);
348     set_float_detect_tininess(float_tininess_before_rounding,
349                               &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351     if (kvm_enabled()) {
352         kvm_arm_reset_vcpu(cpu);
353     }
354 #endif
355 
356     hw_breakpoint_update_all(cpu);
357     hw_watchpoint_update_all(cpu);
358 }
359 
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
361 {
362     CPUClass *cc = CPU_GET_CLASS(cs);
363     CPUARMState *env = cs->env_ptr;
364     uint32_t cur_el = arm_current_el(env);
365     bool secure = arm_is_secure(env);
366     uint32_t target_el;
367     uint32_t excp_idx;
368     bool ret = false;
369 
370     if (interrupt_request & CPU_INTERRUPT_FIQ) {
371         excp_idx = EXCP_FIQ;
372         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374             cs->exception_index = excp_idx;
375             env->exception.target_el = target_el;
376             cc->do_interrupt(cs);
377             ret = true;
378         }
379     }
380     if (interrupt_request & CPU_INTERRUPT_HARD) {
381         excp_idx = EXCP_IRQ;
382         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384             cs->exception_index = excp_idx;
385             env->exception.target_el = target_el;
386             cc->do_interrupt(cs);
387             ret = true;
388         }
389     }
390     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391         excp_idx = EXCP_VIRQ;
392         target_el = 1;
393         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394             cs->exception_index = excp_idx;
395             env->exception.target_el = target_el;
396             cc->do_interrupt(cs);
397             ret = true;
398         }
399     }
400     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401         excp_idx = EXCP_VFIQ;
402         target_el = 1;
403         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404             cs->exception_index = excp_idx;
405             env->exception.target_el = target_el;
406             cc->do_interrupt(cs);
407             ret = true;
408         }
409     }
410 
411     return ret;
412 }
413 
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
416 {
417     CPUClass *cc = CPU_GET_CLASS(cs);
418     ARMCPU *cpu = ARM_CPU(cs);
419     CPUARMState *env = &cpu->env;
420     bool ret = false;
421 
422     /* ARMv7-M interrupt masking works differently than -A or -R.
423      * There is no FIQ/IRQ distinction. Instead of I and F bits
424      * masking FIQ and IRQ interrupts, an exception is taken only
425      * if it is higher priority than the current execution priority
426      * (which depends on state like BASEPRI, FAULTMASK and the
427      * currently active exception).
428      */
429     if (interrupt_request & CPU_INTERRUPT_HARD
430         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431         cs->exception_index = EXCP_IRQ;
432         cc->do_interrupt(cs);
433         ret = true;
434     }
435     return ret;
436 }
437 #endif
438 
439 #ifndef CONFIG_USER_ONLY
440 static void arm_cpu_set_irq(void *opaque, int irq, int level)
441 {
442     ARMCPU *cpu = opaque;
443     CPUARMState *env = &cpu->env;
444     CPUState *cs = CPU(cpu);
445     static const int mask[] = {
446         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
447         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
448         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
449         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
450     };
451 
452     switch (irq) {
453     case ARM_CPU_VIRQ:
454     case ARM_CPU_VFIQ:
455         assert(arm_feature(env, ARM_FEATURE_EL2));
456         /* fall through */
457     case ARM_CPU_IRQ:
458     case ARM_CPU_FIQ:
459         if (level) {
460             cpu_interrupt(cs, mask[irq]);
461         } else {
462             cpu_reset_interrupt(cs, mask[irq]);
463         }
464         break;
465     default:
466         g_assert_not_reached();
467     }
468 }
469 
470 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
471 {
472 #ifdef CONFIG_KVM
473     ARMCPU *cpu = opaque;
474     CPUState *cs = CPU(cpu);
475     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
476 
477     switch (irq) {
478     case ARM_CPU_IRQ:
479         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
480         break;
481     case ARM_CPU_FIQ:
482         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
483         break;
484     default:
485         g_assert_not_reached();
486     }
487     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
488     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
489 #endif
490 }
491 
492 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
493 {
494     ARMCPU *cpu = ARM_CPU(cs);
495     CPUARMState *env = &cpu->env;
496 
497     cpu_synchronize_state(cs);
498     return arm_cpu_data_is_big_endian(env);
499 }
500 
501 #endif
502 
503 static inline void set_feature(CPUARMState *env, int feature)
504 {
505     env->features |= 1ULL << feature;
506 }
507 
508 static inline void unset_feature(CPUARMState *env, int feature)
509 {
510     env->features &= ~(1ULL << feature);
511 }
512 
513 static int
514 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
515 {
516   return print_insn_arm(pc | 1, info);
517 }
518 
519 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
520 {
521     ARMCPU *ac = ARM_CPU(cpu);
522     CPUARMState *env = &ac->env;
523     bool sctlr_b;
524 
525     if (is_a64(env)) {
526         /* We might not be compiled with the A64 disassembler
527          * because it needs a C++ compiler. Leave print_insn
528          * unset in this case to use the caller default behaviour.
529          */
530 #if defined(CONFIG_ARM_A64_DIS)
531         info->print_insn = print_insn_arm_a64;
532 #endif
533         info->cap_arch = CS_ARCH_ARM64;
534         info->cap_insn_unit = 4;
535         info->cap_insn_split = 4;
536     } else {
537         int cap_mode;
538         if (env->thumb) {
539             info->print_insn = print_insn_thumb1;
540             info->cap_insn_unit = 2;
541             info->cap_insn_split = 4;
542             cap_mode = CS_MODE_THUMB;
543         } else {
544             info->print_insn = print_insn_arm;
545             info->cap_insn_unit = 4;
546             info->cap_insn_split = 4;
547             cap_mode = CS_MODE_ARM;
548         }
549         if (arm_feature(env, ARM_FEATURE_V8)) {
550             cap_mode |= CS_MODE_V8;
551         }
552         if (arm_feature(env, ARM_FEATURE_M)) {
553             cap_mode |= CS_MODE_MCLASS;
554         }
555         info->cap_arch = CS_ARCH_ARM;
556         info->cap_mode = cap_mode;
557     }
558 
559     sctlr_b = arm_sctlr_b(env);
560     if (bswap_code(sctlr_b)) {
561 #ifdef TARGET_WORDS_BIGENDIAN
562         info->endian = BFD_ENDIAN_LITTLE;
563 #else
564         info->endian = BFD_ENDIAN_BIG;
565 #endif
566     }
567     info->flags &= ~INSN_ARM_BE32;
568 #ifndef CONFIG_USER_ONLY
569     if (sctlr_b) {
570         info->flags |= INSN_ARM_BE32;
571     }
572 #endif
573 }
574 
575 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
576 {
577     uint32_t Aff1 = idx / clustersz;
578     uint32_t Aff0 = idx % clustersz;
579     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
580 }
581 
582 static void arm_cpu_initfn(Object *obj)
583 {
584     CPUState *cs = CPU(obj);
585     ARMCPU *cpu = ARM_CPU(obj);
586 
587     cs->env_ptr = &cpu->env;
588     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
589                                          g_free, g_free);
590 
591     QLIST_INIT(&cpu->pre_el_change_hooks);
592     QLIST_INIT(&cpu->el_change_hooks);
593 
594 #ifndef CONFIG_USER_ONLY
595     /* Our inbound IRQ and FIQ lines */
596     if (kvm_enabled()) {
597         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
598          * the same interface as non-KVM CPUs.
599          */
600         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
601     } else {
602         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
603     }
604 
605     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
606                                                 arm_gt_ptimer_cb, cpu);
607     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
608                                                 arm_gt_vtimer_cb, cpu);
609     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
610                                                 arm_gt_htimer_cb, cpu);
611     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
612                                                 arm_gt_stimer_cb, cpu);
613     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
614                        ARRAY_SIZE(cpu->gt_timer_outputs));
615 
616     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
617                              "gicv3-maintenance-interrupt", 1);
618     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
619                              "pmu-interrupt", 1);
620 #endif
621 
622     /* DTB consumers generally don't in fact care what the 'compatible'
623      * string is, so always provide some string and trust that a hypothetical
624      * picky DTB consumer will also provide a helpful error message.
625      */
626     cpu->dtb_compatible = "qemu,unknown";
627     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
628     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
629 
630     if (tcg_enabled()) {
631         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
632     }
633 }
634 
635 static Property arm_cpu_reset_cbar_property =
636             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
637 
638 static Property arm_cpu_reset_hivecs_property =
639             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
640 
641 static Property arm_cpu_rvbar_property =
642             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
643 
644 static Property arm_cpu_has_el2_property =
645             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
646 
647 static Property arm_cpu_has_el3_property =
648             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
649 
650 static Property arm_cpu_cfgend_property =
651             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
652 
653 /* use property name "pmu" to match other archs and virt tools */
654 static Property arm_cpu_has_pmu_property =
655             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
656 
657 static Property arm_cpu_has_mpu_property =
658             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
659 
660 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
661  * because the CPU initfn will have already set cpu->pmsav7_dregion to
662  * the right value for that particular CPU type, and we don't want
663  * to override that with an incorrect constant value.
664  */
665 static Property arm_cpu_pmsav7_dregion_property =
666             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
667                                            pmsav7_dregion,
668                                            qdev_prop_uint32, uint32_t);
669 
670 /* M profile: initial value of the Secure VTOR */
671 static Property arm_cpu_initsvtor_property =
672             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
673 
674 static void arm_cpu_post_init(Object *obj)
675 {
676     ARMCPU *cpu = ARM_CPU(obj);
677 
678     /* M profile implies PMSA. We have to do this here rather than
679      * in realize with the other feature-implication checks because
680      * we look at the PMSA bit to see if we should add some properties.
681      */
682     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
683         set_feature(&cpu->env, ARM_FEATURE_PMSA);
684     }
685 
686     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
687         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
688         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
689                                  &error_abort);
690     }
691 
692     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
693         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
694                                  &error_abort);
695     }
696 
697     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
698         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
699                                  &error_abort);
700     }
701 
702     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
703         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
704          * prevent "has_el3" from existing on CPUs which cannot support EL3.
705          */
706         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
707                                  &error_abort);
708 
709 #ifndef CONFIG_USER_ONLY
710         object_property_add_link(obj, "secure-memory",
711                                  TYPE_MEMORY_REGION,
712                                  (Object **)&cpu->secure_memory,
713                                  qdev_prop_allow_set_link_before_realize,
714                                  OBJ_PROP_LINK_STRONG,
715                                  &error_abort);
716 #endif
717     }
718 
719     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
720         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
721                                  &error_abort);
722     }
723 
724     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
725         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
726                                  &error_abort);
727     }
728 
729     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
730         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
731                                  &error_abort);
732         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
733             qdev_property_add_static(DEVICE(obj),
734                                      &arm_cpu_pmsav7_dregion_property,
735                                      &error_abort);
736         }
737     }
738 
739     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
740         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
741                                  qdev_prop_allow_set_link_before_realize,
742                                  OBJ_PROP_LINK_STRONG,
743                                  &error_abort);
744         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
745                                  &error_abort);
746     }
747 
748     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
749                              &error_abort);
750 }
751 
752 static void arm_cpu_finalizefn(Object *obj)
753 {
754     ARMCPU *cpu = ARM_CPU(obj);
755     ARMELChangeHook *hook, *next;
756 
757     g_hash_table_destroy(cpu->cp_regs);
758 
759     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
760         QLIST_REMOVE(hook, node);
761         g_free(hook);
762     }
763     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
764         QLIST_REMOVE(hook, node);
765         g_free(hook);
766     }
767 }
768 
769 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
770 {
771     CPUState *cs = CPU(dev);
772     ARMCPU *cpu = ARM_CPU(dev);
773     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
774     CPUARMState *env = &cpu->env;
775     int pagebits;
776     Error *local_err = NULL;
777     bool no_aa32 = false;
778 
779     /* If we needed to query the host kernel for the CPU features
780      * then it's possible that might have failed in the initfn, but
781      * this is the first point where we can report it.
782      */
783     if (cpu->host_cpu_probe_failed) {
784         if (!kvm_enabled()) {
785             error_setg(errp, "The 'host' CPU type can only be used with KVM");
786         } else {
787             error_setg(errp, "Failed to retrieve host CPU features");
788         }
789         return;
790     }
791 
792 #ifndef CONFIG_USER_ONLY
793     /* The NVIC and M-profile CPU are two halves of a single piece of
794      * hardware; trying to use one without the other is a command line
795      * error and will result in segfaults if not caught here.
796      */
797     if (arm_feature(env, ARM_FEATURE_M)) {
798         if (!env->nvic) {
799             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
800             return;
801         }
802     } else {
803         if (env->nvic) {
804             error_setg(errp, "This board can only be used with Cortex-M CPUs");
805             return;
806         }
807     }
808 #endif
809 
810     cpu_exec_realizefn(cs, &local_err);
811     if (local_err != NULL) {
812         error_propagate(errp, local_err);
813         return;
814     }
815 
816     /* Some features automatically imply others: */
817     if (arm_feature(env, ARM_FEATURE_V8)) {
818         if (arm_feature(env, ARM_FEATURE_M)) {
819             set_feature(env, ARM_FEATURE_V7);
820         } else {
821             set_feature(env, ARM_FEATURE_V7VE);
822         }
823     }
824 
825     /*
826      * There exist AArch64 cpus without AArch32 support.  When KVM
827      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
828      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
829      */
830     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
831         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
832     }
833 
834     if (arm_feature(env, ARM_FEATURE_V7VE)) {
835         /* v7 Virtualization Extensions. In real hardware this implies
836          * EL2 and also the presence of the Security Extensions.
837          * For QEMU, for backwards-compatibility we implement some
838          * CPUs or CPU configs which have no actual EL2 or EL3 but do
839          * include the various other features that V7VE implies.
840          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
841          * Security Extensions is ARM_FEATURE_EL3.
842          */
843         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
844         set_feature(env, ARM_FEATURE_LPAE);
845         set_feature(env, ARM_FEATURE_V7);
846     }
847     if (arm_feature(env, ARM_FEATURE_V7)) {
848         set_feature(env, ARM_FEATURE_VAPA);
849         set_feature(env, ARM_FEATURE_THUMB2);
850         set_feature(env, ARM_FEATURE_MPIDR);
851         if (!arm_feature(env, ARM_FEATURE_M)) {
852             set_feature(env, ARM_FEATURE_V6K);
853         } else {
854             set_feature(env, ARM_FEATURE_V6);
855         }
856 
857         /* Always define VBAR for V7 CPUs even if it doesn't exist in
858          * non-EL3 configs. This is needed by some legacy boards.
859          */
860         set_feature(env, ARM_FEATURE_VBAR);
861     }
862     if (arm_feature(env, ARM_FEATURE_V6K)) {
863         set_feature(env, ARM_FEATURE_V6);
864         set_feature(env, ARM_FEATURE_MVFR);
865     }
866     if (arm_feature(env, ARM_FEATURE_V6)) {
867         set_feature(env, ARM_FEATURE_V5);
868         if (!arm_feature(env, ARM_FEATURE_M)) {
869             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
870             set_feature(env, ARM_FEATURE_AUXCR);
871         }
872     }
873     if (arm_feature(env, ARM_FEATURE_V5)) {
874         set_feature(env, ARM_FEATURE_V4T);
875     }
876     if (arm_feature(env, ARM_FEATURE_VFP4)) {
877         set_feature(env, ARM_FEATURE_VFP3);
878         set_feature(env, ARM_FEATURE_VFP_FP16);
879     }
880     if (arm_feature(env, ARM_FEATURE_VFP3)) {
881         set_feature(env, ARM_FEATURE_VFP);
882     }
883     if (arm_feature(env, ARM_FEATURE_LPAE)) {
884         set_feature(env, ARM_FEATURE_V7MP);
885         set_feature(env, ARM_FEATURE_PXN);
886     }
887     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
888         set_feature(env, ARM_FEATURE_CBAR);
889     }
890     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
891         !arm_feature(env, ARM_FEATURE_M)) {
892         set_feature(env, ARM_FEATURE_THUMB_DSP);
893     }
894 
895     if (arm_feature(env, ARM_FEATURE_V7) &&
896         !arm_feature(env, ARM_FEATURE_M) &&
897         !arm_feature(env, ARM_FEATURE_PMSA)) {
898         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
899          * can use 4K pages.
900          */
901         pagebits = 12;
902     } else {
903         /* For CPUs which might have tiny 1K pages, or which have an
904          * MPU and might have small region sizes, stick with 1K pages.
905          */
906         pagebits = 10;
907     }
908     if (!set_preferred_target_page_bits(pagebits)) {
909         /* This can only ever happen for hotplugging a CPU, or if
910          * the board code incorrectly creates a CPU which it has
911          * promised via minimum_page_size that it will not.
912          */
913         error_setg(errp, "This CPU requires a smaller page size than the "
914                    "system is using");
915         return;
916     }
917 
918     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
919      * We don't support setting cluster ID ([16..23]) (known as Aff2
920      * in later ARM ARM versions), or any of the higher affinity level fields,
921      * so these bits always RAZ.
922      */
923     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
924         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
925                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
926     }
927 
928     if (cpu->reset_hivecs) {
929             cpu->reset_sctlr |= (1 << 13);
930     }
931 
932     if (cpu->cfgend) {
933         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
934             cpu->reset_sctlr |= SCTLR_EE;
935         } else {
936             cpu->reset_sctlr |= SCTLR_B;
937         }
938     }
939 
940     if (!cpu->has_el3) {
941         /* If the has_el3 CPU property is disabled then we need to disable the
942          * feature.
943          */
944         unset_feature(env, ARM_FEATURE_EL3);
945 
946         /* Disable the security extension feature bits in the processor feature
947          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
948          */
949         cpu->id_pfr1 &= ~0xf0;
950         cpu->isar.id_aa64pfr0 &= ~0xf000;
951     }
952 
953     if (!cpu->has_el2) {
954         unset_feature(env, ARM_FEATURE_EL2);
955     }
956 
957     if (!cpu->has_pmu) {
958         unset_feature(env, ARM_FEATURE_PMU);
959         cpu->id_aa64dfr0 &= ~0xf00;
960     }
961 
962     if (!arm_feature(env, ARM_FEATURE_EL2)) {
963         /* Disable the hypervisor feature bits in the processor feature
964          * registers if we don't have EL2. These are id_pfr1[15:12] and
965          * id_aa64pfr0_el1[11:8].
966          */
967         cpu->isar.id_aa64pfr0 &= ~0xf00;
968         cpu->id_pfr1 &= ~0xf000;
969     }
970 
971     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
972      * to false or by setting pmsav7-dregion to 0.
973      */
974     if (!cpu->has_mpu) {
975         cpu->pmsav7_dregion = 0;
976     }
977     if (cpu->pmsav7_dregion == 0) {
978         cpu->has_mpu = false;
979     }
980 
981     if (arm_feature(env, ARM_FEATURE_PMSA) &&
982         arm_feature(env, ARM_FEATURE_V7)) {
983         uint32_t nr = cpu->pmsav7_dregion;
984 
985         if (nr > 0xff) {
986             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
987             return;
988         }
989 
990         if (nr) {
991             if (arm_feature(env, ARM_FEATURE_V8)) {
992                 /* PMSAv8 */
993                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
994                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
995                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
996                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
997                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
998                 }
999             } else {
1000                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1001                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1002                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1003             }
1004         }
1005     }
1006 
1007     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1008         uint32_t nr = cpu->sau_sregion;
1009 
1010         if (nr > 0xff) {
1011             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1012             return;
1013         }
1014 
1015         if (nr) {
1016             env->sau.rbar = g_new0(uint32_t, nr);
1017             env->sau.rlar = g_new0(uint32_t, nr);
1018         }
1019     }
1020 
1021     if (arm_feature(env, ARM_FEATURE_EL3)) {
1022         set_feature(env, ARM_FEATURE_VBAR);
1023     }
1024 
1025     register_cp_regs_for_features(cpu);
1026     arm_cpu_register_gdb_regs_for_features(cpu);
1027 
1028     init_cpreg_list(cpu);
1029 
1030 #ifndef CONFIG_USER_ONLY
1031     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1032         cs->num_ases = 2;
1033 
1034         if (!cpu->secure_memory) {
1035             cpu->secure_memory = cs->memory;
1036         }
1037         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1038                                cpu->secure_memory);
1039     } else {
1040         cs->num_ases = 1;
1041     }
1042     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1043 
1044     /* No core_count specified, default to smp_cpus. */
1045     if (cpu->core_count == -1) {
1046         cpu->core_count = smp_cpus;
1047     }
1048 #endif
1049 
1050     qemu_init_vcpu(cs);
1051     cpu_reset(cs);
1052 
1053     acc->parent_realize(dev, errp);
1054 }
1055 
1056 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1057 {
1058     ObjectClass *oc;
1059     char *typename;
1060     char **cpuname;
1061     const char *cpunamestr;
1062 
1063     cpuname = g_strsplit(cpu_model, ",", 1);
1064     cpunamestr = cpuname[0];
1065 #ifdef CONFIG_USER_ONLY
1066     /* For backwards compatibility usermode emulation allows "-cpu any",
1067      * which has the same semantics as "-cpu max".
1068      */
1069     if (!strcmp(cpunamestr, "any")) {
1070         cpunamestr = "max";
1071     }
1072 #endif
1073     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1074     oc = object_class_by_name(typename);
1075     g_strfreev(cpuname);
1076     g_free(typename);
1077     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1078         object_class_is_abstract(oc)) {
1079         return NULL;
1080     }
1081     return oc;
1082 }
1083 
1084 /* CPU models. These are not needed for the AArch64 linux-user build. */
1085 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1086 
1087 static void arm926_initfn(Object *obj)
1088 {
1089     ARMCPU *cpu = ARM_CPU(obj);
1090 
1091     cpu->dtb_compatible = "arm,arm926";
1092     set_feature(&cpu->env, ARM_FEATURE_V5);
1093     set_feature(&cpu->env, ARM_FEATURE_VFP);
1094     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1095     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1096     cpu->midr = 0x41069265;
1097     cpu->reset_fpsid = 0x41011090;
1098     cpu->ctr = 0x1dd20d2;
1099     cpu->reset_sctlr = 0x00090078;
1100 
1101     /*
1102      * ARMv5 does not have the ID_ISAR registers, but we can still
1103      * set the field to indicate Jazelle support within QEMU.
1104      */
1105     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1106 }
1107 
1108 static void arm946_initfn(Object *obj)
1109 {
1110     ARMCPU *cpu = ARM_CPU(obj);
1111 
1112     cpu->dtb_compatible = "arm,arm946";
1113     set_feature(&cpu->env, ARM_FEATURE_V5);
1114     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1115     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1116     cpu->midr = 0x41059461;
1117     cpu->ctr = 0x0f004006;
1118     cpu->reset_sctlr = 0x00000078;
1119 }
1120 
1121 static void arm1026_initfn(Object *obj)
1122 {
1123     ARMCPU *cpu = ARM_CPU(obj);
1124 
1125     cpu->dtb_compatible = "arm,arm1026";
1126     set_feature(&cpu->env, ARM_FEATURE_V5);
1127     set_feature(&cpu->env, ARM_FEATURE_VFP);
1128     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1129     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1130     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1131     cpu->midr = 0x4106a262;
1132     cpu->reset_fpsid = 0x410110a0;
1133     cpu->ctr = 0x1dd20d2;
1134     cpu->reset_sctlr = 0x00090078;
1135     cpu->reset_auxcr = 1;
1136 
1137     /*
1138      * ARMv5 does not have the ID_ISAR registers, but we can still
1139      * set the field to indicate Jazelle support within QEMU.
1140      */
1141     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1142 
1143     {
1144         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1145         ARMCPRegInfo ifar = {
1146             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1147             .access = PL1_RW,
1148             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1149             .resetvalue = 0
1150         };
1151         define_one_arm_cp_reg(cpu, &ifar);
1152     }
1153 }
1154 
1155 static void arm1136_r2_initfn(Object *obj)
1156 {
1157     ARMCPU *cpu = ARM_CPU(obj);
1158     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1159      * older core than plain "arm1136". In particular this does not
1160      * have the v6K features.
1161      * These ID register values are correct for 1136 but may be wrong
1162      * for 1136_r2 (in particular r0p2 does not actually implement most
1163      * of the ID registers).
1164      */
1165 
1166     cpu->dtb_compatible = "arm,arm1136";
1167     set_feature(&cpu->env, ARM_FEATURE_V6);
1168     set_feature(&cpu->env, ARM_FEATURE_VFP);
1169     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1170     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1171     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1172     cpu->midr = 0x4107b362;
1173     cpu->reset_fpsid = 0x410120b4;
1174     cpu->isar.mvfr0 = 0x11111111;
1175     cpu->isar.mvfr1 = 0x00000000;
1176     cpu->ctr = 0x1dd20d2;
1177     cpu->reset_sctlr = 0x00050078;
1178     cpu->id_pfr0 = 0x111;
1179     cpu->id_pfr1 = 0x1;
1180     cpu->id_dfr0 = 0x2;
1181     cpu->id_afr0 = 0x3;
1182     cpu->id_mmfr0 = 0x01130003;
1183     cpu->id_mmfr1 = 0x10030302;
1184     cpu->id_mmfr2 = 0x01222110;
1185     cpu->isar.id_isar0 = 0x00140011;
1186     cpu->isar.id_isar1 = 0x12002111;
1187     cpu->isar.id_isar2 = 0x11231111;
1188     cpu->isar.id_isar3 = 0x01102131;
1189     cpu->isar.id_isar4 = 0x141;
1190     cpu->reset_auxcr = 7;
1191 }
1192 
1193 static void arm1136_initfn(Object *obj)
1194 {
1195     ARMCPU *cpu = ARM_CPU(obj);
1196 
1197     cpu->dtb_compatible = "arm,arm1136";
1198     set_feature(&cpu->env, ARM_FEATURE_V6K);
1199     set_feature(&cpu->env, ARM_FEATURE_V6);
1200     set_feature(&cpu->env, ARM_FEATURE_VFP);
1201     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1202     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1203     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1204     cpu->midr = 0x4117b363;
1205     cpu->reset_fpsid = 0x410120b4;
1206     cpu->isar.mvfr0 = 0x11111111;
1207     cpu->isar.mvfr1 = 0x00000000;
1208     cpu->ctr = 0x1dd20d2;
1209     cpu->reset_sctlr = 0x00050078;
1210     cpu->id_pfr0 = 0x111;
1211     cpu->id_pfr1 = 0x1;
1212     cpu->id_dfr0 = 0x2;
1213     cpu->id_afr0 = 0x3;
1214     cpu->id_mmfr0 = 0x01130003;
1215     cpu->id_mmfr1 = 0x10030302;
1216     cpu->id_mmfr2 = 0x01222110;
1217     cpu->isar.id_isar0 = 0x00140011;
1218     cpu->isar.id_isar1 = 0x12002111;
1219     cpu->isar.id_isar2 = 0x11231111;
1220     cpu->isar.id_isar3 = 0x01102131;
1221     cpu->isar.id_isar4 = 0x141;
1222     cpu->reset_auxcr = 7;
1223 }
1224 
1225 static void arm1176_initfn(Object *obj)
1226 {
1227     ARMCPU *cpu = ARM_CPU(obj);
1228 
1229     cpu->dtb_compatible = "arm,arm1176";
1230     set_feature(&cpu->env, ARM_FEATURE_V6K);
1231     set_feature(&cpu->env, ARM_FEATURE_VFP);
1232     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1233     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1234     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1235     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1236     set_feature(&cpu->env, ARM_FEATURE_EL3);
1237     cpu->midr = 0x410fb767;
1238     cpu->reset_fpsid = 0x410120b5;
1239     cpu->isar.mvfr0 = 0x11111111;
1240     cpu->isar.mvfr1 = 0x00000000;
1241     cpu->ctr = 0x1dd20d2;
1242     cpu->reset_sctlr = 0x00050078;
1243     cpu->id_pfr0 = 0x111;
1244     cpu->id_pfr1 = 0x11;
1245     cpu->id_dfr0 = 0x33;
1246     cpu->id_afr0 = 0;
1247     cpu->id_mmfr0 = 0x01130003;
1248     cpu->id_mmfr1 = 0x10030302;
1249     cpu->id_mmfr2 = 0x01222100;
1250     cpu->isar.id_isar0 = 0x0140011;
1251     cpu->isar.id_isar1 = 0x12002111;
1252     cpu->isar.id_isar2 = 0x11231121;
1253     cpu->isar.id_isar3 = 0x01102131;
1254     cpu->isar.id_isar4 = 0x01141;
1255     cpu->reset_auxcr = 7;
1256 }
1257 
1258 static void arm11mpcore_initfn(Object *obj)
1259 {
1260     ARMCPU *cpu = ARM_CPU(obj);
1261 
1262     cpu->dtb_compatible = "arm,arm11mpcore";
1263     set_feature(&cpu->env, ARM_FEATURE_V6K);
1264     set_feature(&cpu->env, ARM_FEATURE_VFP);
1265     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1266     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1267     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1268     cpu->midr = 0x410fb022;
1269     cpu->reset_fpsid = 0x410120b4;
1270     cpu->isar.mvfr0 = 0x11111111;
1271     cpu->isar.mvfr1 = 0x00000000;
1272     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1273     cpu->id_pfr0 = 0x111;
1274     cpu->id_pfr1 = 0x1;
1275     cpu->id_dfr0 = 0;
1276     cpu->id_afr0 = 0x2;
1277     cpu->id_mmfr0 = 0x01100103;
1278     cpu->id_mmfr1 = 0x10020302;
1279     cpu->id_mmfr2 = 0x01222000;
1280     cpu->isar.id_isar0 = 0x00100011;
1281     cpu->isar.id_isar1 = 0x12002111;
1282     cpu->isar.id_isar2 = 0x11221011;
1283     cpu->isar.id_isar3 = 0x01102131;
1284     cpu->isar.id_isar4 = 0x141;
1285     cpu->reset_auxcr = 1;
1286 }
1287 
1288 static void cortex_m0_initfn(Object *obj)
1289 {
1290     ARMCPU *cpu = ARM_CPU(obj);
1291     set_feature(&cpu->env, ARM_FEATURE_V6);
1292     set_feature(&cpu->env, ARM_FEATURE_M);
1293 
1294     cpu->midr = 0x410cc200;
1295 }
1296 
1297 static void cortex_m3_initfn(Object *obj)
1298 {
1299     ARMCPU *cpu = ARM_CPU(obj);
1300     set_feature(&cpu->env, ARM_FEATURE_V7);
1301     set_feature(&cpu->env, ARM_FEATURE_M);
1302     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1303     cpu->midr = 0x410fc231;
1304     cpu->pmsav7_dregion = 8;
1305     cpu->id_pfr0 = 0x00000030;
1306     cpu->id_pfr1 = 0x00000200;
1307     cpu->id_dfr0 = 0x00100000;
1308     cpu->id_afr0 = 0x00000000;
1309     cpu->id_mmfr0 = 0x00000030;
1310     cpu->id_mmfr1 = 0x00000000;
1311     cpu->id_mmfr2 = 0x00000000;
1312     cpu->id_mmfr3 = 0x00000000;
1313     cpu->isar.id_isar0 = 0x01141110;
1314     cpu->isar.id_isar1 = 0x02111000;
1315     cpu->isar.id_isar2 = 0x21112231;
1316     cpu->isar.id_isar3 = 0x01111110;
1317     cpu->isar.id_isar4 = 0x01310102;
1318     cpu->isar.id_isar5 = 0x00000000;
1319     cpu->isar.id_isar6 = 0x00000000;
1320 }
1321 
1322 static void cortex_m4_initfn(Object *obj)
1323 {
1324     ARMCPU *cpu = ARM_CPU(obj);
1325 
1326     set_feature(&cpu->env, ARM_FEATURE_V7);
1327     set_feature(&cpu->env, ARM_FEATURE_M);
1328     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1329     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1330     cpu->midr = 0x410fc240; /* r0p0 */
1331     cpu->pmsav7_dregion = 8;
1332     cpu->id_pfr0 = 0x00000030;
1333     cpu->id_pfr1 = 0x00000200;
1334     cpu->id_dfr0 = 0x00100000;
1335     cpu->id_afr0 = 0x00000000;
1336     cpu->id_mmfr0 = 0x00000030;
1337     cpu->id_mmfr1 = 0x00000000;
1338     cpu->id_mmfr2 = 0x00000000;
1339     cpu->id_mmfr3 = 0x00000000;
1340     cpu->isar.id_isar0 = 0x01141110;
1341     cpu->isar.id_isar1 = 0x02111000;
1342     cpu->isar.id_isar2 = 0x21112231;
1343     cpu->isar.id_isar3 = 0x01111110;
1344     cpu->isar.id_isar4 = 0x01310102;
1345     cpu->isar.id_isar5 = 0x00000000;
1346     cpu->isar.id_isar6 = 0x00000000;
1347 }
1348 
1349 static void cortex_m33_initfn(Object *obj)
1350 {
1351     ARMCPU *cpu = ARM_CPU(obj);
1352 
1353     set_feature(&cpu->env, ARM_FEATURE_V8);
1354     set_feature(&cpu->env, ARM_FEATURE_M);
1355     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1356     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1357     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1358     cpu->midr = 0x410fd213; /* r0p3 */
1359     cpu->pmsav7_dregion = 16;
1360     cpu->sau_sregion = 8;
1361     cpu->id_pfr0 = 0x00000030;
1362     cpu->id_pfr1 = 0x00000210;
1363     cpu->id_dfr0 = 0x00200000;
1364     cpu->id_afr0 = 0x00000000;
1365     cpu->id_mmfr0 = 0x00101F40;
1366     cpu->id_mmfr1 = 0x00000000;
1367     cpu->id_mmfr2 = 0x01000000;
1368     cpu->id_mmfr3 = 0x00000000;
1369     cpu->isar.id_isar0 = 0x01101110;
1370     cpu->isar.id_isar1 = 0x02212000;
1371     cpu->isar.id_isar2 = 0x20232232;
1372     cpu->isar.id_isar3 = 0x01111131;
1373     cpu->isar.id_isar4 = 0x01310132;
1374     cpu->isar.id_isar5 = 0x00000000;
1375     cpu->isar.id_isar6 = 0x00000000;
1376     cpu->clidr = 0x00000000;
1377     cpu->ctr = 0x8000c000;
1378 }
1379 
1380 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1381 {
1382     CPUClass *cc = CPU_CLASS(oc);
1383 
1384 #ifndef CONFIG_USER_ONLY
1385     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1386 #endif
1387 
1388     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1389 }
1390 
1391 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1392     /* Dummy the TCM region regs for the moment */
1393     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1394       .access = PL1_RW, .type = ARM_CP_CONST },
1395     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1396       .access = PL1_RW, .type = ARM_CP_CONST },
1397     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1398       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1399     REGINFO_SENTINEL
1400 };
1401 
1402 static void cortex_r5_initfn(Object *obj)
1403 {
1404     ARMCPU *cpu = ARM_CPU(obj);
1405 
1406     set_feature(&cpu->env, ARM_FEATURE_V7);
1407     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1408     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1409     cpu->midr = 0x411fc153; /* r1p3 */
1410     cpu->id_pfr0 = 0x0131;
1411     cpu->id_pfr1 = 0x001;
1412     cpu->id_dfr0 = 0x010400;
1413     cpu->id_afr0 = 0x0;
1414     cpu->id_mmfr0 = 0x0210030;
1415     cpu->id_mmfr1 = 0x00000000;
1416     cpu->id_mmfr2 = 0x01200000;
1417     cpu->id_mmfr3 = 0x0211;
1418     cpu->isar.id_isar0 = 0x02101111;
1419     cpu->isar.id_isar1 = 0x13112111;
1420     cpu->isar.id_isar2 = 0x21232141;
1421     cpu->isar.id_isar3 = 0x01112131;
1422     cpu->isar.id_isar4 = 0x0010142;
1423     cpu->isar.id_isar5 = 0x0;
1424     cpu->isar.id_isar6 = 0x0;
1425     cpu->mp_is_up = true;
1426     cpu->pmsav7_dregion = 16;
1427     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1428 }
1429 
1430 static void cortex_r5f_initfn(Object *obj)
1431 {
1432     ARMCPU *cpu = ARM_CPU(obj);
1433 
1434     cortex_r5_initfn(obj);
1435     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1436 }
1437 
1438 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1439     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1440       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1441     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1442       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1443     REGINFO_SENTINEL
1444 };
1445 
1446 static void cortex_a8_initfn(Object *obj)
1447 {
1448     ARMCPU *cpu = ARM_CPU(obj);
1449 
1450     cpu->dtb_compatible = "arm,cortex-a8";
1451     set_feature(&cpu->env, ARM_FEATURE_V7);
1452     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1453     set_feature(&cpu->env, ARM_FEATURE_NEON);
1454     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1455     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1456     set_feature(&cpu->env, ARM_FEATURE_EL3);
1457     cpu->midr = 0x410fc080;
1458     cpu->reset_fpsid = 0x410330c0;
1459     cpu->isar.mvfr0 = 0x11110222;
1460     cpu->isar.mvfr1 = 0x00011111;
1461     cpu->ctr = 0x82048004;
1462     cpu->reset_sctlr = 0x00c50078;
1463     cpu->id_pfr0 = 0x1031;
1464     cpu->id_pfr1 = 0x11;
1465     cpu->id_dfr0 = 0x400;
1466     cpu->id_afr0 = 0;
1467     cpu->id_mmfr0 = 0x31100003;
1468     cpu->id_mmfr1 = 0x20000000;
1469     cpu->id_mmfr2 = 0x01202000;
1470     cpu->id_mmfr3 = 0x11;
1471     cpu->isar.id_isar0 = 0x00101111;
1472     cpu->isar.id_isar1 = 0x12112111;
1473     cpu->isar.id_isar2 = 0x21232031;
1474     cpu->isar.id_isar3 = 0x11112131;
1475     cpu->isar.id_isar4 = 0x00111142;
1476     cpu->dbgdidr = 0x15141000;
1477     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1478     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1479     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1480     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1481     cpu->reset_auxcr = 2;
1482     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1483 }
1484 
1485 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1486     /* power_control should be set to maximum latency. Again,
1487      * default to 0 and set by private hook
1488      */
1489     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1490       .access = PL1_RW, .resetvalue = 0,
1491       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1492     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1493       .access = PL1_RW, .resetvalue = 0,
1494       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1495     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1496       .access = PL1_RW, .resetvalue = 0,
1497       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1498     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1499       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1500     /* TLB lockdown control */
1501     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1502       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1503     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1504       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1505     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1506       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1507     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1508       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1509     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1510       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1511     REGINFO_SENTINEL
1512 };
1513 
1514 static void cortex_a9_initfn(Object *obj)
1515 {
1516     ARMCPU *cpu = ARM_CPU(obj);
1517 
1518     cpu->dtb_compatible = "arm,cortex-a9";
1519     set_feature(&cpu->env, ARM_FEATURE_V7);
1520     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1521     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1522     set_feature(&cpu->env, ARM_FEATURE_NEON);
1523     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1524     set_feature(&cpu->env, ARM_FEATURE_EL3);
1525     /* Note that A9 supports the MP extensions even for
1526      * A9UP and single-core A9MP (which are both different
1527      * and valid configurations; we don't model A9UP).
1528      */
1529     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1530     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1531     cpu->midr = 0x410fc090;
1532     cpu->reset_fpsid = 0x41033090;
1533     cpu->isar.mvfr0 = 0x11110222;
1534     cpu->isar.mvfr1 = 0x01111111;
1535     cpu->ctr = 0x80038003;
1536     cpu->reset_sctlr = 0x00c50078;
1537     cpu->id_pfr0 = 0x1031;
1538     cpu->id_pfr1 = 0x11;
1539     cpu->id_dfr0 = 0x000;
1540     cpu->id_afr0 = 0;
1541     cpu->id_mmfr0 = 0x00100103;
1542     cpu->id_mmfr1 = 0x20000000;
1543     cpu->id_mmfr2 = 0x01230000;
1544     cpu->id_mmfr3 = 0x00002111;
1545     cpu->isar.id_isar0 = 0x00101111;
1546     cpu->isar.id_isar1 = 0x13112111;
1547     cpu->isar.id_isar2 = 0x21232041;
1548     cpu->isar.id_isar3 = 0x11112131;
1549     cpu->isar.id_isar4 = 0x00111142;
1550     cpu->dbgdidr = 0x35141000;
1551     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1552     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1553     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1554     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1555 }
1556 
1557 #ifndef CONFIG_USER_ONLY
1558 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1559 {
1560     /* Linux wants the number of processors from here.
1561      * Might as well set the interrupt-controller bit too.
1562      */
1563     return ((smp_cpus - 1) << 24) | (1 << 23);
1564 }
1565 #endif
1566 
1567 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1568 #ifndef CONFIG_USER_ONLY
1569     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1570       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1571       .writefn = arm_cp_write_ignore, },
1572 #endif
1573     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1574       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1575     REGINFO_SENTINEL
1576 };
1577 
1578 static void cortex_a7_initfn(Object *obj)
1579 {
1580     ARMCPU *cpu = ARM_CPU(obj);
1581 
1582     cpu->dtb_compatible = "arm,cortex-a7";
1583     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1584     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1585     set_feature(&cpu->env, ARM_FEATURE_NEON);
1586     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1587     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1588     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1589     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1590     set_feature(&cpu->env, ARM_FEATURE_EL3);
1591     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1592     cpu->midr = 0x410fc075;
1593     cpu->reset_fpsid = 0x41023075;
1594     cpu->isar.mvfr0 = 0x10110222;
1595     cpu->isar.mvfr1 = 0x11111111;
1596     cpu->ctr = 0x84448003;
1597     cpu->reset_sctlr = 0x00c50078;
1598     cpu->id_pfr0 = 0x00001131;
1599     cpu->id_pfr1 = 0x00011011;
1600     cpu->id_dfr0 = 0x02010555;
1601     cpu->pmceid0 = 0x00000000;
1602     cpu->pmceid1 = 0x00000000;
1603     cpu->id_afr0 = 0x00000000;
1604     cpu->id_mmfr0 = 0x10101105;
1605     cpu->id_mmfr1 = 0x40000000;
1606     cpu->id_mmfr2 = 0x01240000;
1607     cpu->id_mmfr3 = 0x02102211;
1608     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1609      * table 4-41 gives 0x02101110, which includes the arm div insns.
1610      */
1611     cpu->isar.id_isar0 = 0x02101110;
1612     cpu->isar.id_isar1 = 0x13112111;
1613     cpu->isar.id_isar2 = 0x21232041;
1614     cpu->isar.id_isar3 = 0x11112131;
1615     cpu->isar.id_isar4 = 0x10011142;
1616     cpu->dbgdidr = 0x3515f005;
1617     cpu->clidr = 0x0a200023;
1618     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1619     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1620     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1621     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1622 }
1623 
1624 static void cortex_a15_initfn(Object *obj)
1625 {
1626     ARMCPU *cpu = ARM_CPU(obj);
1627 
1628     cpu->dtb_compatible = "arm,cortex-a15";
1629     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1630     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1631     set_feature(&cpu->env, ARM_FEATURE_NEON);
1632     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1633     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1634     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1635     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1636     set_feature(&cpu->env, ARM_FEATURE_EL3);
1637     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1638     cpu->midr = 0x412fc0f1;
1639     cpu->reset_fpsid = 0x410430f0;
1640     cpu->isar.mvfr0 = 0x10110222;
1641     cpu->isar.mvfr1 = 0x11111111;
1642     cpu->ctr = 0x8444c004;
1643     cpu->reset_sctlr = 0x00c50078;
1644     cpu->id_pfr0 = 0x00001131;
1645     cpu->id_pfr1 = 0x00011011;
1646     cpu->id_dfr0 = 0x02010555;
1647     cpu->pmceid0 = 0x0000000;
1648     cpu->pmceid1 = 0x00000000;
1649     cpu->id_afr0 = 0x00000000;
1650     cpu->id_mmfr0 = 0x10201105;
1651     cpu->id_mmfr1 = 0x20000000;
1652     cpu->id_mmfr2 = 0x01240000;
1653     cpu->id_mmfr3 = 0x02102211;
1654     cpu->isar.id_isar0 = 0x02101110;
1655     cpu->isar.id_isar1 = 0x13112111;
1656     cpu->isar.id_isar2 = 0x21232041;
1657     cpu->isar.id_isar3 = 0x11112131;
1658     cpu->isar.id_isar4 = 0x10011142;
1659     cpu->dbgdidr = 0x3515f021;
1660     cpu->clidr = 0x0a200023;
1661     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1662     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1663     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1664     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1665 }
1666 
1667 static void ti925t_initfn(Object *obj)
1668 {
1669     ARMCPU *cpu = ARM_CPU(obj);
1670     set_feature(&cpu->env, ARM_FEATURE_V4T);
1671     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1672     cpu->midr = ARM_CPUID_TI925T;
1673     cpu->ctr = 0x5109149;
1674     cpu->reset_sctlr = 0x00000070;
1675 }
1676 
1677 static void sa1100_initfn(Object *obj)
1678 {
1679     ARMCPU *cpu = ARM_CPU(obj);
1680 
1681     cpu->dtb_compatible = "intel,sa1100";
1682     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1683     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1684     cpu->midr = 0x4401A11B;
1685     cpu->reset_sctlr = 0x00000070;
1686 }
1687 
1688 static void sa1110_initfn(Object *obj)
1689 {
1690     ARMCPU *cpu = ARM_CPU(obj);
1691     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1692     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1693     cpu->midr = 0x6901B119;
1694     cpu->reset_sctlr = 0x00000070;
1695 }
1696 
1697 static void pxa250_initfn(Object *obj)
1698 {
1699     ARMCPU *cpu = ARM_CPU(obj);
1700 
1701     cpu->dtb_compatible = "marvell,xscale";
1702     set_feature(&cpu->env, ARM_FEATURE_V5);
1703     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1704     cpu->midr = 0x69052100;
1705     cpu->ctr = 0xd172172;
1706     cpu->reset_sctlr = 0x00000078;
1707 }
1708 
1709 static void pxa255_initfn(Object *obj)
1710 {
1711     ARMCPU *cpu = ARM_CPU(obj);
1712 
1713     cpu->dtb_compatible = "marvell,xscale";
1714     set_feature(&cpu->env, ARM_FEATURE_V5);
1715     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1716     cpu->midr = 0x69052d00;
1717     cpu->ctr = 0xd172172;
1718     cpu->reset_sctlr = 0x00000078;
1719 }
1720 
1721 static void pxa260_initfn(Object *obj)
1722 {
1723     ARMCPU *cpu = ARM_CPU(obj);
1724 
1725     cpu->dtb_compatible = "marvell,xscale";
1726     set_feature(&cpu->env, ARM_FEATURE_V5);
1727     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1728     cpu->midr = 0x69052903;
1729     cpu->ctr = 0xd172172;
1730     cpu->reset_sctlr = 0x00000078;
1731 }
1732 
1733 static void pxa261_initfn(Object *obj)
1734 {
1735     ARMCPU *cpu = ARM_CPU(obj);
1736 
1737     cpu->dtb_compatible = "marvell,xscale";
1738     set_feature(&cpu->env, ARM_FEATURE_V5);
1739     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1740     cpu->midr = 0x69052d05;
1741     cpu->ctr = 0xd172172;
1742     cpu->reset_sctlr = 0x00000078;
1743 }
1744 
1745 static void pxa262_initfn(Object *obj)
1746 {
1747     ARMCPU *cpu = ARM_CPU(obj);
1748 
1749     cpu->dtb_compatible = "marvell,xscale";
1750     set_feature(&cpu->env, ARM_FEATURE_V5);
1751     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1752     cpu->midr = 0x69052d06;
1753     cpu->ctr = 0xd172172;
1754     cpu->reset_sctlr = 0x00000078;
1755 }
1756 
1757 static void pxa270a0_initfn(Object *obj)
1758 {
1759     ARMCPU *cpu = ARM_CPU(obj);
1760 
1761     cpu->dtb_compatible = "marvell,xscale";
1762     set_feature(&cpu->env, ARM_FEATURE_V5);
1763     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1764     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1765     cpu->midr = 0x69054110;
1766     cpu->ctr = 0xd172172;
1767     cpu->reset_sctlr = 0x00000078;
1768 }
1769 
1770 static void pxa270a1_initfn(Object *obj)
1771 {
1772     ARMCPU *cpu = ARM_CPU(obj);
1773 
1774     cpu->dtb_compatible = "marvell,xscale";
1775     set_feature(&cpu->env, ARM_FEATURE_V5);
1776     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1777     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1778     cpu->midr = 0x69054111;
1779     cpu->ctr = 0xd172172;
1780     cpu->reset_sctlr = 0x00000078;
1781 }
1782 
1783 static void pxa270b0_initfn(Object *obj)
1784 {
1785     ARMCPU *cpu = ARM_CPU(obj);
1786 
1787     cpu->dtb_compatible = "marvell,xscale";
1788     set_feature(&cpu->env, ARM_FEATURE_V5);
1789     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1790     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1791     cpu->midr = 0x69054112;
1792     cpu->ctr = 0xd172172;
1793     cpu->reset_sctlr = 0x00000078;
1794 }
1795 
1796 static void pxa270b1_initfn(Object *obj)
1797 {
1798     ARMCPU *cpu = ARM_CPU(obj);
1799 
1800     cpu->dtb_compatible = "marvell,xscale";
1801     set_feature(&cpu->env, ARM_FEATURE_V5);
1802     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1803     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1804     cpu->midr = 0x69054113;
1805     cpu->ctr = 0xd172172;
1806     cpu->reset_sctlr = 0x00000078;
1807 }
1808 
1809 static void pxa270c0_initfn(Object *obj)
1810 {
1811     ARMCPU *cpu = ARM_CPU(obj);
1812 
1813     cpu->dtb_compatible = "marvell,xscale";
1814     set_feature(&cpu->env, ARM_FEATURE_V5);
1815     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1816     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1817     cpu->midr = 0x69054114;
1818     cpu->ctr = 0xd172172;
1819     cpu->reset_sctlr = 0x00000078;
1820 }
1821 
1822 static void pxa270c5_initfn(Object *obj)
1823 {
1824     ARMCPU *cpu = ARM_CPU(obj);
1825 
1826     cpu->dtb_compatible = "marvell,xscale";
1827     set_feature(&cpu->env, ARM_FEATURE_V5);
1828     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1829     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1830     cpu->midr = 0x69054117;
1831     cpu->ctr = 0xd172172;
1832     cpu->reset_sctlr = 0x00000078;
1833 }
1834 
1835 #ifndef TARGET_AARCH64
1836 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1837  * otherwise, a CPU with as many features enabled as our emulation supports.
1838  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1839  * this only needs to handle 32 bits.
1840  */
1841 static void arm_max_initfn(Object *obj)
1842 {
1843     ARMCPU *cpu = ARM_CPU(obj);
1844 
1845     if (kvm_enabled()) {
1846         kvm_arm_set_cpu_features_from_host(cpu);
1847     } else {
1848         cortex_a15_initfn(obj);
1849 #ifdef CONFIG_USER_ONLY
1850         /* We don't set these in system emulation mode for the moment,
1851          * since we don't correctly set (all of) the ID registers to
1852          * advertise them.
1853          */
1854         set_feature(&cpu->env, ARM_FEATURE_V8);
1855         {
1856             uint32_t t;
1857 
1858             t = cpu->isar.id_isar5;
1859             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1860             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1861             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1862             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1863             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1864             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1865             cpu->isar.id_isar5 = t;
1866 
1867             t = cpu->isar.id_isar6;
1868             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1869             cpu->isar.id_isar6 = t;
1870         }
1871 #endif
1872     }
1873 }
1874 #endif
1875 
1876 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1877 
1878 typedef struct ARMCPUInfo {
1879     const char *name;
1880     void (*initfn)(Object *obj);
1881     void (*class_init)(ObjectClass *oc, void *data);
1882 } ARMCPUInfo;
1883 
1884 static const ARMCPUInfo arm_cpus[] = {
1885 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1886     { .name = "arm926",      .initfn = arm926_initfn },
1887     { .name = "arm946",      .initfn = arm946_initfn },
1888     { .name = "arm1026",     .initfn = arm1026_initfn },
1889     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1890      * older core than plain "arm1136". In particular this does not
1891      * have the v6K features.
1892      */
1893     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1894     { .name = "arm1136",     .initfn = arm1136_initfn },
1895     { .name = "arm1176",     .initfn = arm1176_initfn },
1896     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1897     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1898                              .class_init = arm_v7m_class_init },
1899     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1900                              .class_init = arm_v7m_class_init },
1901     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1902                              .class_init = arm_v7m_class_init },
1903     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1904                              .class_init = arm_v7m_class_init },
1905     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1906     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1907     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1908     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1909     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1910     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1911     { .name = "ti925t",      .initfn = ti925t_initfn },
1912     { .name = "sa1100",      .initfn = sa1100_initfn },
1913     { .name = "sa1110",      .initfn = sa1110_initfn },
1914     { .name = "pxa250",      .initfn = pxa250_initfn },
1915     { .name = "pxa255",      .initfn = pxa255_initfn },
1916     { .name = "pxa260",      .initfn = pxa260_initfn },
1917     { .name = "pxa261",      .initfn = pxa261_initfn },
1918     { .name = "pxa262",      .initfn = pxa262_initfn },
1919     /* "pxa270" is an alias for "pxa270-a0" */
1920     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1921     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1922     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1923     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1924     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1925     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1926     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1927 #ifndef TARGET_AARCH64
1928     { .name = "max",         .initfn = arm_max_initfn },
1929 #endif
1930 #ifdef CONFIG_USER_ONLY
1931     { .name = "any",         .initfn = arm_max_initfn },
1932 #endif
1933 #endif
1934     { .name = NULL }
1935 };
1936 
1937 static Property arm_cpu_properties[] = {
1938     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1939     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1940     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1941     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1942                         mp_affinity, ARM64_AFFINITY_INVALID),
1943     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1944     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1945     DEFINE_PROP_END_OF_LIST()
1946 };
1947 
1948 #ifdef CONFIG_USER_ONLY
1949 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1950                                     int rw, int mmu_idx)
1951 {
1952     ARMCPU *cpu = ARM_CPU(cs);
1953     CPUARMState *env = &cpu->env;
1954 
1955     env->exception.vaddress = address;
1956     if (rw == 2) {
1957         cs->exception_index = EXCP_PREFETCH_ABORT;
1958     } else {
1959         cs->exception_index = EXCP_DATA_ABORT;
1960     }
1961     return 1;
1962 }
1963 #endif
1964 
1965 static gchar *arm_gdb_arch_name(CPUState *cs)
1966 {
1967     ARMCPU *cpu = ARM_CPU(cs);
1968     CPUARMState *env = &cpu->env;
1969 
1970     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1971         return g_strdup("iwmmxt");
1972     }
1973     return g_strdup("arm");
1974 }
1975 
1976 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1977 {
1978     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1979     CPUClass *cc = CPU_CLASS(acc);
1980     DeviceClass *dc = DEVICE_CLASS(oc);
1981 
1982     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1983                                     &acc->parent_realize);
1984     dc->props = arm_cpu_properties;
1985 
1986     acc->parent_reset = cc->reset;
1987     cc->reset = arm_cpu_reset;
1988 
1989     cc->class_by_name = arm_cpu_class_by_name;
1990     cc->has_work = arm_cpu_has_work;
1991     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1992     cc->dump_state = arm_cpu_dump_state;
1993     cc->set_pc = arm_cpu_set_pc;
1994     cc->gdb_read_register = arm_cpu_gdb_read_register;
1995     cc->gdb_write_register = arm_cpu_gdb_write_register;
1996 #ifdef CONFIG_USER_ONLY
1997     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1998 #else
1999     cc->do_interrupt = arm_cpu_do_interrupt;
2000     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2001     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2002     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2003     cc->asidx_from_attrs = arm_asidx_from_attrs;
2004     cc->vmsd = &vmstate_arm_cpu;
2005     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2006     cc->write_elf64_note = arm_cpu_write_elf64_note;
2007     cc->write_elf32_note = arm_cpu_write_elf32_note;
2008 #endif
2009     cc->gdb_num_core_regs = 26;
2010     cc->gdb_core_xml_file = "arm-core.xml";
2011     cc->gdb_arch_name = arm_gdb_arch_name;
2012     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2013     cc->gdb_stop_before_watchpoint = true;
2014     cc->debug_excp_handler = arm_debug_excp_handler;
2015     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2016 #if !defined(CONFIG_USER_ONLY)
2017     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2018 #endif
2019 
2020     cc->disas_set_info = arm_disas_set_info;
2021 #ifdef CONFIG_TCG
2022     cc->tcg_initialize = arm_translate_init;
2023 #endif
2024 }
2025 
2026 #ifdef CONFIG_KVM
2027 static void arm_host_initfn(Object *obj)
2028 {
2029     ARMCPU *cpu = ARM_CPU(obj);
2030 
2031     kvm_arm_set_cpu_features_from_host(cpu);
2032 }
2033 
2034 static const TypeInfo host_arm_cpu_type_info = {
2035     .name = TYPE_ARM_HOST_CPU,
2036 #ifdef TARGET_AARCH64
2037     .parent = TYPE_AARCH64_CPU,
2038 #else
2039     .parent = TYPE_ARM_CPU,
2040 #endif
2041     .instance_init = arm_host_initfn,
2042 };
2043 
2044 #endif
2045 
2046 static void cpu_register(const ARMCPUInfo *info)
2047 {
2048     TypeInfo type_info = {
2049         .parent = TYPE_ARM_CPU,
2050         .instance_size = sizeof(ARMCPU),
2051         .instance_init = info->initfn,
2052         .class_size = sizeof(ARMCPUClass),
2053         .class_init = info->class_init,
2054     };
2055 
2056     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2057     type_register(&type_info);
2058     g_free((void *)type_info.name);
2059 }
2060 
2061 static const TypeInfo arm_cpu_type_info = {
2062     .name = TYPE_ARM_CPU,
2063     .parent = TYPE_CPU,
2064     .instance_size = sizeof(ARMCPU),
2065     .instance_init = arm_cpu_initfn,
2066     .instance_post_init = arm_cpu_post_init,
2067     .instance_finalize = arm_cpu_finalizefn,
2068     .abstract = true,
2069     .class_size = sizeof(ARMCPUClass),
2070     .class_init = arm_cpu_class_init,
2071 };
2072 
2073 static const TypeInfo idau_interface_type_info = {
2074     .name = TYPE_IDAU_INTERFACE,
2075     .parent = TYPE_INTERFACE,
2076     .class_size = sizeof(IDAUInterfaceClass),
2077 };
2078 
2079 static void arm_cpu_register_types(void)
2080 {
2081     const ARMCPUInfo *info = arm_cpus;
2082 
2083     type_register_static(&arm_cpu_type_info);
2084     type_register_static(&idau_interface_type_info);
2085 
2086     while (info->name) {
2087         cpu_register(info);
2088         info++;
2089     }
2090 
2091 #ifdef CONFIG_KVM
2092     type_register_static(&host_arm_cpu_type_info);
2093 #endif
2094 }
2095 
2096 type_init(arm_cpu_register_types)
2097