1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "target/arm/idau.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "qapi/visitor.h" 26 #include "cpu.h" 27 #include "internals.h" 28 #include "qemu-common.h" 29 #include "exec/exec-all.h" 30 #include "hw/qdev-properties.h" 31 #if !defined(CONFIG_USER_ONLY) 32 #include "hw/loader.h" 33 #endif 34 #include "hw/arm/arm.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hw_accel.h" 37 #include "kvm_arm.h" 38 #include "disas/capstone.h" 39 #include "fpu/softfloat.h" 40 41 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 42 { 43 ARMCPU *cpu = ARM_CPU(cs); 44 CPUARMState *env = &cpu->env; 45 46 if (is_a64(env)) { 47 env->pc = value; 48 env->thumb = 0; 49 } else { 50 env->regs[15] = value & ~1; 51 env->thumb = value & 1; 52 } 53 } 54 55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) 56 { 57 ARMCPU *cpu = ARM_CPU(cs); 58 CPUARMState *env = &cpu->env; 59 60 /* 61 * It's OK to look at env for the current mode here, because it's 62 * never possible for an AArch64 TB to chain to an AArch32 TB. 63 */ 64 if (is_a64(env)) { 65 env->pc = tb->pc; 66 } else { 67 env->regs[15] = tb->pc; 68 } 69 } 70 71 static bool arm_cpu_has_work(CPUState *cs) 72 { 73 ARMCPU *cpu = ARM_CPU(cs); 74 75 return (cpu->power_state != PSCI_OFF) 76 && cs->interrupt_request & 77 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 78 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 79 | CPU_INTERRUPT_EXITTB); 80 } 81 82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 83 void *opaque) 84 { 85 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 86 87 entry->hook = hook; 88 entry->opaque = opaque; 89 90 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 91 } 92 93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 94 void *opaque) 95 { 96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 97 98 entry->hook = hook; 99 entry->opaque = opaque; 100 101 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 102 } 103 104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 105 { 106 /* Reset a single ARMCPRegInfo register */ 107 ARMCPRegInfo *ri = value; 108 ARMCPU *cpu = opaque; 109 110 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 111 return; 112 } 113 114 if (ri->resetfn) { 115 ri->resetfn(&cpu->env, ri); 116 return; 117 } 118 119 /* A zero offset is never possible as it would be regs[0] 120 * so we use it to indicate that reset is being handled elsewhere. 121 * This is basically only used for fields in non-core coprocessors 122 * (like the pxa2xx ones). 123 */ 124 if (!ri->fieldoffset) { 125 return; 126 } 127 128 if (cpreg_field_is_64bit(ri)) { 129 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 130 } else { 131 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 132 } 133 } 134 135 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 136 { 137 /* Purely an assertion check: we've already done reset once, 138 * so now check that running the reset for the cpreg doesn't 139 * change its value. This traps bugs where two different cpregs 140 * both try to reset the same state field but to different values. 141 */ 142 ARMCPRegInfo *ri = value; 143 ARMCPU *cpu = opaque; 144 uint64_t oldvalue, newvalue; 145 146 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 147 return; 148 } 149 150 oldvalue = read_raw_cp_reg(&cpu->env, ri); 151 cp_reg_reset(key, value, opaque); 152 newvalue = read_raw_cp_reg(&cpu->env, ri); 153 assert(oldvalue == newvalue); 154 } 155 156 /* CPUClass::reset() */ 157 static void arm_cpu_reset(CPUState *s) 158 { 159 ARMCPU *cpu = ARM_CPU(s); 160 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 161 CPUARMState *env = &cpu->env; 162 163 acc->parent_reset(s); 164 165 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 166 167 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 168 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 169 170 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 171 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 172 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 173 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 174 175 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 176 s->halted = cpu->start_powered_off; 177 178 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 179 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 180 } 181 182 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 183 /* 64 bit CPUs always start in 64 bit mode */ 184 env->aarch64 = 1; 185 #if defined(CONFIG_USER_ONLY) 186 env->pstate = PSTATE_MODE_EL0t; 187 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 188 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 189 /* Enable all PAC keys. */ 190 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 191 SCTLR_EnDA | SCTLR_EnDB); 192 /* Enable all PAC instructions */ 193 env->cp15.hcr_el2 |= HCR_API; 194 env->cp15.scr_el3 |= SCR_API; 195 /* and to the FP/Neon instructions */ 196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 197 /* and to the SVE instructions */ 198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 199 env->cp15.cptr_el[3] |= CPTR_EZ; 200 /* with maximum vector length */ 201 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1; 202 env->vfp.zcr_el[2] = env->vfp.zcr_el[1]; 203 env->vfp.zcr_el[3] = env->vfp.zcr_el[1]; 204 /* 205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0, 206 * turning on both here will produce smaller code and otherwise 207 * make no difference to the user-level emulation. 208 */ 209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); 210 #else 211 /* Reset into the highest available EL */ 212 if (arm_feature(env, ARM_FEATURE_EL3)) { 213 env->pstate = PSTATE_MODE_EL3h; 214 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 215 env->pstate = PSTATE_MODE_EL2h; 216 } else { 217 env->pstate = PSTATE_MODE_EL1h; 218 } 219 env->pc = cpu->rvbar; 220 #endif 221 } else { 222 #if defined(CONFIG_USER_ONLY) 223 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 225 #endif 226 } 227 228 #if defined(CONFIG_USER_ONLY) 229 env->uncached_cpsr = ARM_CPU_MODE_USR; 230 /* For user mode we must enable access to coprocessors */ 231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 233 env->cp15.c15_cpar = 3; 234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 235 env->cp15.c15_cpar = 1; 236 } 237 #else 238 239 /* 240 * If the highest available EL is EL2, AArch32 will start in Hyp 241 * mode; otherwise it starts in SVC. Note that if we start in 242 * AArch64 then these values in the uncached_cpsr will be ignored. 243 */ 244 if (arm_feature(env, ARM_FEATURE_EL2) && 245 !arm_feature(env, ARM_FEATURE_EL3)) { 246 env->uncached_cpsr = ARM_CPU_MODE_HYP; 247 } else { 248 env->uncached_cpsr = ARM_CPU_MODE_SVC; 249 } 250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 251 252 if (arm_feature(env, ARM_FEATURE_M)) { 253 uint32_t initial_msp; /* Loaded from 0x0 */ 254 uint32_t initial_pc; /* Loaded from 0x4 */ 255 uint8_t *rom; 256 uint32_t vecbase; 257 258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 259 env->v7m.secure = true; 260 } else { 261 /* This bit resets to 0 if security is supported, but 1 if 262 * it is not. The bit is not present in v7M, but we set it 263 * here so we can avoid having to make checks on it conditional 264 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 265 */ 266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 267 } 268 269 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 270 * that it resets to 1, so QEMU always does that rather than making 271 * it dependent on CPU model. In v8M it is RES1. 272 */ 273 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 274 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 275 if (arm_feature(env, ARM_FEATURE_V8)) { 276 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 277 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 278 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 279 } 280 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 281 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 282 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 283 } 284 285 /* Unlike A/R profile, M profile defines the reset LR value */ 286 env->regs[14] = 0xffffffff; 287 288 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 289 290 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 291 vecbase = env->v7m.vecbase[env->v7m.secure]; 292 rom = rom_ptr(vecbase, 8); 293 if (rom) { 294 /* Address zero is covered by ROM which hasn't yet been 295 * copied into physical memory. 296 */ 297 initial_msp = ldl_p(rom); 298 initial_pc = ldl_p(rom + 4); 299 } else { 300 /* Address zero not covered by a ROM blob, or the ROM blob 301 * is in non-modifiable memory and this is a second reset after 302 * it got copied into memory. In the latter case, rom_ptr 303 * will return a NULL pointer and we should use ldl_phys instead. 304 */ 305 initial_msp = ldl_phys(s->as, vecbase); 306 initial_pc = ldl_phys(s->as, vecbase + 4); 307 } 308 309 env->regs[13] = initial_msp & 0xFFFFFFFC; 310 env->regs[15] = initial_pc & ~1; 311 env->thumb = initial_pc & 1; 312 } 313 314 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 315 * executing as AArch32 then check if highvecs are enabled and 316 * adjust the PC accordingly. 317 */ 318 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 319 env->regs[15] = 0xFFFF0000; 320 } 321 322 /* M profile requires that reset clears the exclusive monitor; 323 * A profile does not, but clearing it makes more sense than having it 324 * set with an exclusive access on address zero. 325 */ 326 arm_clear_exclusive(env); 327 328 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 329 #endif 330 331 if (arm_feature(env, ARM_FEATURE_PMSA)) { 332 if (cpu->pmsav7_dregion > 0) { 333 if (arm_feature(env, ARM_FEATURE_V8)) { 334 memset(env->pmsav8.rbar[M_REG_NS], 0, 335 sizeof(*env->pmsav8.rbar[M_REG_NS]) 336 * cpu->pmsav7_dregion); 337 memset(env->pmsav8.rlar[M_REG_NS], 0, 338 sizeof(*env->pmsav8.rlar[M_REG_NS]) 339 * cpu->pmsav7_dregion); 340 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 341 memset(env->pmsav8.rbar[M_REG_S], 0, 342 sizeof(*env->pmsav8.rbar[M_REG_S]) 343 * cpu->pmsav7_dregion); 344 memset(env->pmsav8.rlar[M_REG_S], 0, 345 sizeof(*env->pmsav8.rlar[M_REG_S]) 346 * cpu->pmsav7_dregion); 347 } 348 } else if (arm_feature(env, ARM_FEATURE_V7)) { 349 memset(env->pmsav7.drbar, 0, 350 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 351 memset(env->pmsav7.drsr, 0, 352 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 353 memset(env->pmsav7.dracr, 0, 354 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 355 } 356 } 357 env->pmsav7.rnr[M_REG_NS] = 0; 358 env->pmsav7.rnr[M_REG_S] = 0; 359 env->pmsav8.mair0[M_REG_NS] = 0; 360 env->pmsav8.mair0[M_REG_S] = 0; 361 env->pmsav8.mair1[M_REG_NS] = 0; 362 env->pmsav8.mair1[M_REG_S] = 0; 363 } 364 365 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 366 if (cpu->sau_sregion > 0) { 367 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 368 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 369 } 370 env->sau.rnr = 0; 371 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 372 * the Cortex-M33 does. 373 */ 374 env->sau.ctrl = 0; 375 } 376 377 set_flush_to_zero(1, &env->vfp.standard_fp_status); 378 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 379 set_default_nan_mode(1, &env->vfp.standard_fp_status); 380 set_float_detect_tininess(float_tininess_before_rounding, 381 &env->vfp.fp_status); 382 set_float_detect_tininess(float_tininess_before_rounding, 383 &env->vfp.standard_fp_status); 384 set_float_detect_tininess(float_tininess_before_rounding, 385 &env->vfp.fp_status_f16); 386 #ifndef CONFIG_USER_ONLY 387 if (kvm_enabled()) { 388 kvm_arm_reset_vcpu(cpu); 389 } 390 #endif 391 392 hw_breakpoint_update_all(cpu); 393 hw_watchpoint_update_all(cpu); 394 } 395 396 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 397 { 398 CPUClass *cc = CPU_GET_CLASS(cs); 399 CPUARMState *env = cs->env_ptr; 400 uint32_t cur_el = arm_current_el(env); 401 bool secure = arm_is_secure(env); 402 uint32_t target_el; 403 uint32_t excp_idx; 404 bool ret = false; 405 406 if (interrupt_request & CPU_INTERRUPT_FIQ) { 407 excp_idx = EXCP_FIQ; 408 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 409 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 410 cs->exception_index = excp_idx; 411 env->exception.target_el = target_el; 412 cc->do_interrupt(cs); 413 ret = true; 414 } 415 } 416 if (interrupt_request & CPU_INTERRUPT_HARD) { 417 excp_idx = EXCP_IRQ; 418 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 419 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 420 cs->exception_index = excp_idx; 421 env->exception.target_el = target_el; 422 cc->do_interrupt(cs); 423 ret = true; 424 } 425 } 426 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 427 excp_idx = EXCP_VIRQ; 428 target_el = 1; 429 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 430 cs->exception_index = excp_idx; 431 env->exception.target_el = target_el; 432 cc->do_interrupt(cs); 433 ret = true; 434 } 435 } 436 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 437 excp_idx = EXCP_VFIQ; 438 target_el = 1; 439 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 440 cs->exception_index = excp_idx; 441 env->exception.target_el = target_el; 442 cc->do_interrupt(cs); 443 ret = true; 444 } 445 } 446 447 return ret; 448 } 449 450 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 451 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 452 { 453 CPUClass *cc = CPU_GET_CLASS(cs); 454 ARMCPU *cpu = ARM_CPU(cs); 455 CPUARMState *env = &cpu->env; 456 bool ret = false; 457 458 /* ARMv7-M interrupt masking works differently than -A or -R. 459 * There is no FIQ/IRQ distinction. Instead of I and F bits 460 * masking FIQ and IRQ interrupts, an exception is taken only 461 * if it is higher priority than the current execution priority 462 * (which depends on state like BASEPRI, FAULTMASK and the 463 * currently active exception). 464 */ 465 if (interrupt_request & CPU_INTERRUPT_HARD 466 && (armv7m_nvic_can_take_pending_exception(env->nvic))) { 467 cs->exception_index = EXCP_IRQ; 468 cc->do_interrupt(cs); 469 ret = true; 470 } 471 return ret; 472 } 473 #endif 474 475 void arm_cpu_update_virq(ARMCPU *cpu) 476 { 477 /* 478 * Update the interrupt level for VIRQ, which is the logical OR of 479 * the HCR_EL2.VI bit and the input line level from the GIC. 480 */ 481 CPUARMState *env = &cpu->env; 482 CPUState *cs = CPU(cpu); 483 484 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 485 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 486 487 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 488 if (new_state) { 489 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 490 } else { 491 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 492 } 493 } 494 } 495 496 void arm_cpu_update_vfiq(ARMCPU *cpu) 497 { 498 /* 499 * Update the interrupt level for VFIQ, which is the logical OR of 500 * the HCR_EL2.VF bit and the input line level from the GIC. 501 */ 502 CPUARMState *env = &cpu->env; 503 CPUState *cs = CPU(cpu); 504 505 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 506 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 507 508 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 509 if (new_state) { 510 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 511 } else { 512 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 513 } 514 } 515 } 516 517 #ifndef CONFIG_USER_ONLY 518 static void arm_cpu_set_irq(void *opaque, int irq, int level) 519 { 520 ARMCPU *cpu = opaque; 521 CPUARMState *env = &cpu->env; 522 CPUState *cs = CPU(cpu); 523 static const int mask[] = { 524 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 525 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 526 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 527 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 528 }; 529 530 if (level) { 531 env->irq_line_state |= mask[irq]; 532 } else { 533 env->irq_line_state &= ~mask[irq]; 534 } 535 536 switch (irq) { 537 case ARM_CPU_VIRQ: 538 assert(arm_feature(env, ARM_FEATURE_EL2)); 539 arm_cpu_update_virq(cpu); 540 break; 541 case ARM_CPU_VFIQ: 542 assert(arm_feature(env, ARM_FEATURE_EL2)); 543 arm_cpu_update_vfiq(cpu); 544 break; 545 case ARM_CPU_IRQ: 546 case ARM_CPU_FIQ: 547 if (level) { 548 cpu_interrupt(cs, mask[irq]); 549 } else { 550 cpu_reset_interrupt(cs, mask[irq]); 551 } 552 break; 553 default: 554 g_assert_not_reached(); 555 } 556 } 557 558 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 559 { 560 #ifdef CONFIG_KVM 561 ARMCPU *cpu = opaque; 562 CPUARMState *env = &cpu->env; 563 CPUState *cs = CPU(cpu); 564 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 565 uint32_t linestate_bit; 566 567 switch (irq) { 568 case ARM_CPU_IRQ: 569 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 570 linestate_bit = CPU_INTERRUPT_HARD; 571 break; 572 case ARM_CPU_FIQ: 573 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 574 linestate_bit = CPU_INTERRUPT_FIQ; 575 break; 576 default: 577 g_assert_not_reached(); 578 } 579 580 if (level) { 581 env->irq_line_state |= linestate_bit; 582 } else { 583 env->irq_line_state &= ~linestate_bit; 584 } 585 586 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 587 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 588 #endif 589 } 590 591 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 592 { 593 ARMCPU *cpu = ARM_CPU(cs); 594 CPUARMState *env = &cpu->env; 595 596 cpu_synchronize_state(cs); 597 return arm_cpu_data_is_big_endian(env); 598 } 599 600 #endif 601 602 static inline void set_feature(CPUARMState *env, int feature) 603 { 604 env->features |= 1ULL << feature; 605 } 606 607 static inline void unset_feature(CPUARMState *env, int feature) 608 { 609 env->features &= ~(1ULL << feature); 610 } 611 612 static int 613 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 614 { 615 return print_insn_arm(pc | 1, info); 616 } 617 618 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 619 { 620 ARMCPU *ac = ARM_CPU(cpu); 621 CPUARMState *env = &ac->env; 622 bool sctlr_b; 623 624 if (is_a64(env)) { 625 /* We might not be compiled with the A64 disassembler 626 * because it needs a C++ compiler. Leave print_insn 627 * unset in this case to use the caller default behaviour. 628 */ 629 #if defined(CONFIG_ARM_A64_DIS) 630 info->print_insn = print_insn_arm_a64; 631 #endif 632 info->cap_arch = CS_ARCH_ARM64; 633 info->cap_insn_unit = 4; 634 info->cap_insn_split = 4; 635 } else { 636 int cap_mode; 637 if (env->thumb) { 638 info->print_insn = print_insn_thumb1; 639 info->cap_insn_unit = 2; 640 info->cap_insn_split = 4; 641 cap_mode = CS_MODE_THUMB; 642 } else { 643 info->print_insn = print_insn_arm; 644 info->cap_insn_unit = 4; 645 info->cap_insn_split = 4; 646 cap_mode = CS_MODE_ARM; 647 } 648 if (arm_feature(env, ARM_FEATURE_V8)) { 649 cap_mode |= CS_MODE_V8; 650 } 651 if (arm_feature(env, ARM_FEATURE_M)) { 652 cap_mode |= CS_MODE_MCLASS; 653 } 654 info->cap_arch = CS_ARCH_ARM; 655 info->cap_mode = cap_mode; 656 } 657 658 sctlr_b = arm_sctlr_b(env); 659 if (bswap_code(sctlr_b)) { 660 #ifdef TARGET_WORDS_BIGENDIAN 661 info->endian = BFD_ENDIAN_LITTLE; 662 #else 663 info->endian = BFD_ENDIAN_BIG; 664 #endif 665 } 666 info->flags &= ~INSN_ARM_BE32; 667 #ifndef CONFIG_USER_ONLY 668 if (sctlr_b) { 669 info->flags |= INSN_ARM_BE32; 670 } 671 #endif 672 } 673 674 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 675 { 676 uint32_t Aff1 = idx / clustersz; 677 uint32_t Aff0 = idx % clustersz; 678 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 679 } 680 681 static void cpreg_hashtable_data_destroy(gpointer data) 682 { 683 /* 684 * Destroy function for cpu->cp_regs hashtable data entries. 685 * We must free the name string because it was g_strdup()ed in 686 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 687 * from r->name because we know we definitely allocated it. 688 */ 689 ARMCPRegInfo *r = data; 690 691 g_free((void *)r->name); 692 g_free(r); 693 } 694 695 static void arm_cpu_initfn(Object *obj) 696 { 697 CPUState *cs = CPU(obj); 698 ARMCPU *cpu = ARM_CPU(obj); 699 700 cs->env_ptr = &cpu->env; 701 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 702 g_free, cpreg_hashtable_data_destroy); 703 704 QLIST_INIT(&cpu->pre_el_change_hooks); 705 QLIST_INIT(&cpu->el_change_hooks); 706 707 #ifndef CONFIG_USER_ONLY 708 /* Our inbound IRQ and FIQ lines */ 709 if (kvm_enabled()) { 710 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 711 * the same interface as non-KVM CPUs. 712 */ 713 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 714 } else { 715 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 716 } 717 718 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 719 ARRAY_SIZE(cpu->gt_timer_outputs)); 720 721 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 722 "gicv3-maintenance-interrupt", 1); 723 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 724 "pmu-interrupt", 1); 725 #endif 726 727 /* DTB consumers generally don't in fact care what the 'compatible' 728 * string is, so always provide some string and trust that a hypothetical 729 * picky DTB consumer will also provide a helpful error message. 730 */ 731 cpu->dtb_compatible = "qemu,unknown"; 732 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 733 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 734 735 if (tcg_enabled()) { 736 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 737 } 738 } 739 740 static Property arm_cpu_reset_cbar_property = 741 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 742 743 static Property arm_cpu_reset_hivecs_property = 744 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 745 746 static Property arm_cpu_rvbar_property = 747 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 748 749 static Property arm_cpu_has_el2_property = 750 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 751 752 static Property arm_cpu_has_el3_property = 753 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 754 755 static Property arm_cpu_cfgend_property = 756 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 757 758 /* use property name "pmu" to match other archs and virt tools */ 759 static Property arm_cpu_has_pmu_property = 760 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 761 762 static Property arm_cpu_has_mpu_property = 763 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 764 765 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 766 * because the CPU initfn will have already set cpu->pmsav7_dregion to 767 * the right value for that particular CPU type, and we don't want 768 * to override that with an incorrect constant value. 769 */ 770 static Property arm_cpu_pmsav7_dregion_property = 771 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 772 pmsav7_dregion, 773 qdev_prop_uint32, uint32_t); 774 775 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name, 776 void *opaque, Error **errp) 777 { 778 ARMCPU *cpu = ARM_CPU(obj); 779 780 visit_type_uint32(v, name, &cpu->init_svtor, errp); 781 } 782 783 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name, 784 void *opaque, Error **errp) 785 { 786 ARMCPU *cpu = ARM_CPU(obj); 787 788 visit_type_uint32(v, name, &cpu->init_svtor, errp); 789 } 790 791 void arm_cpu_post_init(Object *obj) 792 { 793 ARMCPU *cpu = ARM_CPU(obj); 794 795 /* M profile implies PMSA. We have to do this here rather than 796 * in realize with the other feature-implication checks because 797 * we look at the PMSA bit to see if we should add some properties. 798 */ 799 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 800 set_feature(&cpu->env, ARM_FEATURE_PMSA); 801 } 802 803 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 804 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 805 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 806 &error_abort); 807 } 808 809 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 810 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 811 &error_abort); 812 } 813 814 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 815 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 816 &error_abort); 817 } 818 819 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 820 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 821 * prevent "has_el3" from existing on CPUs which cannot support EL3. 822 */ 823 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 824 &error_abort); 825 826 #ifndef CONFIG_USER_ONLY 827 object_property_add_link(obj, "secure-memory", 828 TYPE_MEMORY_REGION, 829 (Object **)&cpu->secure_memory, 830 qdev_prop_allow_set_link_before_realize, 831 OBJ_PROP_LINK_STRONG, 832 &error_abort); 833 #endif 834 } 835 836 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 837 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, 838 &error_abort); 839 } 840 841 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 842 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 843 &error_abort); 844 } 845 846 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 847 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 848 &error_abort); 849 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 850 qdev_property_add_static(DEVICE(obj), 851 &arm_cpu_pmsav7_dregion_property, 852 &error_abort); 853 } 854 } 855 856 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 857 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 858 qdev_prop_allow_set_link_before_realize, 859 OBJ_PROP_LINK_STRONG, 860 &error_abort); 861 /* 862 * M profile: initial value of the Secure VTOR. We can't just use 863 * a simple DEFINE_PROP_UINT32 for this because we want to permit 864 * the property to be set after realize. 865 */ 866 object_property_add(obj, "init-svtor", "uint32", 867 arm_get_init_svtor, arm_set_init_svtor, 868 NULL, NULL, &error_abort); 869 } 870 871 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, 872 &error_abort); 873 } 874 875 static void arm_cpu_finalizefn(Object *obj) 876 { 877 ARMCPU *cpu = ARM_CPU(obj); 878 ARMELChangeHook *hook, *next; 879 880 g_hash_table_destroy(cpu->cp_regs); 881 882 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 883 QLIST_REMOVE(hook, node); 884 g_free(hook); 885 } 886 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 887 QLIST_REMOVE(hook, node); 888 g_free(hook); 889 } 890 #ifndef CONFIG_USER_ONLY 891 if (cpu->pmu_timer) { 892 timer_del(cpu->pmu_timer); 893 timer_deinit(cpu->pmu_timer); 894 timer_free(cpu->pmu_timer); 895 } 896 #endif 897 } 898 899 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 900 { 901 CPUState *cs = CPU(dev); 902 ARMCPU *cpu = ARM_CPU(dev); 903 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 904 CPUARMState *env = &cpu->env; 905 int pagebits; 906 Error *local_err = NULL; 907 bool no_aa32 = false; 908 909 /* If we needed to query the host kernel for the CPU features 910 * then it's possible that might have failed in the initfn, but 911 * this is the first point where we can report it. 912 */ 913 if (cpu->host_cpu_probe_failed) { 914 if (!kvm_enabled()) { 915 error_setg(errp, "The 'host' CPU type can only be used with KVM"); 916 } else { 917 error_setg(errp, "Failed to retrieve host CPU features"); 918 } 919 return; 920 } 921 922 #ifndef CONFIG_USER_ONLY 923 /* The NVIC and M-profile CPU are two halves of a single piece of 924 * hardware; trying to use one without the other is a command line 925 * error and will result in segfaults if not caught here. 926 */ 927 if (arm_feature(env, ARM_FEATURE_M)) { 928 if (!env->nvic) { 929 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 930 return; 931 } 932 } else { 933 if (env->nvic) { 934 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 935 return; 936 } 937 } 938 939 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 940 arm_gt_ptimer_cb, cpu); 941 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 942 arm_gt_vtimer_cb, cpu); 943 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 944 arm_gt_htimer_cb, cpu); 945 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 946 arm_gt_stimer_cb, cpu); 947 #endif 948 949 cpu_exec_realizefn(cs, &local_err); 950 if (local_err != NULL) { 951 error_propagate(errp, local_err); 952 return; 953 } 954 955 /* Some features automatically imply others: */ 956 if (arm_feature(env, ARM_FEATURE_V8)) { 957 if (arm_feature(env, ARM_FEATURE_M)) { 958 set_feature(env, ARM_FEATURE_V7); 959 } else { 960 set_feature(env, ARM_FEATURE_V7VE); 961 } 962 } 963 964 /* 965 * There exist AArch64 cpus without AArch32 support. When KVM 966 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 967 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 968 */ 969 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 970 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 971 } 972 973 if (arm_feature(env, ARM_FEATURE_V7VE)) { 974 /* v7 Virtualization Extensions. In real hardware this implies 975 * EL2 and also the presence of the Security Extensions. 976 * For QEMU, for backwards-compatibility we implement some 977 * CPUs or CPU configs which have no actual EL2 or EL3 but do 978 * include the various other features that V7VE implies. 979 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 980 * Security Extensions is ARM_FEATURE_EL3. 981 */ 982 assert(no_aa32 || cpu_isar_feature(arm_div, cpu)); 983 set_feature(env, ARM_FEATURE_LPAE); 984 set_feature(env, ARM_FEATURE_V7); 985 } 986 if (arm_feature(env, ARM_FEATURE_V7)) { 987 set_feature(env, ARM_FEATURE_VAPA); 988 set_feature(env, ARM_FEATURE_THUMB2); 989 set_feature(env, ARM_FEATURE_MPIDR); 990 if (!arm_feature(env, ARM_FEATURE_M)) { 991 set_feature(env, ARM_FEATURE_V6K); 992 } else { 993 set_feature(env, ARM_FEATURE_V6); 994 } 995 996 /* Always define VBAR for V7 CPUs even if it doesn't exist in 997 * non-EL3 configs. This is needed by some legacy boards. 998 */ 999 set_feature(env, ARM_FEATURE_VBAR); 1000 } 1001 if (arm_feature(env, ARM_FEATURE_V6K)) { 1002 set_feature(env, ARM_FEATURE_V6); 1003 set_feature(env, ARM_FEATURE_MVFR); 1004 } 1005 if (arm_feature(env, ARM_FEATURE_V6)) { 1006 set_feature(env, ARM_FEATURE_V5); 1007 if (!arm_feature(env, ARM_FEATURE_M)) { 1008 assert(no_aa32 || cpu_isar_feature(jazelle, cpu)); 1009 set_feature(env, ARM_FEATURE_AUXCR); 1010 } 1011 } 1012 if (arm_feature(env, ARM_FEATURE_V5)) { 1013 set_feature(env, ARM_FEATURE_V4T); 1014 } 1015 if (arm_feature(env, ARM_FEATURE_VFP4)) { 1016 set_feature(env, ARM_FEATURE_VFP3); 1017 } 1018 if (arm_feature(env, ARM_FEATURE_VFP3)) { 1019 set_feature(env, ARM_FEATURE_VFP); 1020 } 1021 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1022 set_feature(env, ARM_FEATURE_V7MP); 1023 set_feature(env, ARM_FEATURE_PXN); 1024 } 1025 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1026 set_feature(env, ARM_FEATURE_CBAR); 1027 } 1028 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1029 !arm_feature(env, ARM_FEATURE_M)) { 1030 set_feature(env, ARM_FEATURE_THUMB_DSP); 1031 } 1032 1033 if (arm_feature(env, ARM_FEATURE_V7) && 1034 !arm_feature(env, ARM_FEATURE_M) && 1035 !arm_feature(env, ARM_FEATURE_PMSA)) { 1036 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1037 * can use 4K pages. 1038 */ 1039 pagebits = 12; 1040 } else { 1041 /* For CPUs which might have tiny 1K pages, or which have an 1042 * MPU and might have small region sizes, stick with 1K pages. 1043 */ 1044 pagebits = 10; 1045 } 1046 if (!set_preferred_target_page_bits(pagebits)) { 1047 /* This can only ever happen for hotplugging a CPU, or if 1048 * the board code incorrectly creates a CPU which it has 1049 * promised via minimum_page_size that it will not. 1050 */ 1051 error_setg(errp, "This CPU requires a smaller page size than the " 1052 "system is using"); 1053 return; 1054 } 1055 1056 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1057 * We don't support setting cluster ID ([16..23]) (known as Aff2 1058 * in later ARM ARM versions), or any of the higher affinity level fields, 1059 * so these bits always RAZ. 1060 */ 1061 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1062 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1063 ARM_DEFAULT_CPUS_PER_CLUSTER); 1064 } 1065 1066 if (cpu->reset_hivecs) { 1067 cpu->reset_sctlr |= (1 << 13); 1068 } 1069 1070 if (cpu->cfgend) { 1071 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1072 cpu->reset_sctlr |= SCTLR_EE; 1073 } else { 1074 cpu->reset_sctlr |= SCTLR_B; 1075 } 1076 } 1077 1078 if (!cpu->has_el3) { 1079 /* If the has_el3 CPU property is disabled then we need to disable the 1080 * feature. 1081 */ 1082 unset_feature(env, ARM_FEATURE_EL3); 1083 1084 /* Disable the security extension feature bits in the processor feature 1085 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1086 */ 1087 cpu->id_pfr1 &= ~0xf0; 1088 cpu->isar.id_aa64pfr0 &= ~0xf000; 1089 } 1090 1091 if (!cpu->has_el2) { 1092 unset_feature(env, ARM_FEATURE_EL2); 1093 } 1094 1095 if (!cpu->has_pmu) { 1096 unset_feature(env, ARM_FEATURE_PMU); 1097 } 1098 if (arm_feature(env, ARM_FEATURE_PMU)) { 1099 pmu_init(cpu); 1100 1101 if (!kvm_enabled()) { 1102 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1103 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1104 } 1105 1106 #ifndef CONFIG_USER_ONLY 1107 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1108 cpu); 1109 #endif 1110 } else { 1111 cpu->id_aa64dfr0 &= ~0xf00; 1112 cpu->pmceid0 = 0; 1113 cpu->pmceid1 = 0; 1114 } 1115 1116 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1117 /* Disable the hypervisor feature bits in the processor feature 1118 * registers if we don't have EL2. These are id_pfr1[15:12] and 1119 * id_aa64pfr0_el1[11:8]. 1120 */ 1121 cpu->isar.id_aa64pfr0 &= ~0xf00; 1122 cpu->id_pfr1 &= ~0xf000; 1123 } 1124 1125 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1126 * to false or by setting pmsav7-dregion to 0. 1127 */ 1128 if (!cpu->has_mpu) { 1129 cpu->pmsav7_dregion = 0; 1130 } 1131 if (cpu->pmsav7_dregion == 0) { 1132 cpu->has_mpu = false; 1133 } 1134 1135 if (arm_feature(env, ARM_FEATURE_PMSA) && 1136 arm_feature(env, ARM_FEATURE_V7)) { 1137 uint32_t nr = cpu->pmsav7_dregion; 1138 1139 if (nr > 0xff) { 1140 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1141 return; 1142 } 1143 1144 if (nr) { 1145 if (arm_feature(env, ARM_FEATURE_V8)) { 1146 /* PMSAv8 */ 1147 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1148 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1149 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1150 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1151 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1152 } 1153 } else { 1154 env->pmsav7.drbar = g_new0(uint32_t, nr); 1155 env->pmsav7.drsr = g_new0(uint32_t, nr); 1156 env->pmsav7.dracr = g_new0(uint32_t, nr); 1157 } 1158 } 1159 } 1160 1161 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1162 uint32_t nr = cpu->sau_sregion; 1163 1164 if (nr > 0xff) { 1165 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1166 return; 1167 } 1168 1169 if (nr) { 1170 env->sau.rbar = g_new0(uint32_t, nr); 1171 env->sau.rlar = g_new0(uint32_t, nr); 1172 } 1173 } 1174 1175 if (arm_feature(env, ARM_FEATURE_EL3)) { 1176 set_feature(env, ARM_FEATURE_VBAR); 1177 } 1178 1179 register_cp_regs_for_features(cpu); 1180 arm_cpu_register_gdb_regs_for_features(cpu); 1181 1182 init_cpreg_list(cpu); 1183 1184 #ifndef CONFIG_USER_ONLY 1185 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1186 cs->num_ases = 2; 1187 1188 if (!cpu->secure_memory) { 1189 cpu->secure_memory = cs->memory; 1190 } 1191 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1192 cpu->secure_memory); 1193 } else { 1194 cs->num_ases = 1; 1195 } 1196 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1197 1198 /* No core_count specified, default to smp_cpus. */ 1199 if (cpu->core_count == -1) { 1200 cpu->core_count = smp_cpus; 1201 } 1202 #endif 1203 1204 qemu_init_vcpu(cs); 1205 cpu_reset(cs); 1206 1207 acc->parent_realize(dev, errp); 1208 } 1209 1210 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1211 { 1212 ObjectClass *oc; 1213 char *typename; 1214 char **cpuname; 1215 const char *cpunamestr; 1216 1217 cpuname = g_strsplit(cpu_model, ",", 1); 1218 cpunamestr = cpuname[0]; 1219 #ifdef CONFIG_USER_ONLY 1220 /* For backwards compatibility usermode emulation allows "-cpu any", 1221 * which has the same semantics as "-cpu max". 1222 */ 1223 if (!strcmp(cpunamestr, "any")) { 1224 cpunamestr = "max"; 1225 } 1226 #endif 1227 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1228 oc = object_class_by_name(typename); 1229 g_strfreev(cpuname); 1230 g_free(typename); 1231 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1232 object_class_is_abstract(oc)) { 1233 return NULL; 1234 } 1235 return oc; 1236 } 1237 1238 /* CPU models. These are not needed for the AArch64 linux-user build. */ 1239 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1240 1241 static void arm926_initfn(Object *obj) 1242 { 1243 ARMCPU *cpu = ARM_CPU(obj); 1244 1245 cpu->dtb_compatible = "arm,arm926"; 1246 set_feature(&cpu->env, ARM_FEATURE_V5); 1247 set_feature(&cpu->env, ARM_FEATURE_VFP); 1248 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1249 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1250 cpu->midr = 0x41069265; 1251 cpu->reset_fpsid = 0x41011090; 1252 cpu->ctr = 0x1dd20d2; 1253 cpu->reset_sctlr = 0x00090078; 1254 1255 /* 1256 * ARMv5 does not have the ID_ISAR registers, but we can still 1257 * set the field to indicate Jazelle support within QEMU. 1258 */ 1259 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1260 } 1261 1262 static void arm946_initfn(Object *obj) 1263 { 1264 ARMCPU *cpu = ARM_CPU(obj); 1265 1266 cpu->dtb_compatible = "arm,arm946"; 1267 set_feature(&cpu->env, ARM_FEATURE_V5); 1268 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1269 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1270 cpu->midr = 0x41059461; 1271 cpu->ctr = 0x0f004006; 1272 cpu->reset_sctlr = 0x00000078; 1273 } 1274 1275 static void arm1026_initfn(Object *obj) 1276 { 1277 ARMCPU *cpu = ARM_CPU(obj); 1278 1279 cpu->dtb_compatible = "arm,arm1026"; 1280 set_feature(&cpu->env, ARM_FEATURE_V5); 1281 set_feature(&cpu->env, ARM_FEATURE_VFP); 1282 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 1283 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1284 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1285 cpu->midr = 0x4106a262; 1286 cpu->reset_fpsid = 0x410110a0; 1287 cpu->ctr = 0x1dd20d2; 1288 cpu->reset_sctlr = 0x00090078; 1289 cpu->reset_auxcr = 1; 1290 1291 /* 1292 * ARMv5 does not have the ID_ISAR registers, but we can still 1293 * set the field to indicate Jazelle support within QEMU. 1294 */ 1295 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1296 1297 { 1298 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 1299 ARMCPRegInfo ifar = { 1300 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1301 .access = PL1_RW, 1302 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 1303 .resetvalue = 0 1304 }; 1305 define_one_arm_cp_reg(cpu, &ifar); 1306 } 1307 } 1308 1309 static void arm1136_r2_initfn(Object *obj) 1310 { 1311 ARMCPU *cpu = ARM_CPU(obj); 1312 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 1313 * older core than plain "arm1136". In particular this does not 1314 * have the v6K features. 1315 * These ID register values are correct for 1136 but may be wrong 1316 * for 1136_r2 (in particular r0p2 does not actually implement most 1317 * of the ID registers). 1318 */ 1319 1320 cpu->dtb_compatible = "arm,arm1136"; 1321 set_feature(&cpu->env, ARM_FEATURE_V6); 1322 set_feature(&cpu->env, ARM_FEATURE_VFP); 1323 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1324 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1325 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1326 cpu->midr = 0x4107b362; 1327 cpu->reset_fpsid = 0x410120b4; 1328 cpu->isar.mvfr0 = 0x11111111; 1329 cpu->isar.mvfr1 = 0x00000000; 1330 cpu->ctr = 0x1dd20d2; 1331 cpu->reset_sctlr = 0x00050078; 1332 cpu->id_pfr0 = 0x111; 1333 cpu->id_pfr1 = 0x1; 1334 cpu->id_dfr0 = 0x2; 1335 cpu->id_afr0 = 0x3; 1336 cpu->id_mmfr0 = 0x01130003; 1337 cpu->id_mmfr1 = 0x10030302; 1338 cpu->id_mmfr2 = 0x01222110; 1339 cpu->isar.id_isar0 = 0x00140011; 1340 cpu->isar.id_isar1 = 0x12002111; 1341 cpu->isar.id_isar2 = 0x11231111; 1342 cpu->isar.id_isar3 = 0x01102131; 1343 cpu->isar.id_isar4 = 0x141; 1344 cpu->reset_auxcr = 7; 1345 } 1346 1347 static void arm1136_initfn(Object *obj) 1348 { 1349 ARMCPU *cpu = ARM_CPU(obj); 1350 1351 cpu->dtb_compatible = "arm,arm1136"; 1352 set_feature(&cpu->env, ARM_FEATURE_V6K); 1353 set_feature(&cpu->env, ARM_FEATURE_V6); 1354 set_feature(&cpu->env, ARM_FEATURE_VFP); 1355 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1356 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1357 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1358 cpu->midr = 0x4117b363; 1359 cpu->reset_fpsid = 0x410120b4; 1360 cpu->isar.mvfr0 = 0x11111111; 1361 cpu->isar.mvfr1 = 0x00000000; 1362 cpu->ctr = 0x1dd20d2; 1363 cpu->reset_sctlr = 0x00050078; 1364 cpu->id_pfr0 = 0x111; 1365 cpu->id_pfr1 = 0x1; 1366 cpu->id_dfr0 = 0x2; 1367 cpu->id_afr0 = 0x3; 1368 cpu->id_mmfr0 = 0x01130003; 1369 cpu->id_mmfr1 = 0x10030302; 1370 cpu->id_mmfr2 = 0x01222110; 1371 cpu->isar.id_isar0 = 0x00140011; 1372 cpu->isar.id_isar1 = 0x12002111; 1373 cpu->isar.id_isar2 = 0x11231111; 1374 cpu->isar.id_isar3 = 0x01102131; 1375 cpu->isar.id_isar4 = 0x141; 1376 cpu->reset_auxcr = 7; 1377 } 1378 1379 static void arm1176_initfn(Object *obj) 1380 { 1381 ARMCPU *cpu = ARM_CPU(obj); 1382 1383 cpu->dtb_compatible = "arm,arm1176"; 1384 set_feature(&cpu->env, ARM_FEATURE_V6K); 1385 set_feature(&cpu->env, ARM_FEATURE_VFP); 1386 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1387 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1388 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1389 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1390 set_feature(&cpu->env, ARM_FEATURE_EL3); 1391 cpu->midr = 0x410fb767; 1392 cpu->reset_fpsid = 0x410120b5; 1393 cpu->isar.mvfr0 = 0x11111111; 1394 cpu->isar.mvfr1 = 0x00000000; 1395 cpu->ctr = 0x1dd20d2; 1396 cpu->reset_sctlr = 0x00050078; 1397 cpu->id_pfr0 = 0x111; 1398 cpu->id_pfr1 = 0x11; 1399 cpu->id_dfr0 = 0x33; 1400 cpu->id_afr0 = 0; 1401 cpu->id_mmfr0 = 0x01130003; 1402 cpu->id_mmfr1 = 0x10030302; 1403 cpu->id_mmfr2 = 0x01222100; 1404 cpu->isar.id_isar0 = 0x0140011; 1405 cpu->isar.id_isar1 = 0x12002111; 1406 cpu->isar.id_isar2 = 0x11231121; 1407 cpu->isar.id_isar3 = 0x01102131; 1408 cpu->isar.id_isar4 = 0x01141; 1409 cpu->reset_auxcr = 7; 1410 } 1411 1412 static void arm11mpcore_initfn(Object *obj) 1413 { 1414 ARMCPU *cpu = ARM_CPU(obj); 1415 1416 cpu->dtb_compatible = "arm,arm11mpcore"; 1417 set_feature(&cpu->env, ARM_FEATURE_V6K); 1418 set_feature(&cpu->env, ARM_FEATURE_VFP); 1419 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1420 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 1421 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1422 cpu->midr = 0x410fb022; 1423 cpu->reset_fpsid = 0x410120b4; 1424 cpu->isar.mvfr0 = 0x11111111; 1425 cpu->isar.mvfr1 = 0x00000000; 1426 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 1427 cpu->id_pfr0 = 0x111; 1428 cpu->id_pfr1 = 0x1; 1429 cpu->id_dfr0 = 0; 1430 cpu->id_afr0 = 0x2; 1431 cpu->id_mmfr0 = 0x01100103; 1432 cpu->id_mmfr1 = 0x10020302; 1433 cpu->id_mmfr2 = 0x01222000; 1434 cpu->isar.id_isar0 = 0x00100011; 1435 cpu->isar.id_isar1 = 0x12002111; 1436 cpu->isar.id_isar2 = 0x11221011; 1437 cpu->isar.id_isar3 = 0x01102131; 1438 cpu->isar.id_isar4 = 0x141; 1439 cpu->reset_auxcr = 1; 1440 } 1441 1442 static void cortex_m0_initfn(Object *obj) 1443 { 1444 ARMCPU *cpu = ARM_CPU(obj); 1445 set_feature(&cpu->env, ARM_FEATURE_V6); 1446 set_feature(&cpu->env, ARM_FEATURE_M); 1447 1448 cpu->midr = 0x410cc200; 1449 } 1450 1451 static void cortex_m3_initfn(Object *obj) 1452 { 1453 ARMCPU *cpu = ARM_CPU(obj); 1454 set_feature(&cpu->env, ARM_FEATURE_V7); 1455 set_feature(&cpu->env, ARM_FEATURE_M); 1456 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1457 cpu->midr = 0x410fc231; 1458 cpu->pmsav7_dregion = 8; 1459 cpu->id_pfr0 = 0x00000030; 1460 cpu->id_pfr1 = 0x00000200; 1461 cpu->id_dfr0 = 0x00100000; 1462 cpu->id_afr0 = 0x00000000; 1463 cpu->id_mmfr0 = 0x00000030; 1464 cpu->id_mmfr1 = 0x00000000; 1465 cpu->id_mmfr2 = 0x00000000; 1466 cpu->id_mmfr3 = 0x00000000; 1467 cpu->isar.id_isar0 = 0x01141110; 1468 cpu->isar.id_isar1 = 0x02111000; 1469 cpu->isar.id_isar2 = 0x21112231; 1470 cpu->isar.id_isar3 = 0x01111110; 1471 cpu->isar.id_isar4 = 0x01310102; 1472 cpu->isar.id_isar5 = 0x00000000; 1473 cpu->isar.id_isar6 = 0x00000000; 1474 } 1475 1476 static void cortex_m4_initfn(Object *obj) 1477 { 1478 ARMCPU *cpu = ARM_CPU(obj); 1479 1480 set_feature(&cpu->env, ARM_FEATURE_V7); 1481 set_feature(&cpu->env, ARM_FEATURE_M); 1482 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1483 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1484 cpu->midr = 0x410fc240; /* r0p0 */ 1485 cpu->pmsav7_dregion = 8; 1486 cpu->id_pfr0 = 0x00000030; 1487 cpu->id_pfr1 = 0x00000200; 1488 cpu->id_dfr0 = 0x00100000; 1489 cpu->id_afr0 = 0x00000000; 1490 cpu->id_mmfr0 = 0x00000030; 1491 cpu->id_mmfr1 = 0x00000000; 1492 cpu->id_mmfr2 = 0x00000000; 1493 cpu->id_mmfr3 = 0x00000000; 1494 cpu->isar.id_isar0 = 0x01141110; 1495 cpu->isar.id_isar1 = 0x02111000; 1496 cpu->isar.id_isar2 = 0x21112231; 1497 cpu->isar.id_isar3 = 0x01111110; 1498 cpu->isar.id_isar4 = 0x01310102; 1499 cpu->isar.id_isar5 = 0x00000000; 1500 cpu->isar.id_isar6 = 0x00000000; 1501 } 1502 1503 static void cortex_m33_initfn(Object *obj) 1504 { 1505 ARMCPU *cpu = ARM_CPU(obj); 1506 1507 set_feature(&cpu->env, ARM_FEATURE_V8); 1508 set_feature(&cpu->env, ARM_FEATURE_M); 1509 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1510 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY); 1511 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1512 cpu->midr = 0x410fd213; /* r0p3 */ 1513 cpu->pmsav7_dregion = 16; 1514 cpu->sau_sregion = 8; 1515 cpu->id_pfr0 = 0x00000030; 1516 cpu->id_pfr1 = 0x00000210; 1517 cpu->id_dfr0 = 0x00200000; 1518 cpu->id_afr0 = 0x00000000; 1519 cpu->id_mmfr0 = 0x00101F40; 1520 cpu->id_mmfr1 = 0x00000000; 1521 cpu->id_mmfr2 = 0x01000000; 1522 cpu->id_mmfr3 = 0x00000000; 1523 cpu->isar.id_isar0 = 0x01101110; 1524 cpu->isar.id_isar1 = 0x02212000; 1525 cpu->isar.id_isar2 = 0x20232232; 1526 cpu->isar.id_isar3 = 0x01111131; 1527 cpu->isar.id_isar4 = 0x01310132; 1528 cpu->isar.id_isar5 = 0x00000000; 1529 cpu->isar.id_isar6 = 0x00000000; 1530 cpu->clidr = 0x00000000; 1531 cpu->ctr = 0x8000c000; 1532 } 1533 1534 static void arm_v7m_class_init(ObjectClass *oc, void *data) 1535 { 1536 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1537 CPUClass *cc = CPU_CLASS(oc); 1538 1539 acc->info = data; 1540 #ifndef CONFIG_USER_ONLY 1541 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1542 #endif 1543 1544 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1545 } 1546 1547 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1548 /* Dummy the TCM region regs for the moment */ 1549 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1550 .access = PL1_RW, .type = ARM_CP_CONST }, 1551 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1552 .access = PL1_RW, .type = ARM_CP_CONST }, 1553 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, 1554 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, 1555 REGINFO_SENTINEL 1556 }; 1557 1558 static void cortex_r5_initfn(Object *obj) 1559 { 1560 ARMCPU *cpu = ARM_CPU(obj); 1561 1562 set_feature(&cpu->env, ARM_FEATURE_V7); 1563 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1564 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1565 cpu->midr = 0x411fc153; /* r1p3 */ 1566 cpu->id_pfr0 = 0x0131; 1567 cpu->id_pfr1 = 0x001; 1568 cpu->id_dfr0 = 0x010400; 1569 cpu->id_afr0 = 0x0; 1570 cpu->id_mmfr0 = 0x0210030; 1571 cpu->id_mmfr1 = 0x00000000; 1572 cpu->id_mmfr2 = 0x01200000; 1573 cpu->id_mmfr3 = 0x0211; 1574 cpu->isar.id_isar0 = 0x02101111; 1575 cpu->isar.id_isar1 = 0x13112111; 1576 cpu->isar.id_isar2 = 0x21232141; 1577 cpu->isar.id_isar3 = 0x01112131; 1578 cpu->isar.id_isar4 = 0x0010142; 1579 cpu->isar.id_isar5 = 0x0; 1580 cpu->isar.id_isar6 = 0x0; 1581 cpu->mp_is_up = true; 1582 cpu->pmsav7_dregion = 16; 1583 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 1584 } 1585 1586 static void cortex_r5f_initfn(Object *obj) 1587 { 1588 ARMCPU *cpu = ARM_CPU(obj); 1589 1590 cortex_r5_initfn(obj); 1591 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1592 } 1593 1594 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1595 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1596 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1597 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1598 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1599 REGINFO_SENTINEL 1600 }; 1601 1602 static void cortex_a8_initfn(Object *obj) 1603 { 1604 ARMCPU *cpu = ARM_CPU(obj); 1605 1606 cpu->dtb_compatible = "arm,cortex-a8"; 1607 set_feature(&cpu->env, ARM_FEATURE_V7); 1608 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1609 set_feature(&cpu->env, ARM_FEATURE_NEON); 1610 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1611 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1612 set_feature(&cpu->env, ARM_FEATURE_EL3); 1613 cpu->midr = 0x410fc080; 1614 cpu->reset_fpsid = 0x410330c0; 1615 cpu->isar.mvfr0 = 0x11110222; 1616 cpu->isar.mvfr1 = 0x00011111; 1617 cpu->ctr = 0x82048004; 1618 cpu->reset_sctlr = 0x00c50078; 1619 cpu->id_pfr0 = 0x1031; 1620 cpu->id_pfr1 = 0x11; 1621 cpu->id_dfr0 = 0x400; 1622 cpu->id_afr0 = 0; 1623 cpu->id_mmfr0 = 0x31100003; 1624 cpu->id_mmfr1 = 0x20000000; 1625 cpu->id_mmfr2 = 0x01202000; 1626 cpu->id_mmfr3 = 0x11; 1627 cpu->isar.id_isar0 = 0x00101111; 1628 cpu->isar.id_isar1 = 0x12112111; 1629 cpu->isar.id_isar2 = 0x21232031; 1630 cpu->isar.id_isar3 = 0x11112131; 1631 cpu->isar.id_isar4 = 0x00111142; 1632 cpu->dbgdidr = 0x15141000; 1633 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1634 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1635 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1636 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1637 cpu->reset_auxcr = 2; 1638 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1639 } 1640 1641 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1642 /* power_control should be set to maximum latency. Again, 1643 * default to 0 and set by private hook 1644 */ 1645 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1646 .access = PL1_RW, .resetvalue = 0, 1647 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1648 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1649 .access = PL1_RW, .resetvalue = 0, 1650 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1651 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1652 .access = PL1_RW, .resetvalue = 0, 1653 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1654 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1655 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1656 /* TLB lockdown control */ 1657 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1658 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1659 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1660 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1661 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1662 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1663 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1664 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1665 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1666 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1667 REGINFO_SENTINEL 1668 }; 1669 1670 static void cortex_a9_initfn(Object *obj) 1671 { 1672 ARMCPU *cpu = ARM_CPU(obj); 1673 1674 cpu->dtb_compatible = "arm,cortex-a9"; 1675 set_feature(&cpu->env, ARM_FEATURE_V7); 1676 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1677 set_feature(&cpu->env, ARM_FEATURE_NEON); 1678 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1679 set_feature(&cpu->env, ARM_FEATURE_EL3); 1680 /* Note that A9 supports the MP extensions even for 1681 * A9UP and single-core A9MP (which are both different 1682 * and valid configurations; we don't model A9UP). 1683 */ 1684 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1685 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1686 cpu->midr = 0x410fc090; 1687 cpu->reset_fpsid = 0x41033090; 1688 cpu->isar.mvfr0 = 0x11110222; 1689 cpu->isar.mvfr1 = 0x01111111; 1690 cpu->ctr = 0x80038003; 1691 cpu->reset_sctlr = 0x00c50078; 1692 cpu->id_pfr0 = 0x1031; 1693 cpu->id_pfr1 = 0x11; 1694 cpu->id_dfr0 = 0x000; 1695 cpu->id_afr0 = 0; 1696 cpu->id_mmfr0 = 0x00100103; 1697 cpu->id_mmfr1 = 0x20000000; 1698 cpu->id_mmfr2 = 0x01230000; 1699 cpu->id_mmfr3 = 0x00002111; 1700 cpu->isar.id_isar0 = 0x00101111; 1701 cpu->isar.id_isar1 = 0x13112111; 1702 cpu->isar.id_isar2 = 0x21232041; 1703 cpu->isar.id_isar3 = 0x11112131; 1704 cpu->isar.id_isar4 = 0x00111142; 1705 cpu->dbgdidr = 0x35141000; 1706 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1707 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1708 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1709 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1710 } 1711 1712 #ifndef CONFIG_USER_ONLY 1713 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1714 { 1715 /* Linux wants the number of processors from here. 1716 * Might as well set the interrupt-controller bit too. 1717 */ 1718 return ((smp_cpus - 1) << 24) | (1 << 23); 1719 } 1720 #endif 1721 1722 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 1723 #ifndef CONFIG_USER_ONLY 1724 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1725 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 1726 .writefn = arm_cp_write_ignore, }, 1727 #endif 1728 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 1729 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1730 REGINFO_SENTINEL 1731 }; 1732 1733 static void cortex_a7_initfn(Object *obj) 1734 { 1735 ARMCPU *cpu = ARM_CPU(obj); 1736 1737 cpu->dtb_compatible = "arm,cortex-a7"; 1738 set_feature(&cpu->env, ARM_FEATURE_V7VE); 1739 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1740 set_feature(&cpu->env, ARM_FEATURE_NEON); 1741 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1742 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1743 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1744 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1745 set_feature(&cpu->env, ARM_FEATURE_EL2); 1746 set_feature(&cpu->env, ARM_FEATURE_EL3); 1747 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 1748 cpu->midr = 0x410fc075; 1749 cpu->reset_fpsid = 0x41023075; 1750 cpu->isar.mvfr0 = 0x10110222; 1751 cpu->isar.mvfr1 = 0x11111111; 1752 cpu->ctr = 0x84448003; 1753 cpu->reset_sctlr = 0x00c50078; 1754 cpu->id_pfr0 = 0x00001131; 1755 cpu->id_pfr1 = 0x00011011; 1756 cpu->id_dfr0 = 0x02010555; 1757 cpu->id_afr0 = 0x00000000; 1758 cpu->id_mmfr0 = 0x10101105; 1759 cpu->id_mmfr1 = 0x40000000; 1760 cpu->id_mmfr2 = 0x01240000; 1761 cpu->id_mmfr3 = 0x02102211; 1762 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but 1763 * table 4-41 gives 0x02101110, which includes the arm div insns. 1764 */ 1765 cpu->isar.id_isar0 = 0x02101110; 1766 cpu->isar.id_isar1 = 0x13112111; 1767 cpu->isar.id_isar2 = 0x21232041; 1768 cpu->isar.id_isar3 = 0x11112131; 1769 cpu->isar.id_isar4 = 0x10011142; 1770 cpu->dbgdidr = 0x3515f005; 1771 cpu->clidr = 0x0a200023; 1772 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1773 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1774 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1775 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 1776 } 1777 1778 static void cortex_a15_initfn(Object *obj) 1779 { 1780 ARMCPU *cpu = ARM_CPU(obj); 1781 1782 cpu->dtb_compatible = "arm,cortex-a15"; 1783 set_feature(&cpu->env, ARM_FEATURE_V7VE); 1784 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1785 set_feature(&cpu->env, ARM_FEATURE_NEON); 1786 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1787 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1788 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1789 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1790 set_feature(&cpu->env, ARM_FEATURE_EL2); 1791 set_feature(&cpu->env, ARM_FEATURE_EL3); 1792 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 1793 cpu->midr = 0x412fc0f1; 1794 cpu->reset_fpsid = 0x410430f0; 1795 cpu->isar.mvfr0 = 0x10110222; 1796 cpu->isar.mvfr1 = 0x11111111; 1797 cpu->ctr = 0x8444c004; 1798 cpu->reset_sctlr = 0x00c50078; 1799 cpu->id_pfr0 = 0x00001131; 1800 cpu->id_pfr1 = 0x00011011; 1801 cpu->id_dfr0 = 0x02010555; 1802 cpu->id_afr0 = 0x00000000; 1803 cpu->id_mmfr0 = 0x10201105; 1804 cpu->id_mmfr1 = 0x20000000; 1805 cpu->id_mmfr2 = 0x01240000; 1806 cpu->id_mmfr3 = 0x02102211; 1807 cpu->isar.id_isar0 = 0x02101110; 1808 cpu->isar.id_isar1 = 0x13112111; 1809 cpu->isar.id_isar2 = 0x21232041; 1810 cpu->isar.id_isar3 = 0x11112131; 1811 cpu->isar.id_isar4 = 0x10011142; 1812 cpu->dbgdidr = 0x3515f021; 1813 cpu->clidr = 0x0a200023; 1814 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1815 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1816 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1817 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 1818 } 1819 1820 static void ti925t_initfn(Object *obj) 1821 { 1822 ARMCPU *cpu = ARM_CPU(obj); 1823 set_feature(&cpu->env, ARM_FEATURE_V4T); 1824 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 1825 cpu->midr = ARM_CPUID_TI925T; 1826 cpu->ctr = 0x5109149; 1827 cpu->reset_sctlr = 0x00000070; 1828 } 1829 1830 static void sa1100_initfn(Object *obj) 1831 { 1832 ARMCPU *cpu = ARM_CPU(obj); 1833 1834 cpu->dtb_compatible = "intel,sa1100"; 1835 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1836 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1837 cpu->midr = 0x4401A11B; 1838 cpu->reset_sctlr = 0x00000070; 1839 } 1840 1841 static void sa1110_initfn(Object *obj) 1842 { 1843 ARMCPU *cpu = ARM_CPU(obj); 1844 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1845 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1846 cpu->midr = 0x6901B119; 1847 cpu->reset_sctlr = 0x00000070; 1848 } 1849 1850 static void pxa250_initfn(Object *obj) 1851 { 1852 ARMCPU *cpu = ARM_CPU(obj); 1853 1854 cpu->dtb_compatible = "marvell,xscale"; 1855 set_feature(&cpu->env, ARM_FEATURE_V5); 1856 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1857 cpu->midr = 0x69052100; 1858 cpu->ctr = 0xd172172; 1859 cpu->reset_sctlr = 0x00000078; 1860 } 1861 1862 static void pxa255_initfn(Object *obj) 1863 { 1864 ARMCPU *cpu = ARM_CPU(obj); 1865 1866 cpu->dtb_compatible = "marvell,xscale"; 1867 set_feature(&cpu->env, ARM_FEATURE_V5); 1868 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1869 cpu->midr = 0x69052d00; 1870 cpu->ctr = 0xd172172; 1871 cpu->reset_sctlr = 0x00000078; 1872 } 1873 1874 static void pxa260_initfn(Object *obj) 1875 { 1876 ARMCPU *cpu = ARM_CPU(obj); 1877 1878 cpu->dtb_compatible = "marvell,xscale"; 1879 set_feature(&cpu->env, ARM_FEATURE_V5); 1880 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1881 cpu->midr = 0x69052903; 1882 cpu->ctr = 0xd172172; 1883 cpu->reset_sctlr = 0x00000078; 1884 } 1885 1886 static void pxa261_initfn(Object *obj) 1887 { 1888 ARMCPU *cpu = ARM_CPU(obj); 1889 1890 cpu->dtb_compatible = "marvell,xscale"; 1891 set_feature(&cpu->env, ARM_FEATURE_V5); 1892 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1893 cpu->midr = 0x69052d05; 1894 cpu->ctr = 0xd172172; 1895 cpu->reset_sctlr = 0x00000078; 1896 } 1897 1898 static void pxa262_initfn(Object *obj) 1899 { 1900 ARMCPU *cpu = ARM_CPU(obj); 1901 1902 cpu->dtb_compatible = "marvell,xscale"; 1903 set_feature(&cpu->env, ARM_FEATURE_V5); 1904 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1905 cpu->midr = 0x69052d06; 1906 cpu->ctr = 0xd172172; 1907 cpu->reset_sctlr = 0x00000078; 1908 } 1909 1910 static void pxa270a0_initfn(Object *obj) 1911 { 1912 ARMCPU *cpu = ARM_CPU(obj); 1913 1914 cpu->dtb_compatible = "marvell,xscale"; 1915 set_feature(&cpu->env, ARM_FEATURE_V5); 1916 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1917 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1918 cpu->midr = 0x69054110; 1919 cpu->ctr = 0xd172172; 1920 cpu->reset_sctlr = 0x00000078; 1921 } 1922 1923 static void pxa270a1_initfn(Object *obj) 1924 { 1925 ARMCPU *cpu = ARM_CPU(obj); 1926 1927 cpu->dtb_compatible = "marvell,xscale"; 1928 set_feature(&cpu->env, ARM_FEATURE_V5); 1929 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1930 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1931 cpu->midr = 0x69054111; 1932 cpu->ctr = 0xd172172; 1933 cpu->reset_sctlr = 0x00000078; 1934 } 1935 1936 static void pxa270b0_initfn(Object *obj) 1937 { 1938 ARMCPU *cpu = ARM_CPU(obj); 1939 1940 cpu->dtb_compatible = "marvell,xscale"; 1941 set_feature(&cpu->env, ARM_FEATURE_V5); 1942 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1943 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1944 cpu->midr = 0x69054112; 1945 cpu->ctr = 0xd172172; 1946 cpu->reset_sctlr = 0x00000078; 1947 } 1948 1949 static void pxa270b1_initfn(Object *obj) 1950 { 1951 ARMCPU *cpu = ARM_CPU(obj); 1952 1953 cpu->dtb_compatible = "marvell,xscale"; 1954 set_feature(&cpu->env, ARM_FEATURE_V5); 1955 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1956 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1957 cpu->midr = 0x69054113; 1958 cpu->ctr = 0xd172172; 1959 cpu->reset_sctlr = 0x00000078; 1960 } 1961 1962 static void pxa270c0_initfn(Object *obj) 1963 { 1964 ARMCPU *cpu = ARM_CPU(obj); 1965 1966 cpu->dtb_compatible = "marvell,xscale"; 1967 set_feature(&cpu->env, ARM_FEATURE_V5); 1968 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1969 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1970 cpu->midr = 0x69054114; 1971 cpu->ctr = 0xd172172; 1972 cpu->reset_sctlr = 0x00000078; 1973 } 1974 1975 static void pxa270c5_initfn(Object *obj) 1976 { 1977 ARMCPU *cpu = ARM_CPU(obj); 1978 1979 cpu->dtb_compatible = "marvell,xscale"; 1980 set_feature(&cpu->env, ARM_FEATURE_V5); 1981 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1982 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1983 cpu->midr = 0x69054117; 1984 cpu->ctr = 0xd172172; 1985 cpu->reset_sctlr = 0x00000078; 1986 } 1987 1988 #ifndef TARGET_AARCH64 1989 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 1990 * otherwise, a CPU with as many features enabled as our emulation supports. 1991 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; 1992 * this only needs to handle 32 bits. 1993 */ 1994 static void arm_max_initfn(Object *obj) 1995 { 1996 ARMCPU *cpu = ARM_CPU(obj); 1997 1998 if (kvm_enabled()) { 1999 kvm_arm_set_cpu_features_from_host(cpu); 2000 } else { 2001 cortex_a15_initfn(obj); 2002 #ifdef CONFIG_USER_ONLY 2003 /* We don't set these in system emulation mode for the moment, 2004 * since we don't correctly set (all of) the ID registers to 2005 * advertise them. 2006 */ 2007 set_feature(&cpu->env, ARM_FEATURE_V8); 2008 { 2009 uint32_t t; 2010 2011 t = cpu->isar.id_isar5; 2012 t = FIELD_DP32(t, ID_ISAR5, AES, 2); 2013 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); 2014 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); 2015 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); 2016 t = FIELD_DP32(t, ID_ISAR5, RDM, 1); 2017 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); 2018 cpu->isar.id_isar5 = t; 2019 2020 t = cpu->isar.id_isar6; 2021 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); 2022 t = FIELD_DP32(t, ID_ISAR6, DP, 1); 2023 t = FIELD_DP32(t, ID_ISAR6, FHM, 1); 2024 t = FIELD_DP32(t, ID_ISAR6, SB, 1); 2025 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1); 2026 cpu->isar.id_isar6 = t; 2027 2028 t = cpu->id_mmfr4; 2029 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ 2030 cpu->id_mmfr4 = t; 2031 } 2032 #endif 2033 } 2034 } 2035 #endif 2036 2037 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 2038 2039 struct ARMCPUInfo { 2040 const char *name; 2041 void (*initfn)(Object *obj); 2042 void (*class_init)(ObjectClass *oc, void *data); 2043 }; 2044 2045 static const ARMCPUInfo arm_cpus[] = { 2046 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 2047 { .name = "arm926", .initfn = arm926_initfn }, 2048 { .name = "arm946", .initfn = arm946_initfn }, 2049 { .name = "arm1026", .initfn = arm1026_initfn }, 2050 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 2051 * older core than plain "arm1136". In particular this does not 2052 * have the v6K features. 2053 */ 2054 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 2055 { .name = "arm1136", .initfn = arm1136_initfn }, 2056 { .name = "arm1176", .initfn = arm1176_initfn }, 2057 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 2058 { .name = "cortex-m0", .initfn = cortex_m0_initfn, 2059 .class_init = arm_v7m_class_init }, 2060 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 2061 .class_init = arm_v7m_class_init }, 2062 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 2063 .class_init = arm_v7m_class_init }, 2064 { .name = "cortex-m33", .initfn = cortex_m33_initfn, 2065 .class_init = arm_v7m_class_init }, 2066 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 2067 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn }, 2068 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 2069 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 2070 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 2071 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 2072 { .name = "ti925t", .initfn = ti925t_initfn }, 2073 { .name = "sa1100", .initfn = sa1100_initfn }, 2074 { .name = "sa1110", .initfn = sa1110_initfn }, 2075 { .name = "pxa250", .initfn = pxa250_initfn }, 2076 { .name = "pxa255", .initfn = pxa255_initfn }, 2077 { .name = "pxa260", .initfn = pxa260_initfn }, 2078 { .name = "pxa261", .initfn = pxa261_initfn }, 2079 { .name = "pxa262", .initfn = pxa262_initfn }, 2080 /* "pxa270" is an alias for "pxa270-a0" */ 2081 { .name = "pxa270", .initfn = pxa270a0_initfn }, 2082 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 2083 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 2084 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 2085 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 2086 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 2087 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 2088 #ifndef TARGET_AARCH64 2089 { .name = "max", .initfn = arm_max_initfn }, 2090 #endif 2091 #ifdef CONFIG_USER_ONLY 2092 { .name = "any", .initfn = arm_max_initfn }, 2093 #endif 2094 #endif 2095 { .name = NULL } 2096 }; 2097 2098 static Property arm_cpu_properties[] = { 2099 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 2100 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 2101 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 2102 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2103 mp_affinity, ARM64_AFFINITY_INVALID), 2104 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2105 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2106 DEFINE_PROP_END_OF_LIST() 2107 }; 2108 2109 #ifdef CONFIG_USER_ONLY 2110 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, 2111 int rw, int mmu_idx) 2112 { 2113 ARMCPU *cpu = ARM_CPU(cs); 2114 CPUARMState *env = &cpu->env; 2115 2116 env->exception.vaddress = address; 2117 if (rw == 2) { 2118 cs->exception_index = EXCP_PREFETCH_ABORT; 2119 } else { 2120 cs->exception_index = EXCP_DATA_ABORT; 2121 } 2122 return 1; 2123 } 2124 #endif 2125 2126 static gchar *arm_gdb_arch_name(CPUState *cs) 2127 { 2128 ARMCPU *cpu = ARM_CPU(cs); 2129 CPUARMState *env = &cpu->env; 2130 2131 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2132 return g_strdup("iwmmxt"); 2133 } 2134 return g_strdup("arm"); 2135 } 2136 2137 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2138 { 2139 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2140 CPUClass *cc = CPU_CLASS(acc); 2141 DeviceClass *dc = DEVICE_CLASS(oc); 2142 2143 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2144 &acc->parent_realize); 2145 dc->props = arm_cpu_properties; 2146 2147 acc->parent_reset = cc->reset; 2148 cc->reset = arm_cpu_reset; 2149 2150 cc->class_by_name = arm_cpu_class_by_name; 2151 cc->has_work = arm_cpu_has_work; 2152 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 2153 cc->dump_state = arm_cpu_dump_state; 2154 cc->set_pc = arm_cpu_set_pc; 2155 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb; 2156 cc->gdb_read_register = arm_cpu_gdb_read_register; 2157 cc->gdb_write_register = arm_cpu_gdb_write_register; 2158 #ifdef CONFIG_USER_ONLY 2159 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; 2160 #else 2161 cc->do_interrupt = arm_cpu_do_interrupt; 2162 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 2163 cc->do_transaction_failed = arm_cpu_do_transaction_failed; 2164 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 2165 cc->asidx_from_attrs = arm_asidx_from_attrs; 2166 cc->vmsd = &vmstate_arm_cpu; 2167 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 2168 cc->write_elf64_note = arm_cpu_write_elf64_note; 2169 cc->write_elf32_note = arm_cpu_write_elf32_note; 2170 #endif 2171 cc->gdb_num_core_regs = 26; 2172 cc->gdb_core_xml_file = "arm-core.xml"; 2173 cc->gdb_arch_name = arm_gdb_arch_name; 2174 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2175 cc->gdb_stop_before_watchpoint = true; 2176 cc->debug_excp_handler = arm_debug_excp_handler; 2177 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 2178 #if !defined(CONFIG_USER_ONLY) 2179 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 2180 #endif 2181 2182 cc->disas_set_info = arm_disas_set_info; 2183 #ifdef CONFIG_TCG 2184 cc->tcg_initialize = arm_translate_init; 2185 #endif 2186 } 2187 2188 #ifdef CONFIG_KVM 2189 static void arm_host_initfn(Object *obj) 2190 { 2191 ARMCPU *cpu = ARM_CPU(obj); 2192 2193 kvm_arm_set_cpu_features_from_host(cpu); 2194 arm_cpu_post_init(obj); 2195 } 2196 2197 static const TypeInfo host_arm_cpu_type_info = { 2198 .name = TYPE_ARM_HOST_CPU, 2199 #ifdef TARGET_AARCH64 2200 .parent = TYPE_AARCH64_CPU, 2201 #else 2202 .parent = TYPE_ARM_CPU, 2203 #endif 2204 .instance_init = arm_host_initfn, 2205 }; 2206 2207 #endif 2208 2209 static void arm_cpu_instance_init(Object *obj) 2210 { 2211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2212 2213 acc->info->initfn(obj); 2214 arm_cpu_post_init(obj); 2215 } 2216 2217 static void cpu_register_class_init(ObjectClass *oc, void *data) 2218 { 2219 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2220 2221 acc->info = data; 2222 } 2223 2224 static void cpu_register(const ARMCPUInfo *info) 2225 { 2226 TypeInfo type_info = { 2227 .parent = TYPE_ARM_CPU, 2228 .instance_size = sizeof(ARMCPU), 2229 .instance_init = arm_cpu_instance_init, 2230 .class_size = sizeof(ARMCPUClass), 2231 .class_init = info->class_init ?: cpu_register_class_init, 2232 .class_data = (void *)info, 2233 }; 2234 2235 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2236 type_register(&type_info); 2237 g_free((void *)type_info.name); 2238 } 2239 2240 static const TypeInfo arm_cpu_type_info = { 2241 .name = TYPE_ARM_CPU, 2242 .parent = TYPE_CPU, 2243 .instance_size = sizeof(ARMCPU), 2244 .instance_init = arm_cpu_initfn, 2245 .instance_finalize = arm_cpu_finalizefn, 2246 .abstract = true, 2247 .class_size = sizeof(ARMCPUClass), 2248 .class_init = arm_cpu_class_init, 2249 }; 2250 2251 static const TypeInfo idau_interface_type_info = { 2252 .name = TYPE_IDAU_INTERFACE, 2253 .parent = TYPE_INTERFACE, 2254 .class_size = sizeof(IDAUInterfaceClass), 2255 }; 2256 2257 static void arm_cpu_register_types(void) 2258 { 2259 const ARMCPUInfo *info = arm_cpus; 2260 2261 type_register_static(&arm_cpu_type_info); 2262 type_register_static(&idau_interface_type_info); 2263 2264 while (info->name) { 2265 cpu_register(info); 2266 info++; 2267 } 2268 2269 #ifdef CONFIG_KVM 2270 type_register_static(&host_arm_cpu_type_info); 2271 #endif 2272 } 2273 2274 type_init(arm_cpu_register_types) 2275