xref: /openbmc/qemu/target/arm/cpu.c (revision 3ab5a6ec)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204                              cpu->sve_max_vq - 1 : 0;
205         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207         /*
208          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
209          * turning on both here will produce smaller code and otherwise
210          * make no difference to the user-level emulation.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214         /* Reset into the highest available EL */
215         if (arm_feature(env, ARM_FEATURE_EL3)) {
216             env->pstate = PSTATE_MODE_EL3h;
217         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218             env->pstate = PSTATE_MODE_EL2h;
219         } else {
220             env->pstate = PSTATE_MODE_EL1h;
221         }
222         env->pc = cpu->rvbar;
223 #endif
224     } else {
225 #if defined(CONFIG_USER_ONLY)
226         /* Userspace expects access to cp10 and cp11 for FP/Neon */
227         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229     }
230 
231 #if defined(CONFIG_USER_ONLY)
232     env->uncached_cpsr = ARM_CPU_MODE_USR;
233     /* For user mode we must enable access to coprocessors */
234     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236         env->cp15.c15_cpar = 3;
237     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238         env->cp15.c15_cpar = 1;
239     }
240 #else
241 
242     /*
243      * If the highest available EL is EL2, AArch32 will start in Hyp
244      * mode; otherwise it starts in SVC. Note that if we start in
245      * AArch64 then these values in the uncached_cpsr will be ignored.
246      */
247     if (arm_feature(env, ARM_FEATURE_EL2) &&
248         !arm_feature(env, ARM_FEATURE_EL3)) {
249         env->uncached_cpsr = ARM_CPU_MODE_HYP;
250     } else {
251         env->uncached_cpsr = ARM_CPU_MODE_SVC;
252     }
253     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 
255     if (arm_feature(env, ARM_FEATURE_M)) {
256         uint32_t initial_msp; /* Loaded from 0x0 */
257         uint32_t initial_pc; /* Loaded from 0x4 */
258         uint8_t *rom;
259         uint32_t vecbase;
260 
261         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262             env->v7m.secure = true;
263         } else {
264             /* This bit resets to 0 if security is supported, but 1 if
265              * it is not. The bit is not present in v7M, but we set it
266              * here so we can avoid having to make checks on it conditional
267              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268              */
269             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270             /*
271              * Set NSACR to indicate "NS access permitted to everything";
272              * this avoids having to have all the tests of it being
273              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274              * v8.1M the guest-visible value of NSACR in a CPU without the
275              * Security Extension is 0xcff.
276              */
277             env->v7m.nsacr = 0xcff;
278         }
279 
280         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281          * that it resets to 1, so QEMU always does that rather than making
282          * it dependent on CPU model. In v8M it is RES1.
283          */
284         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286         if (arm_feature(env, ARM_FEATURE_V8)) {
287             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290         }
291         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294         }
295 
296         if (arm_feature(env, ARM_FEATURE_VFP)) {
297             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300         }
301         /* Unlike A/R profile, M profile defines the reset LR value */
302         env->regs[14] = 0xffffffff;
303 
304         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305 
306         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307         vecbase = env->v7m.vecbase[env->v7m.secure];
308         rom = rom_ptr(vecbase, 8);
309         if (rom) {
310             /* Address zero is covered by ROM which hasn't yet been
311              * copied into physical memory.
312              */
313             initial_msp = ldl_p(rom);
314             initial_pc = ldl_p(rom + 4);
315         } else {
316             /* Address zero not covered by a ROM blob, or the ROM blob
317              * is in non-modifiable memory and this is a second reset after
318              * it got copied into memory. In the latter case, rom_ptr
319              * will return a NULL pointer and we should use ldl_phys instead.
320              */
321             initial_msp = ldl_phys(s->as, vecbase);
322             initial_pc = ldl_phys(s->as, vecbase + 4);
323         }
324 
325         env->regs[13] = initial_msp & 0xFFFFFFFC;
326         env->regs[15] = initial_pc & ~1;
327         env->thumb = initial_pc & 1;
328     }
329 
330     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
331      * executing as AArch32 then check if highvecs are enabled and
332      * adjust the PC accordingly.
333      */
334     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335         env->regs[15] = 0xFFFF0000;
336     }
337 
338     /* M profile requires that reset clears the exclusive monitor;
339      * A profile does not, but clearing it makes more sense than having it
340      * set with an exclusive access on address zero.
341      */
342     arm_clear_exclusive(env);
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_PMSA)) {
348         if (cpu->pmsav7_dregion > 0) {
349             if (arm_feature(env, ARM_FEATURE_V8)) {
350                 memset(env->pmsav8.rbar[M_REG_NS], 0,
351                        sizeof(*env->pmsav8.rbar[M_REG_NS])
352                        * cpu->pmsav7_dregion);
353                 memset(env->pmsav8.rlar[M_REG_NS], 0,
354                        sizeof(*env->pmsav8.rlar[M_REG_NS])
355                        * cpu->pmsav7_dregion);
356                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357                     memset(env->pmsav8.rbar[M_REG_S], 0,
358                            sizeof(*env->pmsav8.rbar[M_REG_S])
359                            * cpu->pmsav7_dregion);
360                     memset(env->pmsav8.rlar[M_REG_S], 0,
361                            sizeof(*env->pmsav8.rlar[M_REG_S])
362                            * cpu->pmsav7_dregion);
363                 }
364             } else if (arm_feature(env, ARM_FEATURE_V7)) {
365                 memset(env->pmsav7.drbar, 0,
366                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.drsr, 0,
368                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369                 memset(env->pmsav7.dracr, 0,
370                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371             }
372         }
373         env->pmsav7.rnr[M_REG_NS] = 0;
374         env->pmsav7.rnr[M_REG_S] = 0;
375         env->pmsav8.mair0[M_REG_NS] = 0;
376         env->pmsav8.mair0[M_REG_S] = 0;
377         env->pmsav8.mair1[M_REG_NS] = 0;
378         env->pmsav8.mair1[M_REG_S] = 0;
379     }
380 
381     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382         if (cpu->sau_sregion > 0) {
383             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385         }
386         env->sau.rnr = 0;
387         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388          * the Cortex-M33 does.
389          */
390         env->sau.ctrl = 0;
391     }
392 
393     set_flush_to_zero(1, &env->vfp.standard_fp_status);
394     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395     set_default_nan_mode(1, &env->vfp.standard_fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.standard_fp_status);
400     set_float_detect_tininess(float_tininess_before_rounding,
401                               &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403     if (kvm_enabled()) {
404         kvm_arm_reset_vcpu(cpu);
405     }
406 #endif
407 
408     hw_breakpoint_update_all(cpu);
409     hw_watchpoint_update_all(cpu);
410     arm_rebuild_hflags(env);
411 }
412 
413 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
414 {
415     CPUClass *cc = CPU_GET_CLASS(cs);
416     CPUARMState *env = cs->env_ptr;
417     uint32_t cur_el = arm_current_el(env);
418     bool secure = arm_is_secure(env);
419     uint32_t target_el;
420     uint32_t excp_idx;
421     bool ret = false;
422 
423     if (interrupt_request & CPU_INTERRUPT_FIQ) {
424         excp_idx = EXCP_FIQ;
425         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427             cs->exception_index = excp_idx;
428             env->exception.target_el = target_el;
429             cc->do_interrupt(cs);
430             ret = true;
431         }
432     }
433     if (interrupt_request & CPU_INTERRUPT_HARD) {
434         excp_idx = EXCP_IRQ;
435         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
436         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437             cs->exception_index = excp_idx;
438             env->exception.target_el = target_el;
439             cc->do_interrupt(cs);
440             ret = true;
441         }
442     }
443     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
444         excp_idx = EXCP_VIRQ;
445         target_el = 1;
446         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447             cs->exception_index = excp_idx;
448             env->exception.target_el = target_el;
449             cc->do_interrupt(cs);
450             ret = true;
451         }
452     }
453     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
454         excp_idx = EXCP_VFIQ;
455         target_el = 1;
456         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
457             cs->exception_index = excp_idx;
458             env->exception.target_el = target_el;
459             cc->do_interrupt(cs);
460             ret = true;
461         }
462     }
463 
464     return ret;
465 }
466 
467 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
468 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
469 {
470     CPUClass *cc = CPU_GET_CLASS(cs);
471     ARMCPU *cpu = ARM_CPU(cs);
472     CPUARMState *env = &cpu->env;
473     bool ret = false;
474 
475     /* ARMv7-M interrupt masking works differently than -A or -R.
476      * There is no FIQ/IRQ distinction. Instead of I and F bits
477      * masking FIQ and IRQ interrupts, an exception is taken only
478      * if it is higher priority than the current execution priority
479      * (which depends on state like BASEPRI, FAULTMASK and the
480      * currently active exception).
481      */
482     if (interrupt_request & CPU_INTERRUPT_HARD
483         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
484         cs->exception_index = EXCP_IRQ;
485         cc->do_interrupt(cs);
486         ret = true;
487     }
488     return ret;
489 }
490 #endif
491 
492 void arm_cpu_update_virq(ARMCPU *cpu)
493 {
494     /*
495      * Update the interrupt level for VIRQ, which is the logical OR of
496      * the HCR_EL2.VI bit and the input line level from the GIC.
497      */
498     CPUARMState *env = &cpu->env;
499     CPUState *cs = CPU(cpu);
500 
501     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
502         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
503 
504     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
505         if (new_state) {
506             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
507         } else {
508             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
509         }
510     }
511 }
512 
513 void arm_cpu_update_vfiq(ARMCPU *cpu)
514 {
515     /*
516      * Update the interrupt level for VFIQ, which is the logical OR of
517      * the HCR_EL2.VF bit and the input line level from the GIC.
518      */
519     CPUARMState *env = &cpu->env;
520     CPUState *cs = CPU(cpu);
521 
522     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
523         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
524 
525     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
526         if (new_state) {
527             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
528         } else {
529             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
530         }
531     }
532 }
533 
534 #ifndef CONFIG_USER_ONLY
535 static void arm_cpu_set_irq(void *opaque, int irq, int level)
536 {
537     ARMCPU *cpu = opaque;
538     CPUARMState *env = &cpu->env;
539     CPUState *cs = CPU(cpu);
540     static const int mask[] = {
541         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
542         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
543         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
544         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
545     };
546 
547     if (level) {
548         env->irq_line_state |= mask[irq];
549     } else {
550         env->irq_line_state &= ~mask[irq];
551     }
552 
553     switch (irq) {
554     case ARM_CPU_VIRQ:
555         assert(arm_feature(env, ARM_FEATURE_EL2));
556         arm_cpu_update_virq(cpu);
557         break;
558     case ARM_CPU_VFIQ:
559         assert(arm_feature(env, ARM_FEATURE_EL2));
560         arm_cpu_update_vfiq(cpu);
561         break;
562     case ARM_CPU_IRQ:
563     case ARM_CPU_FIQ:
564         if (level) {
565             cpu_interrupt(cs, mask[irq]);
566         } else {
567             cpu_reset_interrupt(cs, mask[irq]);
568         }
569         break;
570     default:
571         g_assert_not_reached();
572     }
573 }
574 
575 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
576 {
577 #ifdef CONFIG_KVM
578     ARMCPU *cpu = opaque;
579     CPUARMState *env = &cpu->env;
580     CPUState *cs = CPU(cpu);
581     uint32_t linestate_bit;
582     int irq_id;
583 
584     switch (irq) {
585     case ARM_CPU_IRQ:
586         irq_id = KVM_ARM_IRQ_CPU_IRQ;
587         linestate_bit = CPU_INTERRUPT_HARD;
588         break;
589     case ARM_CPU_FIQ:
590         irq_id = KVM_ARM_IRQ_CPU_FIQ;
591         linestate_bit = CPU_INTERRUPT_FIQ;
592         break;
593     default:
594         g_assert_not_reached();
595     }
596 
597     if (level) {
598         env->irq_line_state |= linestate_bit;
599     } else {
600         env->irq_line_state &= ~linestate_bit;
601     }
602     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
603 #endif
604 }
605 
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
607 {
608     ARMCPU *cpu = ARM_CPU(cs);
609     CPUARMState *env = &cpu->env;
610 
611     cpu_synchronize_state(cs);
612     return arm_cpu_data_is_big_endian(env);
613 }
614 
615 #endif
616 
617 static inline void set_feature(CPUARMState *env, int feature)
618 {
619     env->features |= 1ULL << feature;
620 }
621 
622 static inline void unset_feature(CPUARMState *env, int feature)
623 {
624     env->features &= ~(1ULL << feature);
625 }
626 
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
629 {
630   return print_insn_arm(pc | 1, info);
631 }
632 
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
634 {
635     ARMCPU *ac = ARM_CPU(cpu);
636     CPUARMState *env = &ac->env;
637     bool sctlr_b;
638 
639     if (is_a64(env)) {
640         /* We might not be compiled with the A64 disassembler
641          * because it needs a C++ compiler. Leave print_insn
642          * unset in this case to use the caller default behaviour.
643          */
644 #if defined(CONFIG_ARM_A64_DIS)
645         info->print_insn = print_insn_arm_a64;
646 #endif
647         info->cap_arch = CS_ARCH_ARM64;
648         info->cap_insn_unit = 4;
649         info->cap_insn_split = 4;
650     } else {
651         int cap_mode;
652         if (env->thumb) {
653             info->print_insn = print_insn_thumb1;
654             info->cap_insn_unit = 2;
655             info->cap_insn_split = 4;
656             cap_mode = CS_MODE_THUMB;
657         } else {
658             info->print_insn = print_insn_arm;
659             info->cap_insn_unit = 4;
660             info->cap_insn_split = 4;
661             cap_mode = CS_MODE_ARM;
662         }
663         if (arm_feature(env, ARM_FEATURE_V8)) {
664             cap_mode |= CS_MODE_V8;
665         }
666         if (arm_feature(env, ARM_FEATURE_M)) {
667             cap_mode |= CS_MODE_MCLASS;
668         }
669         info->cap_arch = CS_ARCH_ARM;
670         info->cap_mode = cap_mode;
671     }
672 
673     sctlr_b = arm_sctlr_b(env);
674     if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676         info->endian = BFD_ENDIAN_LITTLE;
677 #else
678         info->endian = BFD_ENDIAN_BIG;
679 #endif
680     }
681     info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683     if (sctlr_b) {
684         info->flags |= INSN_ARM_BE32;
685     }
686 #endif
687 }
688 
689 #ifdef TARGET_AARCH64
690 
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
692 {
693     ARMCPU *cpu = ARM_CPU(cs);
694     CPUARMState *env = &cpu->env;
695     uint32_t psr = pstate_read(env);
696     int i;
697     int el = arm_current_el(env);
698     const char *ns_status;
699 
700     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701     for (i = 0; i < 32; i++) {
702         if (i == 31) {
703             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704         } else {
705             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706                          (i + 2) % 3 ? " " : "\n");
707         }
708     }
709 
710     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712     } else {
713         ns_status = "";
714     }
715     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716                  psr,
717                  psr & PSTATE_N ? 'N' : '-',
718                  psr & PSTATE_Z ? 'Z' : '-',
719                  psr & PSTATE_C ? 'C' : '-',
720                  psr & PSTATE_V ? 'V' : '-',
721                  ns_status,
722                  el,
723                  psr & PSTATE_SP ? 'h' : 't');
724 
725     if (cpu_isar_feature(aa64_bti, cpu)) {
726         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
727     }
728     if (!(flags & CPU_DUMP_FPU)) {
729         qemu_fprintf(f, "\n");
730         return;
731     }
732     if (fp_exception_el(env, el) != 0) {
733         qemu_fprintf(f, "    FPU disabled\n");
734         return;
735     }
736     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
737                  vfp_get_fpcr(env), vfp_get_fpsr(env));
738 
739     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740         int j, zcr_len = sve_zcr_len_for_el(env, el);
741 
742         for (i = 0; i <= FFR_PRED_NUM; i++) {
743             bool eol;
744             if (i == FFR_PRED_NUM) {
745                 qemu_fprintf(f, "FFR=");
746                 /* It's last, so end the line.  */
747                 eol = true;
748             } else {
749                 qemu_fprintf(f, "P%02d=", i);
750                 switch (zcr_len) {
751                 case 0:
752                     eol = i % 8 == 7;
753                     break;
754                 case 1:
755                     eol = i % 6 == 5;
756                     break;
757                 case 2:
758                 case 3:
759                     eol = i % 3 == 2;
760                     break;
761                 default:
762                     /* More than one quadword per predicate.  */
763                     eol = true;
764                     break;
765                 }
766             }
767             for (j = zcr_len / 4; j >= 0; j--) {
768                 int digits;
769                 if (j * 4 + 4 <= zcr_len + 1) {
770                     digits = 16;
771                 } else {
772                     digits = (zcr_len % 4 + 1) * 4;
773                 }
774                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775                              env->vfp.pregs[i].p[j],
776                              j ? ":" : eol ? "\n" : " ");
777             }
778         }
779 
780         for (i = 0; i < 32; i++) {
781             if (zcr_len == 0) {
782                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783                              i, env->vfp.zregs[i].d[1],
784                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785             } else if (zcr_len == 1) {
786                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787                              ":%016" PRIx64 ":%016" PRIx64 "\n",
788                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790             } else {
791                 for (j = zcr_len; j >= 0; j--) {
792                     bool odd = (zcr_len - j) % 2 != 0;
793                     if (j == zcr_len) {
794                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795                     } else if (!odd) {
796                         if (j > 0) {
797                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
798                         } else {
799                             qemu_fprintf(f, "     [%x]=", j);
800                         }
801                     }
802                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803                                  env->vfp.zregs[i].d[j * 2 + 1],
804                                  env->vfp.zregs[i].d[j * 2],
805                                  odd || j == 0 ? "\n" : ":");
806                 }
807             }
808         }
809     } else {
810         for (i = 0; i < 32; i++) {
811             uint64_t *q = aa64_vfp_qreg(env, i);
812             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813                          i, q[1], q[0], (i & 1 ? "\n" : " "));
814         }
815     }
816 }
817 
818 #else
819 
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 {
822     g_assert_not_reached();
823 }
824 
825 #endif
826 
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
828 {
829     ARMCPU *cpu = ARM_CPU(cs);
830     CPUARMState *env = &cpu->env;
831     int i;
832 
833     if (is_a64(env)) {
834         aarch64_cpu_dump_state(cs, f, flags);
835         return;
836     }
837 
838     for (i = 0; i < 16; i++) {
839         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840         if ((i % 4) == 3) {
841             qemu_fprintf(f, "\n");
842         } else {
843             qemu_fprintf(f, " ");
844         }
845     }
846 
847     if (arm_feature(env, ARM_FEATURE_M)) {
848         uint32_t xpsr = xpsr_read(env);
849         const char *mode;
850         const char *ns_status = "";
851 
852         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853             ns_status = env->v7m.secure ? "S " : "NS ";
854         }
855 
856         if (xpsr & XPSR_EXCP) {
857             mode = "handler";
858         } else {
859             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860                 mode = "unpriv-thread";
861             } else {
862                 mode = "priv-thread";
863             }
864         }
865 
866         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867                      xpsr,
868                      xpsr & XPSR_N ? 'N' : '-',
869                      xpsr & XPSR_Z ? 'Z' : '-',
870                      xpsr & XPSR_C ? 'C' : '-',
871                      xpsr & XPSR_V ? 'V' : '-',
872                      xpsr & XPSR_T ? 'T' : 'A',
873                      ns_status,
874                      mode);
875     } else {
876         uint32_t psr = cpsr_read(env);
877         const char *ns_status = "";
878 
879         if (arm_feature(env, ARM_FEATURE_EL3) &&
880             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
882         }
883 
884         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885                      psr,
886                      psr & CPSR_N ? 'N' : '-',
887                      psr & CPSR_Z ? 'Z' : '-',
888                      psr & CPSR_C ? 'C' : '-',
889                      psr & CPSR_V ? 'V' : '-',
890                      psr & CPSR_T ? 'T' : 'A',
891                      ns_status,
892                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
893     }
894 
895     if (flags & CPU_DUMP_FPU) {
896         int numvfpregs = 0;
897         if (arm_feature(env, ARM_FEATURE_VFP)) {
898             numvfpregs += 16;
899         }
900         if (arm_feature(env, ARM_FEATURE_VFP3)) {
901             numvfpregs += 16;
902         }
903         for (i = 0; i < numvfpregs; i++) {
904             uint64_t v = *aa32_vfp_dreg(env, i);
905             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906                          i * 2, (uint32_t)v,
907                          i * 2 + 1, (uint32_t)(v >> 32),
908                          i, v);
909         }
910         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
911     }
912 }
913 
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
915 {
916     uint32_t Aff1 = idx / clustersz;
917     uint32_t Aff0 = idx % clustersz;
918     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
919 }
920 
921 static void cpreg_hashtable_data_destroy(gpointer data)
922 {
923     /*
924      * Destroy function for cpu->cp_regs hashtable data entries.
925      * We must free the name string because it was g_strdup()ed in
926      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927      * from r->name because we know we definitely allocated it.
928      */
929     ARMCPRegInfo *r = data;
930 
931     g_free((void *)r->name);
932     g_free(r);
933 }
934 
935 static void arm_cpu_initfn(Object *obj)
936 {
937     ARMCPU *cpu = ARM_CPU(obj);
938 
939     cpu_set_cpustate_pointers(cpu);
940     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941                                          g_free, cpreg_hashtable_data_destroy);
942 
943     QLIST_INIT(&cpu->pre_el_change_hooks);
944     QLIST_INIT(&cpu->el_change_hooks);
945 
946 #ifndef CONFIG_USER_ONLY
947     /* Our inbound IRQ and FIQ lines */
948     if (kvm_enabled()) {
949         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950          * the same interface as non-KVM CPUs.
951          */
952         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953     } else {
954         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
955     }
956 
957     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958                        ARRAY_SIZE(cpu->gt_timer_outputs));
959 
960     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961                              "gicv3-maintenance-interrupt", 1);
962     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963                              "pmu-interrupt", 1);
964 #endif
965 
966     /* DTB consumers generally don't in fact care what the 'compatible'
967      * string is, so always provide some string and trust that a hypothetical
968      * picky DTB consumer will also provide a helpful error message.
969      */
970     cpu->dtb_compatible = "qemu,unknown";
971     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
973 
974     if (tcg_enabled()) {
975         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
976     }
977 }
978 
979 static Property arm_cpu_gt_cntfrq_property =
980             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
981                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
982 
983 static Property arm_cpu_reset_cbar_property =
984             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
985 
986 static Property arm_cpu_reset_hivecs_property =
987             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
988 
989 static Property arm_cpu_rvbar_property =
990             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
991 
992 static Property arm_cpu_has_el2_property =
993             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
994 
995 static Property arm_cpu_has_el3_property =
996             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
997 
998 static Property arm_cpu_cfgend_property =
999             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1000 
1001 static Property arm_cpu_has_vfp_property =
1002             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1003 
1004 static Property arm_cpu_has_neon_property =
1005             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1006 
1007 static Property arm_cpu_has_dsp_property =
1008             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1009 
1010 static Property arm_cpu_has_mpu_property =
1011             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1012 
1013 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1014  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1015  * the right value for that particular CPU type, and we don't want
1016  * to override that with an incorrect constant value.
1017  */
1018 static Property arm_cpu_pmsav7_dregion_property =
1019             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1020                                            pmsav7_dregion,
1021                                            qdev_prop_uint32, uint32_t);
1022 
1023 static bool arm_get_pmu(Object *obj, Error **errp)
1024 {
1025     ARMCPU *cpu = ARM_CPU(obj);
1026 
1027     return cpu->has_pmu;
1028 }
1029 
1030 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1031 {
1032     ARMCPU *cpu = ARM_CPU(obj);
1033 
1034     if (value) {
1035         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1036             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1037             return;
1038         }
1039         set_feature(&cpu->env, ARM_FEATURE_PMU);
1040     } else {
1041         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1042     }
1043     cpu->has_pmu = value;
1044 }
1045 
1046 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1047                                void *opaque, Error **errp)
1048 {
1049     ARMCPU *cpu = ARM_CPU(obj);
1050 
1051     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1052 }
1053 
1054 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1055                                void *opaque, Error **errp)
1056 {
1057     ARMCPU *cpu = ARM_CPU(obj);
1058 
1059     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1060 }
1061 
1062 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1063 {
1064     /*
1065      * The exact approach to calculating guest ticks is:
1066      *
1067      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1068      *              NANOSECONDS_PER_SECOND);
1069      *
1070      * We don't do that. Rather we intentionally use integer division
1071      * truncation below and in the caller for the conversion of host monotonic
1072      * time to guest ticks to provide the exact inverse for the semantics of
1073      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1074      * it loses precision when representing frequencies where
1075      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1076      * provide an exact inverse leads to scheduling timers with negative
1077      * periods, which in turn leads to sticky behaviour in the guest.
1078      *
1079      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1080      * cannot become zero.
1081      */
1082     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1083       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1084 }
1085 
1086 void arm_cpu_post_init(Object *obj)
1087 {
1088     ARMCPU *cpu = ARM_CPU(obj);
1089 
1090     /* M profile implies PMSA. We have to do this here rather than
1091      * in realize with the other feature-implication checks because
1092      * we look at the PMSA bit to see if we should add some properties.
1093      */
1094     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1095         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1096     }
1097     /* Similarly for the VFP feature bits */
1098     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1099         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1100     }
1101     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1102         set_feature(&cpu->env, ARM_FEATURE_VFP);
1103     }
1104 
1105     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1106         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1107         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1108     }
1109 
1110     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1111         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1112     }
1113 
1114     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1115         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1116     }
1117 
1118     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1119         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1120          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1121          */
1122         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1123 
1124 #ifndef CONFIG_USER_ONLY
1125         object_property_add_link(obj, "secure-memory",
1126                                  TYPE_MEMORY_REGION,
1127                                  (Object **)&cpu->secure_memory,
1128                                  qdev_prop_allow_set_link_before_realize,
1129                                  OBJ_PROP_LINK_STRONG,
1130                                  &error_abort);
1131 #endif
1132     }
1133 
1134     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1135         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1136     }
1137 
1138     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1139         cpu->has_pmu = true;
1140         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1141                                  &error_abort);
1142     }
1143 
1144     /*
1145      * Allow user to turn off VFP and Neon support, but only for TCG --
1146      * KVM does not currently allow us to lie to the guest about its
1147      * ID/feature registers, so the guest always sees what the host has.
1148      */
1149     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1150         cpu->has_vfp = true;
1151         if (!kvm_enabled()) {
1152             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1153         }
1154     }
1155 
1156     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1157         cpu->has_neon = true;
1158         if (!kvm_enabled()) {
1159             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1160         }
1161     }
1162 
1163     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1164         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1165         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1166     }
1167 
1168     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1169         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1170         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1171             qdev_property_add_static(DEVICE(obj),
1172                                      &arm_cpu_pmsav7_dregion_property);
1173         }
1174     }
1175 
1176     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1177         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1178                                  qdev_prop_allow_set_link_before_realize,
1179                                  OBJ_PROP_LINK_STRONG,
1180                                  &error_abort);
1181         /*
1182          * M profile: initial value of the Secure VTOR. We can't just use
1183          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1184          * the property to be set after realize.
1185          */
1186         object_property_add(obj, "init-svtor", "uint32",
1187                             arm_get_init_svtor, arm_set_init_svtor,
1188                             NULL, NULL, &error_abort);
1189     }
1190 
1191     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1192 
1193     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1194         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1195     }
1196 }
1197 
1198 static void arm_cpu_finalizefn(Object *obj)
1199 {
1200     ARMCPU *cpu = ARM_CPU(obj);
1201     ARMELChangeHook *hook, *next;
1202 
1203     g_hash_table_destroy(cpu->cp_regs);
1204 
1205     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1206         QLIST_REMOVE(hook, node);
1207         g_free(hook);
1208     }
1209     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1210         QLIST_REMOVE(hook, node);
1211         g_free(hook);
1212     }
1213 #ifndef CONFIG_USER_ONLY
1214     if (cpu->pmu_timer) {
1215         timer_del(cpu->pmu_timer);
1216         timer_deinit(cpu->pmu_timer);
1217         timer_free(cpu->pmu_timer);
1218     }
1219 #endif
1220 }
1221 
1222 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1223 {
1224     Error *local_err = NULL;
1225 
1226     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1227         arm_cpu_sve_finalize(cpu, &local_err);
1228         if (local_err != NULL) {
1229             error_propagate(errp, local_err);
1230             return;
1231         }
1232     }
1233 }
1234 
1235 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1236 {
1237     CPUState *cs = CPU(dev);
1238     ARMCPU *cpu = ARM_CPU(dev);
1239     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1240     CPUARMState *env = &cpu->env;
1241     int pagebits;
1242     Error *local_err = NULL;
1243     bool no_aa32 = false;
1244 
1245     /* If we needed to query the host kernel for the CPU features
1246      * then it's possible that might have failed in the initfn, but
1247      * this is the first point where we can report it.
1248      */
1249     if (cpu->host_cpu_probe_failed) {
1250         if (!kvm_enabled()) {
1251             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1252         } else {
1253             error_setg(errp, "Failed to retrieve host CPU features");
1254         }
1255         return;
1256     }
1257 
1258 #ifndef CONFIG_USER_ONLY
1259     /* The NVIC and M-profile CPU are two halves of a single piece of
1260      * hardware; trying to use one without the other is a command line
1261      * error and will result in segfaults if not caught here.
1262      */
1263     if (arm_feature(env, ARM_FEATURE_M)) {
1264         if (!env->nvic) {
1265             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1266             return;
1267         }
1268     } else {
1269         if (env->nvic) {
1270             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1271             return;
1272         }
1273     }
1274 
1275 
1276     {
1277         uint64_t scale;
1278 
1279         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1280             if (!cpu->gt_cntfrq_hz) {
1281                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1282                            cpu->gt_cntfrq_hz);
1283                 return;
1284             }
1285             scale = gt_cntfrq_period_ns(cpu);
1286         } else {
1287             scale = GTIMER_SCALE;
1288         }
1289 
1290         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1291                                                arm_gt_ptimer_cb, cpu);
1292         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1293                                                arm_gt_vtimer_cb, cpu);
1294         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1295                                               arm_gt_htimer_cb, cpu);
1296         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1297                                               arm_gt_stimer_cb, cpu);
1298     }
1299 #endif
1300 
1301     cpu_exec_realizefn(cs, &local_err);
1302     if (local_err != NULL) {
1303         error_propagate(errp, local_err);
1304         return;
1305     }
1306 
1307     arm_cpu_finalize_features(cpu, &local_err);
1308     if (local_err != NULL) {
1309         error_propagate(errp, local_err);
1310         return;
1311     }
1312 
1313     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1314         cpu->has_vfp != cpu->has_neon) {
1315         /*
1316          * This is an architectural requirement for AArch64; AArch32 is
1317          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1318          */
1319         error_setg(errp,
1320                    "AArch64 CPUs must have both VFP and Neon or neither");
1321         return;
1322     }
1323 
1324     if (!cpu->has_vfp) {
1325         uint64_t t;
1326         uint32_t u;
1327 
1328         unset_feature(env, ARM_FEATURE_VFP);
1329         unset_feature(env, ARM_FEATURE_VFP3);
1330         unset_feature(env, ARM_FEATURE_VFP4);
1331 
1332         t = cpu->isar.id_aa64isar1;
1333         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1334         cpu->isar.id_aa64isar1 = t;
1335 
1336         t = cpu->isar.id_aa64pfr0;
1337         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1338         cpu->isar.id_aa64pfr0 = t;
1339 
1340         u = cpu->isar.id_isar6;
1341         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1342         cpu->isar.id_isar6 = u;
1343 
1344         u = cpu->isar.mvfr0;
1345         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1346         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1347         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1348         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1349         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1350         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1351         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1352         cpu->isar.mvfr0 = u;
1353 
1354         u = cpu->isar.mvfr1;
1355         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1356         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1357         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1358         cpu->isar.mvfr1 = u;
1359 
1360         u = cpu->isar.mvfr2;
1361         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1362         cpu->isar.mvfr2 = u;
1363     }
1364 
1365     if (!cpu->has_neon) {
1366         uint64_t t;
1367         uint32_t u;
1368 
1369         unset_feature(env, ARM_FEATURE_NEON);
1370 
1371         t = cpu->isar.id_aa64isar0;
1372         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1373         cpu->isar.id_aa64isar0 = t;
1374 
1375         t = cpu->isar.id_aa64isar1;
1376         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1377         cpu->isar.id_aa64isar1 = t;
1378 
1379         t = cpu->isar.id_aa64pfr0;
1380         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1381         cpu->isar.id_aa64pfr0 = t;
1382 
1383         u = cpu->isar.id_isar5;
1384         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1385         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1386         cpu->isar.id_isar5 = u;
1387 
1388         u = cpu->isar.id_isar6;
1389         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1390         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1391         cpu->isar.id_isar6 = u;
1392 
1393         u = cpu->isar.mvfr1;
1394         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1395         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1396         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1397         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1398         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1399         cpu->isar.mvfr1 = u;
1400 
1401         u = cpu->isar.mvfr2;
1402         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1403         cpu->isar.mvfr2 = u;
1404     }
1405 
1406     if (!cpu->has_neon && !cpu->has_vfp) {
1407         uint64_t t;
1408         uint32_t u;
1409 
1410         t = cpu->isar.id_aa64isar0;
1411         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1412         cpu->isar.id_aa64isar0 = t;
1413 
1414         t = cpu->isar.id_aa64isar1;
1415         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1416         cpu->isar.id_aa64isar1 = t;
1417 
1418         u = cpu->isar.mvfr0;
1419         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1420         cpu->isar.mvfr0 = u;
1421     }
1422 
1423     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1424         uint32_t u;
1425 
1426         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1427 
1428         u = cpu->isar.id_isar1;
1429         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1430         cpu->isar.id_isar1 = u;
1431 
1432         u = cpu->isar.id_isar2;
1433         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1434         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1435         cpu->isar.id_isar2 = u;
1436 
1437         u = cpu->isar.id_isar3;
1438         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1439         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1440         cpu->isar.id_isar3 = u;
1441     }
1442 
1443     /* Some features automatically imply others: */
1444     if (arm_feature(env, ARM_FEATURE_V8)) {
1445         if (arm_feature(env, ARM_FEATURE_M)) {
1446             set_feature(env, ARM_FEATURE_V7);
1447         } else {
1448             set_feature(env, ARM_FEATURE_V7VE);
1449         }
1450     }
1451 
1452     /*
1453      * There exist AArch64 cpus without AArch32 support.  When KVM
1454      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1455      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1456      * As a general principle, we also do not make ID register
1457      * consistency checks anywhere unless using TCG, because only
1458      * for TCG would a consistency-check failure be a QEMU bug.
1459      */
1460     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1461         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1462     }
1463 
1464     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1465         /* v7 Virtualization Extensions. In real hardware this implies
1466          * EL2 and also the presence of the Security Extensions.
1467          * For QEMU, for backwards-compatibility we implement some
1468          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1469          * include the various other features that V7VE implies.
1470          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1471          * Security Extensions is ARM_FEATURE_EL3.
1472          */
1473         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1474         set_feature(env, ARM_FEATURE_LPAE);
1475         set_feature(env, ARM_FEATURE_V7);
1476     }
1477     if (arm_feature(env, ARM_FEATURE_V7)) {
1478         set_feature(env, ARM_FEATURE_VAPA);
1479         set_feature(env, ARM_FEATURE_THUMB2);
1480         set_feature(env, ARM_FEATURE_MPIDR);
1481         if (!arm_feature(env, ARM_FEATURE_M)) {
1482             set_feature(env, ARM_FEATURE_V6K);
1483         } else {
1484             set_feature(env, ARM_FEATURE_V6);
1485         }
1486 
1487         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1488          * non-EL3 configs. This is needed by some legacy boards.
1489          */
1490         set_feature(env, ARM_FEATURE_VBAR);
1491     }
1492     if (arm_feature(env, ARM_FEATURE_V6K)) {
1493         set_feature(env, ARM_FEATURE_V6);
1494         set_feature(env, ARM_FEATURE_MVFR);
1495     }
1496     if (arm_feature(env, ARM_FEATURE_V6)) {
1497         set_feature(env, ARM_FEATURE_V5);
1498         if (!arm_feature(env, ARM_FEATURE_M)) {
1499             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1500             set_feature(env, ARM_FEATURE_AUXCR);
1501         }
1502     }
1503     if (arm_feature(env, ARM_FEATURE_V5)) {
1504         set_feature(env, ARM_FEATURE_V4T);
1505     }
1506     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1507         set_feature(env, ARM_FEATURE_V7MP);
1508         set_feature(env, ARM_FEATURE_PXN);
1509     }
1510     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1511         set_feature(env, ARM_FEATURE_CBAR);
1512     }
1513     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1514         !arm_feature(env, ARM_FEATURE_M)) {
1515         set_feature(env, ARM_FEATURE_THUMB_DSP);
1516     }
1517 
1518     /*
1519      * We rely on no XScale CPU having VFP so we can use the same bits in the
1520      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1521      */
1522     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1523              arm_feature(env, ARM_FEATURE_XSCALE)));
1524 
1525     if (arm_feature(env, ARM_FEATURE_V7) &&
1526         !arm_feature(env, ARM_FEATURE_M) &&
1527         !arm_feature(env, ARM_FEATURE_PMSA)) {
1528         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1529          * can use 4K pages.
1530          */
1531         pagebits = 12;
1532     } else {
1533         /* For CPUs which might have tiny 1K pages, or which have an
1534          * MPU and might have small region sizes, stick with 1K pages.
1535          */
1536         pagebits = 10;
1537     }
1538     if (!set_preferred_target_page_bits(pagebits)) {
1539         /* This can only ever happen for hotplugging a CPU, or if
1540          * the board code incorrectly creates a CPU which it has
1541          * promised via minimum_page_size that it will not.
1542          */
1543         error_setg(errp, "This CPU requires a smaller page size than the "
1544                    "system is using");
1545         return;
1546     }
1547 
1548     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1549      * We don't support setting cluster ID ([16..23]) (known as Aff2
1550      * in later ARM ARM versions), or any of the higher affinity level fields,
1551      * so these bits always RAZ.
1552      */
1553     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1554         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1555                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1556     }
1557 
1558     if (cpu->reset_hivecs) {
1559             cpu->reset_sctlr |= (1 << 13);
1560     }
1561 
1562     if (cpu->cfgend) {
1563         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1564             cpu->reset_sctlr |= SCTLR_EE;
1565         } else {
1566             cpu->reset_sctlr |= SCTLR_B;
1567         }
1568     }
1569 
1570     if (!cpu->has_el3) {
1571         /* If the has_el3 CPU property is disabled then we need to disable the
1572          * feature.
1573          */
1574         unset_feature(env, ARM_FEATURE_EL3);
1575 
1576         /* Disable the security extension feature bits in the processor feature
1577          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1578          */
1579         cpu->id_pfr1 &= ~0xf0;
1580         cpu->isar.id_aa64pfr0 &= ~0xf000;
1581     }
1582 
1583     if (!cpu->has_el2) {
1584         unset_feature(env, ARM_FEATURE_EL2);
1585     }
1586 
1587     if (!cpu->has_pmu) {
1588         unset_feature(env, ARM_FEATURE_PMU);
1589     }
1590     if (arm_feature(env, ARM_FEATURE_PMU)) {
1591         pmu_init(cpu);
1592 
1593         if (!kvm_enabled()) {
1594             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1595             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1596         }
1597 
1598 #ifndef CONFIG_USER_ONLY
1599         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1600                 cpu);
1601 #endif
1602     } else {
1603         cpu->id_aa64dfr0 &= ~0xf00;
1604         cpu->id_dfr0 &= ~(0xf << 24);
1605         cpu->pmceid0 = 0;
1606         cpu->pmceid1 = 0;
1607     }
1608 
1609     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1610         /* Disable the hypervisor feature bits in the processor feature
1611          * registers if we don't have EL2. These are id_pfr1[15:12] and
1612          * id_aa64pfr0_el1[11:8].
1613          */
1614         cpu->isar.id_aa64pfr0 &= ~0xf00;
1615         cpu->id_pfr1 &= ~0xf000;
1616     }
1617 
1618     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1619      * to false or by setting pmsav7-dregion to 0.
1620      */
1621     if (!cpu->has_mpu) {
1622         cpu->pmsav7_dregion = 0;
1623     }
1624     if (cpu->pmsav7_dregion == 0) {
1625         cpu->has_mpu = false;
1626     }
1627 
1628     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1629         arm_feature(env, ARM_FEATURE_V7)) {
1630         uint32_t nr = cpu->pmsav7_dregion;
1631 
1632         if (nr > 0xff) {
1633             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1634             return;
1635         }
1636 
1637         if (nr) {
1638             if (arm_feature(env, ARM_FEATURE_V8)) {
1639                 /* PMSAv8 */
1640                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1641                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1642                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1643                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1644                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1645                 }
1646             } else {
1647                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1648                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1649                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1650             }
1651         }
1652     }
1653 
1654     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1655         uint32_t nr = cpu->sau_sregion;
1656 
1657         if (nr > 0xff) {
1658             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1659             return;
1660         }
1661 
1662         if (nr) {
1663             env->sau.rbar = g_new0(uint32_t, nr);
1664             env->sau.rlar = g_new0(uint32_t, nr);
1665         }
1666     }
1667 
1668     if (arm_feature(env, ARM_FEATURE_EL3)) {
1669         set_feature(env, ARM_FEATURE_VBAR);
1670     }
1671 
1672     register_cp_regs_for_features(cpu);
1673     arm_cpu_register_gdb_regs_for_features(cpu);
1674 
1675     init_cpreg_list(cpu);
1676 
1677 #ifndef CONFIG_USER_ONLY
1678     MachineState *ms = MACHINE(qdev_get_machine());
1679     unsigned int smp_cpus = ms->smp.cpus;
1680 
1681     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1682         cs->num_ases = 2;
1683 
1684         if (!cpu->secure_memory) {
1685             cpu->secure_memory = cs->memory;
1686         }
1687         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1688                                cpu->secure_memory);
1689     } else {
1690         cs->num_ases = 1;
1691     }
1692     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1693 
1694     /* No core_count specified, default to smp_cpus. */
1695     if (cpu->core_count == -1) {
1696         cpu->core_count = smp_cpus;
1697     }
1698 #endif
1699 
1700     qemu_init_vcpu(cs);
1701     cpu_reset(cs);
1702 
1703     acc->parent_realize(dev, errp);
1704 }
1705 
1706 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1707 {
1708     ObjectClass *oc;
1709     char *typename;
1710     char **cpuname;
1711     const char *cpunamestr;
1712 
1713     cpuname = g_strsplit(cpu_model, ",", 1);
1714     cpunamestr = cpuname[0];
1715 #ifdef CONFIG_USER_ONLY
1716     /* For backwards compatibility usermode emulation allows "-cpu any",
1717      * which has the same semantics as "-cpu max".
1718      */
1719     if (!strcmp(cpunamestr, "any")) {
1720         cpunamestr = "max";
1721     }
1722 #endif
1723     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1724     oc = object_class_by_name(typename);
1725     g_strfreev(cpuname);
1726     g_free(typename);
1727     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1728         object_class_is_abstract(oc)) {
1729         return NULL;
1730     }
1731     return oc;
1732 }
1733 
1734 /* CPU models. These are not needed for the AArch64 linux-user build. */
1735 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1736 
1737 static void arm926_initfn(Object *obj)
1738 {
1739     ARMCPU *cpu = ARM_CPU(obj);
1740 
1741     cpu->dtb_compatible = "arm,arm926";
1742     set_feature(&cpu->env, ARM_FEATURE_V5);
1743     set_feature(&cpu->env, ARM_FEATURE_VFP);
1744     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1745     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1746     cpu->midr = 0x41069265;
1747     cpu->reset_fpsid = 0x41011090;
1748     cpu->ctr = 0x1dd20d2;
1749     cpu->reset_sctlr = 0x00090078;
1750 
1751     /*
1752      * ARMv5 does not have the ID_ISAR registers, but we can still
1753      * set the field to indicate Jazelle support within QEMU.
1754      */
1755     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1756     /*
1757      * Similarly, we need to set MVFR0 fields to enable double precision
1758      * and short vector support even though ARMv5 doesn't have this register.
1759      */
1760     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1761     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1762 }
1763 
1764 static void arm946_initfn(Object *obj)
1765 {
1766     ARMCPU *cpu = ARM_CPU(obj);
1767 
1768     cpu->dtb_compatible = "arm,arm946";
1769     set_feature(&cpu->env, ARM_FEATURE_V5);
1770     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1771     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1772     cpu->midr = 0x41059461;
1773     cpu->ctr = 0x0f004006;
1774     cpu->reset_sctlr = 0x00000078;
1775 }
1776 
1777 static void arm1026_initfn(Object *obj)
1778 {
1779     ARMCPU *cpu = ARM_CPU(obj);
1780 
1781     cpu->dtb_compatible = "arm,arm1026";
1782     set_feature(&cpu->env, ARM_FEATURE_V5);
1783     set_feature(&cpu->env, ARM_FEATURE_VFP);
1784     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1785     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1786     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1787     cpu->midr = 0x4106a262;
1788     cpu->reset_fpsid = 0x410110a0;
1789     cpu->ctr = 0x1dd20d2;
1790     cpu->reset_sctlr = 0x00090078;
1791     cpu->reset_auxcr = 1;
1792 
1793     /*
1794      * ARMv5 does not have the ID_ISAR registers, but we can still
1795      * set the field to indicate Jazelle support within QEMU.
1796      */
1797     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1798     /*
1799      * Similarly, we need to set MVFR0 fields to enable double precision
1800      * and short vector support even though ARMv5 doesn't have this register.
1801      */
1802     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1803     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1804 
1805     {
1806         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1807         ARMCPRegInfo ifar = {
1808             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1809             .access = PL1_RW,
1810             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1811             .resetvalue = 0
1812         };
1813         define_one_arm_cp_reg(cpu, &ifar);
1814     }
1815 }
1816 
1817 static void arm1136_r2_initfn(Object *obj)
1818 {
1819     ARMCPU *cpu = ARM_CPU(obj);
1820     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1821      * older core than plain "arm1136". In particular this does not
1822      * have the v6K features.
1823      * These ID register values are correct for 1136 but may be wrong
1824      * for 1136_r2 (in particular r0p2 does not actually implement most
1825      * of the ID registers).
1826      */
1827 
1828     cpu->dtb_compatible = "arm,arm1136";
1829     set_feature(&cpu->env, ARM_FEATURE_V6);
1830     set_feature(&cpu->env, ARM_FEATURE_VFP);
1831     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1832     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1833     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1834     cpu->midr = 0x4107b362;
1835     cpu->reset_fpsid = 0x410120b4;
1836     cpu->isar.mvfr0 = 0x11111111;
1837     cpu->isar.mvfr1 = 0x00000000;
1838     cpu->ctr = 0x1dd20d2;
1839     cpu->reset_sctlr = 0x00050078;
1840     cpu->id_pfr0 = 0x111;
1841     cpu->id_pfr1 = 0x1;
1842     cpu->id_dfr0 = 0x2;
1843     cpu->id_afr0 = 0x3;
1844     cpu->id_mmfr0 = 0x01130003;
1845     cpu->id_mmfr1 = 0x10030302;
1846     cpu->id_mmfr2 = 0x01222110;
1847     cpu->isar.id_isar0 = 0x00140011;
1848     cpu->isar.id_isar1 = 0x12002111;
1849     cpu->isar.id_isar2 = 0x11231111;
1850     cpu->isar.id_isar3 = 0x01102131;
1851     cpu->isar.id_isar4 = 0x141;
1852     cpu->reset_auxcr = 7;
1853 }
1854 
1855 static void arm1136_initfn(Object *obj)
1856 {
1857     ARMCPU *cpu = ARM_CPU(obj);
1858 
1859     cpu->dtb_compatible = "arm,arm1136";
1860     set_feature(&cpu->env, ARM_FEATURE_V6K);
1861     set_feature(&cpu->env, ARM_FEATURE_V6);
1862     set_feature(&cpu->env, ARM_FEATURE_VFP);
1863     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1864     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1865     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1866     cpu->midr = 0x4117b363;
1867     cpu->reset_fpsid = 0x410120b4;
1868     cpu->isar.mvfr0 = 0x11111111;
1869     cpu->isar.mvfr1 = 0x00000000;
1870     cpu->ctr = 0x1dd20d2;
1871     cpu->reset_sctlr = 0x00050078;
1872     cpu->id_pfr0 = 0x111;
1873     cpu->id_pfr1 = 0x1;
1874     cpu->id_dfr0 = 0x2;
1875     cpu->id_afr0 = 0x3;
1876     cpu->id_mmfr0 = 0x01130003;
1877     cpu->id_mmfr1 = 0x10030302;
1878     cpu->id_mmfr2 = 0x01222110;
1879     cpu->isar.id_isar0 = 0x00140011;
1880     cpu->isar.id_isar1 = 0x12002111;
1881     cpu->isar.id_isar2 = 0x11231111;
1882     cpu->isar.id_isar3 = 0x01102131;
1883     cpu->isar.id_isar4 = 0x141;
1884     cpu->reset_auxcr = 7;
1885 }
1886 
1887 static void arm1176_initfn(Object *obj)
1888 {
1889     ARMCPU *cpu = ARM_CPU(obj);
1890 
1891     cpu->dtb_compatible = "arm,arm1176";
1892     set_feature(&cpu->env, ARM_FEATURE_V6K);
1893     set_feature(&cpu->env, ARM_FEATURE_VFP);
1894     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1895     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1896     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1897     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1898     set_feature(&cpu->env, ARM_FEATURE_EL3);
1899     cpu->midr = 0x410fb767;
1900     cpu->reset_fpsid = 0x410120b5;
1901     cpu->isar.mvfr0 = 0x11111111;
1902     cpu->isar.mvfr1 = 0x00000000;
1903     cpu->ctr = 0x1dd20d2;
1904     cpu->reset_sctlr = 0x00050078;
1905     cpu->id_pfr0 = 0x111;
1906     cpu->id_pfr1 = 0x11;
1907     cpu->id_dfr0 = 0x33;
1908     cpu->id_afr0 = 0;
1909     cpu->id_mmfr0 = 0x01130003;
1910     cpu->id_mmfr1 = 0x10030302;
1911     cpu->id_mmfr2 = 0x01222100;
1912     cpu->isar.id_isar0 = 0x0140011;
1913     cpu->isar.id_isar1 = 0x12002111;
1914     cpu->isar.id_isar2 = 0x11231121;
1915     cpu->isar.id_isar3 = 0x01102131;
1916     cpu->isar.id_isar4 = 0x01141;
1917     cpu->reset_auxcr = 7;
1918 }
1919 
1920 static void arm11mpcore_initfn(Object *obj)
1921 {
1922     ARMCPU *cpu = ARM_CPU(obj);
1923 
1924     cpu->dtb_compatible = "arm,arm11mpcore";
1925     set_feature(&cpu->env, ARM_FEATURE_V6K);
1926     set_feature(&cpu->env, ARM_FEATURE_VFP);
1927     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1928     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1929     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1930     cpu->midr = 0x410fb022;
1931     cpu->reset_fpsid = 0x410120b4;
1932     cpu->isar.mvfr0 = 0x11111111;
1933     cpu->isar.mvfr1 = 0x00000000;
1934     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1935     cpu->id_pfr0 = 0x111;
1936     cpu->id_pfr1 = 0x1;
1937     cpu->id_dfr0 = 0;
1938     cpu->id_afr0 = 0x2;
1939     cpu->id_mmfr0 = 0x01100103;
1940     cpu->id_mmfr1 = 0x10020302;
1941     cpu->id_mmfr2 = 0x01222000;
1942     cpu->isar.id_isar0 = 0x00100011;
1943     cpu->isar.id_isar1 = 0x12002111;
1944     cpu->isar.id_isar2 = 0x11221011;
1945     cpu->isar.id_isar3 = 0x01102131;
1946     cpu->isar.id_isar4 = 0x141;
1947     cpu->reset_auxcr = 1;
1948 }
1949 
1950 static void cortex_m0_initfn(Object *obj)
1951 {
1952     ARMCPU *cpu = ARM_CPU(obj);
1953     set_feature(&cpu->env, ARM_FEATURE_V6);
1954     set_feature(&cpu->env, ARM_FEATURE_M);
1955 
1956     cpu->midr = 0x410cc200;
1957 }
1958 
1959 static void cortex_m3_initfn(Object *obj)
1960 {
1961     ARMCPU *cpu = ARM_CPU(obj);
1962     set_feature(&cpu->env, ARM_FEATURE_V7);
1963     set_feature(&cpu->env, ARM_FEATURE_M);
1964     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1965     cpu->midr = 0x410fc231;
1966     cpu->pmsav7_dregion = 8;
1967     cpu->id_pfr0 = 0x00000030;
1968     cpu->id_pfr1 = 0x00000200;
1969     cpu->id_dfr0 = 0x00100000;
1970     cpu->id_afr0 = 0x00000000;
1971     cpu->id_mmfr0 = 0x00000030;
1972     cpu->id_mmfr1 = 0x00000000;
1973     cpu->id_mmfr2 = 0x00000000;
1974     cpu->id_mmfr3 = 0x00000000;
1975     cpu->isar.id_isar0 = 0x01141110;
1976     cpu->isar.id_isar1 = 0x02111000;
1977     cpu->isar.id_isar2 = 0x21112231;
1978     cpu->isar.id_isar3 = 0x01111110;
1979     cpu->isar.id_isar4 = 0x01310102;
1980     cpu->isar.id_isar5 = 0x00000000;
1981     cpu->isar.id_isar6 = 0x00000000;
1982 }
1983 
1984 static void cortex_m4_initfn(Object *obj)
1985 {
1986     ARMCPU *cpu = ARM_CPU(obj);
1987 
1988     set_feature(&cpu->env, ARM_FEATURE_V7);
1989     set_feature(&cpu->env, ARM_FEATURE_M);
1990     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1991     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1992     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1993     cpu->midr = 0x410fc240; /* r0p0 */
1994     cpu->pmsav7_dregion = 8;
1995     cpu->isar.mvfr0 = 0x10110021;
1996     cpu->isar.mvfr1 = 0x11000011;
1997     cpu->isar.mvfr2 = 0x00000000;
1998     cpu->id_pfr0 = 0x00000030;
1999     cpu->id_pfr1 = 0x00000200;
2000     cpu->id_dfr0 = 0x00100000;
2001     cpu->id_afr0 = 0x00000000;
2002     cpu->id_mmfr0 = 0x00000030;
2003     cpu->id_mmfr1 = 0x00000000;
2004     cpu->id_mmfr2 = 0x00000000;
2005     cpu->id_mmfr3 = 0x00000000;
2006     cpu->isar.id_isar0 = 0x01141110;
2007     cpu->isar.id_isar1 = 0x02111000;
2008     cpu->isar.id_isar2 = 0x21112231;
2009     cpu->isar.id_isar3 = 0x01111110;
2010     cpu->isar.id_isar4 = 0x01310102;
2011     cpu->isar.id_isar5 = 0x00000000;
2012     cpu->isar.id_isar6 = 0x00000000;
2013 }
2014 
2015 static void cortex_m7_initfn(Object *obj)
2016 {
2017     ARMCPU *cpu = ARM_CPU(obj);
2018 
2019     set_feature(&cpu->env, ARM_FEATURE_V7);
2020     set_feature(&cpu->env, ARM_FEATURE_M);
2021     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2022     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2023     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2024     cpu->midr = 0x411fc272; /* r1p2 */
2025     cpu->pmsav7_dregion = 8;
2026     cpu->isar.mvfr0 = 0x10110221;
2027     cpu->isar.mvfr1 = 0x12000011;
2028     cpu->isar.mvfr2 = 0x00000040;
2029     cpu->id_pfr0 = 0x00000030;
2030     cpu->id_pfr1 = 0x00000200;
2031     cpu->id_dfr0 = 0x00100000;
2032     cpu->id_afr0 = 0x00000000;
2033     cpu->id_mmfr0 = 0x00100030;
2034     cpu->id_mmfr1 = 0x00000000;
2035     cpu->id_mmfr2 = 0x01000000;
2036     cpu->id_mmfr3 = 0x00000000;
2037     cpu->isar.id_isar0 = 0x01101110;
2038     cpu->isar.id_isar1 = 0x02112000;
2039     cpu->isar.id_isar2 = 0x20232231;
2040     cpu->isar.id_isar3 = 0x01111131;
2041     cpu->isar.id_isar4 = 0x01310132;
2042     cpu->isar.id_isar5 = 0x00000000;
2043     cpu->isar.id_isar6 = 0x00000000;
2044 }
2045 
2046 static void cortex_m33_initfn(Object *obj)
2047 {
2048     ARMCPU *cpu = ARM_CPU(obj);
2049 
2050     set_feature(&cpu->env, ARM_FEATURE_V8);
2051     set_feature(&cpu->env, ARM_FEATURE_M);
2052     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2053     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2054     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2055     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2056     cpu->midr = 0x410fd213; /* r0p3 */
2057     cpu->pmsav7_dregion = 16;
2058     cpu->sau_sregion = 8;
2059     cpu->isar.mvfr0 = 0x10110021;
2060     cpu->isar.mvfr1 = 0x11000011;
2061     cpu->isar.mvfr2 = 0x00000040;
2062     cpu->id_pfr0 = 0x00000030;
2063     cpu->id_pfr1 = 0x00000210;
2064     cpu->id_dfr0 = 0x00200000;
2065     cpu->id_afr0 = 0x00000000;
2066     cpu->id_mmfr0 = 0x00101F40;
2067     cpu->id_mmfr1 = 0x00000000;
2068     cpu->id_mmfr2 = 0x01000000;
2069     cpu->id_mmfr3 = 0x00000000;
2070     cpu->isar.id_isar0 = 0x01101110;
2071     cpu->isar.id_isar1 = 0x02212000;
2072     cpu->isar.id_isar2 = 0x20232232;
2073     cpu->isar.id_isar3 = 0x01111131;
2074     cpu->isar.id_isar4 = 0x01310132;
2075     cpu->isar.id_isar5 = 0x00000000;
2076     cpu->isar.id_isar6 = 0x00000000;
2077     cpu->clidr = 0x00000000;
2078     cpu->ctr = 0x8000c000;
2079 }
2080 
2081 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2082 {
2083     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2084     CPUClass *cc = CPU_CLASS(oc);
2085 
2086     acc->info = data;
2087 #ifndef CONFIG_USER_ONLY
2088     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2089 #endif
2090 
2091     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2092 }
2093 
2094 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2095     /* Dummy the TCM region regs for the moment */
2096     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2097       .access = PL1_RW, .type = ARM_CP_CONST },
2098     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2099       .access = PL1_RW, .type = ARM_CP_CONST },
2100     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2101       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2102     REGINFO_SENTINEL
2103 };
2104 
2105 static void cortex_r5_initfn(Object *obj)
2106 {
2107     ARMCPU *cpu = ARM_CPU(obj);
2108 
2109     set_feature(&cpu->env, ARM_FEATURE_V7);
2110     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2111     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2112     set_feature(&cpu->env, ARM_FEATURE_PMU);
2113     cpu->midr = 0x411fc153; /* r1p3 */
2114     cpu->id_pfr0 = 0x0131;
2115     cpu->id_pfr1 = 0x001;
2116     cpu->id_dfr0 = 0x010400;
2117     cpu->id_afr0 = 0x0;
2118     cpu->id_mmfr0 = 0x0210030;
2119     cpu->id_mmfr1 = 0x00000000;
2120     cpu->id_mmfr2 = 0x01200000;
2121     cpu->id_mmfr3 = 0x0211;
2122     cpu->isar.id_isar0 = 0x02101111;
2123     cpu->isar.id_isar1 = 0x13112111;
2124     cpu->isar.id_isar2 = 0x21232141;
2125     cpu->isar.id_isar3 = 0x01112131;
2126     cpu->isar.id_isar4 = 0x0010142;
2127     cpu->isar.id_isar5 = 0x0;
2128     cpu->isar.id_isar6 = 0x0;
2129     cpu->mp_is_up = true;
2130     cpu->pmsav7_dregion = 16;
2131     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2132 }
2133 
2134 static void cortex_r5f_initfn(Object *obj)
2135 {
2136     ARMCPU *cpu = ARM_CPU(obj);
2137 
2138     cortex_r5_initfn(obj);
2139     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2140     cpu->isar.mvfr0 = 0x10110221;
2141     cpu->isar.mvfr1 = 0x00000011;
2142 }
2143 
2144 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2145     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2146       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2147     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2148       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2149     REGINFO_SENTINEL
2150 };
2151 
2152 static void cortex_a8_initfn(Object *obj)
2153 {
2154     ARMCPU *cpu = ARM_CPU(obj);
2155 
2156     cpu->dtb_compatible = "arm,cortex-a8";
2157     set_feature(&cpu->env, ARM_FEATURE_V7);
2158     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2159     set_feature(&cpu->env, ARM_FEATURE_NEON);
2160     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2161     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2162     set_feature(&cpu->env, ARM_FEATURE_EL3);
2163     cpu->midr = 0x410fc080;
2164     cpu->reset_fpsid = 0x410330c0;
2165     cpu->isar.mvfr0 = 0x11110222;
2166     cpu->isar.mvfr1 = 0x00011111;
2167     cpu->ctr = 0x82048004;
2168     cpu->reset_sctlr = 0x00c50078;
2169     cpu->id_pfr0 = 0x1031;
2170     cpu->id_pfr1 = 0x11;
2171     cpu->id_dfr0 = 0x400;
2172     cpu->id_afr0 = 0;
2173     cpu->id_mmfr0 = 0x31100003;
2174     cpu->id_mmfr1 = 0x20000000;
2175     cpu->id_mmfr2 = 0x01202000;
2176     cpu->id_mmfr3 = 0x11;
2177     cpu->isar.id_isar0 = 0x00101111;
2178     cpu->isar.id_isar1 = 0x12112111;
2179     cpu->isar.id_isar2 = 0x21232031;
2180     cpu->isar.id_isar3 = 0x11112131;
2181     cpu->isar.id_isar4 = 0x00111142;
2182     cpu->dbgdidr = 0x15141000;
2183     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2184     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2185     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2186     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2187     cpu->reset_auxcr = 2;
2188     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2189 }
2190 
2191 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2192     /* power_control should be set to maximum latency. Again,
2193      * default to 0 and set by private hook
2194      */
2195     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2196       .access = PL1_RW, .resetvalue = 0,
2197       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2198     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2199       .access = PL1_RW, .resetvalue = 0,
2200       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2201     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2202       .access = PL1_RW, .resetvalue = 0,
2203       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2204     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2205       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2206     /* TLB lockdown control */
2207     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2208       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2209     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2210       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2211     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2212       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2213     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2214       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2215     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2216       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2217     REGINFO_SENTINEL
2218 };
2219 
2220 static void cortex_a9_initfn(Object *obj)
2221 {
2222     ARMCPU *cpu = ARM_CPU(obj);
2223 
2224     cpu->dtb_compatible = "arm,cortex-a9";
2225     set_feature(&cpu->env, ARM_FEATURE_V7);
2226     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2227     set_feature(&cpu->env, ARM_FEATURE_NEON);
2228     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2229     set_feature(&cpu->env, ARM_FEATURE_EL3);
2230     /* Note that A9 supports the MP extensions even for
2231      * A9UP and single-core A9MP (which are both different
2232      * and valid configurations; we don't model A9UP).
2233      */
2234     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2235     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2236     cpu->midr = 0x410fc090;
2237     cpu->reset_fpsid = 0x41033090;
2238     cpu->isar.mvfr0 = 0x11110222;
2239     cpu->isar.mvfr1 = 0x01111111;
2240     cpu->ctr = 0x80038003;
2241     cpu->reset_sctlr = 0x00c50078;
2242     cpu->id_pfr0 = 0x1031;
2243     cpu->id_pfr1 = 0x11;
2244     cpu->id_dfr0 = 0x000;
2245     cpu->id_afr0 = 0;
2246     cpu->id_mmfr0 = 0x00100103;
2247     cpu->id_mmfr1 = 0x20000000;
2248     cpu->id_mmfr2 = 0x01230000;
2249     cpu->id_mmfr3 = 0x00002111;
2250     cpu->isar.id_isar0 = 0x00101111;
2251     cpu->isar.id_isar1 = 0x13112111;
2252     cpu->isar.id_isar2 = 0x21232041;
2253     cpu->isar.id_isar3 = 0x11112131;
2254     cpu->isar.id_isar4 = 0x00111142;
2255     cpu->dbgdidr = 0x35141000;
2256     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2257     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2258     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2259     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2260 }
2261 
2262 #ifndef CONFIG_USER_ONLY
2263 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2264 {
2265     MachineState *ms = MACHINE(qdev_get_machine());
2266 
2267     /* Linux wants the number of processors from here.
2268      * Might as well set the interrupt-controller bit too.
2269      */
2270     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2271 }
2272 #endif
2273 
2274 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2275 #ifndef CONFIG_USER_ONLY
2276     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2277       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2278       .writefn = arm_cp_write_ignore, },
2279 #endif
2280     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2281       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2282     REGINFO_SENTINEL
2283 };
2284 
2285 static void cortex_a7_initfn(Object *obj)
2286 {
2287     ARMCPU *cpu = ARM_CPU(obj);
2288 
2289     cpu->dtb_compatible = "arm,cortex-a7";
2290     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2291     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2292     set_feature(&cpu->env, ARM_FEATURE_NEON);
2293     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2294     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2295     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2296     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2297     set_feature(&cpu->env, ARM_FEATURE_EL2);
2298     set_feature(&cpu->env, ARM_FEATURE_EL3);
2299     set_feature(&cpu->env, ARM_FEATURE_PMU);
2300     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2301     cpu->midr = 0x410fc075;
2302     cpu->reset_fpsid = 0x41023075;
2303     cpu->isar.mvfr0 = 0x10110222;
2304     cpu->isar.mvfr1 = 0x11111111;
2305     cpu->ctr = 0x84448003;
2306     cpu->reset_sctlr = 0x00c50078;
2307     cpu->id_pfr0 = 0x00001131;
2308     cpu->id_pfr1 = 0x00011011;
2309     cpu->id_dfr0 = 0x02010555;
2310     cpu->id_afr0 = 0x00000000;
2311     cpu->id_mmfr0 = 0x10101105;
2312     cpu->id_mmfr1 = 0x40000000;
2313     cpu->id_mmfr2 = 0x01240000;
2314     cpu->id_mmfr3 = 0x02102211;
2315     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2316      * table 4-41 gives 0x02101110, which includes the arm div insns.
2317      */
2318     cpu->isar.id_isar0 = 0x02101110;
2319     cpu->isar.id_isar1 = 0x13112111;
2320     cpu->isar.id_isar2 = 0x21232041;
2321     cpu->isar.id_isar3 = 0x11112131;
2322     cpu->isar.id_isar4 = 0x10011142;
2323     cpu->dbgdidr = 0x3515f005;
2324     cpu->clidr = 0x0a200023;
2325     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2326     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2327     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2328     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2329 }
2330 
2331 static void cortex_a15_initfn(Object *obj)
2332 {
2333     ARMCPU *cpu = ARM_CPU(obj);
2334 
2335     cpu->dtb_compatible = "arm,cortex-a15";
2336     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2337     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2338     set_feature(&cpu->env, ARM_FEATURE_NEON);
2339     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2340     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2341     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2342     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2343     set_feature(&cpu->env, ARM_FEATURE_EL2);
2344     set_feature(&cpu->env, ARM_FEATURE_EL3);
2345     set_feature(&cpu->env, ARM_FEATURE_PMU);
2346     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2347     cpu->midr = 0x412fc0f1;
2348     cpu->reset_fpsid = 0x410430f0;
2349     cpu->isar.mvfr0 = 0x10110222;
2350     cpu->isar.mvfr1 = 0x11111111;
2351     cpu->ctr = 0x8444c004;
2352     cpu->reset_sctlr = 0x00c50078;
2353     cpu->id_pfr0 = 0x00001131;
2354     cpu->id_pfr1 = 0x00011011;
2355     cpu->id_dfr0 = 0x02010555;
2356     cpu->id_afr0 = 0x00000000;
2357     cpu->id_mmfr0 = 0x10201105;
2358     cpu->id_mmfr1 = 0x20000000;
2359     cpu->id_mmfr2 = 0x01240000;
2360     cpu->id_mmfr3 = 0x02102211;
2361     cpu->isar.id_isar0 = 0x02101110;
2362     cpu->isar.id_isar1 = 0x13112111;
2363     cpu->isar.id_isar2 = 0x21232041;
2364     cpu->isar.id_isar3 = 0x11112131;
2365     cpu->isar.id_isar4 = 0x10011142;
2366     cpu->dbgdidr = 0x3515f021;
2367     cpu->clidr = 0x0a200023;
2368     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2369     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2370     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2371     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2372 }
2373 
2374 static void ti925t_initfn(Object *obj)
2375 {
2376     ARMCPU *cpu = ARM_CPU(obj);
2377     set_feature(&cpu->env, ARM_FEATURE_V4T);
2378     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2379     cpu->midr = ARM_CPUID_TI925T;
2380     cpu->ctr = 0x5109149;
2381     cpu->reset_sctlr = 0x00000070;
2382 }
2383 
2384 static void sa1100_initfn(Object *obj)
2385 {
2386     ARMCPU *cpu = ARM_CPU(obj);
2387 
2388     cpu->dtb_compatible = "intel,sa1100";
2389     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2390     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2391     cpu->midr = 0x4401A11B;
2392     cpu->reset_sctlr = 0x00000070;
2393 }
2394 
2395 static void sa1110_initfn(Object *obj)
2396 {
2397     ARMCPU *cpu = ARM_CPU(obj);
2398     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2399     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2400     cpu->midr = 0x6901B119;
2401     cpu->reset_sctlr = 0x00000070;
2402 }
2403 
2404 static void pxa250_initfn(Object *obj)
2405 {
2406     ARMCPU *cpu = ARM_CPU(obj);
2407 
2408     cpu->dtb_compatible = "marvell,xscale";
2409     set_feature(&cpu->env, ARM_FEATURE_V5);
2410     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2411     cpu->midr = 0x69052100;
2412     cpu->ctr = 0xd172172;
2413     cpu->reset_sctlr = 0x00000078;
2414 }
2415 
2416 static void pxa255_initfn(Object *obj)
2417 {
2418     ARMCPU *cpu = ARM_CPU(obj);
2419 
2420     cpu->dtb_compatible = "marvell,xscale";
2421     set_feature(&cpu->env, ARM_FEATURE_V5);
2422     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2423     cpu->midr = 0x69052d00;
2424     cpu->ctr = 0xd172172;
2425     cpu->reset_sctlr = 0x00000078;
2426 }
2427 
2428 static void pxa260_initfn(Object *obj)
2429 {
2430     ARMCPU *cpu = ARM_CPU(obj);
2431 
2432     cpu->dtb_compatible = "marvell,xscale";
2433     set_feature(&cpu->env, ARM_FEATURE_V5);
2434     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2435     cpu->midr = 0x69052903;
2436     cpu->ctr = 0xd172172;
2437     cpu->reset_sctlr = 0x00000078;
2438 }
2439 
2440 static void pxa261_initfn(Object *obj)
2441 {
2442     ARMCPU *cpu = ARM_CPU(obj);
2443 
2444     cpu->dtb_compatible = "marvell,xscale";
2445     set_feature(&cpu->env, ARM_FEATURE_V5);
2446     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2447     cpu->midr = 0x69052d05;
2448     cpu->ctr = 0xd172172;
2449     cpu->reset_sctlr = 0x00000078;
2450 }
2451 
2452 static void pxa262_initfn(Object *obj)
2453 {
2454     ARMCPU *cpu = ARM_CPU(obj);
2455 
2456     cpu->dtb_compatible = "marvell,xscale";
2457     set_feature(&cpu->env, ARM_FEATURE_V5);
2458     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2459     cpu->midr = 0x69052d06;
2460     cpu->ctr = 0xd172172;
2461     cpu->reset_sctlr = 0x00000078;
2462 }
2463 
2464 static void pxa270a0_initfn(Object *obj)
2465 {
2466     ARMCPU *cpu = ARM_CPU(obj);
2467 
2468     cpu->dtb_compatible = "marvell,xscale";
2469     set_feature(&cpu->env, ARM_FEATURE_V5);
2470     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2471     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2472     cpu->midr = 0x69054110;
2473     cpu->ctr = 0xd172172;
2474     cpu->reset_sctlr = 0x00000078;
2475 }
2476 
2477 static void pxa270a1_initfn(Object *obj)
2478 {
2479     ARMCPU *cpu = ARM_CPU(obj);
2480 
2481     cpu->dtb_compatible = "marvell,xscale";
2482     set_feature(&cpu->env, ARM_FEATURE_V5);
2483     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2484     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2485     cpu->midr = 0x69054111;
2486     cpu->ctr = 0xd172172;
2487     cpu->reset_sctlr = 0x00000078;
2488 }
2489 
2490 static void pxa270b0_initfn(Object *obj)
2491 {
2492     ARMCPU *cpu = ARM_CPU(obj);
2493 
2494     cpu->dtb_compatible = "marvell,xscale";
2495     set_feature(&cpu->env, ARM_FEATURE_V5);
2496     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2497     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2498     cpu->midr = 0x69054112;
2499     cpu->ctr = 0xd172172;
2500     cpu->reset_sctlr = 0x00000078;
2501 }
2502 
2503 static void pxa270b1_initfn(Object *obj)
2504 {
2505     ARMCPU *cpu = ARM_CPU(obj);
2506 
2507     cpu->dtb_compatible = "marvell,xscale";
2508     set_feature(&cpu->env, ARM_FEATURE_V5);
2509     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2510     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2511     cpu->midr = 0x69054113;
2512     cpu->ctr = 0xd172172;
2513     cpu->reset_sctlr = 0x00000078;
2514 }
2515 
2516 static void pxa270c0_initfn(Object *obj)
2517 {
2518     ARMCPU *cpu = ARM_CPU(obj);
2519 
2520     cpu->dtb_compatible = "marvell,xscale";
2521     set_feature(&cpu->env, ARM_FEATURE_V5);
2522     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2523     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2524     cpu->midr = 0x69054114;
2525     cpu->ctr = 0xd172172;
2526     cpu->reset_sctlr = 0x00000078;
2527 }
2528 
2529 static void pxa270c5_initfn(Object *obj)
2530 {
2531     ARMCPU *cpu = ARM_CPU(obj);
2532 
2533     cpu->dtb_compatible = "marvell,xscale";
2534     set_feature(&cpu->env, ARM_FEATURE_V5);
2535     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2536     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2537     cpu->midr = 0x69054117;
2538     cpu->ctr = 0xd172172;
2539     cpu->reset_sctlr = 0x00000078;
2540 }
2541 
2542 #ifndef TARGET_AARCH64
2543 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2544  * otherwise, a CPU with as many features enabled as our emulation supports.
2545  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2546  * this only needs to handle 32 bits.
2547  */
2548 static void arm_max_initfn(Object *obj)
2549 {
2550     ARMCPU *cpu = ARM_CPU(obj);
2551 
2552     if (kvm_enabled()) {
2553         kvm_arm_set_cpu_features_from_host(cpu);
2554         kvm_arm_add_vcpu_properties(obj);
2555     } else {
2556         cortex_a15_initfn(obj);
2557 
2558         /* old-style VFP short-vector support */
2559         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2560 
2561 #ifdef CONFIG_USER_ONLY
2562         /* We don't set these in system emulation mode for the moment,
2563          * since we don't correctly set (all of) the ID registers to
2564          * advertise them.
2565          */
2566         set_feature(&cpu->env, ARM_FEATURE_V8);
2567         {
2568             uint32_t t;
2569 
2570             t = cpu->isar.id_isar5;
2571             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2572             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2573             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2574             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2575             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2576             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2577             cpu->isar.id_isar5 = t;
2578 
2579             t = cpu->isar.id_isar6;
2580             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2581             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2582             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2583             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2584             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2585             cpu->isar.id_isar6 = t;
2586 
2587             t = cpu->isar.mvfr1;
2588             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2589             cpu->isar.mvfr1 = t;
2590 
2591             t = cpu->isar.mvfr2;
2592             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2593             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2594             cpu->isar.mvfr2 = t;
2595 
2596             t = cpu->id_mmfr4;
2597             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2598             cpu->id_mmfr4 = t;
2599         }
2600 #endif
2601     }
2602 }
2603 #endif
2604 
2605 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2606 
2607 struct ARMCPUInfo {
2608     const char *name;
2609     void (*initfn)(Object *obj);
2610     void (*class_init)(ObjectClass *oc, void *data);
2611 };
2612 
2613 static const ARMCPUInfo arm_cpus[] = {
2614 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2615     { .name = "arm926",      .initfn = arm926_initfn },
2616     { .name = "arm946",      .initfn = arm946_initfn },
2617     { .name = "arm1026",     .initfn = arm1026_initfn },
2618     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2619      * older core than plain "arm1136". In particular this does not
2620      * have the v6K features.
2621      */
2622     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2623     { .name = "arm1136",     .initfn = arm1136_initfn },
2624     { .name = "arm1176",     .initfn = arm1176_initfn },
2625     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2626     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2627                              .class_init = arm_v7m_class_init },
2628     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2629                              .class_init = arm_v7m_class_init },
2630     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2631                              .class_init = arm_v7m_class_init },
2632     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2633                              .class_init = arm_v7m_class_init },
2634     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2635                              .class_init = arm_v7m_class_init },
2636     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2637     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2638     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2639     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2640     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2641     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2642     { .name = "ti925t",      .initfn = ti925t_initfn },
2643     { .name = "sa1100",      .initfn = sa1100_initfn },
2644     { .name = "sa1110",      .initfn = sa1110_initfn },
2645     { .name = "pxa250",      .initfn = pxa250_initfn },
2646     { .name = "pxa255",      .initfn = pxa255_initfn },
2647     { .name = "pxa260",      .initfn = pxa260_initfn },
2648     { .name = "pxa261",      .initfn = pxa261_initfn },
2649     { .name = "pxa262",      .initfn = pxa262_initfn },
2650     /* "pxa270" is an alias for "pxa270-a0" */
2651     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2652     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2653     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2654     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2655     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2656     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2657     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2658 #ifndef TARGET_AARCH64
2659     { .name = "max",         .initfn = arm_max_initfn },
2660 #endif
2661 #ifdef CONFIG_USER_ONLY
2662     { .name = "any",         .initfn = arm_max_initfn },
2663 #endif
2664 #endif
2665     { .name = NULL }
2666 };
2667 
2668 static Property arm_cpu_properties[] = {
2669     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2670     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2671     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2672     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2673                         mp_affinity, ARM64_AFFINITY_INVALID),
2674     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2675     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2676     DEFINE_PROP_END_OF_LIST()
2677 };
2678 
2679 static gchar *arm_gdb_arch_name(CPUState *cs)
2680 {
2681     ARMCPU *cpu = ARM_CPU(cs);
2682     CPUARMState *env = &cpu->env;
2683 
2684     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2685         return g_strdup("iwmmxt");
2686     }
2687     return g_strdup("arm");
2688 }
2689 
2690 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2691 {
2692     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2693     CPUClass *cc = CPU_CLASS(acc);
2694     DeviceClass *dc = DEVICE_CLASS(oc);
2695 
2696     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2697                                     &acc->parent_realize);
2698 
2699     device_class_set_props(dc, arm_cpu_properties);
2700     cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2701 
2702     cc->class_by_name = arm_cpu_class_by_name;
2703     cc->has_work = arm_cpu_has_work;
2704     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2705     cc->dump_state = arm_cpu_dump_state;
2706     cc->set_pc = arm_cpu_set_pc;
2707     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2708     cc->gdb_read_register = arm_cpu_gdb_read_register;
2709     cc->gdb_write_register = arm_cpu_gdb_write_register;
2710 #ifndef CONFIG_USER_ONLY
2711     cc->do_interrupt = arm_cpu_do_interrupt;
2712     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2713     cc->asidx_from_attrs = arm_asidx_from_attrs;
2714     cc->vmsd = &vmstate_arm_cpu;
2715     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2716     cc->write_elf64_note = arm_cpu_write_elf64_note;
2717     cc->write_elf32_note = arm_cpu_write_elf32_note;
2718 #endif
2719     cc->gdb_num_core_regs = 26;
2720     cc->gdb_core_xml_file = "arm-core.xml";
2721     cc->gdb_arch_name = arm_gdb_arch_name;
2722     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2723     cc->gdb_stop_before_watchpoint = true;
2724     cc->disas_set_info = arm_disas_set_info;
2725 #ifdef CONFIG_TCG
2726     cc->tcg_initialize = arm_translate_init;
2727     cc->tlb_fill = arm_cpu_tlb_fill;
2728     cc->debug_excp_handler = arm_debug_excp_handler;
2729     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2730 #if !defined(CONFIG_USER_ONLY)
2731     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2732     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2733     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2734 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2735 #endif
2736 }
2737 
2738 #ifdef CONFIG_KVM
2739 static void arm_host_initfn(Object *obj)
2740 {
2741     ARMCPU *cpu = ARM_CPU(obj);
2742 
2743     kvm_arm_set_cpu_features_from_host(cpu);
2744     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2745         aarch64_add_sve_properties(obj);
2746     }
2747     kvm_arm_add_vcpu_properties(obj);
2748     arm_cpu_post_init(obj);
2749 }
2750 
2751 static const TypeInfo host_arm_cpu_type_info = {
2752     .name = TYPE_ARM_HOST_CPU,
2753 #ifdef TARGET_AARCH64
2754     .parent = TYPE_AARCH64_CPU,
2755 #else
2756     .parent = TYPE_ARM_CPU,
2757 #endif
2758     .instance_init = arm_host_initfn,
2759 };
2760 
2761 #endif
2762 
2763 static void arm_cpu_instance_init(Object *obj)
2764 {
2765     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2766 
2767     acc->info->initfn(obj);
2768     arm_cpu_post_init(obj);
2769 }
2770 
2771 static void cpu_register_class_init(ObjectClass *oc, void *data)
2772 {
2773     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2774 
2775     acc->info = data;
2776 }
2777 
2778 static void cpu_register(const ARMCPUInfo *info)
2779 {
2780     TypeInfo type_info = {
2781         .parent = TYPE_ARM_CPU,
2782         .instance_size = sizeof(ARMCPU),
2783         .instance_init = arm_cpu_instance_init,
2784         .class_size = sizeof(ARMCPUClass),
2785         .class_init = info->class_init ?: cpu_register_class_init,
2786         .class_data = (void *)info,
2787     };
2788 
2789     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2790     type_register(&type_info);
2791     g_free((void *)type_info.name);
2792 }
2793 
2794 static const TypeInfo arm_cpu_type_info = {
2795     .name = TYPE_ARM_CPU,
2796     .parent = TYPE_CPU,
2797     .instance_size = sizeof(ARMCPU),
2798     .instance_init = arm_cpu_initfn,
2799     .instance_finalize = arm_cpu_finalizefn,
2800     .abstract = true,
2801     .class_size = sizeof(ARMCPUClass),
2802     .class_init = arm_cpu_class_init,
2803 };
2804 
2805 static const TypeInfo idau_interface_type_info = {
2806     .name = TYPE_IDAU_INTERFACE,
2807     .parent = TYPE_INTERFACE,
2808     .class_size = sizeof(IDAUInterfaceClass),
2809 };
2810 
2811 static void arm_cpu_register_types(void)
2812 {
2813     const ARMCPUInfo *info = arm_cpus;
2814 
2815     type_register_static(&arm_cpu_type_info);
2816     type_register_static(&idau_interface_type_info);
2817 
2818     while (info->name) {
2819         cpu_register(info);
2820         info++;
2821     }
2822 
2823 #ifdef CONFIG_KVM
2824     type_register_static(&host_arm_cpu_type_info);
2825 #endif
2826 }
2827 
2828 type_init(arm_cpu_register_types)
2829