xref: /openbmc/qemu/target/arm/cpu.c (revision 2a3129a3)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
47 
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 {
50     ARMCPU *cpu = ARM_CPU(cs);
51     CPUARMState *env = &cpu->env;
52 
53     if (is_a64(env)) {
54         env->pc = value;
55         env->thumb = false;
56     } else {
57         env->regs[15] = value & ~1;
58         env->thumb = value & 1;
59     }
60 }
61 
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64                                  const TranslationBlock *tb)
65 {
66     ARMCPU *cpu = ARM_CPU(cs);
67     CPUARMState *env = &cpu->env;
68 
69     /*
70      * It's OK to look at env for the current mode here, because it's
71      * never possible for an AArch64 TB to chain to an AArch32 TB.
72      */
73     if (is_a64(env)) {
74         env->pc = tb->pc;
75     } else {
76         env->regs[15] = tb->pc;
77     }
78 }
79 #endif /* CONFIG_TCG */
80 
81 static bool arm_cpu_has_work(CPUState *cs)
82 {
83     ARMCPU *cpu = ARM_CPU(cs);
84 
85     return (cpu->power_state != PSCI_OFF)
86         && cs->interrupt_request &
87         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
89          | CPU_INTERRUPT_EXITTB);
90 }
91 
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93                                  void *opaque)
94 {
95     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 
97     entry->hook = hook;
98     entry->opaque = opaque;
99 
100     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 }
102 
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104                                  void *opaque)
105 {
106     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107 
108     entry->hook = hook;
109     entry->opaque = opaque;
110 
111     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 }
113 
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 {
116     /* Reset a single ARMCPRegInfo register */
117     ARMCPRegInfo *ri = value;
118     ARMCPU *cpu = opaque;
119 
120     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121         return;
122     }
123 
124     if (ri->resetfn) {
125         ri->resetfn(&cpu->env, ri);
126         return;
127     }
128 
129     /* A zero offset is never possible as it would be regs[0]
130      * so we use it to indicate that reset is being handled elsewhere.
131      * This is basically only used for fields in non-core coprocessors
132      * (like the pxa2xx ones).
133      */
134     if (!ri->fieldoffset) {
135         return;
136     }
137 
138     if (cpreg_field_is_64bit(ri)) {
139         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140     } else {
141         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142     }
143 }
144 
145 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
146 {
147     /* Purely an assertion check: we've already done reset once,
148      * so now check that running the reset for the cpreg doesn't
149      * change its value. This traps bugs where two different cpregs
150      * both try to reset the same state field but to different values.
151      */
152     ARMCPRegInfo *ri = value;
153     ARMCPU *cpu = opaque;
154     uint64_t oldvalue, newvalue;
155 
156     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157         return;
158     }
159 
160     oldvalue = read_raw_cp_reg(&cpu->env, ri);
161     cp_reg_reset(key, value, opaque);
162     newvalue = read_raw_cp_reg(&cpu->env, ri);
163     assert(oldvalue == newvalue);
164 }
165 
166 static void arm_cpu_reset(DeviceState *dev)
167 {
168     CPUState *s = CPU(dev);
169     ARMCPU *cpu = ARM_CPU(s);
170     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171     CPUARMState *env = &cpu->env;
172 
173     acc->parent_reset(dev);
174 
175     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176 
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179 
180     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184 
185     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186 
187     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189     }
190 
191     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192         /* 64 bit CPUs always start in 64 bit mode */
193         env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195         env->pstate = PSTATE_MODE_EL0t;
196         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198         /* Enable all PAC keys.  */
199         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200                                   SCTLR_EnDA | SCTLR_EnDB);
201         /* Trap on btype=3 for PACIxSP. */
202         env->cp15.sctlr_el[1] |= SCTLR_BT0;
203         /* and to the FP/Neon instructions */
204         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
205         /* and to the SVE instructions */
206         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
207         /* with reasonable vector length */
208         if (cpu_isar_feature(aa64_sve, cpu)) {
209             env->vfp.zcr_el[1] =
210                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
211         }
212         /*
213          * Enable 48-bit address space (TODO: take reserved_va into account).
214          * Enable TBI0 but not TBI1.
215          * Note that this must match useronly_clean_ptr.
216          */
217         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
218 
219         /* Enable MTE */
220         if (cpu_isar_feature(aa64_mte, cpu)) {
221             /* Enable tag access, but leave TCF0 as No Effect (0). */
222             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
223             /*
224              * Exclude all tags, so that tag 0 is always used.
225              * This corresponds to Linux current->thread.gcr_incl = 0.
226              *
227              * Set RRND, so that helper_irg() will generate a seed later.
228              * Here in cpu_reset(), the crypto subsystem has not yet been
229              * initialized.
230              */
231             env->cp15.gcr_el1 = 0x1ffff;
232         }
233 #else
234         /* Reset into the highest available EL */
235         if (arm_feature(env, ARM_FEATURE_EL3)) {
236             env->pstate = PSTATE_MODE_EL3h;
237         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
238             env->pstate = PSTATE_MODE_EL2h;
239         } else {
240             env->pstate = PSTATE_MODE_EL1h;
241         }
242 
243         /* Sample rvbar at reset.  */
244         env->cp15.rvbar = cpu->rvbar_prop;
245         env->pc = env->cp15.rvbar;
246 #endif
247     } else {
248 #if defined(CONFIG_USER_ONLY)
249         /* Userspace expects access to cp10 and cp11 for FP/Neon */
250         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
251 #endif
252     }
253 
254 #if defined(CONFIG_USER_ONLY)
255     env->uncached_cpsr = ARM_CPU_MODE_USR;
256     /* For user mode we must enable access to coprocessors */
257     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
258     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
259         env->cp15.c15_cpar = 3;
260     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
261         env->cp15.c15_cpar = 1;
262     }
263 #else
264 
265     /*
266      * If the highest available EL is EL2, AArch32 will start in Hyp
267      * mode; otherwise it starts in SVC. Note that if we start in
268      * AArch64 then these values in the uncached_cpsr will be ignored.
269      */
270     if (arm_feature(env, ARM_FEATURE_EL2) &&
271         !arm_feature(env, ARM_FEATURE_EL3)) {
272         env->uncached_cpsr = ARM_CPU_MODE_HYP;
273     } else {
274         env->uncached_cpsr = ARM_CPU_MODE_SVC;
275     }
276     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
277 
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285 
286     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
287 #endif
288 
289     if (arm_feature(env, ARM_FEATURE_M)) {
290 #ifndef CONFIG_USER_ONLY
291         uint32_t initial_msp; /* Loaded from 0x0 */
292         uint32_t initial_pc; /* Loaded from 0x4 */
293         uint8_t *rom;
294         uint32_t vecbase;
295 #endif
296 
297         if (cpu_isar_feature(aa32_lob, cpu)) {
298             /*
299              * LTPSIZE is constant 4 if MVE not implemented, and resets
300              * to an UNKNOWN value if MVE is implemented. We choose to
301              * always reset to 4.
302              */
303             env->v7m.ltpsize = 4;
304             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
305             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
306             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
307         }
308 
309         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
310             env->v7m.secure = true;
311         } else {
312             /* This bit resets to 0 if security is supported, but 1 if
313              * it is not. The bit is not present in v7M, but we set it
314              * here so we can avoid having to make checks on it conditional
315              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
316              */
317             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
318             /*
319              * Set NSACR to indicate "NS access permitted to everything";
320              * this avoids having to have all the tests of it being
321              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
322              * v8.1M the guest-visible value of NSACR in a CPU without the
323              * Security Extension is 0xcff.
324              */
325             env->v7m.nsacr = 0xcff;
326         }
327 
328         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
329          * that it resets to 1, so QEMU always does that rather than making
330          * it dependent on CPU model. In v8M it is RES1.
331          */
332         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
333         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
334         if (arm_feature(env, ARM_FEATURE_V8)) {
335             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
336             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
337             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
338         }
339         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
340             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
341             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
342         }
343 
344         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
345             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
346             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
347                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
348         }
349 
350 #ifndef CONFIG_USER_ONLY
351         /* Unlike A/R profile, M profile defines the reset LR value */
352         env->regs[14] = 0xffffffff;
353 
354         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
355         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
356 
357         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
358         vecbase = env->v7m.vecbase[env->v7m.secure];
359         rom = rom_ptr_for_as(s->as, vecbase, 8);
360         if (rom) {
361             /* Address zero is covered by ROM which hasn't yet been
362              * copied into physical memory.
363              */
364             initial_msp = ldl_p(rom);
365             initial_pc = ldl_p(rom + 4);
366         } else {
367             /* Address zero not covered by a ROM blob, or the ROM blob
368              * is in non-modifiable memory and this is a second reset after
369              * it got copied into memory. In the latter case, rom_ptr
370              * will return a NULL pointer and we should use ldl_phys instead.
371              */
372             initial_msp = ldl_phys(s->as, vecbase);
373             initial_pc = ldl_phys(s->as, vecbase + 4);
374         }
375 
376         qemu_log_mask(CPU_LOG_INT,
377                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
378                       initial_msp, initial_pc);
379 
380         env->regs[13] = initial_msp & 0xFFFFFFFC;
381         env->regs[15] = initial_pc & ~1;
382         env->thumb = initial_pc & 1;
383 #else
384         /*
385          * For user mode we run non-secure and with access to the FPU.
386          * The FPU context is active (ie does not need further setup)
387          * and is owned by non-secure.
388          */
389         env->v7m.secure = false;
390         env->v7m.nsacr = 0xcff;
391         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
392         env->v7m.fpccr[M_REG_S] &=
393             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
394         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
395 #endif
396     }
397 
398     /* M profile requires that reset clears the exclusive monitor;
399      * A profile does not, but clearing it makes more sense than having it
400      * set with an exclusive access on address zero.
401      */
402     arm_clear_exclusive(env);
403 
404     if (arm_feature(env, ARM_FEATURE_PMSA)) {
405         if (cpu->pmsav7_dregion > 0) {
406             if (arm_feature(env, ARM_FEATURE_V8)) {
407                 memset(env->pmsav8.rbar[M_REG_NS], 0,
408                        sizeof(*env->pmsav8.rbar[M_REG_NS])
409                        * cpu->pmsav7_dregion);
410                 memset(env->pmsav8.rlar[M_REG_NS], 0,
411                        sizeof(*env->pmsav8.rlar[M_REG_NS])
412                        * cpu->pmsav7_dregion);
413                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
414                     memset(env->pmsav8.rbar[M_REG_S], 0,
415                            sizeof(*env->pmsav8.rbar[M_REG_S])
416                            * cpu->pmsav7_dregion);
417                     memset(env->pmsav8.rlar[M_REG_S], 0,
418                            sizeof(*env->pmsav8.rlar[M_REG_S])
419                            * cpu->pmsav7_dregion);
420                 }
421             } else if (arm_feature(env, ARM_FEATURE_V7)) {
422                 memset(env->pmsav7.drbar, 0,
423                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
424                 memset(env->pmsav7.drsr, 0,
425                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
426                 memset(env->pmsav7.dracr, 0,
427                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
428             }
429         }
430         env->pmsav7.rnr[M_REG_NS] = 0;
431         env->pmsav7.rnr[M_REG_S] = 0;
432         env->pmsav8.mair0[M_REG_NS] = 0;
433         env->pmsav8.mair0[M_REG_S] = 0;
434         env->pmsav8.mair1[M_REG_NS] = 0;
435         env->pmsav8.mair1[M_REG_S] = 0;
436     }
437 
438     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
439         if (cpu->sau_sregion > 0) {
440             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
441             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
442         }
443         env->sau.rnr = 0;
444         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
445          * the Cortex-M33 does.
446          */
447         env->sau.ctrl = 0;
448     }
449 
450     set_flush_to_zero(1, &env->vfp.standard_fp_status);
451     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
452     set_default_nan_mode(1, &env->vfp.standard_fp_status);
453     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
454     set_float_detect_tininess(float_tininess_before_rounding,
455                               &env->vfp.fp_status);
456     set_float_detect_tininess(float_tininess_before_rounding,
457                               &env->vfp.standard_fp_status);
458     set_float_detect_tininess(float_tininess_before_rounding,
459                               &env->vfp.fp_status_f16);
460     set_float_detect_tininess(float_tininess_before_rounding,
461                               &env->vfp.standard_fp_status_f16);
462 #ifndef CONFIG_USER_ONLY
463     if (kvm_enabled()) {
464         kvm_arm_reset_vcpu(cpu);
465     }
466 #endif
467 
468     hw_breakpoint_update_all(cpu);
469     hw_watchpoint_update_all(cpu);
470     arm_rebuild_hflags(env);
471 }
472 
473 #ifndef CONFIG_USER_ONLY
474 
475 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
476                                      unsigned int target_el,
477                                      unsigned int cur_el, bool secure,
478                                      uint64_t hcr_el2)
479 {
480     CPUARMState *env = cs->env_ptr;
481     bool pstate_unmasked;
482     bool unmasked = false;
483 
484     /*
485      * Don't take exceptions if they target a lower EL.
486      * This check should catch any exceptions that would not be taken
487      * but left pending.
488      */
489     if (cur_el > target_el) {
490         return false;
491     }
492 
493     switch (excp_idx) {
494     case EXCP_FIQ:
495         pstate_unmasked = !(env->daif & PSTATE_F);
496         break;
497 
498     case EXCP_IRQ:
499         pstate_unmasked = !(env->daif & PSTATE_I);
500         break;
501 
502     case EXCP_VFIQ:
503         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
504             /* VFIQs are only taken when hypervized.  */
505             return false;
506         }
507         return !(env->daif & PSTATE_F);
508     case EXCP_VIRQ:
509         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
510             /* VIRQs are only taken when hypervized.  */
511             return false;
512         }
513         return !(env->daif & PSTATE_I);
514     default:
515         g_assert_not_reached();
516     }
517 
518     /*
519      * Use the target EL, current execution state and SCR/HCR settings to
520      * determine whether the corresponding CPSR bit is used to mask the
521      * interrupt.
522      */
523     if ((target_el > cur_el) && (target_el != 1)) {
524         /* Exceptions targeting a higher EL may not be maskable */
525         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
526             /*
527              * 64-bit masking rules are simple: exceptions to EL3
528              * can't be masked, and exceptions to EL2 can only be
529              * masked from Secure state. The HCR and SCR settings
530              * don't affect the masking logic, only the interrupt routing.
531              */
532             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
533                 unmasked = true;
534             }
535         } else {
536             /*
537              * The old 32-bit-only environment has a more complicated
538              * masking setup. HCR and SCR bits not only affect interrupt
539              * routing but also change the behaviour of masking.
540              */
541             bool hcr, scr;
542 
543             switch (excp_idx) {
544             case EXCP_FIQ:
545                 /*
546                  * If FIQs are routed to EL3 or EL2 then there are cases where
547                  * we override the CPSR.F in determining if the exception is
548                  * masked or not. If neither of these are set then we fall back
549                  * to the CPSR.F setting otherwise we further assess the state
550                  * below.
551                  */
552                 hcr = hcr_el2 & HCR_FMO;
553                 scr = (env->cp15.scr_el3 & SCR_FIQ);
554 
555                 /*
556                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
557                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
558                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
559                  * when non-secure but only when FIQs are only routed to EL3.
560                  */
561                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
562                 break;
563             case EXCP_IRQ:
564                 /*
565                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
566                  * we may override the CPSR.I masking when in non-secure state.
567                  * The SCR.IRQ setting has already been taken into consideration
568                  * when setting the target EL, so it does not have a further
569                  * affect here.
570                  */
571                 hcr = hcr_el2 & HCR_IMO;
572                 scr = false;
573                 break;
574             default:
575                 g_assert_not_reached();
576             }
577 
578             if ((scr || hcr) && !secure) {
579                 unmasked = true;
580             }
581         }
582     }
583 
584     /*
585      * The PSTATE bits only mask the interrupt if we have not overriden the
586      * ability above.
587      */
588     return unmasked || pstate_unmasked;
589 }
590 
591 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
592 {
593     CPUClass *cc = CPU_GET_CLASS(cs);
594     CPUARMState *env = cs->env_ptr;
595     uint32_t cur_el = arm_current_el(env);
596     bool secure = arm_is_secure(env);
597     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
598     uint32_t target_el;
599     uint32_t excp_idx;
600 
601     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
602 
603     if (interrupt_request & CPU_INTERRUPT_FIQ) {
604         excp_idx = EXCP_FIQ;
605         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
606         if (arm_excp_unmasked(cs, excp_idx, target_el,
607                               cur_el, secure, hcr_el2)) {
608             goto found;
609         }
610     }
611     if (interrupt_request & CPU_INTERRUPT_HARD) {
612         excp_idx = EXCP_IRQ;
613         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
614         if (arm_excp_unmasked(cs, excp_idx, target_el,
615                               cur_el, secure, hcr_el2)) {
616             goto found;
617         }
618     }
619     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
620         excp_idx = EXCP_VIRQ;
621         target_el = 1;
622         if (arm_excp_unmasked(cs, excp_idx, target_el,
623                               cur_el, secure, hcr_el2)) {
624             goto found;
625         }
626     }
627     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
628         excp_idx = EXCP_VFIQ;
629         target_el = 1;
630         if (arm_excp_unmasked(cs, excp_idx, target_el,
631                               cur_el, secure, hcr_el2)) {
632             goto found;
633         }
634     }
635     return false;
636 
637  found:
638     cs->exception_index = excp_idx;
639     env->exception.target_el = target_el;
640     cc->tcg_ops->do_interrupt(cs);
641     return true;
642 }
643 #endif /* !CONFIG_USER_ONLY */
644 
645 void arm_cpu_update_virq(ARMCPU *cpu)
646 {
647     /*
648      * Update the interrupt level for VIRQ, which is the logical OR of
649      * the HCR_EL2.VI bit and the input line level from the GIC.
650      */
651     CPUARMState *env = &cpu->env;
652     CPUState *cs = CPU(cpu);
653 
654     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
655         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
656 
657     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
658         if (new_state) {
659             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
660         } else {
661             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
662         }
663     }
664 }
665 
666 void arm_cpu_update_vfiq(ARMCPU *cpu)
667 {
668     /*
669      * Update the interrupt level for VFIQ, which is the logical OR of
670      * the HCR_EL2.VF bit and the input line level from the GIC.
671      */
672     CPUARMState *env = &cpu->env;
673     CPUState *cs = CPU(cpu);
674 
675     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
676         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
677 
678     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
679         if (new_state) {
680             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
681         } else {
682             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
683         }
684     }
685 }
686 
687 #ifndef CONFIG_USER_ONLY
688 static void arm_cpu_set_irq(void *opaque, int irq, int level)
689 {
690     ARMCPU *cpu = opaque;
691     CPUARMState *env = &cpu->env;
692     CPUState *cs = CPU(cpu);
693     static const int mask[] = {
694         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
695         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
696         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
697         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
698     };
699 
700     if (!arm_feature(env, ARM_FEATURE_EL2) &&
701         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
702         /*
703          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
704          * have EL2 support we don't care. (Unless the guest is doing something
705          * silly this will only be calls saying "level is still 0".)
706          */
707         return;
708     }
709 
710     if (level) {
711         env->irq_line_state |= mask[irq];
712     } else {
713         env->irq_line_state &= ~mask[irq];
714     }
715 
716     switch (irq) {
717     case ARM_CPU_VIRQ:
718         arm_cpu_update_virq(cpu);
719         break;
720     case ARM_CPU_VFIQ:
721         arm_cpu_update_vfiq(cpu);
722         break;
723     case ARM_CPU_IRQ:
724     case ARM_CPU_FIQ:
725         if (level) {
726             cpu_interrupt(cs, mask[irq]);
727         } else {
728             cpu_reset_interrupt(cs, mask[irq]);
729         }
730         break;
731     default:
732         g_assert_not_reached();
733     }
734 }
735 
736 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
737 {
738 #ifdef CONFIG_KVM
739     ARMCPU *cpu = opaque;
740     CPUARMState *env = &cpu->env;
741     CPUState *cs = CPU(cpu);
742     uint32_t linestate_bit;
743     int irq_id;
744 
745     switch (irq) {
746     case ARM_CPU_IRQ:
747         irq_id = KVM_ARM_IRQ_CPU_IRQ;
748         linestate_bit = CPU_INTERRUPT_HARD;
749         break;
750     case ARM_CPU_FIQ:
751         irq_id = KVM_ARM_IRQ_CPU_FIQ;
752         linestate_bit = CPU_INTERRUPT_FIQ;
753         break;
754     default:
755         g_assert_not_reached();
756     }
757 
758     if (level) {
759         env->irq_line_state |= linestate_bit;
760     } else {
761         env->irq_line_state &= ~linestate_bit;
762     }
763     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
764 #endif
765 }
766 
767 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
768 {
769     ARMCPU *cpu = ARM_CPU(cs);
770     CPUARMState *env = &cpu->env;
771 
772     cpu_synchronize_state(cs);
773     return arm_cpu_data_is_big_endian(env);
774 }
775 
776 #endif
777 
778 static int
779 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
780 {
781   return print_insn_arm(pc | 1, info);
782 }
783 
784 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
785 {
786     ARMCPU *ac = ARM_CPU(cpu);
787     CPUARMState *env = &ac->env;
788     bool sctlr_b;
789 
790     if (is_a64(env)) {
791         /* We might not be compiled with the A64 disassembler
792          * because it needs a C++ compiler. Leave print_insn
793          * unset in this case to use the caller default behaviour.
794          */
795 #if defined(CONFIG_ARM_A64_DIS)
796         info->print_insn = print_insn_arm_a64;
797 #endif
798         info->cap_arch = CS_ARCH_ARM64;
799         info->cap_insn_unit = 4;
800         info->cap_insn_split = 4;
801     } else {
802         int cap_mode;
803         if (env->thumb) {
804             info->print_insn = print_insn_thumb1;
805             info->cap_insn_unit = 2;
806             info->cap_insn_split = 4;
807             cap_mode = CS_MODE_THUMB;
808         } else {
809             info->print_insn = print_insn_arm;
810             info->cap_insn_unit = 4;
811             info->cap_insn_split = 4;
812             cap_mode = CS_MODE_ARM;
813         }
814         if (arm_feature(env, ARM_FEATURE_V8)) {
815             cap_mode |= CS_MODE_V8;
816         }
817         if (arm_feature(env, ARM_FEATURE_M)) {
818             cap_mode |= CS_MODE_MCLASS;
819         }
820         info->cap_arch = CS_ARCH_ARM;
821         info->cap_mode = cap_mode;
822     }
823 
824     sctlr_b = arm_sctlr_b(env);
825     if (bswap_code(sctlr_b)) {
826 #if TARGET_BIG_ENDIAN
827         info->endian = BFD_ENDIAN_LITTLE;
828 #else
829         info->endian = BFD_ENDIAN_BIG;
830 #endif
831     }
832     info->flags &= ~INSN_ARM_BE32;
833 #ifndef CONFIG_USER_ONLY
834     if (sctlr_b) {
835         info->flags |= INSN_ARM_BE32;
836     }
837 #endif
838 }
839 
840 #ifdef TARGET_AARCH64
841 
842 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
843 {
844     ARMCPU *cpu = ARM_CPU(cs);
845     CPUARMState *env = &cpu->env;
846     uint32_t psr = pstate_read(env);
847     int i;
848     int el = arm_current_el(env);
849     const char *ns_status;
850 
851     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
852     for (i = 0; i < 32; i++) {
853         if (i == 31) {
854             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
855         } else {
856             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
857                          (i + 2) % 3 ? " " : "\n");
858         }
859     }
860 
861     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
862         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
863     } else {
864         ns_status = "";
865     }
866     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
867                  psr,
868                  psr & PSTATE_N ? 'N' : '-',
869                  psr & PSTATE_Z ? 'Z' : '-',
870                  psr & PSTATE_C ? 'C' : '-',
871                  psr & PSTATE_V ? 'V' : '-',
872                  ns_status,
873                  el,
874                  psr & PSTATE_SP ? 'h' : 't');
875 
876     if (cpu_isar_feature(aa64_bti, cpu)) {
877         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
878     }
879     if (!(flags & CPU_DUMP_FPU)) {
880         qemu_fprintf(f, "\n");
881         return;
882     }
883     if (fp_exception_el(env, el) != 0) {
884         qemu_fprintf(f, "    FPU disabled\n");
885         return;
886     }
887     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
888                  vfp_get_fpcr(env), vfp_get_fpsr(env));
889 
890     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
891         int j, zcr_len = sve_zcr_len_for_el(env, el);
892 
893         for (i = 0; i <= FFR_PRED_NUM; i++) {
894             bool eol;
895             if (i == FFR_PRED_NUM) {
896                 qemu_fprintf(f, "FFR=");
897                 /* It's last, so end the line.  */
898                 eol = true;
899             } else {
900                 qemu_fprintf(f, "P%02d=", i);
901                 switch (zcr_len) {
902                 case 0:
903                     eol = i % 8 == 7;
904                     break;
905                 case 1:
906                     eol = i % 6 == 5;
907                     break;
908                 case 2:
909                 case 3:
910                     eol = i % 3 == 2;
911                     break;
912                 default:
913                     /* More than one quadword per predicate.  */
914                     eol = true;
915                     break;
916                 }
917             }
918             for (j = zcr_len / 4; j >= 0; j--) {
919                 int digits;
920                 if (j * 4 + 4 <= zcr_len + 1) {
921                     digits = 16;
922                 } else {
923                     digits = (zcr_len % 4 + 1) * 4;
924                 }
925                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
926                              env->vfp.pregs[i].p[j],
927                              j ? ":" : eol ? "\n" : " ");
928             }
929         }
930 
931         for (i = 0; i < 32; i++) {
932             if (zcr_len == 0) {
933                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
934                              i, env->vfp.zregs[i].d[1],
935                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
936             } else if (zcr_len == 1) {
937                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
938                              ":%016" PRIx64 ":%016" PRIx64 "\n",
939                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
940                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
941             } else {
942                 for (j = zcr_len; j >= 0; j--) {
943                     bool odd = (zcr_len - j) % 2 != 0;
944                     if (j == zcr_len) {
945                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
946                     } else if (!odd) {
947                         if (j > 0) {
948                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
949                         } else {
950                             qemu_fprintf(f, "     [%x]=", j);
951                         }
952                     }
953                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
954                                  env->vfp.zregs[i].d[j * 2 + 1],
955                                  env->vfp.zregs[i].d[j * 2],
956                                  odd || j == 0 ? "\n" : ":");
957                 }
958             }
959         }
960     } else {
961         for (i = 0; i < 32; i++) {
962             uint64_t *q = aa64_vfp_qreg(env, i);
963             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
964                          i, q[1], q[0], (i & 1 ? "\n" : " "));
965         }
966     }
967 }
968 
969 #else
970 
971 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
972 {
973     g_assert_not_reached();
974 }
975 
976 #endif
977 
978 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
979 {
980     ARMCPU *cpu = ARM_CPU(cs);
981     CPUARMState *env = &cpu->env;
982     int i;
983 
984     if (is_a64(env)) {
985         aarch64_cpu_dump_state(cs, f, flags);
986         return;
987     }
988 
989     for (i = 0; i < 16; i++) {
990         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
991         if ((i % 4) == 3) {
992             qemu_fprintf(f, "\n");
993         } else {
994             qemu_fprintf(f, " ");
995         }
996     }
997 
998     if (arm_feature(env, ARM_FEATURE_M)) {
999         uint32_t xpsr = xpsr_read(env);
1000         const char *mode;
1001         const char *ns_status = "";
1002 
1003         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1004             ns_status = env->v7m.secure ? "S " : "NS ";
1005         }
1006 
1007         if (xpsr & XPSR_EXCP) {
1008             mode = "handler";
1009         } else {
1010             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1011                 mode = "unpriv-thread";
1012             } else {
1013                 mode = "priv-thread";
1014             }
1015         }
1016 
1017         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1018                      xpsr,
1019                      xpsr & XPSR_N ? 'N' : '-',
1020                      xpsr & XPSR_Z ? 'Z' : '-',
1021                      xpsr & XPSR_C ? 'C' : '-',
1022                      xpsr & XPSR_V ? 'V' : '-',
1023                      xpsr & XPSR_T ? 'T' : 'A',
1024                      ns_status,
1025                      mode);
1026     } else {
1027         uint32_t psr = cpsr_read(env);
1028         const char *ns_status = "";
1029 
1030         if (arm_feature(env, ARM_FEATURE_EL3) &&
1031             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1032             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1033         }
1034 
1035         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1036                      psr,
1037                      psr & CPSR_N ? 'N' : '-',
1038                      psr & CPSR_Z ? 'Z' : '-',
1039                      psr & CPSR_C ? 'C' : '-',
1040                      psr & CPSR_V ? 'V' : '-',
1041                      psr & CPSR_T ? 'T' : 'A',
1042                      ns_status,
1043                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1044     }
1045 
1046     if (flags & CPU_DUMP_FPU) {
1047         int numvfpregs = 0;
1048         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1049             numvfpregs = 32;
1050         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1051             numvfpregs = 16;
1052         }
1053         for (i = 0; i < numvfpregs; i++) {
1054             uint64_t v = *aa32_vfp_dreg(env, i);
1055             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1056                          i * 2, (uint32_t)v,
1057                          i * 2 + 1, (uint32_t)(v >> 32),
1058                          i, v);
1059         }
1060         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1061         if (cpu_isar_feature(aa32_mve, cpu)) {
1062             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1063         }
1064     }
1065 }
1066 
1067 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1068 {
1069     uint32_t Aff1 = idx / clustersz;
1070     uint32_t Aff0 = idx % clustersz;
1071     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1072 }
1073 
1074 static void arm_cpu_initfn(Object *obj)
1075 {
1076     ARMCPU *cpu = ARM_CPU(obj);
1077 
1078     cpu_set_cpustate_pointers(cpu);
1079     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1080                                          NULL, g_free);
1081 
1082     QLIST_INIT(&cpu->pre_el_change_hooks);
1083     QLIST_INIT(&cpu->el_change_hooks);
1084 
1085 #ifdef CONFIG_USER_ONLY
1086 # ifdef TARGET_AARCH64
1087     /*
1088      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1089      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1090      * our corresponding sve-default-vector-length cpu property.
1091      */
1092     cpu->sve_default_vq = 4;
1093 # endif
1094 #else
1095     /* Our inbound IRQ and FIQ lines */
1096     if (kvm_enabled()) {
1097         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1098          * the same interface as non-KVM CPUs.
1099          */
1100         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1101     } else {
1102         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1103     }
1104 
1105     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1106                        ARRAY_SIZE(cpu->gt_timer_outputs));
1107 
1108     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1109                              "gicv3-maintenance-interrupt", 1);
1110     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1111                              "pmu-interrupt", 1);
1112 #endif
1113 
1114     /* DTB consumers generally don't in fact care what the 'compatible'
1115      * string is, so always provide some string and trust that a hypothetical
1116      * picky DTB consumer will also provide a helpful error message.
1117      */
1118     cpu->dtb_compatible = "qemu,unknown";
1119     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1120     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1121 
1122     if (tcg_enabled() || hvf_enabled()) {
1123         /* TCG and HVF implement PSCI 1.1 */
1124         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1125     }
1126 }
1127 
1128 static Property arm_cpu_gt_cntfrq_property =
1129             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1130                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1131 
1132 static Property arm_cpu_reset_cbar_property =
1133             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1134 
1135 static Property arm_cpu_reset_hivecs_property =
1136             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1137 
1138 #ifndef CONFIG_USER_ONLY
1139 static Property arm_cpu_has_el2_property =
1140             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1141 
1142 static Property arm_cpu_has_el3_property =
1143             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1144 #endif
1145 
1146 static Property arm_cpu_cfgend_property =
1147             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1148 
1149 static Property arm_cpu_has_vfp_property =
1150             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1151 
1152 static Property arm_cpu_has_neon_property =
1153             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1154 
1155 static Property arm_cpu_has_dsp_property =
1156             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1157 
1158 static Property arm_cpu_has_mpu_property =
1159             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1160 
1161 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1162  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1163  * the right value for that particular CPU type, and we don't want
1164  * to override that with an incorrect constant value.
1165  */
1166 static Property arm_cpu_pmsav7_dregion_property =
1167             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1168                                            pmsav7_dregion,
1169                                            qdev_prop_uint32, uint32_t);
1170 
1171 static bool arm_get_pmu(Object *obj, Error **errp)
1172 {
1173     ARMCPU *cpu = ARM_CPU(obj);
1174 
1175     return cpu->has_pmu;
1176 }
1177 
1178 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1179 {
1180     ARMCPU *cpu = ARM_CPU(obj);
1181 
1182     if (value) {
1183         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1184             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1185             return;
1186         }
1187         set_feature(&cpu->env, ARM_FEATURE_PMU);
1188     } else {
1189         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1190     }
1191     cpu->has_pmu = value;
1192 }
1193 
1194 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1195 {
1196     /*
1197      * The exact approach to calculating guest ticks is:
1198      *
1199      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1200      *              NANOSECONDS_PER_SECOND);
1201      *
1202      * We don't do that. Rather we intentionally use integer division
1203      * truncation below and in the caller for the conversion of host monotonic
1204      * time to guest ticks to provide the exact inverse for the semantics of
1205      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1206      * it loses precision when representing frequencies where
1207      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1208      * provide an exact inverse leads to scheduling timers with negative
1209      * periods, which in turn leads to sticky behaviour in the guest.
1210      *
1211      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1212      * cannot become zero.
1213      */
1214     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1215       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1216 }
1217 
1218 void arm_cpu_post_init(Object *obj)
1219 {
1220     ARMCPU *cpu = ARM_CPU(obj);
1221 
1222     /* M profile implies PMSA. We have to do this here rather than
1223      * in realize with the other feature-implication checks because
1224      * we look at the PMSA bit to see if we should add some properties.
1225      */
1226     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1227         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1228     }
1229 
1230     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1231         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1232         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1233     }
1234 
1235     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1236         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1237     }
1238 
1239     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1240         object_property_add_uint64_ptr(obj, "rvbar",
1241                                        &cpu->rvbar_prop,
1242                                        OBJ_PROP_FLAG_READWRITE);
1243     }
1244 
1245 #ifndef CONFIG_USER_ONLY
1246     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1247         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1248          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1249          */
1250         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1251 
1252         object_property_add_link(obj, "secure-memory",
1253                                  TYPE_MEMORY_REGION,
1254                                  (Object **)&cpu->secure_memory,
1255                                  qdev_prop_allow_set_link_before_realize,
1256                                  OBJ_PROP_LINK_STRONG);
1257     }
1258 
1259     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1260         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1261     }
1262 #endif
1263 
1264     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1265         cpu->has_pmu = true;
1266         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1267     }
1268 
1269     /*
1270      * Allow user to turn off VFP and Neon support, but only for TCG --
1271      * KVM does not currently allow us to lie to the guest about its
1272      * ID/feature registers, so the guest always sees what the host has.
1273      */
1274     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1275         ? cpu_isar_feature(aa64_fp_simd, cpu)
1276         : cpu_isar_feature(aa32_vfp, cpu)) {
1277         cpu->has_vfp = true;
1278         if (!kvm_enabled()) {
1279             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1280         }
1281     }
1282 
1283     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1284         cpu->has_neon = true;
1285         if (!kvm_enabled()) {
1286             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1287         }
1288     }
1289 
1290     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1291         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1292         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1293     }
1294 
1295     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1296         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1297         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1298             qdev_property_add_static(DEVICE(obj),
1299                                      &arm_cpu_pmsav7_dregion_property);
1300         }
1301     }
1302 
1303     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1304         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1305                                  qdev_prop_allow_set_link_before_realize,
1306                                  OBJ_PROP_LINK_STRONG);
1307         /*
1308          * M profile: initial value of the Secure VTOR. We can't just use
1309          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1310          * the property to be set after realize.
1311          */
1312         object_property_add_uint32_ptr(obj, "init-svtor",
1313                                        &cpu->init_svtor,
1314                                        OBJ_PROP_FLAG_READWRITE);
1315     }
1316     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1317         /*
1318          * Initial value of the NS VTOR (for cores without the Security
1319          * extension, this is the only VTOR)
1320          */
1321         object_property_add_uint32_ptr(obj, "init-nsvtor",
1322                                        &cpu->init_nsvtor,
1323                                        OBJ_PROP_FLAG_READWRITE);
1324     }
1325 
1326     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1327     object_property_add_uint32_ptr(obj, "psci-conduit",
1328                                    &cpu->psci_conduit,
1329                                    OBJ_PROP_FLAG_READWRITE);
1330 
1331     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1332 
1333     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1334         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1335     }
1336 
1337     if (kvm_enabled()) {
1338         kvm_arm_add_vcpu_properties(obj);
1339     }
1340 
1341 #ifndef CONFIG_USER_ONLY
1342     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1343         cpu_isar_feature(aa64_mte, cpu)) {
1344         object_property_add_link(obj, "tag-memory",
1345                                  TYPE_MEMORY_REGION,
1346                                  (Object **)&cpu->tag_memory,
1347                                  qdev_prop_allow_set_link_before_realize,
1348                                  OBJ_PROP_LINK_STRONG);
1349 
1350         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1351             object_property_add_link(obj, "secure-tag-memory",
1352                                      TYPE_MEMORY_REGION,
1353                                      (Object **)&cpu->secure_tag_memory,
1354                                      qdev_prop_allow_set_link_before_realize,
1355                                      OBJ_PROP_LINK_STRONG);
1356         }
1357     }
1358 #endif
1359 }
1360 
1361 static void arm_cpu_finalizefn(Object *obj)
1362 {
1363     ARMCPU *cpu = ARM_CPU(obj);
1364     ARMELChangeHook *hook, *next;
1365 
1366     g_hash_table_destroy(cpu->cp_regs);
1367 
1368     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1369         QLIST_REMOVE(hook, node);
1370         g_free(hook);
1371     }
1372     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1373         QLIST_REMOVE(hook, node);
1374         g_free(hook);
1375     }
1376 #ifndef CONFIG_USER_ONLY
1377     if (cpu->pmu_timer) {
1378         timer_free(cpu->pmu_timer);
1379     }
1380 #endif
1381 }
1382 
1383 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1384 {
1385     Error *local_err = NULL;
1386 
1387     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1388         arm_cpu_sve_finalize(cpu, &local_err);
1389         if (local_err != NULL) {
1390             error_propagate(errp, local_err);
1391             return;
1392         }
1393 
1394         arm_cpu_pauth_finalize(cpu, &local_err);
1395         if (local_err != NULL) {
1396             error_propagate(errp, local_err);
1397             return;
1398         }
1399 
1400         arm_cpu_lpa2_finalize(cpu, &local_err);
1401         if (local_err != NULL) {
1402             error_propagate(errp, local_err);
1403             return;
1404         }
1405     }
1406 
1407     if (kvm_enabled()) {
1408         kvm_arm_steal_time_finalize(cpu, &local_err);
1409         if (local_err != NULL) {
1410             error_propagate(errp, local_err);
1411             return;
1412         }
1413     }
1414 }
1415 
1416 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1417 {
1418     CPUState *cs = CPU(dev);
1419     ARMCPU *cpu = ARM_CPU(dev);
1420     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1421     CPUARMState *env = &cpu->env;
1422     int pagebits;
1423     Error *local_err = NULL;
1424     bool no_aa32 = false;
1425 
1426     /* If we needed to query the host kernel for the CPU features
1427      * then it's possible that might have failed in the initfn, but
1428      * this is the first point where we can report it.
1429      */
1430     if (cpu->host_cpu_probe_failed) {
1431         if (!kvm_enabled() && !hvf_enabled()) {
1432             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1433         } else {
1434             error_setg(errp, "Failed to retrieve host CPU features");
1435         }
1436         return;
1437     }
1438 
1439 #ifndef CONFIG_USER_ONLY
1440     /* The NVIC and M-profile CPU are two halves of a single piece of
1441      * hardware; trying to use one without the other is a command line
1442      * error and will result in segfaults if not caught here.
1443      */
1444     if (arm_feature(env, ARM_FEATURE_M)) {
1445         if (!env->nvic) {
1446             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1447             return;
1448         }
1449     } else {
1450         if (env->nvic) {
1451             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1452             return;
1453         }
1454     }
1455 
1456     if (kvm_enabled()) {
1457         /*
1458          * Catch all the cases which might cause us to create more than one
1459          * address space for the CPU (otherwise we will assert() later in
1460          * cpu_address_space_init()).
1461          */
1462         if (arm_feature(env, ARM_FEATURE_M)) {
1463             error_setg(errp,
1464                        "Cannot enable KVM when using an M-profile guest CPU");
1465             return;
1466         }
1467         if (cpu->has_el3) {
1468             error_setg(errp,
1469                        "Cannot enable KVM when guest CPU has EL3 enabled");
1470             return;
1471         }
1472         if (cpu->tag_memory) {
1473             error_setg(errp,
1474                        "Cannot enable KVM when guest CPUs has MTE enabled");
1475             return;
1476         }
1477     }
1478 
1479     {
1480         uint64_t scale;
1481 
1482         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1483             if (!cpu->gt_cntfrq_hz) {
1484                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1485                            cpu->gt_cntfrq_hz);
1486                 return;
1487             }
1488             scale = gt_cntfrq_period_ns(cpu);
1489         } else {
1490             scale = GTIMER_SCALE;
1491         }
1492 
1493         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1494                                                arm_gt_ptimer_cb, cpu);
1495         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1496                                                arm_gt_vtimer_cb, cpu);
1497         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1498                                               arm_gt_htimer_cb, cpu);
1499         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1500                                               arm_gt_stimer_cb, cpu);
1501         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1502                                                   arm_gt_hvtimer_cb, cpu);
1503     }
1504 #endif
1505 
1506     cpu_exec_realizefn(cs, &local_err);
1507     if (local_err != NULL) {
1508         error_propagate(errp, local_err);
1509         return;
1510     }
1511 
1512     arm_cpu_finalize_features(cpu, &local_err);
1513     if (local_err != NULL) {
1514         error_propagate(errp, local_err);
1515         return;
1516     }
1517 
1518     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1519         cpu->has_vfp != cpu->has_neon) {
1520         /*
1521          * This is an architectural requirement for AArch64; AArch32 is
1522          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1523          */
1524         error_setg(errp,
1525                    "AArch64 CPUs must have both VFP and Neon or neither");
1526         return;
1527     }
1528 
1529     if (!cpu->has_vfp) {
1530         uint64_t t;
1531         uint32_t u;
1532 
1533         t = cpu->isar.id_aa64isar1;
1534         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1535         cpu->isar.id_aa64isar1 = t;
1536 
1537         t = cpu->isar.id_aa64pfr0;
1538         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1539         cpu->isar.id_aa64pfr0 = t;
1540 
1541         u = cpu->isar.id_isar6;
1542         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1543         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1544         cpu->isar.id_isar6 = u;
1545 
1546         u = cpu->isar.mvfr0;
1547         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1548         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1549         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1550         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1551         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1552         if (!arm_feature(env, ARM_FEATURE_M)) {
1553             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1554             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1555         }
1556         cpu->isar.mvfr0 = u;
1557 
1558         u = cpu->isar.mvfr1;
1559         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1560         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1561         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1562         if (arm_feature(env, ARM_FEATURE_M)) {
1563             u = FIELD_DP32(u, MVFR1, FP16, 0);
1564         }
1565         cpu->isar.mvfr1 = u;
1566 
1567         u = cpu->isar.mvfr2;
1568         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1569         cpu->isar.mvfr2 = u;
1570     }
1571 
1572     if (!cpu->has_neon) {
1573         uint64_t t;
1574         uint32_t u;
1575 
1576         unset_feature(env, ARM_FEATURE_NEON);
1577 
1578         t = cpu->isar.id_aa64isar0;
1579         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1580         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1581         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1582         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1583         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1584         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1585         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1586         cpu->isar.id_aa64isar0 = t;
1587 
1588         t = cpu->isar.id_aa64isar1;
1589         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1590         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1591         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1592         cpu->isar.id_aa64isar1 = t;
1593 
1594         t = cpu->isar.id_aa64pfr0;
1595         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1596         cpu->isar.id_aa64pfr0 = t;
1597 
1598         u = cpu->isar.id_isar5;
1599         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1600         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1601         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1602         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1603         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1604         cpu->isar.id_isar5 = u;
1605 
1606         u = cpu->isar.id_isar6;
1607         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1608         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1609         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1610         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1611         cpu->isar.id_isar6 = u;
1612 
1613         if (!arm_feature(env, ARM_FEATURE_M)) {
1614             u = cpu->isar.mvfr1;
1615             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1616             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1617             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1618             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1619             cpu->isar.mvfr1 = u;
1620 
1621             u = cpu->isar.mvfr2;
1622             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1623             cpu->isar.mvfr2 = u;
1624         }
1625     }
1626 
1627     if (!cpu->has_neon && !cpu->has_vfp) {
1628         uint64_t t;
1629         uint32_t u;
1630 
1631         t = cpu->isar.id_aa64isar0;
1632         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1633         cpu->isar.id_aa64isar0 = t;
1634 
1635         t = cpu->isar.id_aa64isar1;
1636         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1637         cpu->isar.id_aa64isar1 = t;
1638 
1639         u = cpu->isar.mvfr0;
1640         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1641         cpu->isar.mvfr0 = u;
1642 
1643         /* Despite the name, this field covers both VFP and Neon */
1644         u = cpu->isar.mvfr1;
1645         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1646         cpu->isar.mvfr1 = u;
1647     }
1648 
1649     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1650         uint32_t u;
1651 
1652         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1653 
1654         u = cpu->isar.id_isar1;
1655         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1656         cpu->isar.id_isar1 = u;
1657 
1658         u = cpu->isar.id_isar2;
1659         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1660         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1661         cpu->isar.id_isar2 = u;
1662 
1663         u = cpu->isar.id_isar3;
1664         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1665         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1666         cpu->isar.id_isar3 = u;
1667     }
1668 
1669     /* Some features automatically imply others: */
1670     if (arm_feature(env, ARM_FEATURE_V8)) {
1671         if (arm_feature(env, ARM_FEATURE_M)) {
1672             set_feature(env, ARM_FEATURE_V7);
1673         } else {
1674             set_feature(env, ARM_FEATURE_V7VE);
1675         }
1676     }
1677 
1678     /*
1679      * There exist AArch64 cpus without AArch32 support.  When KVM
1680      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1681      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1682      * As a general principle, we also do not make ID register
1683      * consistency checks anywhere unless using TCG, because only
1684      * for TCG would a consistency-check failure be a QEMU bug.
1685      */
1686     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1687         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1688     }
1689 
1690     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1691         /* v7 Virtualization Extensions. In real hardware this implies
1692          * EL2 and also the presence of the Security Extensions.
1693          * For QEMU, for backwards-compatibility we implement some
1694          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1695          * include the various other features that V7VE implies.
1696          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1697          * Security Extensions is ARM_FEATURE_EL3.
1698          */
1699         assert(!tcg_enabled() || no_aa32 ||
1700                cpu_isar_feature(aa32_arm_div, cpu));
1701         set_feature(env, ARM_FEATURE_LPAE);
1702         set_feature(env, ARM_FEATURE_V7);
1703     }
1704     if (arm_feature(env, ARM_FEATURE_V7)) {
1705         set_feature(env, ARM_FEATURE_VAPA);
1706         set_feature(env, ARM_FEATURE_THUMB2);
1707         set_feature(env, ARM_FEATURE_MPIDR);
1708         if (!arm_feature(env, ARM_FEATURE_M)) {
1709             set_feature(env, ARM_FEATURE_V6K);
1710         } else {
1711             set_feature(env, ARM_FEATURE_V6);
1712         }
1713 
1714         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1715          * non-EL3 configs. This is needed by some legacy boards.
1716          */
1717         set_feature(env, ARM_FEATURE_VBAR);
1718     }
1719     if (arm_feature(env, ARM_FEATURE_V6K)) {
1720         set_feature(env, ARM_FEATURE_V6);
1721         set_feature(env, ARM_FEATURE_MVFR);
1722     }
1723     if (arm_feature(env, ARM_FEATURE_V6)) {
1724         set_feature(env, ARM_FEATURE_V5);
1725         if (!arm_feature(env, ARM_FEATURE_M)) {
1726             assert(!tcg_enabled() || no_aa32 ||
1727                    cpu_isar_feature(aa32_jazelle, cpu));
1728             set_feature(env, ARM_FEATURE_AUXCR);
1729         }
1730     }
1731     if (arm_feature(env, ARM_FEATURE_V5)) {
1732         set_feature(env, ARM_FEATURE_V4T);
1733     }
1734     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1735         set_feature(env, ARM_FEATURE_V7MP);
1736     }
1737     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1738         set_feature(env, ARM_FEATURE_CBAR);
1739     }
1740     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1741         !arm_feature(env, ARM_FEATURE_M)) {
1742         set_feature(env, ARM_FEATURE_THUMB_DSP);
1743     }
1744 
1745     /*
1746      * We rely on no XScale CPU having VFP so we can use the same bits in the
1747      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1748      */
1749     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1750            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1751            !arm_feature(env, ARM_FEATURE_XSCALE));
1752 
1753     if (arm_feature(env, ARM_FEATURE_V7) &&
1754         !arm_feature(env, ARM_FEATURE_M) &&
1755         !arm_feature(env, ARM_FEATURE_PMSA)) {
1756         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1757          * can use 4K pages.
1758          */
1759         pagebits = 12;
1760     } else {
1761         /* For CPUs which might have tiny 1K pages, or which have an
1762          * MPU and might have small region sizes, stick with 1K pages.
1763          */
1764         pagebits = 10;
1765     }
1766     if (!set_preferred_target_page_bits(pagebits)) {
1767         /* This can only ever happen for hotplugging a CPU, or if
1768          * the board code incorrectly creates a CPU which it has
1769          * promised via minimum_page_size that it will not.
1770          */
1771         error_setg(errp, "This CPU requires a smaller page size than the "
1772                    "system is using");
1773         return;
1774     }
1775 
1776     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1777      * We don't support setting cluster ID ([16..23]) (known as Aff2
1778      * in later ARM ARM versions), or any of the higher affinity level fields,
1779      * so these bits always RAZ.
1780      */
1781     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1782         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1783                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1784     }
1785 
1786     if (cpu->reset_hivecs) {
1787             cpu->reset_sctlr |= (1 << 13);
1788     }
1789 
1790     if (cpu->cfgend) {
1791         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1792             cpu->reset_sctlr |= SCTLR_EE;
1793         } else {
1794             cpu->reset_sctlr |= SCTLR_B;
1795         }
1796     }
1797 
1798     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1799         /* If the has_el3 CPU property is disabled then we need to disable the
1800          * feature.
1801          */
1802         unset_feature(env, ARM_FEATURE_EL3);
1803 
1804         /* Disable the security extension feature bits in the processor feature
1805          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1806          */
1807         cpu->isar.id_pfr1 &= ~0xf0;
1808         cpu->isar.id_aa64pfr0 &= ~0xf000;
1809     }
1810 
1811     if (!cpu->has_el2) {
1812         unset_feature(env, ARM_FEATURE_EL2);
1813     }
1814 
1815     if (!cpu->has_pmu) {
1816         unset_feature(env, ARM_FEATURE_PMU);
1817     }
1818     if (arm_feature(env, ARM_FEATURE_PMU)) {
1819         pmu_init(cpu);
1820 
1821         if (!kvm_enabled()) {
1822             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1823             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1824         }
1825 
1826 #ifndef CONFIG_USER_ONLY
1827         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1828                 cpu);
1829 #endif
1830     } else {
1831         cpu->isar.id_aa64dfr0 =
1832             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1833         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1834         cpu->pmceid0 = 0;
1835         cpu->pmceid1 = 0;
1836     }
1837 
1838     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1839         /* Disable the hypervisor feature bits in the processor feature
1840          * registers if we don't have EL2. These are id_pfr1[15:12] and
1841          * id_aa64pfr0_el1[11:8].
1842          */
1843         cpu->isar.id_aa64pfr0 &= ~0xf00;
1844         cpu->isar.id_pfr1 &= ~0xf000;
1845     }
1846 
1847 #ifndef CONFIG_USER_ONLY
1848     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1849         /*
1850          * Disable the MTE feature bits if we do not have tag-memory
1851          * provided by the machine.
1852          */
1853         cpu->isar.id_aa64pfr1 =
1854             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1855     }
1856 #endif
1857 
1858     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1859      * to false or by setting pmsav7-dregion to 0.
1860      */
1861     if (!cpu->has_mpu) {
1862         cpu->pmsav7_dregion = 0;
1863     }
1864     if (cpu->pmsav7_dregion == 0) {
1865         cpu->has_mpu = false;
1866     }
1867 
1868     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1869         arm_feature(env, ARM_FEATURE_V7)) {
1870         uint32_t nr = cpu->pmsav7_dregion;
1871 
1872         if (nr > 0xff) {
1873             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1874             return;
1875         }
1876 
1877         if (nr) {
1878             if (arm_feature(env, ARM_FEATURE_V8)) {
1879                 /* PMSAv8 */
1880                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1881                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1882                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1883                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1884                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1885                 }
1886             } else {
1887                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1888                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1889                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1890             }
1891         }
1892     }
1893 
1894     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1895         uint32_t nr = cpu->sau_sregion;
1896 
1897         if (nr > 0xff) {
1898             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1899             return;
1900         }
1901 
1902         if (nr) {
1903             env->sau.rbar = g_new0(uint32_t, nr);
1904             env->sau.rlar = g_new0(uint32_t, nr);
1905         }
1906     }
1907 
1908     if (arm_feature(env, ARM_FEATURE_EL3)) {
1909         set_feature(env, ARM_FEATURE_VBAR);
1910     }
1911 
1912     register_cp_regs_for_features(cpu);
1913     arm_cpu_register_gdb_regs_for_features(cpu);
1914 
1915     init_cpreg_list(cpu);
1916 
1917 #ifndef CONFIG_USER_ONLY
1918     MachineState *ms = MACHINE(qdev_get_machine());
1919     unsigned int smp_cpus = ms->smp.cpus;
1920     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1921 
1922     /*
1923      * We must set cs->num_ases to the final value before
1924      * the first call to cpu_address_space_init.
1925      */
1926     if (cpu->tag_memory != NULL) {
1927         cs->num_ases = 3 + has_secure;
1928     } else {
1929         cs->num_ases = 1 + has_secure;
1930     }
1931 
1932     if (has_secure) {
1933         if (!cpu->secure_memory) {
1934             cpu->secure_memory = cs->memory;
1935         }
1936         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1937                                cpu->secure_memory);
1938     }
1939 
1940     if (cpu->tag_memory != NULL) {
1941         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1942                                cpu->tag_memory);
1943         if (has_secure) {
1944             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1945                                    cpu->secure_tag_memory);
1946         }
1947     }
1948 
1949     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1950 
1951     /* No core_count specified, default to smp_cpus. */
1952     if (cpu->core_count == -1) {
1953         cpu->core_count = smp_cpus;
1954     }
1955 #endif
1956 
1957     if (tcg_enabled()) {
1958         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1959 
1960         /*
1961          * We only support DCZ blocklen that fits on one page.
1962          *
1963          * Architectually this is always true.  However TARGET_PAGE_SIZE
1964          * is variable and, for compatibility with -machine virt-2.7,
1965          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1966          * But even then, while the largest architectural DCZ blocklen
1967          * is 2KiB, no cpu actually uses such a large blocklen.
1968          */
1969         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1970 
1971         /*
1972          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1973          * both nibbles of each byte storing tag data may be written at once.
1974          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1975          */
1976         if (cpu_isar_feature(aa64_mte, cpu)) {
1977             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1978         }
1979     }
1980 
1981     qemu_init_vcpu(cs);
1982     cpu_reset(cs);
1983 
1984     acc->parent_realize(dev, errp);
1985 }
1986 
1987 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1988 {
1989     ObjectClass *oc;
1990     char *typename;
1991     char **cpuname;
1992     const char *cpunamestr;
1993 
1994     cpuname = g_strsplit(cpu_model, ",", 1);
1995     cpunamestr = cpuname[0];
1996 #ifdef CONFIG_USER_ONLY
1997     /* For backwards compatibility usermode emulation allows "-cpu any",
1998      * which has the same semantics as "-cpu max".
1999      */
2000     if (!strcmp(cpunamestr, "any")) {
2001         cpunamestr = "max";
2002     }
2003 #endif
2004     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2005     oc = object_class_by_name(typename);
2006     g_strfreev(cpuname);
2007     g_free(typename);
2008     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2009         object_class_is_abstract(oc)) {
2010         return NULL;
2011     }
2012     return oc;
2013 }
2014 
2015 static Property arm_cpu_properties[] = {
2016     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2017     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2018                         mp_affinity, ARM64_AFFINITY_INVALID),
2019     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2020     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2021     DEFINE_PROP_END_OF_LIST()
2022 };
2023 
2024 static gchar *arm_gdb_arch_name(CPUState *cs)
2025 {
2026     ARMCPU *cpu = ARM_CPU(cs);
2027     CPUARMState *env = &cpu->env;
2028 
2029     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2030         return g_strdup("iwmmxt");
2031     }
2032     return g_strdup("arm");
2033 }
2034 
2035 #ifndef CONFIG_USER_ONLY
2036 #include "hw/core/sysemu-cpu-ops.h"
2037 
2038 static const struct SysemuCPUOps arm_sysemu_ops = {
2039     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2040     .asidx_from_attrs = arm_asidx_from_attrs,
2041     .write_elf32_note = arm_cpu_write_elf32_note,
2042     .write_elf64_note = arm_cpu_write_elf64_note,
2043     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2044     .legacy_vmsd = &vmstate_arm_cpu,
2045 };
2046 #endif
2047 
2048 #ifdef CONFIG_TCG
2049 static const struct TCGCPUOps arm_tcg_ops = {
2050     .initialize = arm_translate_init,
2051     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2052     .debug_excp_handler = arm_debug_excp_handler,
2053 
2054 #ifdef CONFIG_USER_ONLY
2055     .record_sigsegv = arm_cpu_record_sigsegv,
2056     .record_sigbus = arm_cpu_record_sigbus,
2057 #else
2058     .tlb_fill = arm_cpu_tlb_fill,
2059     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2060     .do_interrupt = arm_cpu_do_interrupt,
2061     .do_transaction_failed = arm_cpu_do_transaction_failed,
2062     .do_unaligned_access = arm_cpu_do_unaligned_access,
2063     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2064     .debug_check_watchpoint = arm_debug_check_watchpoint,
2065     .debug_check_breakpoint = arm_debug_check_breakpoint,
2066 #endif /* !CONFIG_USER_ONLY */
2067 };
2068 #endif /* CONFIG_TCG */
2069 
2070 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2071 {
2072     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2073     CPUClass *cc = CPU_CLASS(acc);
2074     DeviceClass *dc = DEVICE_CLASS(oc);
2075 
2076     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2077                                     &acc->parent_realize);
2078 
2079     device_class_set_props(dc, arm_cpu_properties);
2080     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2081 
2082     cc->class_by_name = arm_cpu_class_by_name;
2083     cc->has_work = arm_cpu_has_work;
2084     cc->dump_state = arm_cpu_dump_state;
2085     cc->set_pc = arm_cpu_set_pc;
2086     cc->gdb_read_register = arm_cpu_gdb_read_register;
2087     cc->gdb_write_register = arm_cpu_gdb_write_register;
2088 #ifndef CONFIG_USER_ONLY
2089     cc->sysemu_ops = &arm_sysemu_ops;
2090 #endif
2091     cc->gdb_num_core_regs = 26;
2092     cc->gdb_core_xml_file = "arm-core.xml";
2093     cc->gdb_arch_name = arm_gdb_arch_name;
2094     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2095     cc->gdb_stop_before_watchpoint = true;
2096     cc->disas_set_info = arm_disas_set_info;
2097 
2098 #ifdef CONFIG_TCG
2099     cc->tcg_ops = &arm_tcg_ops;
2100 #endif /* CONFIG_TCG */
2101 }
2102 
2103 static void arm_cpu_instance_init(Object *obj)
2104 {
2105     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2106 
2107     acc->info->initfn(obj);
2108     arm_cpu_post_init(obj);
2109 }
2110 
2111 static void cpu_register_class_init(ObjectClass *oc, void *data)
2112 {
2113     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2114 
2115     acc->info = data;
2116 }
2117 
2118 void arm_cpu_register(const ARMCPUInfo *info)
2119 {
2120     TypeInfo type_info = {
2121         .parent = TYPE_ARM_CPU,
2122         .instance_size = sizeof(ARMCPU),
2123         .instance_align = __alignof__(ARMCPU),
2124         .instance_init = arm_cpu_instance_init,
2125         .class_size = sizeof(ARMCPUClass),
2126         .class_init = info->class_init ?: cpu_register_class_init,
2127         .class_data = (void *)info,
2128     };
2129 
2130     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2131     type_register(&type_info);
2132     g_free((void *)type_info.name);
2133 }
2134 
2135 static const TypeInfo arm_cpu_type_info = {
2136     .name = TYPE_ARM_CPU,
2137     .parent = TYPE_CPU,
2138     .instance_size = sizeof(ARMCPU),
2139     .instance_align = __alignof__(ARMCPU),
2140     .instance_init = arm_cpu_initfn,
2141     .instance_finalize = arm_cpu_finalizefn,
2142     .abstract = true,
2143     .class_size = sizeof(ARMCPUClass),
2144     .class_init = arm_cpu_class_init,
2145 };
2146 
2147 static void arm_cpu_register_types(void)
2148 {
2149     type_register_static(&arm_cpu_type_info);
2150 }
2151 
2152 type_init(arm_cpu_register_types)
2153