1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/error-report.h" 23 #include "qapi/error.h" 24 #include "cpu.h" 25 #include "internals.h" 26 #include "qemu-common.h" 27 #include "exec/exec-all.h" 28 #include "hw/qdev-properties.h" 29 #if !defined(CONFIG_USER_ONLY) 30 #include "hw/loader.h" 31 #endif 32 #include "hw/arm/arm.h" 33 #include "sysemu/sysemu.h" 34 #include "sysemu/hw_accel.h" 35 #include "kvm_arm.h" 36 37 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 38 { 39 ARMCPU *cpu = ARM_CPU(cs); 40 41 cpu->env.regs[15] = value; 42 } 43 44 static bool arm_cpu_has_work(CPUState *cs) 45 { 46 ARMCPU *cpu = ARM_CPU(cs); 47 48 return (cpu->power_state != PSCI_OFF) 49 && cs->interrupt_request & 50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 52 | CPU_INTERRUPT_EXITTB); 53 } 54 55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 56 void *opaque) 57 { 58 /* We currently only support registering a single hook function */ 59 assert(!cpu->el_change_hook); 60 cpu->el_change_hook = hook; 61 cpu->el_change_hook_opaque = opaque; 62 } 63 64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 65 { 66 /* Reset a single ARMCPRegInfo register */ 67 ARMCPRegInfo *ri = value; 68 ARMCPU *cpu = opaque; 69 70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 71 return; 72 } 73 74 if (ri->resetfn) { 75 ri->resetfn(&cpu->env, ri); 76 return; 77 } 78 79 /* A zero offset is never possible as it would be regs[0] 80 * so we use it to indicate that reset is being handled elsewhere. 81 * This is basically only used for fields in non-core coprocessors 82 * (like the pxa2xx ones). 83 */ 84 if (!ri->fieldoffset) { 85 return; 86 } 87 88 if (cpreg_field_is_64bit(ri)) { 89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 90 } else { 91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 92 } 93 } 94 95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 96 { 97 /* Purely an assertion check: we've already done reset once, 98 * so now check that running the reset for the cpreg doesn't 99 * change its value. This traps bugs where two different cpregs 100 * both try to reset the same state field but to different values. 101 */ 102 ARMCPRegInfo *ri = value; 103 ARMCPU *cpu = opaque; 104 uint64_t oldvalue, newvalue; 105 106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 107 return; 108 } 109 110 oldvalue = read_raw_cp_reg(&cpu->env, ri); 111 cp_reg_reset(key, value, opaque); 112 newvalue = read_raw_cp_reg(&cpu->env, ri); 113 assert(oldvalue == newvalue); 114 } 115 116 /* CPUClass::reset() */ 117 static void arm_cpu_reset(CPUState *s) 118 { 119 ARMCPU *cpu = ARM_CPU(s); 120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 121 CPUARMState *env = &cpu->env; 122 123 acc->parent_reset(s); 124 125 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 126 127 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 128 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 129 130 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 131 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0; 132 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1; 133 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2; 134 135 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 136 s->halted = cpu->start_powered_off; 137 138 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 139 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 140 } 141 142 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 143 /* 64 bit CPUs always start in 64 bit mode */ 144 env->aarch64 = 1; 145 #if defined(CONFIG_USER_ONLY) 146 env->pstate = PSTATE_MODE_EL0t; 147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 148 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 149 /* and to the FP/Neon instructions */ 150 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 151 #else 152 /* Reset into the highest available EL */ 153 if (arm_feature(env, ARM_FEATURE_EL3)) { 154 env->pstate = PSTATE_MODE_EL3h; 155 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 156 env->pstate = PSTATE_MODE_EL2h; 157 } else { 158 env->pstate = PSTATE_MODE_EL1h; 159 } 160 env->pc = cpu->rvbar; 161 #endif 162 } else { 163 #if defined(CONFIG_USER_ONLY) 164 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 165 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 166 #endif 167 } 168 169 #if defined(CONFIG_USER_ONLY) 170 env->uncached_cpsr = ARM_CPU_MODE_USR; 171 /* For user mode we must enable access to coprocessors */ 172 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 174 env->cp15.c15_cpar = 3; 175 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 176 env->cp15.c15_cpar = 1; 177 } 178 #else 179 /* SVC mode with interrupts disabled. */ 180 env->uncached_cpsr = ARM_CPU_MODE_SVC; 181 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 182 183 if (arm_feature(env, ARM_FEATURE_M)) { 184 uint32_t initial_msp; /* Loaded from 0x0 */ 185 uint32_t initial_pc; /* Loaded from 0x4 */ 186 uint8_t *rom; 187 188 /* For M profile we store FAULTMASK and PRIMASK in the 189 * PSTATE F and I bits; these are both clear at reset. 190 */ 191 env->daif &= ~(PSTATE_I | PSTATE_F); 192 193 /* The reset value of this bit is IMPDEF, but ARM recommends 194 * that it resets to 1, so QEMU always does that rather than making 195 * it dependent on CPU model. 196 */ 197 env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK; 198 199 /* Unlike A/R profile, M profile defines the reset LR value */ 200 env->regs[14] = 0xffffffff; 201 202 /* Load the initial SP and PC from the vector table at address 0 */ 203 rom = rom_ptr(0); 204 if (rom) { 205 /* Address zero is covered by ROM which hasn't yet been 206 * copied into physical memory. 207 */ 208 initial_msp = ldl_p(rom); 209 initial_pc = ldl_p(rom + 4); 210 } else { 211 /* Address zero not covered by a ROM blob, or the ROM blob 212 * is in non-modifiable memory and this is a second reset after 213 * it got copied into memory. In the latter case, rom_ptr 214 * will return a NULL pointer and we should use ldl_phys instead. 215 */ 216 initial_msp = ldl_phys(s->as, 0); 217 initial_pc = ldl_phys(s->as, 4); 218 } 219 220 env->regs[13] = initial_msp & 0xFFFFFFFC; 221 env->regs[15] = initial_pc & ~1; 222 env->thumb = initial_pc & 1; 223 } 224 225 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 226 * executing as AArch32 then check if highvecs are enabled and 227 * adjust the PC accordingly. 228 */ 229 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 230 env->regs[15] = 0xFFFF0000; 231 } 232 233 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 234 #endif 235 set_flush_to_zero(1, &env->vfp.standard_fp_status); 236 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 237 set_default_nan_mode(1, &env->vfp.standard_fp_status); 238 set_float_detect_tininess(float_tininess_before_rounding, 239 &env->vfp.fp_status); 240 set_float_detect_tininess(float_tininess_before_rounding, 241 &env->vfp.standard_fp_status); 242 #ifndef CONFIG_USER_ONLY 243 if (kvm_enabled()) { 244 kvm_arm_reset_vcpu(cpu); 245 } 246 #endif 247 248 hw_breakpoint_update_all(cpu); 249 hw_watchpoint_update_all(cpu); 250 } 251 252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 253 { 254 CPUClass *cc = CPU_GET_CLASS(cs); 255 CPUARMState *env = cs->env_ptr; 256 uint32_t cur_el = arm_current_el(env); 257 bool secure = arm_is_secure(env); 258 uint32_t target_el; 259 uint32_t excp_idx; 260 bool ret = false; 261 262 if (interrupt_request & CPU_INTERRUPT_FIQ) { 263 excp_idx = EXCP_FIQ; 264 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 265 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 266 cs->exception_index = excp_idx; 267 env->exception.target_el = target_el; 268 cc->do_interrupt(cs); 269 ret = true; 270 } 271 } 272 if (interrupt_request & CPU_INTERRUPT_HARD) { 273 excp_idx = EXCP_IRQ; 274 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 275 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 276 cs->exception_index = excp_idx; 277 env->exception.target_el = target_el; 278 cc->do_interrupt(cs); 279 ret = true; 280 } 281 } 282 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 283 excp_idx = EXCP_VIRQ; 284 target_el = 1; 285 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 286 cs->exception_index = excp_idx; 287 env->exception.target_el = target_el; 288 cc->do_interrupt(cs); 289 ret = true; 290 } 291 } 292 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 293 excp_idx = EXCP_VFIQ; 294 target_el = 1; 295 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 296 cs->exception_index = excp_idx; 297 env->exception.target_el = target_el; 298 cc->do_interrupt(cs); 299 ret = true; 300 } 301 } 302 303 return ret; 304 } 305 306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 307 static void arm_v7m_unassigned_access(CPUState *cpu, hwaddr addr, 308 bool is_write, bool is_exec, int opaque, 309 unsigned size) 310 { 311 ARMCPU *arm = ARM_CPU(cpu); 312 CPUARMState *env = &arm->env; 313 314 /* ARMv7-M interrupt return works by loading a magic value into the PC. 315 * On real hardware the load causes the return to occur. The qemu 316 * implementation performs the jump normally, then does the exception 317 * return by throwing a special exception when when the CPU tries to 318 * execute code at the magic address. 319 */ 320 if (env->v7m.exception != 0 && addr >= 0xfffffff0 && is_exec) { 321 cpu->exception_index = EXCP_EXCEPTION_EXIT; 322 cpu_loop_exit(cpu); 323 } 324 325 /* In real hardware an attempt to access parts of the address space 326 * with nothing there will usually cause an external abort. 327 * However our QEMU board models are often missing device models where 328 * the guest can boot anyway with the default read-as-zero/writes-ignored 329 * behaviour that you get without a QEMU unassigned_access hook. 330 * So just return here to retain that default behaviour. 331 */ 332 } 333 334 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 335 { 336 CPUClass *cc = CPU_GET_CLASS(cs); 337 ARMCPU *cpu = ARM_CPU(cs); 338 CPUARMState *env = &cpu->env; 339 bool ret = false; 340 341 /* ARMv7-M interrupt return works by loading a magic value 342 * into the PC. On real hardware the load causes the 343 * return to occur. The qemu implementation performs the 344 * jump normally, then does the exception return when the 345 * CPU tries to execute code at the magic address. 346 * This will cause the magic PC value to be pushed to 347 * the stack if an interrupt occurred at the wrong time. 348 * We avoid this by disabling interrupts when 349 * pc contains a magic address. 350 * 351 * ARMv7-M interrupt masking works differently than -A or -R. 352 * There is no FIQ/IRQ distinction. Instead of I and F bits 353 * masking FIQ and IRQ interrupts, an exception is taken only 354 * if it is higher priority than the current execution priority 355 * (which depends on state like BASEPRI, FAULTMASK and the 356 * currently active exception). 357 */ 358 if (interrupt_request & CPU_INTERRUPT_HARD 359 && (armv7m_nvic_can_take_pending_exception(env->nvic)) 360 && (env->regs[15] < 0xfffffff0)) { 361 cs->exception_index = EXCP_IRQ; 362 cc->do_interrupt(cs); 363 ret = true; 364 } 365 return ret; 366 } 367 #endif 368 369 #ifndef CONFIG_USER_ONLY 370 static void arm_cpu_set_irq(void *opaque, int irq, int level) 371 { 372 ARMCPU *cpu = opaque; 373 CPUARMState *env = &cpu->env; 374 CPUState *cs = CPU(cpu); 375 static const int mask[] = { 376 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 377 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 378 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 379 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 380 }; 381 382 switch (irq) { 383 case ARM_CPU_VIRQ: 384 case ARM_CPU_VFIQ: 385 assert(arm_feature(env, ARM_FEATURE_EL2)); 386 /* fall through */ 387 case ARM_CPU_IRQ: 388 case ARM_CPU_FIQ: 389 if (level) { 390 cpu_interrupt(cs, mask[irq]); 391 } else { 392 cpu_reset_interrupt(cs, mask[irq]); 393 } 394 break; 395 default: 396 g_assert_not_reached(); 397 } 398 } 399 400 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 401 { 402 #ifdef CONFIG_KVM 403 ARMCPU *cpu = opaque; 404 CPUState *cs = CPU(cpu); 405 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 406 407 switch (irq) { 408 case ARM_CPU_IRQ: 409 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 410 break; 411 case ARM_CPU_FIQ: 412 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 413 break; 414 default: 415 g_assert_not_reached(); 416 } 417 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 418 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 419 #endif 420 } 421 422 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 423 { 424 ARMCPU *cpu = ARM_CPU(cs); 425 CPUARMState *env = &cpu->env; 426 427 cpu_synchronize_state(cs); 428 return arm_cpu_data_is_big_endian(env); 429 } 430 431 #endif 432 433 static inline void set_feature(CPUARMState *env, int feature) 434 { 435 env->features |= 1ULL << feature; 436 } 437 438 static inline void unset_feature(CPUARMState *env, int feature) 439 { 440 env->features &= ~(1ULL << feature); 441 } 442 443 static int 444 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 445 { 446 return print_insn_arm(pc | 1, info); 447 } 448 449 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b, 450 int length, struct disassemble_info *info) 451 { 452 assert(info->read_memory_inner_func); 453 assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4); 454 455 if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) { 456 assert(info->endian == BFD_ENDIAN_LITTLE); 457 return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2, 458 info); 459 } else { 460 return info->read_memory_inner_func(memaddr, b, length, info); 461 } 462 } 463 464 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 465 { 466 ARMCPU *ac = ARM_CPU(cpu); 467 CPUARMState *env = &ac->env; 468 469 if (is_a64(env)) { 470 /* We might not be compiled with the A64 disassembler 471 * because it needs a C++ compiler. Leave print_insn 472 * unset in this case to use the caller default behaviour. 473 */ 474 #if defined(CONFIG_ARM_A64_DIS) 475 info->print_insn = print_insn_arm_a64; 476 #endif 477 } else if (env->thumb) { 478 info->print_insn = print_insn_thumb1; 479 } else { 480 info->print_insn = print_insn_arm; 481 } 482 if (bswap_code(arm_sctlr_b(env))) { 483 #ifdef TARGET_WORDS_BIGENDIAN 484 info->endian = BFD_ENDIAN_LITTLE; 485 #else 486 info->endian = BFD_ENDIAN_BIG; 487 #endif 488 } 489 if (info->read_memory_inner_func == NULL) { 490 info->read_memory_inner_func = info->read_memory_func; 491 info->read_memory_func = arm_read_memory_func; 492 } 493 info->flags &= ~INSN_ARM_BE32; 494 if (arm_sctlr_b(env)) { 495 info->flags |= INSN_ARM_BE32; 496 } 497 } 498 499 static void arm_cpu_initfn(Object *obj) 500 { 501 CPUState *cs = CPU(obj); 502 ARMCPU *cpu = ARM_CPU(obj); 503 static bool inited; 504 505 cs->env_ptr = &cpu->env; 506 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 507 g_free, g_free); 508 509 #ifndef CONFIG_USER_ONLY 510 /* Our inbound IRQ and FIQ lines */ 511 if (kvm_enabled()) { 512 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 513 * the same interface as non-KVM CPUs. 514 */ 515 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 516 } else { 517 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 518 } 519 520 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 521 arm_gt_ptimer_cb, cpu); 522 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 523 arm_gt_vtimer_cb, cpu); 524 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 525 arm_gt_htimer_cb, cpu); 526 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 527 arm_gt_stimer_cb, cpu); 528 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 529 ARRAY_SIZE(cpu->gt_timer_outputs)); 530 531 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 532 "gicv3-maintenance-interrupt", 1); 533 #endif 534 535 /* DTB consumers generally don't in fact care what the 'compatible' 536 * string is, so always provide some string and trust that a hypothetical 537 * picky DTB consumer will also provide a helpful error message. 538 */ 539 cpu->dtb_compatible = "qemu,unknown"; 540 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 541 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 542 543 if (tcg_enabled()) { 544 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 545 if (!inited) { 546 inited = true; 547 arm_translate_init(); 548 } 549 } 550 } 551 552 static Property arm_cpu_reset_cbar_property = 553 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 554 555 static Property arm_cpu_reset_hivecs_property = 556 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 557 558 static Property arm_cpu_rvbar_property = 559 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 560 561 static Property arm_cpu_has_el2_property = 562 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 563 564 static Property arm_cpu_has_el3_property = 565 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 566 567 static Property arm_cpu_cfgend_property = 568 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 569 570 /* use property name "pmu" to match other archs and virt tools */ 571 static Property arm_cpu_has_pmu_property = 572 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 573 574 static Property arm_cpu_has_mpu_property = 575 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 576 577 static Property arm_cpu_pmsav7_dregion_property = 578 DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16); 579 580 static void arm_cpu_post_init(Object *obj) 581 { 582 ARMCPU *cpu = ARM_CPU(obj); 583 584 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 585 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 586 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 587 &error_abort); 588 } 589 590 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 591 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 592 &error_abort); 593 } 594 595 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 596 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 597 &error_abort); 598 } 599 600 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 601 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 602 * prevent "has_el3" from existing on CPUs which cannot support EL3. 603 */ 604 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 605 &error_abort); 606 607 #ifndef CONFIG_USER_ONLY 608 object_property_add_link(obj, "secure-memory", 609 TYPE_MEMORY_REGION, 610 (Object **)&cpu->secure_memory, 611 qdev_prop_allow_set_link_before_realize, 612 OBJ_PROP_LINK_UNREF_ON_RELEASE, 613 &error_abort); 614 #endif 615 } 616 617 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 618 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, 619 &error_abort); 620 } 621 622 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 623 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 624 &error_abort); 625 } 626 627 if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) { 628 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 629 &error_abort); 630 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 631 qdev_property_add_static(DEVICE(obj), 632 &arm_cpu_pmsav7_dregion_property, 633 &error_abort); 634 } 635 } 636 637 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, 638 &error_abort); 639 } 640 641 static void arm_cpu_finalizefn(Object *obj) 642 { 643 ARMCPU *cpu = ARM_CPU(obj); 644 g_hash_table_destroy(cpu->cp_regs); 645 } 646 647 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 648 { 649 CPUState *cs = CPU(dev); 650 ARMCPU *cpu = ARM_CPU(dev); 651 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 652 CPUARMState *env = &cpu->env; 653 int pagebits; 654 Error *local_err = NULL; 655 656 cpu_exec_realizefn(cs, &local_err); 657 if (local_err != NULL) { 658 error_propagate(errp, local_err); 659 return; 660 } 661 662 /* Some features automatically imply others: */ 663 if (arm_feature(env, ARM_FEATURE_V8)) { 664 set_feature(env, ARM_FEATURE_V7); 665 set_feature(env, ARM_FEATURE_ARM_DIV); 666 set_feature(env, ARM_FEATURE_LPAE); 667 } 668 if (arm_feature(env, ARM_FEATURE_V7)) { 669 set_feature(env, ARM_FEATURE_VAPA); 670 set_feature(env, ARM_FEATURE_THUMB2); 671 set_feature(env, ARM_FEATURE_MPIDR); 672 if (!arm_feature(env, ARM_FEATURE_M)) { 673 set_feature(env, ARM_FEATURE_V6K); 674 } else { 675 set_feature(env, ARM_FEATURE_V6); 676 } 677 678 /* Always define VBAR for V7 CPUs even if it doesn't exist in 679 * non-EL3 configs. This is needed by some legacy boards. 680 */ 681 set_feature(env, ARM_FEATURE_VBAR); 682 } 683 if (arm_feature(env, ARM_FEATURE_V6K)) { 684 set_feature(env, ARM_FEATURE_V6); 685 set_feature(env, ARM_FEATURE_MVFR); 686 } 687 if (arm_feature(env, ARM_FEATURE_V6)) { 688 set_feature(env, ARM_FEATURE_V5); 689 if (!arm_feature(env, ARM_FEATURE_M)) { 690 set_feature(env, ARM_FEATURE_AUXCR); 691 } 692 } 693 if (arm_feature(env, ARM_FEATURE_V5)) { 694 set_feature(env, ARM_FEATURE_V4T); 695 } 696 if (arm_feature(env, ARM_FEATURE_M)) { 697 set_feature(env, ARM_FEATURE_THUMB_DIV); 698 } 699 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { 700 set_feature(env, ARM_FEATURE_THUMB_DIV); 701 } 702 if (arm_feature(env, ARM_FEATURE_VFP4)) { 703 set_feature(env, ARM_FEATURE_VFP3); 704 set_feature(env, ARM_FEATURE_VFP_FP16); 705 } 706 if (arm_feature(env, ARM_FEATURE_VFP3)) { 707 set_feature(env, ARM_FEATURE_VFP); 708 } 709 if (arm_feature(env, ARM_FEATURE_LPAE)) { 710 set_feature(env, ARM_FEATURE_V7MP); 711 set_feature(env, ARM_FEATURE_PXN); 712 } 713 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 714 set_feature(env, ARM_FEATURE_CBAR); 715 } 716 if (arm_feature(env, ARM_FEATURE_THUMB2) && 717 !arm_feature(env, ARM_FEATURE_M)) { 718 set_feature(env, ARM_FEATURE_THUMB_DSP); 719 } 720 721 if (arm_feature(env, ARM_FEATURE_V7) && 722 !arm_feature(env, ARM_FEATURE_M) && 723 !arm_feature(env, ARM_FEATURE_MPU)) { 724 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 725 * can use 4K pages. 726 */ 727 pagebits = 12; 728 } else { 729 /* For CPUs which might have tiny 1K pages, or which have an 730 * MPU and might have small region sizes, stick with 1K pages. 731 */ 732 pagebits = 10; 733 } 734 if (!set_preferred_target_page_bits(pagebits)) { 735 /* This can only ever happen for hotplugging a CPU, or if 736 * the board code incorrectly creates a CPU which it has 737 * promised via minimum_page_size that it will not. 738 */ 739 error_setg(errp, "This CPU requires a smaller page size than the " 740 "system is using"); 741 return; 742 } 743 744 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 745 * We don't support setting cluster ID ([16..23]) (known as Aff2 746 * in later ARM ARM versions), or any of the higher affinity level fields, 747 * so these bits always RAZ. 748 */ 749 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 750 uint32_t Aff1 = cs->cpu_index / ARM_DEFAULT_CPUS_PER_CLUSTER; 751 uint32_t Aff0 = cs->cpu_index % ARM_DEFAULT_CPUS_PER_CLUSTER; 752 cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0; 753 } 754 755 if (cpu->reset_hivecs) { 756 cpu->reset_sctlr |= (1 << 13); 757 } 758 759 if (cpu->cfgend) { 760 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 761 cpu->reset_sctlr |= SCTLR_EE; 762 } else { 763 cpu->reset_sctlr |= SCTLR_B; 764 } 765 } 766 767 if (!cpu->has_el3) { 768 /* If the has_el3 CPU property is disabled then we need to disable the 769 * feature. 770 */ 771 unset_feature(env, ARM_FEATURE_EL3); 772 773 /* Disable the security extension feature bits in the processor feature 774 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 775 */ 776 cpu->id_pfr1 &= ~0xf0; 777 cpu->id_aa64pfr0 &= ~0xf000; 778 } 779 780 if (!cpu->has_el2) { 781 unset_feature(env, ARM_FEATURE_EL2); 782 } 783 784 if (!cpu->has_pmu) { 785 cpu->has_pmu = false; 786 unset_feature(env, ARM_FEATURE_PMU); 787 } 788 789 if (!arm_feature(env, ARM_FEATURE_EL2)) { 790 /* Disable the hypervisor feature bits in the processor feature 791 * registers if we don't have EL2. These are id_pfr1[15:12] and 792 * id_aa64pfr0_el1[11:8]. 793 */ 794 cpu->id_aa64pfr0 &= ~0xf00; 795 cpu->id_pfr1 &= ~0xf000; 796 } 797 798 if (!cpu->has_mpu) { 799 unset_feature(env, ARM_FEATURE_MPU); 800 } 801 802 if (arm_feature(env, ARM_FEATURE_MPU) && 803 arm_feature(env, ARM_FEATURE_V7)) { 804 uint32_t nr = cpu->pmsav7_dregion; 805 806 if (nr > 0xff) { 807 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 808 return; 809 } 810 811 if (nr) { 812 env->pmsav7.drbar = g_new0(uint32_t, nr); 813 env->pmsav7.drsr = g_new0(uint32_t, nr); 814 env->pmsav7.dracr = g_new0(uint32_t, nr); 815 } 816 } 817 818 if (arm_feature(env, ARM_FEATURE_EL3)) { 819 set_feature(env, ARM_FEATURE_VBAR); 820 } 821 822 register_cp_regs_for_features(cpu); 823 arm_cpu_register_gdb_regs_for_features(cpu); 824 825 init_cpreg_list(cpu); 826 827 #ifndef CONFIG_USER_ONLY 828 if (cpu->has_el3) { 829 cs->num_ases = 2; 830 } else { 831 cs->num_ases = 1; 832 } 833 834 if (cpu->has_el3) { 835 AddressSpace *as; 836 837 if (!cpu->secure_memory) { 838 cpu->secure_memory = cs->memory; 839 } 840 as = address_space_init_shareable(cpu->secure_memory, 841 "cpu-secure-memory"); 842 cpu_address_space_init(cs, as, ARMASIdx_S); 843 } 844 cpu_address_space_init(cs, 845 address_space_init_shareable(cs->memory, 846 "cpu-memory"), 847 ARMASIdx_NS); 848 #endif 849 850 qemu_init_vcpu(cs); 851 cpu_reset(cs); 852 853 acc->parent_realize(dev, errp); 854 } 855 856 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 857 { 858 ObjectClass *oc; 859 char *typename; 860 char **cpuname; 861 862 if (!cpu_model) { 863 return NULL; 864 } 865 866 cpuname = g_strsplit(cpu_model, ",", 1); 867 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]); 868 oc = object_class_by_name(typename); 869 g_strfreev(cpuname); 870 g_free(typename); 871 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 872 object_class_is_abstract(oc)) { 873 return NULL; 874 } 875 return oc; 876 } 877 878 /* CPU models. These are not needed for the AArch64 linux-user build. */ 879 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 880 881 static void arm926_initfn(Object *obj) 882 { 883 ARMCPU *cpu = ARM_CPU(obj); 884 885 cpu->dtb_compatible = "arm,arm926"; 886 set_feature(&cpu->env, ARM_FEATURE_V5); 887 set_feature(&cpu->env, ARM_FEATURE_VFP); 888 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 889 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 890 cpu->midr = 0x41069265; 891 cpu->reset_fpsid = 0x41011090; 892 cpu->ctr = 0x1dd20d2; 893 cpu->reset_sctlr = 0x00090078; 894 } 895 896 static void arm946_initfn(Object *obj) 897 { 898 ARMCPU *cpu = ARM_CPU(obj); 899 900 cpu->dtb_compatible = "arm,arm946"; 901 set_feature(&cpu->env, ARM_FEATURE_V5); 902 set_feature(&cpu->env, ARM_FEATURE_MPU); 903 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 904 cpu->midr = 0x41059461; 905 cpu->ctr = 0x0f004006; 906 cpu->reset_sctlr = 0x00000078; 907 } 908 909 static void arm1026_initfn(Object *obj) 910 { 911 ARMCPU *cpu = ARM_CPU(obj); 912 913 cpu->dtb_compatible = "arm,arm1026"; 914 set_feature(&cpu->env, ARM_FEATURE_V5); 915 set_feature(&cpu->env, ARM_FEATURE_VFP); 916 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 917 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 918 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 919 cpu->midr = 0x4106a262; 920 cpu->reset_fpsid = 0x410110a0; 921 cpu->ctr = 0x1dd20d2; 922 cpu->reset_sctlr = 0x00090078; 923 cpu->reset_auxcr = 1; 924 { 925 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 926 ARMCPRegInfo ifar = { 927 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 928 .access = PL1_RW, 929 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 930 .resetvalue = 0 931 }; 932 define_one_arm_cp_reg(cpu, &ifar); 933 } 934 } 935 936 static void arm1136_r2_initfn(Object *obj) 937 { 938 ARMCPU *cpu = ARM_CPU(obj); 939 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 940 * older core than plain "arm1136". In particular this does not 941 * have the v6K features. 942 * These ID register values are correct for 1136 but may be wrong 943 * for 1136_r2 (in particular r0p2 does not actually implement most 944 * of the ID registers). 945 */ 946 947 cpu->dtb_compatible = "arm,arm1136"; 948 set_feature(&cpu->env, ARM_FEATURE_V6); 949 set_feature(&cpu->env, ARM_FEATURE_VFP); 950 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 951 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 952 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 953 cpu->midr = 0x4107b362; 954 cpu->reset_fpsid = 0x410120b4; 955 cpu->mvfr0 = 0x11111111; 956 cpu->mvfr1 = 0x00000000; 957 cpu->ctr = 0x1dd20d2; 958 cpu->reset_sctlr = 0x00050078; 959 cpu->id_pfr0 = 0x111; 960 cpu->id_pfr1 = 0x1; 961 cpu->id_dfr0 = 0x2; 962 cpu->id_afr0 = 0x3; 963 cpu->id_mmfr0 = 0x01130003; 964 cpu->id_mmfr1 = 0x10030302; 965 cpu->id_mmfr2 = 0x01222110; 966 cpu->id_isar0 = 0x00140011; 967 cpu->id_isar1 = 0x12002111; 968 cpu->id_isar2 = 0x11231111; 969 cpu->id_isar3 = 0x01102131; 970 cpu->id_isar4 = 0x141; 971 cpu->reset_auxcr = 7; 972 } 973 974 static void arm1136_initfn(Object *obj) 975 { 976 ARMCPU *cpu = ARM_CPU(obj); 977 978 cpu->dtb_compatible = "arm,arm1136"; 979 set_feature(&cpu->env, ARM_FEATURE_V6K); 980 set_feature(&cpu->env, ARM_FEATURE_V6); 981 set_feature(&cpu->env, ARM_FEATURE_VFP); 982 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 983 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 984 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 985 cpu->midr = 0x4117b363; 986 cpu->reset_fpsid = 0x410120b4; 987 cpu->mvfr0 = 0x11111111; 988 cpu->mvfr1 = 0x00000000; 989 cpu->ctr = 0x1dd20d2; 990 cpu->reset_sctlr = 0x00050078; 991 cpu->id_pfr0 = 0x111; 992 cpu->id_pfr1 = 0x1; 993 cpu->id_dfr0 = 0x2; 994 cpu->id_afr0 = 0x3; 995 cpu->id_mmfr0 = 0x01130003; 996 cpu->id_mmfr1 = 0x10030302; 997 cpu->id_mmfr2 = 0x01222110; 998 cpu->id_isar0 = 0x00140011; 999 cpu->id_isar1 = 0x12002111; 1000 cpu->id_isar2 = 0x11231111; 1001 cpu->id_isar3 = 0x01102131; 1002 cpu->id_isar4 = 0x141; 1003 cpu->reset_auxcr = 7; 1004 } 1005 1006 static void arm1176_initfn(Object *obj) 1007 { 1008 ARMCPU *cpu = ARM_CPU(obj); 1009 1010 cpu->dtb_compatible = "arm,arm1176"; 1011 set_feature(&cpu->env, ARM_FEATURE_V6K); 1012 set_feature(&cpu->env, ARM_FEATURE_VFP); 1013 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1014 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1015 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1016 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1017 set_feature(&cpu->env, ARM_FEATURE_EL3); 1018 cpu->midr = 0x410fb767; 1019 cpu->reset_fpsid = 0x410120b5; 1020 cpu->mvfr0 = 0x11111111; 1021 cpu->mvfr1 = 0x00000000; 1022 cpu->ctr = 0x1dd20d2; 1023 cpu->reset_sctlr = 0x00050078; 1024 cpu->id_pfr0 = 0x111; 1025 cpu->id_pfr1 = 0x11; 1026 cpu->id_dfr0 = 0x33; 1027 cpu->id_afr0 = 0; 1028 cpu->id_mmfr0 = 0x01130003; 1029 cpu->id_mmfr1 = 0x10030302; 1030 cpu->id_mmfr2 = 0x01222100; 1031 cpu->id_isar0 = 0x0140011; 1032 cpu->id_isar1 = 0x12002111; 1033 cpu->id_isar2 = 0x11231121; 1034 cpu->id_isar3 = 0x01102131; 1035 cpu->id_isar4 = 0x01141; 1036 cpu->reset_auxcr = 7; 1037 } 1038 1039 static void arm11mpcore_initfn(Object *obj) 1040 { 1041 ARMCPU *cpu = ARM_CPU(obj); 1042 1043 cpu->dtb_compatible = "arm,arm11mpcore"; 1044 set_feature(&cpu->env, ARM_FEATURE_V6K); 1045 set_feature(&cpu->env, ARM_FEATURE_VFP); 1046 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1047 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 1048 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1049 cpu->midr = 0x410fb022; 1050 cpu->reset_fpsid = 0x410120b4; 1051 cpu->mvfr0 = 0x11111111; 1052 cpu->mvfr1 = 0x00000000; 1053 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 1054 cpu->id_pfr0 = 0x111; 1055 cpu->id_pfr1 = 0x1; 1056 cpu->id_dfr0 = 0; 1057 cpu->id_afr0 = 0x2; 1058 cpu->id_mmfr0 = 0x01100103; 1059 cpu->id_mmfr1 = 0x10020302; 1060 cpu->id_mmfr2 = 0x01222000; 1061 cpu->id_isar0 = 0x00100011; 1062 cpu->id_isar1 = 0x12002111; 1063 cpu->id_isar2 = 0x11221011; 1064 cpu->id_isar3 = 0x01102131; 1065 cpu->id_isar4 = 0x141; 1066 cpu->reset_auxcr = 1; 1067 } 1068 1069 static void cortex_m3_initfn(Object *obj) 1070 { 1071 ARMCPU *cpu = ARM_CPU(obj); 1072 set_feature(&cpu->env, ARM_FEATURE_V7); 1073 set_feature(&cpu->env, ARM_FEATURE_M); 1074 cpu->midr = 0x410fc231; 1075 } 1076 1077 static void cortex_m4_initfn(Object *obj) 1078 { 1079 ARMCPU *cpu = ARM_CPU(obj); 1080 1081 set_feature(&cpu->env, ARM_FEATURE_V7); 1082 set_feature(&cpu->env, ARM_FEATURE_M); 1083 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1084 cpu->midr = 0x410fc240; /* r0p0 */ 1085 } 1086 static void arm_v7m_class_init(ObjectClass *oc, void *data) 1087 { 1088 CPUClass *cc = CPU_CLASS(oc); 1089 1090 #ifndef CONFIG_USER_ONLY 1091 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1092 #endif 1093 1094 cc->do_unassigned_access = arm_v7m_unassigned_access; 1095 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1096 } 1097 1098 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1099 /* Dummy the TCM region regs for the moment */ 1100 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1101 .access = PL1_RW, .type = ARM_CP_CONST }, 1102 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1103 .access = PL1_RW, .type = ARM_CP_CONST }, 1104 REGINFO_SENTINEL 1105 }; 1106 1107 static void cortex_r5_initfn(Object *obj) 1108 { 1109 ARMCPU *cpu = ARM_CPU(obj); 1110 1111 set_feature(&cpu->env, ARM_FEATURE_V7); 1112 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV); 1113 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1114 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1115 set_feature(&cpu->env, ARM_FEATURE_MPU); 1116 cpu->midr = 0x411fc153; /* r1p3 */ 1117 cpu->id_pfr0 = 0x0131; 1118 cpu->id_pfr1 = 0x001; 1119 cpu->id_dfr0 = 0x010400; 1120 cpu->id_afr0 = 0x0; 1121 cpu->id_mmfr0 = 0x0210030; 1122 cpu->id_mmfr1 = 0x00000000; 1123 cpu->id_mmfr2 = 0x01200000; 1124 cpu->id_mmfr3 = 0x0211; 1125 cpu->id_isar0 = 0x2101111; 1126 cpu->id_isar1 = 0x13112111; 1127 cpu->id_isar2 = 0x21232141; 1128 cpu->id_isar3 = 0x01112131; 1129 cpu->id_isar4 = 0x0010142; 1130 cpu->id_isar5 = 0x0; 1131 cpu->mp_is_up = true; 1132 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 1133 } 1134 1135 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1136 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1137 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1138 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1139 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1140 REGINFO_SENTINEL 1141 }; 1142 1143 static void cortex_a8_initfn(Object *obj) 1144 { 1145 ARMCPU *cpu = ARM_CPU(obj); 1146 1147 cpu->dtb_compatible = "arm,cortex-a8"; 1148 set_feature(&cpu->env, ARM_FEATURE_V7); 1149 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1150 set_feature(&cpu->env, ARM_FEATURE_NEON); 1151 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1152 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1153 set_feature(&cpu->env, ARM_FEATURE_EL3); 1154 cpu->midr = 0x410fc080; 1155 cpu->reset_fpsid = 0x410330c0; 1156 cpu->mvfr0 = 0x11110222; 1157 cpu->mvfr1 = 0x00011111; 1158 cpu->ctr = 0x82048004; 1159 cpu->reset_sctlr = 0x00c50078; 1160 cpu->id_pfr0 = 0x1031; 1161 cpu->id_pfr1 = 0x11; 1162 cpu->id_dfr0 = 0x400; 1163 cpu->id_afr0 = 0; 1164 cpu->id_mmfr0 = 0x31100003; 1165 cpu->id_mmfr1 = 0x20000000; 1166 cpu->id_mmfr2 = 0x01202000; 1167 cpu->id_mmfr3 = 0x11; 1168 cpu->id_isar0 = 0x00101111; 1169 cpu->id_isar1 = 0x12112111; 1170 cpu->id_isar2 = 0x21232031; 1171 cpu->id_isar3 = 0x11112131; 1172 cpu->id_isar4 = 0x00111142; 1173 cpu->dbgdidr = 0x15141000; 1174 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1175 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1176 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1177 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1178 cpu->reset_auxcr = 2; 1179 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1180 } 1181 1182 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1183 /* power_control should be set to maximum latency. Again, 1184 * default to 0 and set by private hook 1185 */ 1186 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1187 .access = PL1_RW, .resetvalue = 0, 1188 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1189 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1190 .access = PL1_RW, .resetvalue = 0, 1191 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1192 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1193 .access = PL1_RW, .resetvalue = 0, 1194 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1195 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1196 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1197 /* TLB lockdown control */ 1198 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1199 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1200 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1201 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1202 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1203 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1204 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1205 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1206 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1207 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1208 REGINFO_SENTINEL 1209 }; 1210 1211 static void cortex_a9_initfn(Object *obj) 1212 { 1213 ARMCPU *cpu = ARM_CPU(obj); 1214 1215 cpu->dtb_compatible = "arm,cortex-a9"; 1216 set_feature(&cpu->env, ARM_FEATURE_V7); 1217 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1218 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16); 1219 set_feature(&cpu->env, ARM_FEATURE_NEON); 1220 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1221 set_feature(&cpu->env, ARM_FEATURE_EL3); 1222 /* Note that A9 supports the MP extensions even for 1223 * A9UP and single-core A9MP (which are both different 1224 * and valid configurations; we don't model A9UP). 1225 */ 1226 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1227 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1228 cpu->midr = 0x410fc090; 1229 cpu->reset_fpsid = 0x41033090; 1230 cpu->mvfr0 = 0x11110222; 1231 cpu->mvfr1 = 0x01111111; 1232 cpu->ctr = 0x80038003; 1233 cpu->reset_sctlr = 0x00c50078; 1234 cpu->id_pfr0 = 0x1031; 1235 cpu->id_pfr1 = 0x11; 1236 cpu->id_dfr0 = 0x000; 1237 cpu->id_afr0 = 0; 1238 cpu->id_mmfr0 = 0x00100103; 1239 cpu->id_mmfr1 = 0x20000000; 1240 cpu->id_mmfr2 = 0x01230000; 1241 cpu->id_mmfr3 = 0x00002111; 1242 cpu->id_isar0 = 0x00101111; 1243 cpu->id_isar1 = 0x13112111; 1244 cpu->id_isar2 = 0x21232041; 1245 cpu->id_isar3 = 0x11112131; 1246 cpu->id_isar4 = 0x00111142; 1247 cpu->dbgdidr = 0x35141000; 1248 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1249 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1250 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1251 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1252 } 1253 1254 #ifndef CONFIG_USER_ONLY 1255 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1256 { 1257 /* Linux wants the number of processors from here. 1258 * Might as well set the interrupt-controller bit too. 1259 */ 1260 return ((smp_cpus - 1) << 24) | (1 << 23); 1261 } 1262 #endif 1263 1264 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 1265 #ifndef CONFIG_USER_ONLY 1266 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1267 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 1268 .writefn = arm_cp_write_ignore, }, 1269 #endif 1270 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 1271 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1272 REGINFO_SENTINEL 1273 }; 1274 1275 static void cortex_a7_initfn(Object *obj) 1276 { 1277 ARMCPU *cpu = ARM_CPU(obj); 1278 1279 cpu->dtb_compatible = "arm,cortex-a7"; 1280 set_feature(&cpu->env, ARM_FEATURE_V7); 1281 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1282 set_feature(&cpu->env, ARM_FEATURE_NEON); 1283 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1284 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1285 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1286 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1287 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1288 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1289 set_feature(&cpu->env, ARM_FEATURE_EL3); 1290 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 1291 cpu->midr = 0x410fc075; 1292 cpu->reset_fpsid = 0x41023075; 1293 cpu->mvfr0 = 0x10110222; 1294 cpu->mvfr1 = 0x11111111; 1295 cpu->ctr = 0x84448003; 1296 cpu->reset_sctlr = 0x00c50078; 1297 cpu->id_pfr0 = 0x00001131; 1298 cpu->id_pfr1 = 0x00011011; 1299 cpu->id_dfr0 = 0x02010555; 1300 cpu->pmceid0 = 0x00000000; 1301 cpu->pmceid1 = 0x00000000; 1302 cpu->id_afr0 = 0x00000000; 1303 cpu->id_mmfr0 = 0x10101105; 1304 cpu->id_mmfr1 = 0x40000000; 1305 cpu->id_mmfr2 = 0x01240000; 1306 cpu->id_mmfr3 = 0x02102211; 1307 cpu->id_isar0 = 0x01101110; 1308 cpu->id_isar1 = 0x13112111; 1309 cpu->id_isar2 = 0x21232041; 1310 cpu->id_isar3 = 0x11112131; 1311 cpu->id_isar4 = 0x10011142; 1312 cpu->dbgdidr = 0x3515f005; 1313 cpu->clidr = 0x0a200023; 1314 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1315 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1316 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1317 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 1318 } 1319 1320 static void cortex_a15_initfn(Object *obj) 1321 { 1322 ARMCPU *cpu = ARM_CPU(obj); 1323 1324 cpu->dtb_compatible = "arm,cortex-a15"; 1325 set_feature(&cpu->env, ARM_FEATURE_V7); 1326 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1327 set_feature(&cpu->env, ARM_FEATURE_NEON); 1328 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1329 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1330 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1331 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1332 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1333 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1334 set_feature(&cpu->env, ARM_FEATURE_EL3); 1335 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 1336 cpu->midr = 0x412fc0f1; 1337 cpu->reset_fpsid = 0x410430f0; 1338 cpu->mvfr0 = 0x10110222; 1339 cpu->mvfr1 = 0x11111111; 1340 cpu->ctr = 0x8444c004; 1341 cpu->reset_sctlr = 0x00c50078; 1342 cpu->id_pfr0 = 0x00001131; 1343 cpu->id_pfr1 = 0x00011011; 1344 cpu->id_dfr0 = 0x02010555; 1345 cpu->pmceid0 = 0x0000000; 1346 cpu->pmceid1 = 0x00000000; 1347 cpu->id_afr0 = 0x00000000; 1348 cpu->id_mmfr0 = 0x10201105; 1349 cpu->id_mmfr1 = 0x20000000; 1350 cpu->id_mmfr2 = 0x01240000; 1351 cpu->id_mmfr3 = 0x02102211; 1352 cpu->id_isar0 = 0x02101110; 1353 cpu->id_isar1 = 0x13112111; 1354 cpu->id_isar2 = 0x21232041; 1355 cpu->id_isar3 = 0x11112131; 1356 cpu->id_isar4 = 0x10011142; 1357 cpu->dbgdidr = 0x3515f021; 1358 cpu->clidr = 0x0a200023; 1359 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1360 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1361 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1362 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 1363 } 1364 1365 static void ti925t_initfn(Object *obj) 1366 { 1367 ARMCPU *cpu = ARM_CPU(obj); 1368 set_feature(&cpu->env, ARM_FEATURE_V4T); 1369 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 1370 cpu->midr = ARM_CPUID_TI925T; 1371 cpu->ctr = 0x5109149; 1372 cpu->reset_sctlr = 0x00000070; 1373 } 1374 1375 static void sa1100_initfn(Object *obj) 1376 { 1377 ARMCPU *cpu = ARM_CPU(obj); 1378 1379 cpu->dtb_compatible = "intel,sa1100"; 1380 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1381 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1382 cpu->midr = 0x4401A11B; 1383 cpu->reset_sctlr = 0x00000070; 1384 } 1385 1386 static void sa1110_initfn(Object *obj) 1387 { 1388 ARMCPU *cpu = ARM_CPU(obj); 1389 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1390 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1391 cpu->midr = 0x6901B119; 1392 cpu->reset_sctlr = 0x00000070; 1393 } 1394 1395 static void pxa250_initfn(Object *obj) 1396 { 1397 ARMCPU *cpu = ARM_CPU(obj); 1398 1399 cpu->dtb_compatible = "marvell,xscale"; 1400 set_feature(&cpu->env, ARM_FEATURE_V5); 1401 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1402 cpu->midr = 0x69052100; 1403 cpu->ctr = 0xd172172; 1404 cpu->reset_sctlr = 0x00000078; 1405 } 1406 1407 static void pxa255_initfn(Object *obj) 1408 { 1409 ARMCPU *cpu = ARM_CPU(obj); 1410 1411 cpu->dtb_compatible = "marvell,xscale"; 1412 set_feature(&cpu->env, ARM_FEATURE_V5); 1413 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1414 cpu->midr = 0x69052d00; 1415 cpu->ctr = 0xd172172; 1416 cpu->reset_sctlr = 0x00000078; 1417 } 1418 1419 static void pxa260_initfn(Object *obj) 1420 { 1421 ARMCPU *cpu = ARM_CPU(obj); 1422 1423 cpu->dtb_compatible = "marvell,xscale"; 1424 set_feature(&cpu->env, ARM_FEATURE_V5); 1425 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1426 cpu->midr = 0x69052903; 1427 cpu->ctr = 0xd172172; 1428 cpu->reset_sctlr = 0x00000078; 1429 } 1430 1431 static void pxa261_initfn(Object *obj) 1432 { 1433 ARMCPU *cpu = ARM_CPU(obj); 1434 1435 cpu->dtb_compatible = "marvell,xscale"; 1436 set_feature(&cpu->env, ARM_FEATURE_V5); 1437 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1438 cpu->midr = 0x69052d05; 1439 cpu->ctr = 0xd172172; 1440 cpu->reset_sctlr = 0x00000078; 1441 } 1442 1443 static void pxa262_initfn(Object *obj) 1444 { 1445 ARMCPU *cpu = ARM_CPU(obj); 1446 1447 cpu->dtb_compatible = "marvell,xscale"; 1448 set_feature(&cpu->env, ARM_FEATURE_V5); 1449 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1450 cpu->midr = 0x69052d06; 1451 cpu->ctr = 0xd172172; 1452 cpu->reset_sctlr = 0x00000078; 1453 } 1454 1455 static void pxa270a0_initfn(Object *obj) 1456 { 1457 ARMCPU *cpu = ARM_CPU(obj); 1458 1459 cpu->dtb_compatible = "marvell,xscale"; 1460 set_feature(&cpu->env, ARM_FEATURE_V5); 1461 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1462 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1463 cpu->midr = 0x69054110; 1464 cpu->ctr = 0xd172172; 1465 cpu->reset_sctlr = 0x00000078; 1466 } 1467 1468 static void pxa270a1_initfn(Object *obj) 1469 { 1470 ARMCPU *cpu = ARM_CPU(obj); 1471 1472 cpu->dtb_compatible = "marvell,xscale"; 1473 set_feature(&cpu->env, ARM_FEATURE_V5); 1474 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1475 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1476 cpu->midr = 0x69054111; 1477 cpu->ctr = 0xd172172; 1478 cpu->reset_sctlr = 0x00000078; 1479 } 1480 1481 static void pxa270b0_initfn(Object *obj) 1482 { 1483 ARMCPU *cpu = ARM_CPU(obj); 1484 1485 cpu->dtb_compatible = "marvell,xscale"; 1486 set_feature(&cpu->env, ARM_FEATURE_V5); 1487 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1488 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1489 cpu->midr = 0x69054112; 1490 cpu->ctr = 0xd172172; 1491 cpu->reset_sctlr = 0x00000078; 1492 } 1493 1494 static void pxa270b1_initfn(Object *obj) 1495 { 1496 ARMCPU *cpu = ARM_CPU(obj); 1497 1498 cpu->dtb_compatible = "marvell,xscale"; 1499 set_feature(&cpu->env, ARM_FEATURE_V5); 1500 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1501 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1502 cpu->midr = 0x69054113; 1503 cpu->ctr = 0xd172172; 1504 cpu->reset_sctlr = 0x00000078; 1505 } 1506 1507 static void pxa270c0_initfn(Object *obj) 1508 { 1509 ARMCPU *cpu = ARM_CPU(obj); 1510 1511 cpu->dtb_compatible = "marvell,xscale"; 1512 set_feature(&cpu->env, ARM_FEATURE_V5); 1513 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1514 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1515 cpu->midr = 0x69054114; 1516 cpu->ctr = 0xd172172; 1517 cpu->reset_sctlr = 0x00000078; 1518 } 1519 1520 static void pxa270c5_initfn(Object *obj) 1521 { 1522 ARMCPU *cpu = ARM_CPU(obj); 1523 1524 cpu->dtb_compatible = "marvell,xscale"; 1525 set_feature(&cpu->env, ARM_FEATURE_V5); 1526 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1527 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1528 cpu->midr = 0x69054117; 1529 cpu->ctr = 0xd172172; 1530 cpu->reset_sctlr = 0x00000078; 1531 } 1532 1533 #ifdef CONFIG_USER_ONLY 1534 static void arm_any_initfn(Object *obj) 1535 { 1536 ARMCPU *cpu = ARM_CPU(obj); 1537 set_feature(&cpu->env, ARM_FEATURE_V8); 1538 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1539 set_feature(&cpu->env, ARM_FEATURE_NEON); 1540 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1541 set_feature(&cpu->env, ARM_FEATURE_V8_AES); 1542 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); 1543 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); 1544 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); 1545 set_feature(&cpu->env, ARM_FEATURE_CRC); 1546 cpu->midr = 0xffffffff; 1547 } 1548 #endif 1549 1550 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 1551 1552 typedef struct ARMCPUInfo { 1553 const char *name; 1554 void (*initfn)(Object *obj); 1555 void (*class_init)(ObjectClass *oc, void *data); 1556 } ARMCPUInfo; 1557 1558 static const ARMCPUInfo arm_cpus[] = { 1559 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1560 { .name = "arm926", .initfn = arm926_initfn }, 1561 { .name = "arm946", .initfn = arm946_initfn }, 1562 { .name = "arm1026", .initfn = arm1026_initfn }, 1563 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 1564 * older core than plain "arm1136". In particular this does not 1565 * have the v6K features. 1566 */ 1567 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 1568 { .name = "arm1136", .initfn = arm1136_initfn }, 1569 { .name = "arm1176", .initfn = arm1176_initfn }, 1570 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 1571 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 1572 .class_init = arm_v7m_class_init }, 1573 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 1574 .class_init = arm_v7m_class_init }, 1575 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 1576 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 1577 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 1578 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 1579 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 1580 { .name = "ti925t", .initfn = ti925t_initfn }, 1581 { .name = "sa1100", .initfn = sa1100_initfn }, 1582 { .name = "sa1110", .initfn = sa1110_initfn }, 1583 { .name = "pxa250", .initfn = pxa250_initfn }, 1584 { .name = "pxa255", .initfn = pxa255_initfn }, 1585 { .name = "pxa260", .initfn = pxa260_initfn }, 1586 { .name = "pxa261", .initfn = pxa261_initfn }, 1587 { .name = "pxa262", .initfn = pxa262_initfn }, 1588 /* "pxa270" is an alias for "pxa270-a0" */ 1589 { .name = "pxa270", .initfn = pxa270a0_initfn }, 1590 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 1591 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 1592 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 1593 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 1594 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 1595 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 1596 #ifdef CONFIG_USER_ONLY 1597 { .name = "any", .initfn = arm_any_initfn }, 1598 #endif 1599 #endif 1600 { .name = NULL } 1601 }; 1602 1603 static Property arm_cpu_properties[] = { 1604 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 1605 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 1606 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 1607 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 1608 mp_affinity, ARM64_AFFINITY_INVALID), 1609 DEFINE_PROP_END_OF_LIST() 1610 }; 1611 1612 #ifdef CONFIG_USER_ONLY 1613 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, 1614 int mmu_idx) 1615 { 1616 ARMCPU *cpu = ARM_CPU(cs); 1617 CPUARMState *env = &cpu->env; 1618 1619 env->exception.vaddress = address; 1620 if (rw == 2) { 1621 cs->exception_index = EXCP_PREFETCH_ABORT; 1622 } else { 1623 cs->exception_index = EXCP_DATA_ABORT; 1624 } 1625 return 1; 1626 } 1627 #endif 1628 1629 static gchar *arm_gdb_arch_name(CPUState *cs) 1630 { 1631 ARMCPU *cpu = ARM_CPU(cs); 1632 CPUARMState *env = &cpu->env; 1633 1634 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 1635 return g_strdup("iwmmxt"); 1636 } 1637 return g_strdup("arm"); 1638 } 1639 1640 static void arm_cpu_class_init(ObjectClass *oc, void *data) 1641 { 1642 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1643 CPUClass *cc = CPU_CLASS(acc); 1644 DeviceClass *dc = DEVICE_CLASS(oc); 1645 1646 acc->parent_realize = dc->realize; 1647 dc->realize = arm_cpu_realizefn; 1648 dc->props = arm_cpu_properties; 1649 1650 acc->parent_reset = cc->reset; 1651 cc->reset = arm_cpu_reset; 1652 1653 cc->class_by_name = arm_cpu_class_by_name; 1654 cc->has_work = arm_cpu_has_work; 1655 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 1656 cc->dump_state = arm_cpu_dump_state; 1657 cc->set_pc = arm_cpu_set_pc; 1658 cc->gdb_read_register = arm_cpu_gdb_read_register; 1659 cc->gdb_write_register = arm_cpu_gdb_write_register; 1660 #ifdef CONFIG_USER_ONLY 1661 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; 1662 #else 1663 cc->do_interrupt = arm_cpu_do_interrupt; 1664 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 1665 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 1666 cc->asidx_from_attrs = arm_asidx_from_attrs; 1667 cc->vmsd = &vmstate_arm_cpu; 1668 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 1669 cc->write_elf64_note = arm_cpu_write_elf64_note; 1670 cc->write_elf32_note = arm_cpu_write_elf32_note; 1671 #endif 1672 cc->gdb_num_core_regs = 26; 1673 cc->gdb_core_xml_file = "arm-core.xml"; 1674 cc->gdb_arch_name = arm_gdb_arch_name; 1675 cc->gdb_stop_before_watchpoint = true; 1676 cc->debug_excp_handler = arm_debug_excp_handler; 1677 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 1678 #if !defined(CONFIG_USER_ONLY) 1679 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 1680 #endif 1681 1682 cc->disas_set_info = arm_disas_set_info; 1683 } 1684 1685 static void cpu_register(const ARMCPUInfo *info) 1686 { 1687 TypeInfo type_info = { 1688 .parent = TYPE_ARM_CPU, 1689 .instance_size = sizeof(ARMCPU), 1690 .instance_init = info->initfn, 1691 .class_size = sizeof(ARMCPUClass), 1692 .class_init = info->class_init, 1693 }; 1694 1695 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 1696 type_register(&type_info); 1697 g_free((void *)type_info.name); 1698 } 1699 1700 static const TypeInfo arm_cpu_type_info = { 1701 .name = TYPE_ARM_CPU, 1702 .parent = TYPE_CPU, 1703 .instance_size = sizeof(ARMCPU), 1704 .instance_init = arm_cpu_initfn, 1705 .instance_post_init = arm_cpu_post_init, 1706 .instance_finalize = arm_cpu_finalizefn, 1707 .abstract = true, 1708 .class_size = sizeof(ARMCPUClass), 1709 .class_init = arm_cpu_class_init, 1710 }; 1711 1712 static void arm_cpu_register_types(void) 1713 { 1714 const ARMCPUInfo *info = arm_cpus; 1715 1716 type_register_static(&arm_cpu_type_info); 1717 1718 while (info->name) { 1719 cpu_register(info); 1720 info++; 1721 } 1722 } 1723 1724 type_init(arm_cpu_register_types) 1725