xref: /openbmc/qemu/target/arm/cpu.c (revision 2a53cff4)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "qapi/visitor.h"
26 #include "cpu.h"
27 #include "internals.h"
28 #include "qemu-common.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
33 #endif
34 #include "hw/arm/arm.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hw_accel.h"
37 #include "kvm_arm.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
40 
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 {
43     ARMCPU *cpu = ARM_CPU(cs);
44     CPUARMState *env = &cpu->env;
45 
46     if (is_a64(env)) {
47         env->pc = value;
48         env->thumb = 0;
49     } else {
50         env->regs[15] = value & ~1;
51         env->thumb = value & 1;
52     }
53 }
54 
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     /*
61      * It's OK to look at env for the current mode here, because it's
62      * never possible for an AArch64 TB to chain to an AArch32 TB.
63      */
64     if (is_a64(env)) {
65         env->pc = tb->pc;
66     } else {
67         env->regs[15] = tb->pc;
68     }
69 }
70 
71 static bool arm_cpu_has_work(CPUState *cs)
72 {
73     ARMCPU *cpu = ARM_CPU(cs);
74 
75     return (cpu->power_state != PSCI_OFF)
76         && cs->interrupt_request &
77         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79          | CPU_INTERRUPT_EXITTB);
80 }
81 
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
83                                  void *opaque)
84 {
85     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
86 
87     entry->hook = hook;
88     entry->opaque = opaque;
89 
90     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
91 }
92 
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94                                  void *opaque)
95 {
96     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 
98     entry->hook = hook;
99     entry->opaque = opaque;
100 
101     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
102 }
103 
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
105 {
106     /* Reset a single ARMCPRegInfo register */
107     ARMCPRegInfo *ri = value;
108     ARMCPU *cpu = opaque;
109 
110     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
111         return;
112     }
113 
114     if (ri->resetfn) {
115         ri->resetfn(&cpu->env, ri);
116         return;
117     }
118 
119     /* A zero offset is never possible as it would be regs[0]
120      * so we use it to indicate that reset is being handled elsewhere.
121      * This is basically only used for fields in non-core coprocessors
122      * (like the pxa2xx ones).
123      */
124     if (!ri->fieldoffset) {
125         return;
126     }
127 
128     if (cpreg_field_is_64bit(ri)) {
129         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
130     } else {
131         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
132     }
133 }
134 
135 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
136 {
137     /* Purely an assertion check: we've already done reset once,
138      * so now check that running the reset for the cpreg doesn't
139      * change its value. This traps bugs where two different cpregs
140      * both try to reset the same state field but to different values.
141      */
142     ARMCPRegInfo *ri = value;
143     ARMCPU *cpu = opaque;
144     uint64_t oldvalue, newvalue;
145 
146     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
147         return;
148     }
149 
150     oldvalue = read_raw_cp_reg(&cpu->env, ri);
151     cp_reg_reset(key, value, opaque);
152     newvalue = read_raw_cp_reg(&cpu->env, ri);
153     assert(oldvalue == newvalue);
154 }
155 
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
158 {
159     ARMCPU *cpu = ARM_CPU(s);
160     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161     CPUARMState *env = &cpu->env;
162 
163     acc->parent_reset(s);
164 
165     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
166 
167     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
169 
170     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
174 
175     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176     s->halted = cpu->start_powered_off;
177 
178     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
180     }
181 
182     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183         /* 64 bit CPUs always start in 64 bit mode */
184         env->aarch64 = 1;
185 #if defined(CONFIG_USER_ONLY)
186         env->pstate = PSTATE_MODE_EL0t;
187         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189         /* Enable all PAC keys.  */
190         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191                                   SCTLR_EnDA | SCTLR_EnDB);
192         /* Enable all PAC instructions */
193         env->cp15.hcr_el2 |= HCR_API;
194         env->cp15.scr_el3 |= SCR_API;
195         /* and to the FP/Neon instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197         /* and to the SVE instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199         env->cp15.cptr_el[3] |= CPTR_EZ;
200         /* with maximum vector length */
201         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
204         /*
205          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
206          * turning on both here will produce smaller code and otherwise
207          * make no difference to the user-level emulation.
208          */
209         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211         /* Reset into the highest available EL */
212         if (arm_feature(env, ARM_FEATURE_EL3)) {
213             env->pstate = PSTATE_MODE_EL3h;
214         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215             env->pstate = PSTATE_MODE_EL2h;
216         } else {
217             env->pstate = PSTATE_MODE_EL1h;
218         }
219         env->pc = cpu->rvbar;
220 #endif
221     } else {
222 #if defined(CONFIG_USER_ONLY)
223         /* Userspace expects access to cp10 and cp11 for FP/Neon */
224         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226     }
227 
228 #if defined(CONFIG_USER_ONLY)
229     env->uncached_cpsr = ARM_CPU_MODE_USR;
230     /* For user mode we must enable access to coprocessors */
231     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233         env->cp15.c15_cpar = 3;
234     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235         env->cp15.c15_cpar = 1;
236     }
237 #else
238 
239     /*
240      * If the highest available EL is EL2, AArch32 will start in Hyp
241      * mode; otherwise it starts in SVC. Note that if we start in
242      * AArch64 then these values in the uncached_cpsr will be ignored.
243      */
244     if (arm_feature(env, ARM_FEATURE_EL2) &&
245         !arm_feature(env, ARM_FEATURE_EL3)) {
246         env->uncached_cpsr = ARM_CPU_MODE_HYP;
247     } else {
248         env->uncached_cpsr = ARM_CPU_MODE_SVC;
249     }
250     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 
252     if (arm_feature(env, ARM_FEATURE_M)) {
253         uint32_t initial_msp; /* Loaded from 0x0 */
254         uint32_t initial_pc; /* Loaded from 0x4 */
255         uint8_t *rom;
256         uint32_t vecbase;
257 
258         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259             env->v7m.secure = true;
260         } else {
261             /* This bit resets to 0 if security is supported, but 1 if
262              * it is not. The bit is not present in v7M, but we set it
263              * here so we can avoid having to make checks on it conditional
264              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
265              */
266             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
267         }
268 
269         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270          * that it resets to 1, so QEMU always does that rather than making
271          * it dependent on CPU model. In v8M it is RES1.
272          */
273         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275         if (arm_feature(env, ARM_FEATURE_V8)) {
276             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
279         }
280         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
283         }
284 
285         /* Unlike A/R profile, M profile defines the reset LR value */
286         env->regs[14] = 0xffffffff;
287 
288         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
289 
290         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
291         vecbase = env->v7m.vecbase[env->v7m.secure];
292         rom = rom_ptr(vecbase, 8);
293         if (rom) {
294             /* Address zero is covered by ROM which hasn't yet been
295              * copied into physical memory.
296              */
297             initial_msp = ldl_p(rom);
298             initial_pc = ldl_p(rom + 4);
299         } else {
300             /* Address zero not covered by a ROM blob, or the ROM blob
301              * is in non-modifiable memory and this is a second reset after
302              * it got copied into memory. In the latter case, rom_ptr
303              * will return a NULL pointer and we should use ldl_phys instead.
304              */
305             initial_msp = ldl_phys(s->as, vecbase);
306             initial_pc = ldl_phys(s->as, vecbase + 4);
307         }
308 
309         env->regs[13] = initial_msp & 0xFFFFFFFC;
310         env->regs[15] = initial_pc & ~1;
311         env->thumb = initial_pc & 1;
312     }
313 
314     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
315      * executing as AArch32 then check if highvecs are enabled and
316      * adjust the PC accordingly.
317      */
318     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
319         env->regs[15] = 0xFFFF0000;
320     }
321 
322     /* M profile requires that reset clears the exclusive monitor;
323      * A profile does not, but clearing it makes more sense than having it
324      * set with an exclusive access on address zero.
325      */
326     arm_clear_exclusive(env);
327 
328     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
329 #endif
330 
331     if (arm_feature(env, ARM_FEATURE_PMSA)) {
332         if (cpu->pmsav7_dregion > 0) {
333             if (arm_feature(env, ARM_FEATURE_V8)) {
334                 memset(env->pmsav8.rbar[M_REG_NS], 0,
335                        sizeof(*env->pmsav8.rbar[M_REG_NS])
336                        * cpu->pmsav7_dregion);
337                 memset(env->pmsav8.rlar[M_REG_NS], 0,
338                        sizeof(*env->pmsav8.rlar[M_REG_NS])
339                        * cpu->pmsav7_dregion);
340                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
341                     memset(env->pmsav8.rbar[M_REG_S], 0,
342                            sizeof(*env->pmsav8.rbar[M_REG_S])
343                            * cpu->pmsav7_dregion);
344                     memset(env->pmsav8.rlar[M_REG_S], 0,
345                            sizeof(*env->pmsav8.rlar[M_REG_S])
346                            * cpu->pmsav7_dregion);
347                 }
348             } else if (arm_feature(env, ARM_FEATURE_V7)) {
349                 memset(env->pmsav7.drbar, 0,
350                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
351                 memset(env->pmsav7.drsr, 0,
352                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
353                 memset(env->pmsav7.dracr, 0,
354                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
355             }
356         }
357         env->pmsav7.rnr[M_REG_NS] = 0;
358         env->pmsav7.rnr[M_REG_S] = 0;
359         env->pmsav8.mair0[M_REG_NS] = 0;
360         env->pmsav8.mair0[M_REG_S] = 0;
361         env->pmsav8.mair1[M_REG_NS] = 0;
362         env->pmsav8.mair1[M_REG_S] = 0;
363     }
364 
365     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
366         if (cpu->sau_sregion > 0) {
367             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
368             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
369         }
370         env->sau.rnr = 0;
371         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
372          * the Cortex-M33 does.
373          */
374         env->sau.ctrl = 0;
375     }
376 
377     set_flush_to_zero(1, &env->vfp.standard_fp_status);
378     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
379     set_default_nan_mode(1, &env->vfp.standard_fp_status);
380     set_float_detect_tininess(float_tininess_before_rounding,
381                               &env->vfp.fp_status);
382     set_float_detect_tininess(float_tininess_before_rounding,
383                               &env->vfp.standard_fp_status);
384     set_float_detect_tininess(float_tininess_before_rounding,
385                               &env->vfp.fp_status_f16);
386 #ifndef CONFIG_USER_ONLY
387     if (kvm_enabled()) {
388         kvm_arm_reset_vcpu(cpu);
389     }
390 #endif
391 
392     hw_breakpoint_update_all(cpu);
393     hw_watchpoint_update_all(cpu);
394 }
395 
396 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
397 {
398     CPUClass *cc = CPU_GET_CLASS(cs);
399     CPUARMState *env = cs->env_ptr;
400     uint32_t cur_el = arm_current_el(env);
401     bool secure = arm_is_secure(env);
402     uint32_t target_el;
403     uint32_t excp_idx;
404     bool ret = false;
405 
406     if (interrupt_request & CPU_INTERRUPT_FIQ) {
407         excp_idx = EXCP_FIQ;
408         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
409         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
410             cs->exception_index = excp_idx;
411             env->exception.target_el = target_el;
412             cc->do_interrupt(cs);
413             ret = true;
414         }
415     }
416     if (interrupt_request & CPU_INTERRUPT_HARD) {
417         excp_idx = EXCP_IRQ;
418         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
419         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
420             cs->exception_index = excp_idx;
421             env->exception.target_el = target_el;
422             cc->do_interrupt(cs);
423             ret = true;
424         }
425     }
426     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
427         excp_idx = EXCP_VIRQ;
428         target_el = 1;
429         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
430             cs->exception_index = excp_idx;
431             env->exception.target_el = target_el;
432             cc->do_interrupt(cs);
433             ret = true;
434         }
435     }
436     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
437         excp_idx = EXCP_VFIQ;
438         target_el = 1;
439         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
440             cs->exception_index = excp_idx;
441             env->exception.target_el = target_el;
442             cc->do_interrupt(cs);
443             ret = true;
444         }
445     }
446 
447     return ret;
448 }
449 
450 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
451 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
452 {
453     CPUClass *cc = CPU_GET_CLASS(cs);
454     ARMCPU *cpu = ARM_CPU(cs);
455     CPUARMState *env = &cpu->env;
456     bool ret = false;
457 
458     /* ARMv7-M interrupt masking works differently than -A or -R.
459      * There is no FIQ/IRQ distinction. Instead of I and F bits
460      * masking FIQ and IRQ interrupts, an exception is taken only
461      * if it is higher priority than the current execution priority
462      * (which depends on state like BASEPRI, FAULTMASK and the
463      * currently active exception).
464      */
465     if (interrupt_request & CPU_INTERRUPT_HARD
466         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
467         cs->exception_index = EXCP_IRQ;
468         cc->do_interrupt(cs);
469         ret = true;
470     }
471     return ret;
472 }
473 #endif
474 
475 void arm_cpu_update_virq(ARMCPU *cpu)
476 {
477     /*
478      * Update the interrupt level for VIRQ, which is the logical OR of
479      * the HCR_EL2.VI bit and the input line level from the GIC.
480      */
481     CPUARMState *env = &cpu->env;
482     CPUState *cs = CPU(cpu);
483 
484     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
485         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
486 
487     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
488         if (new_state) {
489             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
490         } else {
491             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
492         }
493     }
494 }
495 
496 void arm_cpu_update_vfiq(ARMCPU *cpu)
497 {
498     /*
499      * Update the interrupt level for VFIQ, which is the logical OR of
500      * the HCR_EL2.VF bit and the input line level from the GIC.
501      */
502     CPUARMState *env = &cpu->env;
503     CPUState *cs = CPU(cpu);
504 
505     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
506         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
507 
508     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
509         if (new_state) {
510             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
511         } else {
512             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
513         }
514     }
515 }
516 
517 #ifndef CONFIG_USER_ONLY
518 static void arm_cpu_set_irq(void *opaque, int irq, int level)
519 {
520     ARMCPU *cpu = opaque;
521     CPUARMState *env = &cpu->env;
522     CPUState *cs = CPU(cpu);
523     static const int mask[] = {
524         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
525         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
526         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
527         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
528     };
529 
530     if (level) {
531         env->irq_line_state |= mask[irq];
532     } else {
533         env->irq_line_state &= ~mask[irq];
534     }
535 
536     switch (irq) {
537     case ARM_CPU_VIRQ:
538         assert(arm_feature(env, ARM_FEATURE_EL2));
539         arm_cpu_update_virq(cpu);
540         break;
541     case ARM_CPU_VFIQ:
542         assert(arm_feature(env, ARM_FEATURE_EL2));
543         arm_cpu_update_vfiq(cpu);
544         break;
545     case ARM_CPU_IRQ:
546     case ARM_CPU_FIQ:
547         if (level) {
548             cpu_interrupt(cs, mask[irq]);
549         } else {
550             cpu_reset_interrupt(cs, mask[irq]);
551         }
552         break;
553     default:
554         g_assert_not_reached();
555     }
556 }
557 
558 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
559 {
560 #ifdef CONFIG_KVM
561     ARMCPU *cpu = opaque;
562     CPUARMState *env = &cpu->env;
563     CPUState *cs = CPU(cpu);
564     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
565     uint32_t linestate_bit;
566 
567     switch (irq) {
568     case ARM_CPU_IRQ:
569         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
570         linestate_bit = CPU_INTERRUPT_HARD;
571         break;
572     case ARM_CPU_FIQ:
573         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
574         linestate_bit = CPU_INTERRUPT_FIQ;
575         break;
576     default:
577         g_assert_not_reached();
578     }
579 
580     if (level) {
581         env->irq_line_state |= linestate_bit;
582     } else {
583         env->irq_line_state &= ~linestate_bit;
584     }
585 
586     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
587     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
588 #endif
589 }
590 
591 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
592 {
593     ARMCPU *cpu = ARM_CPU(cs);
594     CPUARMState *env = &cpu->env;
595 
596     cpu_synchronize_state(cs);
597     return arm_cpu_data_is_big_endian(env);
598 }
599 
600 #endif
601 
602 static inline void set_feature(CPUARMState *env, int feature)
603 {
604     env->features |= 1ULL << feature;
605 }
606 
607 static inline void unset_feature(CPUARMState *env, int feature)
608 {
609     env->features &= ~(1ULL << feature);
610 }
611 
612 static int
613 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
614 {
615   return print_insn_arm(pc | 1, info);
616 }
617 
618 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
619 {
620     ARMCPU *ac = ARM_CPU(cpu);
621     CPUARMState *env = &ac->env;
622     bool sctlr_b;
623 
624     if (is_a64(env)) {
625         /* We might not be compiled with the A64 disassembler
626          * because it needs a C++ compiler. Leave print_insn
627          * unset in this case to use the caller default behaviour.
628          */
629 #if defined(CONFIG_ARM_A64_DIS)
630         info->print_insn = print_insn_arm_a64;
631 #endif
632         info->cap_arch = CS_ARCH_ARM64;
633         info->cap_insn_unit = 4;
634         info->cap_insn_split = 4;
635     } else {
636         int cap_mode;
637         if (env->thumb) {
638             info->print_insn = print_insn_thumb1;
639             info->cap_insn_unit = 2;
640             info->cap_insn_split = 4;
641             cap_mode = CS_MODE_THUMB;
642         } else {
643             info->print_insn = print_insn_arm;
644             info->cap_insn_unit = 4;
645             info->cap_insn_split = 4;
646             cap_mode = CS_MODE_ARM;
647         }
648         if (arm_feature(env, ARM_FEATURE_V8)) {
649             cap_mode |= CS_MODE_V8;
650         }
651         if (arm_feature(env, ARM_FEATURE_M)) {
652             cap_mode |= CS_MODE_MCLASS;
653         }
654         info->cap_arch = CS_ARCH_ARM;
655         info->cap_mode = cap_mode;
656     }
657 
658     sctlr_b = arm_sctlr_b(env);
659     if (bswap_code(sctlr_b)) {
660 #ifdef TARGET_WORDS_BIGENDIAN
661         info->endian = BFD_ENDIAN_LITTLE;
662 #else
663         info->endian = BFD_ENDIAN_BIG;
664 #endif
665     }
666     info->flags &= ~INSN_ARM_BE32;
667 #ifndef CONFIG_USER_ONLY
668     if (sctlr_b) {
669         info->flags |= INSN_ARM_BE32;
670     }
671 #endif
672 }
673 
674 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
675 {
676     uint32_t Aff1 = idx / clustersz;
677     uint32_t Aff0 = idx % clustersz;
678     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
679 }
680 
681 static void cpreg_hashtable_data_destroy(gpointer data)
682 {
683     /*
684      * Destroy function for cpu->cp_regs hashtable data entries.
685      * We must free the name string because it was g_strdup()ed in
686      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
687      * from r->name because we know we definitely allocated it.
688      */
689     ARMCPRegInfo *r = data;
690 
691     g_free((void *)r->name);
692     g_free(r);
693 }
694 
695 static void arm_cpu_initfn(Object *obj)
696 {
697     CPUState *cs = CPU(obj);
698     ARMCPU *cpu = ARM_CPU(obj);
699 
700     cs->env_ptr = &cpu->env;
701     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
702                                          g_free, cpreg_hashtable_data_destroy);
703 
704     QLIST_INIT(&cpu->pre_el_change_hooks);
705     QLIST_INIT(&cpu->el_change_hooks);
706 
707 #ifndef CONFIG_USER_ONLY
708     /* Our inbound IRQ and FIQ lines */
709     if (kvm_enabled()) {
710         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
711          * the same interface as non-KVM CPUs.
712          */
713         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
714     } else {
715         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
716     }
717 
718     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
719                        ARRAY_SIZE(cpu->gt_timer_outputs));
720 
721     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
722                              "gicv3-maintenance-interrupt", 1);
723     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
724                              "pmu-interrupt", 1);
725 #endif
726 
727     /* DTB consumers generally don't in fact care what the 'compatible'
728      * string is, so always provide some string and trust that a hypothetical
729      * picky DTB consumer will also provide a helpful error message.
730      */
731     cpu->dtb_compatible = "qemu,unknown";
732     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
733     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
734 
735     if (tcg_enabled()) {
736         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
737     }
738 }
739 
740 static Property arm_cpu_reset_cbar_property =
741             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
742 
743 static Property arm_cpu_reset_hivecs_property =
744             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
745 
746 static Property arm_cpu_rvbar_property =
747             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
748 
749 static Property arm_cpu_has_el2_property =
750             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
751 
752 static Property arm_cpu_has_el3_property =
753             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
754 
755 static Property arm_cpu_cfgend_property =
756             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
757 
758 /* use property name "pmu" to match other archs and virt tools */
759 static Property arm_cpu_has_pmu_property =
760             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
761 
762 static Property arm_cpu_has_mpu_property =
763             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
764 
765 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
766  * because the CPU initfn will have already set cpu->pmsav7_dregion to
767  * the right value for that particular CPU type, and we don't want
768  * to override that with an incorrect constant value.
769  */
770 static Property arm_cpu_pmsav7_dregion_property =
771             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
772                                            pmsav7_dregion,
773                                            qdev_prop_uint32, uint32_t);
774 
775 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
776                                void *opaque, Error **errp)
777 {
778     ARMCPU *cpu = ARM_CPU(obj);
779 
780     visit_type_uint32(v, name, &cpu->init_svtor, errp);
781 }
782 
783 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
784                                void *opaque, Error **errp)
785 {
786     ARMCPU *cpu = ARM_CPU(obj);
787 
788     visit_type_uint32(v, name, &cpu->init_svtor, errp);
789 }
790 
791 void arm_cpu_post_init(Object *obj)
792 {
793     ARMCPU *cpu = ARM_CPU(obj);
794 
795     /* M profile implies PMSA. We have to do this here rather than
796      * in realize with the other feature-implication checks because
797      * we look at the PMSA bit to see if we should add some properties.
798      */
799     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
800         set_feature(&cpu->env, ARM_FEATURE_PMSA);
801     }
802 
803     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
804         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
805         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
806                                  &error_abort);
807     }
808 
809     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
810         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
811                                  &error_abort);
812     }
813 
814     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
815         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
816                                  &error_abort);
817     }
818 
819     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
820         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
821          * prevent "has_el3" from existing on CPUs which cannot support EL3.
822          */
823         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
824                                  &error_abort);
825 
826 #ifndef CONFIG_USER_ONLY
827         object_property_add_link(obj, "secure-memory",
828                                  TYPE_MEMORY_REGION,
829                                  (Object **)&cpu->secure_memory,
830                                  qdev_prop_allow_set_link_before_realize,
831                                  OBJ_PROP_LINK_STRONG,
832                                  &error_abort);
833 #endif
834     }
835 
836     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
837         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
838                                  &error_abort);
839     }
840 
841     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
842         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
843                                  &error_abort);
844     }
845 
846     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
847         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
848                                  &error_abort);
849         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
850             qdev_property_add_static(DEVICE(obj),
851                                      &arm_cpu_pmsav7_dregion_property,
852                                      &error_abort);
853         }
854     }
855 
856     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
857         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
858                                  qdev_prop_allow_set_link_before_realize,
859                                  OBJ_PROP_LINK_STRONG,
860                                  &error_abort);
861         /*
862          * M profile: initial value of the Secure VTOR. We can't just use
863          * a simple DEFINE_PROP_UINT32 for this because we want to permit
864          * the property to be set after realize.
865          */
866         object_property_add(obj, "init-svtor", "uint32",
867                             arm_get_init_svtor, arm_set_init_svtor,
868                             NULL, NULL, &error_abort);
869     }
870 
871     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
872                              &error_abort);
873 }
874 
875 static void arm_cpu_finalizefn(Object *obj)
876 {
877     ARMCPU *cpu = ARM_CPU(obj);
878     ARMELChangeHook *hook, *next;
879 
880     g_hash_table_destroy(cpu->cp_regs);
881 
882     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
883         QLIST_REMOVE(hook, node);
884         g_free(hook);
885     }
886     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
887         QLIST_REMOVE(hook, node);
888         g_free(hook);
889     }
890 #ifndef CONFIG_USER_ONLY
891     if (cpu->pmu_timer) {
892         timer_del(cpu->pmu_timer);
893         timer_deinit(cpu->pmu_timer);
894         timer_free(cpu->pmu_timer);
895     }
896 #endif
897 }
898 
899 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
900 {
901     CPUState *cs = CPU(dev);
902     ARMCPU *cpu = ARM_CPU(dev);
903     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
904     CPUARMState *env = &cpu->env;
905     int pagebits;
906     Error *local_err = NULL;
907     bool no_aa32 = false;
908 
909     /* If we needed to query the host kernel for the CPU features
910      * then it's possible that might have failed in the initfn, but
911      * this is the first point where we can report it.
912      */
913     if (cpu->host_cpu_probe_failed) {
914         if (!kvm_enabled()) {
915             error_setg(errp, "The 'host' CPU type can only be used with KVM");
916         } else {
917             error_setg(errp, "Failed to retrieve host CPU features");
918         }
919         return;
920     }
921 
922 #ifndef CONFIG_USER_ONLY
923     /* The NVIC and M-profile CPU are two halves of a single piece of
924      * hardware; trying to use one without the other is a command line
925      * error and will result in segfaults if not caught here.
926      */
927     if (arm_feature(env, ARM_FEATURE_M)) {
928         if (!env->nvic) {
929             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
930             return;
931         }
932     } else {
933         if (env->nvic) {
934             error_setg(errp, "This board can only be used with Cortex-M CPUs");
935             return;
936         }
937     }
938 
939     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
940                                            arm_gt_ptimer_cb, cpu);
941     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
942                                            arm_gt_vtimer_cb, cpu);
943     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
944                                           arm_gt_htimer_cb, cpu);
945     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
946                                           arm_gt_stimer_cb, cpu);
947 #endif
948 
949     cpu_exec_realizefn(cs, &local_err);
950     if (local_err != NULL) {
951         error_propagate(errp, local_err);
952         return;
953     }
954 
955     /* Some features automatically imply others: */
956     if (arm_feature(env, ARM_FEATURE_V8)) {
957         if (arm_feature(env, ARM_FEATURE_M)) {
958             set_feature(env, ARM_FEATURE_V7);
959         } else {
960             set_feature(env, ARM_FEATURE_V7VE);
961         }
962     }
963 
964     /*
965      * There exist AArch64 cpus without AArch32 support.  When KVM
966      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
967      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
968      */
969     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
970         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
971     }
972 
973     if (arm_feature(env, ARM_FEATURE_V7VE)) {
974         /* v7 Virtualization Extensions. In real hardware this implies
975          * EL2 and also the presence of the Security Extensions.
976          * For QEMU, for backwards-compatibility we implement some
977          * CPUs or CPU configs which have no actual EL2 or EL3 but do
978          * include the various other features that V7VE implies.
979          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
980          * Security Extensions is ARM_FEATURE_EL3.
981          */
982         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
983         set_feature(env, ARM_FEATURE_LPAE);
984         set_feature(env, ARM_FEATURE_V7);
985     }
986     if (arm_feature(env, ARM_FEATURE_V7)) {
987         set_feature(env, ARM_FEATURE_VAPA);
988         set_feature(env, ARM_FEATURE_THUMB2);
989         set_feature(env, ARM_FEATURE_MPIDR);
990         if (!arm_feature(env, ARM_FEATURE_M)) {
991             set_feature(env, ARM_FEATURE_V6K);
992         } else {
993             set_feature(env, ARM_FEATURE_V6);
994         }
995 
996         /* Always define VBAR for V7 CPUs even if it doesn't exist in
997          * non-EL3 configs. This is needed by some legacy boards.
998          */
999         set_feature(env, ARM_FEATURE_VBAR);
1000     }
1001     if (arm_feature(env, ARM_FEATURE_V6K)) {
1002         set_feature(env, ARM_FEATURE_V6);
1003         set_feature(env, ARM_FEATURE_MVFR);
1004     }
1005     if (arm_feature(env, ARM_FEATURE_V6)) {
1006         set_feature(env, ARM_FEATURE_V5);
1007         if (!arm_feature(env, ARM_FEATURE_M)) {
1008             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1009             set_feature(env, ARM_FEATURE_AUXCR);
1010         }
1011     }
1012     if (arm_feature(env, ARM_FEATURE_V5)) {
1013         set_feature(env, ARM_FEATURE_V4T);
1014     }
1015     if (arm_feature(env, ARM_FEATURE_VFP4)) {
1016         set_feature(env, ARM_FEATURE_VFP3);
1017     }
1018     if (arm_feature(env, ARM_FEATURE_VFP3)) {
1019         set_feature(env, ARM_FEATURE_VFP);
1020     }
1021     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1022         set_feature(env, ARM_FEATURE_V7MP);
1023         set_feature(env, ARM_FEATURE_PXN);
1024     }
1025     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1026         set_feature(env, ARM_FEATURE_CBAR);
1027     }
1028     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1029         !arm_feature(env, ARM_FEATURE_M)) {
1030         set_feature(env, ARM_FEATURE_THUMB_DSP);
1031     }
1032 
1033     if (arm_feature(env, ARM_FEATURE_V7) &&
1034         !arm_feature(env, ARM_FEATURE_M) &&
1035         !arm_feature(env, ARM_FEATURE_PMSA)) {
1036         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1037          * can use 4K pages.
1038          */
1039         pagebits = 12;
1040     } else {
1041         /* For CPUs which might have tiny 1K pages, or which have an
1042          * MPU and might have small region sizes, stick with 1K pages.
1043          */
1044         pagebits = 10;
1045     }
1046     if (!set_preferred_target_page_bits(pagebits)) {
1047         /* This can only ever happen for hotplugging a CPU, or if
1048          * the board code incorrectly creates a CPU which it has
1049          * promised via minimum_page_size that it will not.
1050          */
1051         error_setg(errp, "This CPU requires a smaller page size than the "
1052                    "system is using");
1053         return;
1054     }
1055 
1056     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1057      * We don't support setting cluster ID ([16..23]) (known as Aff2
1058      * in later ARM ARM versions), or any of the higher affinity level fields,
1059      * so these bits always RAZ.
1060      */
1061     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1062         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1063                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1064     }
1065 
1066     if (cpu->reset_hivecs) {
1067             cpu->reset_sctlr |= (1 << 13);
1068     }
1069 
1070     if (cpu->cfgend) {
1071         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1072             cpu->reset_sctlr |= SCTLR_EE;
1073         } else {
1074             cpu->reset_sctlr |= SCTLR_B;
1075         }
1076     }
1077 
1078     if (!cpu->has_el3) {
1079         /* If the has_el3 CPU property is disabled then we need to disable the
1080          * feature.
1081          */
1082         unset_feature(env, ARM_FEATURE_EL3);
1083 
1084         /* Disable the security extension feature bits in the processor feature
1085          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1086          */
1087         cpu->id_pfr1 &= ~0xf0;
1088         cpu->isar.id_aa64pfr0 &= ~0xf000;
1089     }
1090 
1091     if (!cpu->has_el2) {
1092         unset_feature(env, ARM_FEATURE_EL2);
1093     }
1094 
1095     if (!cpu->has_pmu) {
1096         unset_feature(env, ARM_FEATURE_PMU);
1097     }
1098     if (arm_feature(env, ARM_FEATURE_PMU)) {
1099         pmu_init(cpu);
1100 
1101         if (!kvm_enabled()) {
1102             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1103             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1104         }
1105 
1106 #ifndef CONFIG_USER_ONLY
1107         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1108                 cpu);
1109 #endif
1110     } else {
1111         cpu->id_aa64dfr0 &= ~0xf00;
1112         cpu->pmceid0 = 0;
1113         cpu->pmceid1 = 0;
1114     }
1115 
1116     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1117         /* Disable the hypervisor feature bits in the processor feature
1118          * registers if we don't have EL2. These are id_pfr1[15:12] and
1119          * id_aa64pfr0_el1[11:8].
1120          */
1121         cpu->isar.id_aa64pfr0 &= ~0xf00;
1122         cpu->id_pfr1 &= ~0xf000;
1123     }
1124 
1125     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1126      * to false or by setting pmsav7-dregion to 0.
1127      */
1128     if (!cpu->has_mpu) {
1129         cpu->pmsav7_dregion = 0;
1130     }
1131     if (cpu->pmsav7_dregion == 0) {
1132         cpu->has_mpu = false;
1133     }
1134 
1135     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1136         arm_feature(env, ARM_FEATURE_V7)) {
1137         uint32_t nr = cpu->pmsav7_dregion;
1138 
1139         if (nr > 0xff) {
1140             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1141             return;
1142         }
1143 
1144         if (nr) {
1145             if (arm_feature(env, ARM_FEATURE_V8)) {
1146                 /* PMSAv8 */
1147                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1148                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1149                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1150                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1151                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1152                 }
1153             } else {
1154                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1155                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1156                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1157             }
1158         }
1159     }
1160 
1161     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1162         uint32_t nr = cpu->sau_sregion;
1163 
1164         if (nr > 0xff) {
1165             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1166             return;
1167         }
1168 
1169         if (nr) {
1170             env->sau.rbar = g_new0(uint32_t, nr);
1171             env->sau.rlar = g_new0(uint32_t, nr);
1172         }
1173     }
1174 
1175     if (arm_feature(env, ARM_FEATURE_EL3)) {
1176         set_feature(env, ARM_FEATURE_VBAR);
1177     }
1178 
1179     register_cp_regs_for_features(cpu);
1180     arm_cpu_register_gdb_regs_for_features(cpu);
1181 
1182     init_cpreg_list(cpu);
1183 
1184 #ifndef CONFIG_USER_ONLY
1185     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1186         cs->num_ases = 2;
1187 
1188         if (!cpu->secure_memory) {
1189             cpu->secure_memory = cs->memory;
1190         }
1191         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1192                                cpu->secure_memory);
1193     } else {
1194         cs->num_ases = 1;
1195     }
1196     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1197 
1198     /* No core_count specified, default to smp_cpus. */
1199     if (cpu->core_count == -1) {
1200         cpu->core_count = smp_cpus;
1201     }
1202 #endif
1203 
1204     qemu_init_vcpu(cs);
1205     cpu_reset(cs);
1206 
1207     acc->parent_realize(dev, errp);
1208 }
1209 
1210 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1211 {
1212     ObjectClass *oc;
1213     char *typename;
1214     char **cpuname;
1215     const char *cpunamestr;
1216 
1217     cpuname = g_strsplit(cpu_model, ",", 1);
1218     cpunamestr = cpuname[0];
1219 #ifdef CONFIG_USER_ONLY
1220     /* For backwards compatibility usermode emulation allows "-cpu any",
1221      * which has the same semantics as "-cpu max".
1222      */
1223     if (!strcmp(cpunamestr, "any")) {
1224         cpunamestr = "max";
1225     }
1226 #endif
1227     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1228     oc = object_class_by_name(typename);
1229     g_strfreev(cpuname);
1230     g_free(typename);
1231     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1232         object_class_is_abstract(oc)) {
1233         return NULL;
1234     }
1235     return oc;
1236 }
1237 
1238 /* CPU models. These are not needed for the AArch64 linux-user build. */
1239 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1240 
1241 static void arm926_initfn(Object *obj)
1242 {
1243     ARMCPU *cpu = ARM_CPU(obj);
1244 
1245     cpu->dtb_compatible = "arm,arm926";
1246     set_feature(&cpu->env, ARM_FEATURE_V5);
1247     set_feature(&cpu->env, ARM_FEATURE_VFP);
1248     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1249     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1250     cpu->midr = 0x41069265;
1251     cpu->reset_fpsid = 0x41011090;
1252     cpu->ctr = 0x1dd20d2;
1253     cpu->reset_sctlr = 0x00090078;
1254 
1255     /*
1256      * ARMv5 does not have the ID_ISAR registers, but we can still
1257      * set the field to indicate Jazelle support within QEMU.
1258      */
1259     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1260 }
1261 
1262 static void arm946_initfn(Object *obj)
1263 {
1264     ARMCPU *cpu = ARM_CPU(obj);
1265 
1266     cpu->dtb_compatible = "arm,arm946";
1267     set_feature(&cpu->env, ARM_FEATURE_V5);
1268     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1269     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1270     cpu->midr = 0x41059461;
1271     cpu->ctr = 0x0f004006;
1272     cpu->reset_sctlr = 0x00000078;
1273 }
1274 
1275 static void arm1026_initfn(Object *obj)
1276 {
1277     ARMCPU *cpu = ARM_CPU(obj);
1278 
1279     cpu->dtb_compatible = "arm,arm1026";
1280     set_feature(&cpu->env, ARM_FEATURE_V5);
1281     set_feature(&cpu->env, ARM_FEATURE_VFP);
1282     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1283     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1284     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1285     cpu->midr = 0x4106a262;
1286     cpu->reset_fpsid = 0x410110a0;
1287     cpu->ctr = 0x1dd20d2;
1288     cpu->reset_sctlr = 0x00090078;
1289     cpu->reset_auxcr = 1;
1290 
1291     /*
1292      * ARMv5 does not have the ID_ISAR registers, but we can still
1293      * set the field to indicate Jazelle support within QEMU.
1294      */
1295     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1296 
1297     {
1298         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1299         ARMCPRegInfo ifar = {
1300             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1301             .access = PL1_RW,
1302             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1303             .resetvalue = 0
1304         };
1305         define_one_arm_cp_reg(cpu, &ifar);
1306     }
1307 }
1308 
1309 static void arm1136_r2_initfn(Object *obj)
1310 {
1311     ARMCPU *cpu = ARM_CPU(obj);
1312     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1313      * older core than plain "arm1136". In particular this does not
1314      * have the v6K features.
1315      * These ID register values are correct for 1136 but may be wrong
1316      * for 1136_r2 (in particular r0p2 does not actually implement most
1317      * of the ID registers).
1318      */
1319 
1320     cpu->dtb_compatible = "arm,arm1136";
1321     set_feature(&cpu->env, ARM_FEATURE_V6);
1322     set_feature(&cpu->env, ARM_FEATURE_VFP);
1323     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1324     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1325     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1326     cpu->midr = 0x4107b362;
1327     cpu->reset_fpsid = 0x410120b4;
1328     cpu->isar.mvfr0 = 0x11111111;
1329     cpu->isar.mvfr1 = 0x00000000;
1330     cpu->ctr = 0x1dd20d2;
1331     cpu->reset_sctlr = 0x00050078;
1332     cpu->id_pfr0 = 0x111;
1333     cpu->id_pfr1 = 0x1;
1334     cpu->id_dfr0 = 0x2;
1335     cpu->id_afr0 = 0x3;
1336     cpu->id_mmfr0 = 0x01130003;
1337     cpu->id_mmfr1 = 0x10030302;
1338     cpu->id_mmfr2 = 0x01222110;
1339     cpu->isar.id_isar0 = 0x00140011;
1340     cpu->isar.id_isar1 = 0x12002111;
1341     cpu->isar.id_isar2 = 0x11231111;
1342     cpu->isar.id_isar3 = 0x01102131;
1343     cpu->isar.id_isar4 = 0x141;
1344     cpu->reset_auxcr = 7;
1345 }
1346 
1347 static void arm1136_initfn(Object *obj)
1348 {
1349     ARMCPU *cpu = ARM_CPU(obj);
1350 
1351     cpu->dtb_compatible = "arm,arm1136";
1352     set_feature(&cpu->env, ARM_FEATURE_V6K);
1353     set_feature(&cpu->env, ARM_FEATURE_V6);
1354     set_feature(&cpu->env, ARM_FEATURE_VFP);
1355     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1356     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1357     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1358     cpu->midr = 0x4117b363;
1359     cpu->reset_fpsid = 0x410120b4;
1360     cpu->isar.mvfr0 = 0x11111111;
1361     cpu->isar.mvfr1 = 0x00000000;
1362     cpu->ctr = 0x1dd20d2;
1363     cpu->reset_sctlr = 0x00050078;
1364     cpu->id_pfr0 = 0x111;
1365     cpu->id_pfr1 = 0x1;
1366     cpu->id_dfr0 = 0x2;
1367     cpu->id_afr0 = 0x3;
1368     cpu->id_mmfr0 = 0x01130003;
1369     cpu->id_mmfr1 = 0x10030302;
1370     cpu->id_mmfr2 = 0x01222110;
1371     cpu->isar.id_isar0 = 0x00140011;
1372     cpu->isar.id_isar1 = 0x12002111;
1373     cpu->isar.id_isar2 = 0x11231111;
1374     cpu->isar.id_isar3 = 0x01102131;
1375     cpu->isar.id_isar4 = 0x141;
1376     cpu->reset_auxcr = 7;
1377 }
1378 
1379 static void arm1176_initfn(Object *obj)
1380 {
1381     ARMCPU *cpu = ARM_CPU(obj);
1382 
1383     cpu->dtb_compatible = "arm,arm1176";
1384     set_feature(&cpu->env, ARM_FEATURE_V6K);
1385     set_feature(&cpu->env, ARM_FEATURE_VFP);
1386     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1387     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1388     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1389     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1390     set_feature(&cpu->env, ARM_FEATURE_EL3);
1391     cpu->midr = 0x410fb767;
1392     cpu->reset_fpsid = 0x410120b5;
1393     cpu->isar.mvfr0 = 0x11111111;
1394     cpu->isar.mvfr1 = 0x00000000;
1395     cpu->ctr = 0x1dd20d2;
1396     cpu->reset_sctlr = 0x00050078;
1397     cpu->id_pfr0 = 0x111;
1398     cpu->id_pfr1 = 0x11;
1399     cpu->id_dfr0 = 0x33;
1400     cpu->id_afr0 = 0;
1401     cpu->id_mmfr0 = 0x01130003;
1402     cpu->id_mmfr1 = 0x10030302;
1403     cpu->id_mmfr2 = 0x01222100;
1404     cpu->isar.id_isar0 = 0x0140011;
1405     cpu->isar.id_isar1 = 0x12002111;
1406     cpu->isar.id_isar2 = 0x11231121;
1407     cpu->isar.id_isar3 = 0x01102131;
1408     cpu->isar.id_isar4 = 0x01141;
1409     cpu->reset_auxcr = 7;
1410 }
1411 
1412 static void arm11mpcore_initfn(Object *obj)
1413 {
1414     ARMCPU *cpu = ARM_CPU(obj);
1415 
1416     cpu->dtb_compatible = "arm,arm11mpcore";
1417     set_feature(&cpu->env, ARM_FEATURE_V6K);
1418     set_feature(&cpu->env, ARM_FEATURE_VFP);
1419     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1420     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1421     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1422     cpu->midr = 0x410fb022;
1423     cpu->reset_fpsid = 0x410120b4;
1424     cpu->isar.mvfr0 = 0x11111111;
1425     cpu->isar.mvfr1 = 0x00000000;
1426     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1427     cpu->id_pfr0 = 0x111;
1428     cpu->id_pfr1 = 0x1;
1429     cpu->id_dfr0 = 0;
1430     cpu->id_afr0 = 0x2;
1431     cpu->id_mmfr0 = 0x01100103;
1432     cpu->id_mmfr1 = 0x10020302;
1433     cpu->id_mmfr2 = 0x01222000;
1434     cpu->isar.id_isar0 = 0x00100011;
1435     cpu->isar.id_isar1 = 0x12002111;
1436     cpu->isar.id_isar2 = 0x11221011;
1437     cpu->isar.id_isar3 = 0x01102131;
1438     cpu->isar.id_isar4 = 0x141;
1439     cpu->reset_auxcr = 1;
1440 }
1441 
1442 static void cortex_m0_initfn(Object *obj)
1443 {
1444     ARMCPU *cpu = ARM_CPU(obj);
1445     set_feature(&cpu->env, ARM_FEATURE_V6);
1446     set_feature(&cpu->env, ARM_FEATURE_M);
1447 
1448     cpu->midr = 0x410cc200;
1449 }
1450 
1451 static void cortex_m3_initfn(Object *obj)
1452 {
1453     ARMCPU *cpu = ARM_CPU(obj);
1454     set_feature(&cpu->env, ARM_FEATURE_V7);
1455     set_feature(&cpu->env, ARM_FEATURE_M);
1456     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1457     cpu->midr = 0x410fc231;
1458     cpu->pmsav7_dregion = 8;
1459     cpu->id_pfr0 = 0x00000030;
1460     cpu->id_pfr1 = 0x00000200;
1461     cpu->id_dfr0 = 0x00100000;
1462     cpu->id_afr0 = 0x00000000;
1463     cpu->id_mmfr0 = 0x00000030;
1464     cpu->id_mmfr1 = 0x00000000;
1465     cpu->id_mmfr2 = 0x00000000;
1466     cpu->id_mmfr3 = 0x00000000;
1467     cpu->isar.id_isar0 = 0x01141110;
1468     cpu->isar.id_isar1 = 0x02111000;
1469     cpu->isar.id_isar2 = 0x21112231;
1470     cpu->isar.id_isar3 = 0x01111110;
1471     cpu->isar.id_isar4 = 0x01310102;
1472     cpu->isar.id_isar5 = 0x00000000;
1473     cpu->isar.id_isar6 = 0x00000000;
1474 }
1475 
1476 static void cortex_m4_initfn(Object *obj)
1477 {
1478     ARMCPU *cpu = ARM_CPU(obj);
1479 
1480     set_feature(&cpu->env, ARM_FEATURE_V7);
1481     set_feature(&cpu->env, ARM_FEATURE_M);
1482     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1483     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1484     cpu->midr = 0x410fc240; /* r0p0 */
1485     cpu->pmsav7_dregion = 8;
1486     cpu->id_pfr0 = 0x00000030;
1487     cpu->id_pfr1 = 0x00000200;
1488     cpu->id_dfr0 = 0x00100000;
1489     cpu->id_afr0 = 0x00000000;
1490     cpu->id_mmfr0 = 0x00000030;
1491     cpu->id_mmfr1 = 0x00000000;
1492     cpu->id_mmfr2 = 0x00000000;
1493     cpu->id_mmfr3 = 0x00000000;
1494     cpu->isar.id_isar0 = 0x01141110;
1495     cpu->isar.id_isar1 = 0x02111000;
1496     cpu->isar.id_isar2 = 0x21112231;
1497     cpu->isar.id_isar3 = 0x01111110;
1498     cpu->isar.id_isar4 = 0x01310102;
1499     cpu->isar.id_isar5 = 0x00000000;
1500     cpu->isar.id_isar6 = 0x00000000;
1501 }
1502 
1503 static void cortex_m33_initfn(Object *obj)
1504 {
1505     ARMCPU *cpu = ARM_CPU(obj);
1506 
1507     set_feature(&cpu->env, ARM_FEATURE_V8);
1508     set_feature(&cpu->env, ARM_FEATURE_M);
1509     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1510     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1511     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1512     cpu->midr = 0x410fd213; /* r0p3 */
1513     cpu->pmsav7_dregion = 16;
1514     cpu->sau_sregion = 8;
1515     cpu->id_pfr0 = 0x00000030;
1516     cpu->id_pfr1 = 0x00000210;
1517     cpu->id_dfr0 = 0x00200000;
1518     cpu->id_afr0 = 0x00000000;
1519     cpu->id_mmfr0 = 0x00101F40;
1520     cpu->id_mmfr1 = 0x00000000;
1521     cpu->id_mmfr2 = 0x01000000;
1522     cpu->id_mmfr3 = 0x00000000;
1523     cpu->isar.id_isar0 = 0x01101110;
1524     cpu->isar.id_isar1 = 0x02212000;
1525     cpu->isar.id_isar2 = 0x20232232;
1526     cpu->isar.id_isar3 = 0x01111131;
1527     cpu->isar.id_isar4 = 0x01310132;
1528     cpu->isar.id_isar5 = 0x00000000;
1529     cpu->isar.id_isar6 = 0x00000000;
1530     cpu->clidr = 0x00000000;
1531     cpu->ctr = 0x8000c000;
1532 }
1533 
1534 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1535 {
1536     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1537     CPUClass *cc = CPU_CLASS(oc);
1538 
1539     acc->info = data;
1540 #ifndef CONFIG_USER_ONLY
1541     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1542 #endif
1543 
1544     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1545 }
1546 
1547 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1548     /* Dummy the TCM region regs for the moment */
1549     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1550       .access = PL1_RW, .type = ARM_CP_CONST },
1551     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1552       .access = PL1_RW, .type = ARM_CP_CONST },
1553     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1554       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1555     REGINFO_SENTINEL
1556 };
1557 
1558 static void cortex_r5_initfn(Object *obj)
1559 {
1560     ARMCPU *cpu = ARM_CPU(obj);
1561 
1562     set_feature(&cpu->env, ARM_FEATURE_V7);
1563     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1564     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1565     cpu->midr = 0x411fc153; /* r1p3 */
1566     cpu->id_pfr0 = 0x0131;
1567     cpu->id_pfr1 = 0x001;
1568     cpu->id_dfr0 = 0x010400;
1569     cpu->id_afr0 = 0x0;
1570     cpu->id_mmfr0 = 0x0210030;
1571     cpu->id_mmfr1 = 0x00000000;
1572     cpu->id_mmfr2 = 0x01200000;
1573     cpu->id_mmfr3 = 0x0211;
1574     cpu->isar.id_isar0 = 0x02101111;
1575     cpu->isar.id_isar1 = 0x13112111;
1576     cpu->isar.id_isar2 = 0x21232141;
1577     cpu->isar.id_isar3 = 0x01112131;
1578     cpu->isar.id_isar4 = 0x0010142;
1579     cpu->isar.id_isar5 = 0x0;
1580     cpu->isar.id_isar6 = 0x0;
1581     cpu->mp_is_up = true;
1582     cpu->pmsav7_dregion = 16;
1583     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1584 }
1585 
1586 static void cortex_r5f_initfn(Object *obj)
1587 {
1588     ARMCPU *cpu = ARM_CPU(obj);
1589 
1590     cortex_r5_initfn(obj);
1591     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1592 }
1593 
1594 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1595     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1596       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1597     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1598       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1599     REGINFO_SENTINEL
1600 };
1601 
1602 static void cortex_a8_initfn(Object *obj)
1603 {
1604     ARMCPU *cpu = ARM_CPU(obj);
1605 
1606     cpu->dtb_compatible = "arm,cortex-a8";
1607     set_feature(&cpu->env, ARM_FEATURE_V7);
1608     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1609     set_feature(&cpu->env, ARM_FEATURE_NEON);
1610     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1611     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1612     set_feature(&cpu->env, ARM_FEATURE_EL3);
1613     cpu->midr = 0x410fc080;
1614     cpu->reset_fpsid = 0x410330c0;
1615     cpu->isar.mvfr0 = 0x11110222;
1616     cpu->isar.mvfr1 = 0x00011111;
1617     cpu->ctr = 0x82048004;
1618     cpu->reset_sctlr = 0x00c50078;
1619     cpu->id_pfr0 = 0x1031;
1620     cpu->id_pfr1 = 0x11;
1621     cpu->id_dfr0 = 0x400;
1622     cpu->id_afr0 = 0;
1623     cpu->id_mmfr0 = 0x31100003;
1624     cpu->id_mmfr1 = 0x20000000;
1625     cpu->id_mmfr2 = 0x01202000;
1626     cpu->id_mmfr3 = 0x11;
1627     cpu->isar.id_isar0 = 0x00101111;
1628     cpu->isar.id_isar1 = 0x12112111;
1629     cpu->isar.id_isar2 = 0x21232031;
1630     cpu->isar.id_isar3 = 0x11112131;
1631     cpu->isar.id_isar4 = 0x00111142;
1632     cpu->dbgdidr = 0x15141000;
1633     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1634     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1635     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1636     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1637     cpu->reset_auxcr = 2;
1638     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1639 }
1640 
1641 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1642     /* power_control should be set to maximum latency. Again,
1643      * default to 0 and set by private hook
1644      */
1645     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1646       .access = PL1_RW, .resetvalue = 0,
1647       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1648     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1649       .access = PL1_RW, .resetvalue = 0,
1650       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1651     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1652       .access = PL1_RW, .resetvalue = 0,
1653       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1654     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1655       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1656     /* TLB lockdown control */
1657     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1658       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1659     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1660       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1661     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1662       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1663     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1664       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1665     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1666       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1667     REGINFO_SENTINEL
1668 };
1669 
1670 static void cortex_a9_initfn(Object *obj)
1671 {
1672     ARMCPU *cpu = ARM_CPU(obj);
1673 
1674     cpu->dtb_compatible = "arm,cortex-a9";
1675     set_feature(&cpu->env, ARM_FEATURE_V7);
1676     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1677     set_feature(&cpu->env, ARM_FEATURE_NEON);
1678     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1679     set_feature(&cpu->env, ARM_FEATURE_EL3);
1680     /* Note that A9 supports the MP extensions even for
1681      * A9UP and single-core A9MP (which are both different
1682      * and valid configurations; we don't model A9UP).
1683      */
1684     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1685     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1686     cpu->midr = 0x410fc090;
1687     cpu->reset_fpsid = 0x41033090;
1688     cpu->isar.mvfr0 = 0x11110222;
1689     cpu->isar.mvfr1 = 0x01111111;
1690     cpu->ctr = 0x80038003;
1691     cpu->reset_sctlr = 0x00c50078;
1692     cpu->id_pfr0 = 0x1031;
1693     cpu->id_pfr1 = 0x11;
1694     cpu->id_dfr0 = 0x000;
1695     cpu->id_afr0 = 0;
1696     cpu->id_mmfr0 = 0x00100103;
1697     cpu->id_mmfr1 = 0x20000000;
1698     cpu->id_mmfr2 = 0x01230000;
1699     cpu->id_mmfr3 = 0x00002111;
1700     cpu->isar.id_isar0 = 0x00101111;
1701     cpu->isar.id_isar1 = 0x13112111;
1702     cpu->isar.id_isar2 = 0x21232041;
1703     cpu->isar.id_isar3 = 0x11112131;
1704     cpu->isar.id_isar4 = 0x00111142;
1705     cpu->dbgdidr = 0x35141000;
1706     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1707     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1708     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1709     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1710 }
1711 
1712 #ifndef CONFIG_USER_ONLY
1713 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1714 {
1715     /* Linux wants the number of processors from here.
1716      * Might as well set the interrupt-controller bit too.
1717      */
1718     return ((smp_cpus - 1) << 24) | (1 << 23);
1719 }
1720 #endif
1721 
1722 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1723 #ifndef CONFIG_USER_ONLY
1724     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1725       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1726       .writefn = arm_cp_write_ignore, },
1727 #endif
1728     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1729       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1730     REGINFO_SENTINEL
1731 };
1732 
1733 static void cortex_a7_initfn(Object *obj)
1734 {
1735     ARMCPU *cpu = ARM_CPU(obj);
1736 
1737     cpu->dtb_compatible = "arm,cortex-a7";
1738     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1739     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1740     set_feature(&cpu->env, ARM_FEATURE_NEON);
1741     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1742     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1743     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1744     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1745     set_feature(&cpu->env, ARM_FEATURE_EL2);
1746     set_feature(&cpu->env, ARM_FEATURE_EL3);
1747     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1748     cpu->midr = 0x410fc075;
1749     cpu->reset_fpsid = 0x41023075;
1750     cpu->isar.mvfr0 = 0x10110222;
1751     cpu->isar.mvfr1 = 0x11111111;
1752     cpu->ctr = 0x84448003;
1753     cpu->reset_sctlr = 0x00c50078;
1754     cpu->id_pfr0 = 0x00001131;
1755     cpu->id_pfr1 = 0x00011011;
1756     cpu->id_dfr0 = 0x02010555;
1757     cpu->id_afr0 = 0x00000000;
1758     cpu->id_mmfr0 = 0x10101105;
1759     cpu->id_mmfr1 = 0x40000000;
1760     cpu->id_mmfr2 = 0x01240000;
1761     cpu->id_mmfr3 = 0x02102211;
1762     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1763      * table 4-41 gives 0x02101110, which includes the arm div insns.
1764      */
1765     cpu->isar.id_isar0 = 0x02101110;
1766     cpu->isar.id_isar1 = 0x13112111;
1767     cpu->isar.id_isar2 = 0x21232041;
1768     cpu->isar.id_isar3 = 0x11112131;
1769     cpu->isar.id_isar4 = 0x10011142;
1770     cpu->dbgdidr = 0x3515f005;
1771     cpu->clidr = 0x0a200023;
1772     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1773     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1774     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1775     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1776 }
1777 
1778 static void cortex_a15_initfn(Object *obj)
1779 {
1780     ARMCPU *cpu = ARM_CPU(obj);
1781 
1782     cpu->dtb_compatible = "arm,cortex-a15";
1783     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1784     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1785     set_feature(&cpu->env, ARM_FEATURE_NEON);
1786     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1787     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1788     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1789     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1790     set_feature(&cpu->env, ARM_FEATURE_EL2);
1791     set_feature(&cpu->env, ARM_FEATURE_EL3);
1792     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1793     cpu->midr = 0x412fc0f1;
1794     cpu->reset_fpsid = 0x410430f0;
1795     cpu->isar.mvfr0 = 0x10110222;
1796     cpu->isar.mvfr1 = 0x11111111;
1797     cpu->ctr = 0x8444c004;
1798     cpu->reset_sctlr = 0x00c50078;
1799     cpu->id_pfr0 = 0x00001131;
1800     cpu->id_pfr1 = 0x00011011;
1801     cpu->id_dfr0 = 0x02010555;
1802     cpu->id_afr0 = 0x00000000;
1803     cpu->id_mmfr0 = 0x10201105;
1804     cpu->id_mmfr1 = 0x20000000;
1805     cpu->id_mmfr2 = 0x01240000;
1806     cpu->id_mmfr3 = 0x02102211;
1807     cpu->isar.id_isar0 = 0x02101110;
1808     cpu->isar.id_isar1 = 0x13112111;
1809     cpu->isar.id_isar2 = 0x21232041;
1810     cpu->isar.id_isar3 = 0x11112131;
1811     cpu->isar.id_isar4 = 0x10011142;
1812     cpu->dbgdidr = 0x3515f021;
1813     cpu->clidr = 0x0a200023;
1814     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1815     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1816     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1817     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1818 }
1819 
1820 static void ti925t_initfn(Object *obj)
1821 {
1822     ARMCPU *cpu = ARM_CPU(obj);
1823     set_feature(&cpu->env, ARM_FEATURE_V4T);
1824     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1825     cpu->midr = ARM_CPUID_TI925T;
1826     cpu->ctr = 0x5109149;
1827     cpu->reset_sctlr = 0x00000070;
1828 }
1829 
1830 static void sa1100_initfn(Object *obj)
1831 {
1832     ARMCPU *cpu = ARM_CPU(obj);
1833 
1834     cpu->dtb_compatible = "intel,sa1100";
1835     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1836     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1837     cpu->midr = 0x4401A11B;
1838     cpu->reset_sctlr = 0x00000070;
1839 }
1840 
1841 static void sa1110_initfn(Object *obj)
1842 {
1843     ARMCPU *cpu = ARM_CPU(obj);
1844     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1845     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1846     cpu->midr = 0x6901B119;
1847     cpu->reset_sctlr = 0x00000070;
1848 }
1849 
1850 static void pxa250_initfn(Object *obj)
1851 {
1852     ARMCPU *cpu = ARM_CPU(obj);
1853 
1854     cpu->dtb_compatible = "marvell,xscale";
1855     set_feature(&cpu->env, ARM_FEATURE_V5);
1856     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1857     cpu->midr = 0x69052100;
1858     cpu->ctr = 0xd172172;
1859     cpu->reset_sctlr = 0x00000078;
1860 }
1861 
1862 static void pxa255_initfn(Object *obj)
1863 {
1864     ARMCPU *cpu = ARM_CPU(obj);
1865 
1866     cpu->dtb_compatible = "marvell,xscale";
1867     set_feature(&cpu->env, ARM_FEATURE_V5);
1868     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1869     cpu->midr = 0x69052d00;
1870     cpu->ctr = 0xd172172;
1871     cpu->reset_sctlr = 0x00000078;
1872 }
1873 
1874 static void pxa260_initfn(Object *obj)
1875 {
1876     ARMCPU *cpu = ARM_CPU(obj);
1877 
1878     cpu->dtb_compatible = "marvell,xscale";
1879     set_feature(&cpu->env, ARM_FEATURE_V5);
1880     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1881     cpu->midr = 0x69052903;
1882     cpu->ctr = 0xd172172;
1883     cpu->reset_sctlr = 0x00000078;
1884 }
1885 
1886 static void pxa261_initfn(Object *obj)
1887 {
1888     ARMCPU *cpu = ARM_CPU(obj);
1889 
1890     cpu->dtb_compatible = "marvell,xscale";
1891     set_feature(&cpu->env, ARM_FEATURE_V5);
1892     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1893     cpu->midr = 0x69052d05;
1894     cpu->ctr = 0xd172172;
1895     cpu->reset_sctlr = 0x00000078;
1896 }
1897 
1898 static void pxa262_initfn(Object *obj)
1899 {
1900     ARMCPU *cpu = ARM_CPU(obj);
1901 
1902     cpu->dtb_compatible = "marvell,xscale";
1903     set_feature(&cpu->env, ARM_FEATURE_V5);
1904     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1905     cpu->midr = 0x69052d06;
1906     cpu->ctr = 0xd172172;
1907     cpu->reset_sctlr = 0x00000078;
1908 }
1909 
1910 static void pxa270a0_initfn(Object *obj)
1911 {
1912     ARMCPU *cpu = ARM_CPU(obj);
1913 
1914     cpu->dtb_compatible = "marvell,xscale";
1915     set_feature(&cpu->env, ARM_FEATURE_V5);
1916     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1917     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1918     cpu->midr = 0x69054110;
1919     cpu->ctr = 0xd172172;
1920     cpu->reset_sctlr = 0x00000078;
1921 }
1922 
1923 static void pxa270a1_initfn(Object *obj)
1924 {
1925     ARMCPU *cpu = ARM_CPU(obj);
1926 
1927     cpu->dtb_compatible = "marvell,xscale";
1928     set_feature(&cpu->env, ARM_FEATURE_V5);
1929     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1930     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1931     cpu->midr = 0x69054111;
1932     cpu->ctr = 0xd172172;
1933     cpu->reset_sctlr = 0x00000078;
1934 }
1935 
1936 static void pxa270b0_initfn(Object *obj)
1937 {
1938     ARMCPU *cpu = ARM_CPU(obj);
1939 
1940     cpu->dtb_compatible = "marvell,xscale";
1941     set_feature(&cpu->env, ARM_FEATURE_V5);
1942     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1943     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1944     cpu->midr = 0x69054112;
1945     cpu->ctr = 0xd172172;
1946     cpu->reset_sctlr = 0x00000078;
1947 }
1948 
1949 static void pxa270b1_initfn(Object *obj)
1950 {
1951     ARMCPU *cpu = ARM_CPU(obj);
1952 
1953     cpu->dtb_compatible = "marvell,xscale";
1954     set_feature(&cpu->env, ARM_FEATURE_V5);
1955     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1956     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1957     cpu->midr = 0x69054113;
1958     cpu->ctr = 0xd172172;
1959     cpu->reset_sctlr = 0x00000078;
1960 }
1961 
1962 static void pxa270c0_initfn(Object *obj)
1963 {
1964     ARMCPU *cpu = ARM_CPU(obj);
1965 
1966     cpu->dtb_compatible = "marvell,xscale";
1967     set_feature(&cpu->env, ARM_FEATURE_V5);
1968     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1969     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1970     cpu->midr = 0x69054114;
1971     cpu->ctr = 0xd172172;
1972     cpu->reset_sctlr = 0x00000078;
1973 }
1974 
1975 static void pxa270c5_initfn(Object *obj)
1976 {
1977     ARMCPU *cpu = ARM_CPU(obj);
1978 
1979     cpu->dtb_compatible = "marvell,xscale";
1980     set_feature(&cpu->env, ARM_FEATURE_V5);
1981     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1982     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1983     cpu->midr = 0x69054117;
1984     cpu->ctr = 0xd172172;
1985     cpu->reset_sctlr = 0x00000078;
1986 }
1987 
1988 #ifndef TARGET_AARCH64
1989 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1990  * otherwise, a CPU with as many features enabled as our emulation supports.
1991  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1992  * this only needs to handle 32 bits.
1993  */
1994 static void arm_max_initfn(Object *obj)
1995 {
1996     ARMCPU *cpu = ARM_CPU(obj);
1997 
1998     if (kvm_enabled()) {
1999         kvm_arm_set_cpu_features_from_host(cpu);
2000     } else {
2001         cortex_a15_initfn(obj);
2002 #ifdef CONFIG_USER_ONLY
2003         /* We don't set these in system emulation mode for the moment,
2004          * since we don't correctly set (all of) the ID registers to
2005          * advertise them.
2006          */
2007         set_feature(&cpu->env, ARM_FEATURE_V8);
2008         {
2009             uint32_t t;
2010 
2011             t = cpu->isar.id_isar5;
2012             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2013             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2014             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2015             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2016             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2017             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2018             cpu->isar.id_isar5 = t;
2019 
2020             t = cpu->isar.id_isar6;
2021             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2022             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2023             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2024             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2025             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2026             cpu->isar.id_isar6 = t;
2027 
2028             t = cpu->id_mmfr4;
2029             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2030             cpu->id_mmfr4 = t;
2031         }
2032 #endif
2033     }
2034 }
2035 #endif
2036 
2037 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2038 
2039 struct ARMCPUInfo {
2040     const char *name;
2041     void (*initfn)(Object *obj);
2042     void (*class_init)(ObjectClass *oc, void *data);
2043 };
2044 
2045 static const ARMCPUInfo arm_cpus[] = {
2046 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2047     { .name = "arm926",      .initfn = arm926_initfn },
2048     { .name = "arm946",      .initfn = arm946_initfn },
2049     { .name = "arm1026",     .initfn = arm1026_initfn },
2050     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2051      * older core than plain "arm1136". In particular this does not
2052      * have the v6K features.
2053      */
2054     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2055     { .name = "arm1136",     .initfn = arm1136_initfn },
2056     { .name = "arm1176",     .initfn = arm1176_initfn },
2057     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2058     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2059                              .class_init = arm_v7m_class_init },
2060     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2061                              .class_init = arm_v7m_class_init },
2062     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2063                              .class_init = arm_v7m_class_init },
2064     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2065                              .class_init = arm_v7m_class_init },
2066     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2067     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2068     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2069     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2070     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2071     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2072     { .name = "ti925t",      .initfn = ti925t_initfn },
2073     { .name = "sa1100",      .initfn = sa1100_initfn },
2074     { .name = "sa1110",      .initfn = sa1110_initfn },
2075     { .name = "pxa250",      .initfn = pxa250_initfn },
2076     { .name = "pxa255",      .initfn = pxa255_initfn },
2077     { .name = "pxa260",      .initfn = pxa260_initfn },
2078     { .name = "pxa261",      .initfn = pxa261_initfn },
2079     { .name = "pxa262",      .initfn = pxa262_initfn },
2080     /* "pxa270" is an alias for "pxa270-a0" */
2081     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2082     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2083     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2084     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2085     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2086     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2087     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2088 #ifndef TARGET_AARCH64
2089     { .name = "max",         .initfn = arm_max_initfn },
2090 #endif
2091 #ifdef CONFIG_USER_ONLY
2092     { .name = "any",         .initfn = arm_max_initfn },
2093 #endif
2094 #endif
2095     { .name = NULL }
2096 };
2097 
2098 static Property arm_cpu_properties[] = {
2099     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2100     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2101     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2102     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2103                         mp_affinity, ARM64_AFFINITY_INVALID),
2104     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2105     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2106     DEFINE_PROP_END_OF_LIST()
2107 };
2108 
2109 #ifdef CONFIG_USER_ONLY
2110 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2111                                     int rw, int mmu_idx)
2112 {
2113     ARMCPU *cpu = ARM_CPU(cs);
2114     CPUARMState *env = &cpu->env;
2115 
2116     env->exception.vaddress = address;
2117     if (rw == 2) {
2118         cs->exception_index = EXCP_PREFETCH_ABORT;
2119     } else {
2120         cs->exception_index = EXCP_DATA_ABORT;
2121     }
2122     return 1;
2123 }
2124 #endif
2125 
2126 static gchar *arm_gdb_arch_name(CPUState *cs)
2127 {
2128     ARMCPU *cpu = ARM_CPU(cs);
2129     CPUARMState *env = &cpu->env;
2130 
2131     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2132         return g_strdup("iwmmxt");
2133     }
2134     return g_strdup("arm");
2135 }
2136 
2137 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2138 {
2139     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2140     CPUClass *cc = CPU_CLASS(acc);
2141     DeviceClass *dc = DEVICE_CLASS(oc);
2142 
2143     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2144                                     &acc->parent_realize);
2145     dc->props = arm_cpu_properties;
2146 
2147     acc->parent_reset = cc->reset;
2148     cc->reset = arm_cpu_reset;
2149 
2150     cc->class_by_name = arm_cpu_class_by_name;
2151     cc->has_work = arm_cpu_has_work;
2152     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2153     cc->dump_state = arm_cpu_dump_state;
2154     cc->set_pc = arm_cpu_set_pc;
2155     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2156     cc->gdb_read_register = arm_cpu_gdb_read_register;
2157     cc->gdb_write_register = arm_cpu_gdb_write_register;
2158 #ifdef CONFIG_USER_ONLY
2159     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2160 #else
2161     cc->do_interrupt = arm_cpu_do_interrupt;
2162     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2163     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2164     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2165     cc->asidx_from_attrs = arm_asidx_from_attrs;
2166     cc->vmsd = &vmstate_arm_cpu;
2167     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2168     cc->write_elf64_note = arm_cpu_write_elf64_note;
2169     cc->write_elf32_note = arm_cpu_write_elf32_note;
2170 #endif
2171     cc->gdb_num_core_regs = 26;
2172     cc->gdb_core_xml_file = "arm-core.xml";
2173     cc->gdb_arch_name = arm_gdb_arch_name;
2174     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2175     cc->gdb_stop_before_watchpoint = true;
2176     cc->debug_excp_handler = arm_debug_excp_handler;
2177     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2178 #if !defined(CONFIG_USER_ONLY)
2179     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2180 #endif
2181 
2182     cc->disas_set_info = arm_disas_set_info;
2183 #ifdef CONFIG_TCG
2184     cc->tcg_initialize = arm_translate_init;
2185 #endif
2186 }
2187 
2188 #ifdef CONFIG_KVM
2189 static void arm_host_initfn(Object *obj)
2190 {
2191     ARMCPU *cpu = ARM_CPU(obj);
2192 
2193     kvm_arm_set_cpu_features_from_host(cpu);
2194     arm_cpu_post_init(obj);
2195 }
2196 
2197 static const TypeInfo host_arm_cpu_type_info = {
2198     .name = TYPE_ARM_HOST_CPU,
2199 #ifdef TARGET_AARCH64
2200     .parent = TYPE_AARCH64_CPU,
2201 #else
2202     .parent = TYPE_ARM_CPU,
2203 #endif
2204     .instance_init = arm_host_initfn,
2205 };
2206 
2207 #endif
2208 
2209 static void arm_cpu_instance_init(Object *obj)
2210 {
2211     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2212 
2213     acc->info->initfn(obj);
2214     arm_cpu_post_init(obj);
2215 }
2216 
2217 static void cpu_register_class_init(ObjectClass *oc, void *data)
2218 {
2219     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2220 
2221     acc->info = data;
2222 }
2223 
2224 static void cpu_register(const ARMCPUInfo *info)
2225 {
2226     TypeInfo type_info = {
2227         .parent = TYPE_ARM_CPU,
2228         .instance_size = sizeof(ARMCPU),
2229         .instance_init = arm_cpu_instance_init,
2230         .class_size = sizeof(ARMCPUClass),
2231         .class_init = info->class_init ?: cpu_register_class_init,
2232         .class_data = (void *)info,
2233     };
2234 
2235     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2236     type_register(&type_info);
2237     g_free((void *)type_info.name);
2238 }
2239 
2240 static const TypeInfo arm_cpu_type_info = {
2241     .name = TYPE_ARM_CPU,
2242     .parent = TYPE_CPU,
2243     .instance_size = sizeof(ARMCPU),
2244     .instance_init = arm_cpu_initfn,
2245     .instance_finalize = arm_cpu_finalizefn,
2246     .abstract = true,
2247     .class_size = sizeof(ARMCPUClass),
2248     .class_init = arm_cpu_class_init,
2249 };
2250 
2251 static const TypeInfo idau_interface_type_info = {
2252     .name = TYPE_IDAU_INTERFACE,
2253     .parent = TYPE_INTERFACE,
2254     .class_size = sizeof(IDAUInterfaceClass),
2255 };
2256 
2257 static void arm_cpu_register_types(void)
2258 {
2259     const ARMCPUInfo *info = arm_cpus;
2260 
2261     type_register_static(&arm_cpu_type_info);
2262     type_register_static(&idau_interface_type_info);
2263 
2264     while (info->name) {
2265         cpu_register(info);
2266         info++;
2267     }
2268 
2269 #ifdef CONFIG_KVM
2270     type_register_static(&host_arm_cpu_type_info);
2271 #endif
2272 }
2273 
2274 type_init(arm_cpu_register_types)
2275