xref: /openbmc/qemu/target/arm/cpu.c (revision 28dc207f5f877fcb2cff43367f7a84a45fdec630)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189             env->v7m.secure = true;
190         } else {
191             /* This bit resets to 0 if security is supported, but 1 if
192              * it is not. The bit is not present in v7M, but we set it
193              * here so we can avoid having to make checks on it conditional
194              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
195              */
196             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
197         }
198 
199         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200          * that it resets to 1, so QEMU always does that rather than making
201          * it dependent on CPU model. In v8M it is RES1.
202          */
203         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
204         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
205         if (arm_feature(env, ARM_FEATURE_V8)) {
206             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
208             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
209         }
210 
211         /* Unlike A/R profile, M profile defines the reset LR value */
212         env->regs[14] = 0xffffffff;
213 
214         /* Load the initial SP and PC from the vector table at address 0 */
215         rom = rom_ptr(0);
216         if (rom) {
217             /* Address zero is covered by ROM which hasn't yet been
218              * copied into physical memory.
219              */
220             initial_msp = ldl_p(rom);
221             initial_pc = ldl_p(rom + 4);
222         } else {
223             /* Address zero not covered by a ROM blob, or the ROM blob
224              * is in non-modifiable memory and this is a second reset after
225              * it got copied into memory. In the latter case, rom_ptr
226              * will return a NULL pointer and we should use ldl_phys instead.
227              */
228             initial_msp = ldl_phys(s->as, 0);
229             initial_pc = ldl_phys(s->as, 4);
230         }
231 
232         env->regs[13] = initial_msp & 0xFFFFFFFC;
233         env->regs[15] = initial_pc & ~1;
234         env->thumb = initial_pc & 1;
235     }
236 
237     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
238      * executing as AArch32 then check if highvecs are enabled and
239      * adjust the PC accordingly.
240      */
241     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
242         env->regs[15] = 0xFFFF0000;
243     }
244 
245     /* M profile requires that reset clears the exclusive monitor;
246      * A profile does not, but clearing it makes more sense than having it
247      * set with an exclusive access on address zero.
248      */
249     arm_clear_exclusive(env);
250 
251     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
252 #endif
253 
254     if (arm_feature(env, ARM_FEATURE_PMSA)) {
255         if (cpu->pmsav7_dregion > 0) {
256             if (arm_feature(env, ARM_FEATURE_V8)) {
257                 memset(env->pmsav8.rbar[M_REG_NS], 0,
258                        sizeof(*env->pmsav8.rbar[M_REG_NS])
259                        * cpu->pmsav7_dregion);
260                 memset(env->pmsav8.rlar[M_REG_NS], 0,
261                        sizeof(*env->pmsav8.rlar[M_REG_NS])
262                        * cpu->pmsav7_dregion);
263                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
264                     memset(env->pmsav8.rbar[M_REG_S], 0,
265                            sizeof(*env->pmsav8.rbar[M_REG_S])
266                            * cpu->pmsav7_dregion);
267                     memset(env->pmsav8.rlar[M_REG_S], 0,
268                            sizeof(*env->pmsav8.rlar[M_REG_S])
269                            * cpu->pmsav7_dregion);
270                 }
271             } else if (arm_feature(env, ARM_FEATURE_V7)) {
272                 memset(env->pmsav7.drbar, 0,
273                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
274                 memset(env->pmsav7.drsr, 0,
275                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
276                 memset(env->pmsav7.dracr, 0,
277                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
278             }
279         }
280         env->pmsav7.rnr[M_REG_NS] = 0;
281         env->pmsav7.rnr[M_REG_S] = 0;
282         env->pmsav8.mair0[M_REG_NS] = 0;
283         env->pmsav8.mair0[M_REG_S] = 0;
284         env->pmsav8.mair1[M_REG_NS] = 0;
285         env->pmsav8.mair1[M_REG_S] = 0;
286     }
287 
288     set_flush_to_zero(1, &env->vfp.standard_fp_status);
289     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
290     set_default_nan_mode(1, &env->vfp.standard_fp_status);
291     set_float_detect_tininess(float_tininess_before_rounding,
292                               &env->vfp.fp_status);
293     set_float_detect_tininess(float_tininess_before_rounding,
294                               &env->vfp.standard_fp_status);
295 #ifndef CONFIG_USER_ONLY
296     if (kvm_enabled()) {
297         kvm_arm_reset_vcpu(cpu);
298     }
299 #endif
300 
301     hw_breakpoint_update_all(cpu);
302     hw_watchpoint_update_all(cpu);
303 }
304 
305 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
306 {
307     CPUClass *cc = CPU_GET_CLASS(cs);
308     CPUARMState *env = cs->env_ptr;
309     uint32_t cur_el = arm_current_el(env);
310     bool secure = arm_is_secure(env);
311     uint32_t target_el;
312     uint32_t excp_idx;
313     bool ret = false;
314 
315     if (interrupt_request & CPU_INTERRUPT_FIQ) {
316         excp_idx = EXCP_FIQ;
317         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
318         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
319             cs->exception_index = excp_idx;
320             env->exception.target_el = target_el;
321             cc->do_interrupt(cs);
322             ret = true;
323         }
324     }
325     if (interrupt_request & CPU_INTERRUPT_HARD) {
326         excp_idx = EXCP_IRQ;
327         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
328         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
329             cs->exception_index = excp_idx;
330             env->exception.target_el = target_el;
331             cc->do_interrupt(cs);
332             ret = true;
333         }
334     }
335     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
336         excp_idx = EXCP_VIRQ;
337         target_el = 1;
338         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
339             cs->exception_index = excp_idx;
340             env->exception.target_el = target_el;
341             cc->do_interrupt(cs);
342             ret = true;
343         }
344     }
345     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
346         excp_idx = EXCP_VFIQ;
347         target_el = 1;
348         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
349             cs->exception_index = excp_idx;
350             env->exception.target_el = target_el;
351             cc->do_interrupt(cs);
352             ret = true;
353         }
354     }
355 
356     return ret;
357 }
358 
359 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
360 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
361 {
362     CPUClass *cc = CPU_GET_CLASS(cs);
363     ARMCPU *cpu = ARM_CPU(cs);
364     CPUARMState *env = &cpu->env;
365     bool ret = false;
366 
367     /* ARMv7-M interrupt masking works differently than -A or -R.
368      * There is no FIQ/IRQ distinction. Instead of I and F bits
369      * masking FIQ and IRQ interrupts, an exception is taken only
370      * if it is higher priority than the current execution priority
371      * (which depends on state like BASEPRI, FAULTMASK and the
372      * currently active exception).
373      */
374     if (interrupt_request & CPU_INTERRUPT_HARD
375         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
376         cs->exception_index = EXCP_IRQ;
377         cc->do_interrupt(cs);
378         ret = true;
379     }
380     return ret;
381 }
382 #endif
383 
384 #ifndef CONFIG_USER_ONLY
385 static void arm_cpu_set_irq(void *opaque, int irq, int level)
386 {
387     ARMCPU *cpu = opaque;
388     CPUARMState *env = &cpu->env;
389     CPUState *cs = CPU(cpu);
390     static const int mask[] = {
391         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
392         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
393         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
394         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
395     };
396 
397     switch (irq) {
398     case ARM_CPU_VIRQ:
399     case ARM_CPU_VFIQ:
400         assert(arm_feature(env, ARM_FEATURE_EL2));
401         /* fall through */
402     case ARM_CPU_IRQ:
403     case ARM_CPU_FIQ:
404         if (level) {
405             cpu_interrupt(cs, mask[irq]);
406         } else {
407             cpu_reset_interrupt(cs, mask[irq]);
408         }
409         break;
410     default:
411         g_assert_not_reached();
412     }
413 }
414 
415 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
416 {
417 #ifdef CONFIG_KVM
418     ARMCPU *cpu = opaque;
419     CPUState *cs = CPU(cpu);
420     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
421 
422     switch (irq) {
423     case ARM_CPU_IRQ:
424         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
425         break;
426     case ARM_CPU_FIQ:
427         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
428         break;
429     default:
430         g_assert_not_reached();
431     }
432     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
433     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
434 #endif
435 }
436 
437 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
438 {
439     ARMCPU *cpu = ARM_CPU(cs);
440     CPUARMState *env = &cpu->env;
441 
442     cpu_synchronize_state(cs);
443     return arm_cpu_data_is_big_endian(env);
444 }
445 
446 #endif
447 
448 static inline void set_feature(CPUARMState *env, int feature)
449 {
450     env->features |= 1ULL << feature;
451 }
452 
453 static inline void unset_feature(CPUARMState *env, int feature)
454 {
455     env->features &= ~(1ULL << feature);
456 }
457 
458 static int
459 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
460 {
461   return print_insn_arm(pc | 1, info);
462 }
463 
464 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
465                                 int length, struct disassemble_info *info)
466 {
467     assert(info->read_memory_inner_func);
468     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
469 
470     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
471         assert(info->endian == BFD_ENDIAN_LITTLE);
472         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
473                                             info);
474     } else {
475         return info->read_memory_inner_func(memaddr, b, length, info);
476     }
477 }
478 
479 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
480 {
481     ARMCPU *ac = ARM_CPU(cpu);
482     CPUARMState *env = &ac->env;
483 
484     if (is_a64(env)) {
485         /* We might not be compiled with the A64 disassembler
486          * because it needs a C++ compiler. Leave print_insn
487          * unset in this case to use the caller default behaviour.
488          */
489 #if defined(CONFIG_ARM_A64_DIS)
490         info->print_insn = print_insn_arm_a64;
491 #endif
492     } else if (env->thumb) {
493         info->print_insn = print_insn_thumb1;
494     } else {
495         info->print_insn = print_insn_arm;
496     }
497     if (bswap_code(arm_sctlr_b(env))) {
498 #ifdef TARGET_WORDS_BIGENDIAN
499         info->endian = BFD_ENDIAN_LITTLE;
500 #else
501         info->endian = BFD_ENDIAN_BIG;
502 #endif
503     }
504     if (info->read_memory_inner_func == NULL) {
505         info->read_memory_inner_func = info->read_memory_func;
506         info->read_memory_func = arm_read_memory_func;
507     }
508     info->flags &= ~INSN_ARM_BE32;
509     if (arm_sctlr_b(env)) {
510         info->flags |= INSN_ARM_BE32;
511     }
512 }
513 
514 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
515 {
516     uint32_t Aff1 = idx / clustersz;
517     uint32_t Aff0 = idx % clustersz;
518     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
519 }
520 
521 static void arm_cpu_initfn(Object *obj)
522 {
523     CPUState *cs = CPU(obj);
524     ARMCPU *cpu = ARM_CPU(obj);
525     static bool inited;
526 
527     cs->env_ptr = &cpu->env;
528     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
529                                          g_free, g_free);
530 
531 #ifndef CONFIG_USER_ONLY
532     /* Our inbound IRQ and FIQ lines */
533     if (kvm_enabled()) {
534         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
535          * the same interface as non-KVM CPUs.
536          */
537         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
538     } else {
539         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
540     }
541 
542     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
543                                                 arm_gt_ptimer_cb, cpu);
544     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
545                                                 arm_gt_vtimer_cb, cpu);
546     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
547                                                 arm_gt_htimer_cb, cpu);
548     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
549                                                 arm_gt_stimer_cb, cpu);
550     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
551                        ARRAY_SIZE(cpu->gt_timer_outputs));
552 
553     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
554                              "gicv3-maintenance-interrupt", 1);
555     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
556                              "pmu-interrupt", 1);
557 #endif
558 
559     /* DTB consumers generally don't in fact care what the 'compatible'
560      * string is, so always provide some string and trust that a hypothetical
561      * picky DTB consumer will also provide a helpful error message.
562      */
563     cpu->dtb_compatible = "qemu,unknown";
564     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
565     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
566 
567     if (tcg_enabled()) {
568         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
569         if (!inited) {
570             inited = true;
571             arm_translate_init();
572         }
573     }
574 }
575 
576 static Property arm_cpu_reset_cbar_property =
577             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
578 
579 static Property arm_cpu_reset_hivecs_property =
580             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
581 
582 static Property arm_cpu_rvbar_property =
583             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
584 
585 static Property arm_cpu_has_el2_property =
586             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
587 
588 static Property arm_cpu_has_el3_property =
589             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
590 
591 static Property arm_cpu_cfgend_property =
592             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
593 
594 /* use property name "pmu" to match other archs and virt tools */
595 static Property arm_cpu_has_pmu_property =
596             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
597 
598 static Property arm_cpu_has_mpu_property =
599             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
600 
601 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
602  * because the CPU initfn will have already set cpu->pmsav7_dregion to
603  * the right value for that particular CPU type, and we don't want
604  * to override that with an incorrect constant value.
605  */
606 static Property arm_cpu_pmsav7_dregion_property =
607             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
608                                            pmsav7_dregion,
609                                            qdev_prop_uint32, uint32_t);
610 
611 static void arm_cpu_post_init(Object *obj)
612 {
613     ARMCPU *cpu = ARM_CPU(obj);
614 
615     /* M profile implies PMSA. We have to do this here rather than
616      * in realize with the other feature-implication checks because
617      * we look at the PMSA bit to see if we should add some properties.
618      */
619     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
620         set_feature(&cpu->env, ARM_FEATURE_PMSA);
621     }
622 
623     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
624         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
625         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
626                                  &error_abort);
627     }
628 
629     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
630         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
631                                  &error_abort);
632     }
633 
634     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
635         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
636                                  &error_abort);
637     }
638 
639     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
640         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
641          * prevent "has_el3" from existing on CPUs which cannot support EL3.
642          */
643         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
644                                  &error_abort);
645 
646 #ifndef CONFIG_USER_ONLY
647         object_property_add_link(obj, "secure-memory",
648                                  TYPE_MEMORY_REGION,
649                                  (Object **)&cpu->secure_memory,
650                                  qdev_prop_allow_set_link_before_realize,
651                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
652                                  &error_abort);
653 #endif
654     }
655 
656     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
657         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
658                                  &error_abort);
659     }
660 
661     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
662         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
663                                  &error_abort);
664     }
665 
666     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
667         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
668                                  &error_abort);
669         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
670             qdev_property_add_static(DEVICE(obj),
671                                      &arm_cpu_pmsav7_dregion_property,
672                                      &error_abort);
673         }
674     }
675 
676     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
677                              &error_abort);
678 }
679 
680 static void arm_cpu_finalizefn(Object *obj)
681 {
682     ARMCPU *cpu = ARM_CPU(obj);
683     g_hash_table_destroy(cpu->cp_regs);
684 }
685 
686 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
687 {
688     CPUState *cs = CPU(dev);
689     ARMCPU *cpu = ARM_CPU(dev);
690     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
691     CPUARMState *env = &cpu->env;
692     int pagebits;
693     Error *local_err = NULL;
694 
695     cpu_exec_realizefn(cs, &local_err);
696     if (local_err != NULL) {
697         error_propagate(errp, local_err);
698         return;
699     }
700 
701     /* Some features automatically imply others: */
702     if (arm_feature(env, ARM_FEATURE_V8)) {
703         set_feature(env, ARM_FEATURE_V7);
704         set_feature(env, ARM_FEATURE_ARM_DIV);
705         set_feature(env, ARM_FEATURE_LPAE);
706     }
707     if (arm_feature(env, ARM_FEATURE_V7)) {
708         set_feature(env, ARM_FEATURE_VAPA);
709         set_feature(env, ARM_FEATURE_THUMB2);
710         set_feature(env, ARM_FEATURE_MPIDR);
711         if (!arm_feature(env, ARM_FEATURE_M)) {
712             set_feature(env, ARM_FEATURE_V6K);
713         } else {
714             set_feature(env, ARM_FEATURE_V6);
715         }
716 
717         /* Always define VBAR for V7 CPUs even if it doesn't exist in
718          * non-EL3 configs. This is needed by some legacy boards.
719          */
720         set_feature(env, ARM_FEATURE_VBAR);
721     }
722     if (arm_feature(env, ARM_FEATURE_V6K)) {
723         set_feature(env, ARM_FEATURE_V6);
724         set_feature(env, ARM_FEATURE_MVFR);
725     }
726     if (arm_feature(env, ARM_FEATURE_V6)) {
727         set_feature(env, ARM_FEATURE_V5);
728         set_feature(env, ARM_FEATURE_JAZELLE);
729         if (!arm_feature(env, ARM_FEATURE_M)) {
730             set_feature(env, ARM_FEATURE_AUXCR);
731         }
732     }
733     if (arm_feature(env, ARM_FEATURE_V5)) {
734         set_feature(env, ARM_FEATURE_V4T);
735     }
736     if (arm_feature(env, ARM_FEATURE_M)) {
737         set_feature(env, ARM_FEATURE_THUMB_DIV);
738     }
739     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
740         set_feature(env, ARM_FEATURE_THUMB_DIV);
741     }
742     if (arm_feature(env, ARM_FEATURE_VFP4)) {
743         set_feature(env, ARM_FEATURE_VFP3);
744         set_feature(env, ARM_FEATURE_VFP_FP16);
745     }
746     if (arm_feature(env, ARM_FEATURE_VFP3)) {
747         set_feature(env, ARM_FEATURE_VFP);
748     }
749     if (arm_feature(env, ARM_FEATURE_LPAE)) {
750         set_feature(env, ARM_FEATURE_V7MP);
751         set_feature(env, ARM_FEATURE_PXN);
752     }
753     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
754         set_feature(env, ARM_FEATURE_CBAR);
755     }
756     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
757         !arm_feature(env, ARM_FEATURE_M)) {
758         set_feature(env, ARM_FEATURE_THUMB_DSP);
759     }
760 
761     if (arm_feature(env, ARM_FEATURE_V7) &&
762         !arm_feature(env, ARM_FEATURE_M) &&
763         !arm_feature(env, ARM_FEATURE_PMSA)) {
764         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
765          * can use 4K pages.
766          */
767         pagebits = 12;
768     } else {
769         /* For CPUs which might have tiny 1K pages, or which have an
770          * MPU and might have small region sizes, stick with 1K pages.
771          */
772         pagebits = 10;
773     }
774     if (!set_preferred_target_page_bits(pagebits)) {
775         /* This can only ever happen for hotplugging a CPU, or if
776          * the board code incorrectly creates a CPU which it has
777          * promised via minimum_page_size that it will not.
778          */
779         error_setg(errp, "This CPU requires a smaller page size than the "
780                    "system is using");
781         return;
782     }
783 
784     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
785      * We don't support setting cluster ID ([16..23]) (known as Aff2
786      * in later ARM ARM versions), or any of the higher affinity level fields,
787      * so these bits always RAZ.
788      */
789     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
790         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
791                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
792     }
793 
794     if (cpu->reset_hivecs) {
795             cpu->reset_sctlr |= (1 << 13);
796     }
797 
798     if (cpu->cfgend) {
799         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
800             cpu->reset_sctlr |= SCTLR_EE;
801         } else {
802             cpu->reset_sctlr |= SCTLR_B;
803         }
804     }
805 
806     if (!cpu->has_el3) {
807         /* If the has_el3 CPU property is disabled then we need to disable the
808          * feature.
809          */
810         unset_feature(env, ARM_FEATURE_EL3);
811 
812         /* Disable the security extension feature bits in the processor feature
813          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
814          */
815         cpu->id_pfr1 &= ~0xf0;
816         cpu->id_aa64pfr0 &= ~0xf000;
817     }
818 
819     if (!cpu->has_el2) {
820         unset_feature(env, ARM_FEATURE_EL2);
821     }
822 
823     if (!cpu->has_pmu) {
824         unset_feature(env, ARM_FEATURE_PMU);
825         cpu->id_aa64dfr0 &= ~0xf00;
826     }
827 
828     if (!arm_feature(env, ARM_FEATURE_EL2)) {
829         /* Disable the hypervisor feature bits in the processor feature
830          * registers if we don't have EL2. These are id_pfr1[15:12] and
831          * id_aa64pfr0_el1[11:8].
832          */
833         cpu->id_aa64pfr0 &= ~0xf00;
834         cpu->id_pfr1 &= ~0xf000;
835     }
836 
837     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
838      * to false or by setting pmsav7-dregion to 0.
839      */
840     if (!cpu->has_mpu) {
841         cpu->pmsav7_dregion = 0;
842     }
843     if (cpu->pmsav7_dregion == 0) {
844         cpu->has_mpu = false;
845     }
846 
847     if (arm_feature(env, ARM_FEATURE_PMSA) &&
848         arm_feature(env, ARM_FEATURE_V7)) {
849         uint32_t nr = cpu->pmsav7_dregion;
850 
851         if (nr > 0xff) {
852             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
853             return;
854         }
855 
856         if (nr) {
857             if (arm_feature(env, ARM_FEATURE_V8)) {
858                 /* PMSAv8 */
859                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
860                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
861                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
862                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
863                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
864                 }
865             } else {
866                 env->pmsav7.drbar = g_new0(uint32_t, nr);
867                 env->pmsav7.drsr = g_new0(uint32_t, nr);
868                 env->pmsav7.dracr = g_new0(uint32_t, nr);
869             }
870         }
871     }
872 
873     if (arm_feature(env, ARM_FEATURE_EL3)) {
874         set_feature(env, ARM_FEATURE_VBAR);
875     }
876 
877     register_cp_regs_for_features(cpu);
878     arm_cpu_register_gdb_regs_for_features(cpu);
879 
880     init_cpreg_list(cpu);
881 
882 #ifndef CONFIG_USER_ONLY
883     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
884         AddressSpace *as;
885 
886         cs->num_ases = 2;
887 
888         if (!cpu->secure_memory) {
889             cpu->secure_memory = cs->memory;
890         }
891         as = address_space_init_shareable(cpu->secure_memory,
892                                           "cpu-secure-memory");
893         cpu_address_space_init(cs, as, ARMASIdx_S);
894     } else {
895         cs->num_ases = 1;
896     }
897 
898     cpu_address_space_init(cs,
899                            address_space_init_shareable(cs->memory,
900                                                         "cpu-memory"),
901                            ARMASIdx_NS);
902 #endif
903 
904     qemu_init_vcpu(cs);
905     cpu_reset(cs);
906 
907     acc->parent_realize(dev, errp);
908 }
909 
910 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
911 {
912     ObjectClass *oc;
913     char *typename;
914     char **cpuname;
915 
916     if (!cpu_model) {
917         return NULL;
918     }
919 
920     cpuname = g_strsplit(cpu_model, ",", 1);
921     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
922     oc = object_class_by_name(typename);
923     g_strfreev(cpuname);
924     g_free(typename);
925     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
926         object_class_is_abstract(oc)) {
927         return NULL;
928     }
929     return oc;
930 }
931 
932 /* CPU models. These are not needed for the AArch64 linux-user build. */
933 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
934 
935 static void arm926_initfn(Object *obj)
936 {
937     ARMCPU *cpu = ARM_CPU(obj);
938 
939     cpu->dtb_compatible = "arm,arm926";
940     set_feature(&cpu->env, ARM_FEATURE_V5);
941     set_feature(&cpu->env, ARM_FEATURE_VFP);
942     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
943     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
944     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
945     cpu->midr = 0x41069265;
946     cpu->reset_fpsid = 0x41011090;
947     cpu->ctr = 0x1dd20d2;
948     cpu->reset_sctlr = 0x00090078;
949 }
950 
951 static void arm946_initfn(Object *obj)
952 {
953     ARMCPU *cpu = ARM_CPU(obj);
954 
955     cpu->dtb_compatible = "arm,arm946";
956     set_feature(&cpu->env, ARM_FEATURE_V5);
957     set_feature(&cpu->env, ARM_FEATURE_PMSA);
958     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
959     cpu->midr = 0x41059461;
960     cpu->ctr = 0x0f004006;
961     cpu->reset_sctlr = 0x00000078;
962 }
963 
964 static void arm1026_initfn(Object *obj)
965 {
966     ARMCPU *cpu = ARM_CPU(obj);
967 
968     cpu->dtb_compatible = "arm,arm1026";
969     set_feature(&cpu->env, ARM_FEATURE_V5);
970     set_feature(&cpu->env, ARM_FEATURE_VFP);
971     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
972     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
973     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
974     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
975     cpu->midr = 0x4106a262;
976     cpu->reset_fpsid = 0x410110a0;
977     cpu->ctr = 0x1dd20d2;
978     cpu->reset_sctlr = 0x00090078;
979     cpu->reset_auxcr = 1;
980     {
981         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
982         ARMCPRegInfo ifar = {
983             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
984             .access = PL1_RW,
985             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
986             .resetvalue = 0
987         };
988         define_one_arm_cp_reg(cpu, &ifar);
989     }
990 }
991 
992 static void arm1136_r2_initfn(Object *obj)
993 {
994     ARMCPU *cpu = ARM_CPU(obj);
995     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
996      * older core than plain "arm1136". In particular this does not
997      * have the v6K features.
998      * These ID register values are correct for 1136 but may be wrong
999      * for 1136_r2 (in particular r0p2 does not actually implement most
1000      * of the ID registers).
1001      */
1002 
1003     cpu->dtb_compatible = "arm,arm1136";
1004     set_feature(&cpu->env, ARM_FEATURE_V6);
1005     set_feature(&cpu->env, ARM_FEATURE_VFP);
1006     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1007     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1008     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1009     cpu->midr = 0x4107b362;
1010     cpu->reset_fpsid = 0x410120b4;
1011     cpu->mvfr0 = 0x11111111;
1012     cpu->mvfr1 = 0x00000000;
1013     cpu->ctr = 0x1dd20d2;
1014     cpu->reset_sctlr = 0x00050078;
1015     cpu->id_pfr0 = 0x111;
1016     cpu->id_pfr1 = 0x1;
1017     cpu->id_dfr0 = 0x2;
1018     cpu->id_afr0 = 0x3;
1019     cpu->id_mmfr0 = 0x01130003;
1020     cpu->id_mmfr1 = 0x10030302;
1021     cpu->id_mmfr2 = 0x01222110;
1022     cpu->id_isar0 = 0x00140011;
1023     cpu->id_isar1 = 0x12002111;
1024     cpu->id_isar2 = 0x11231111;
1025     cpu->id_isar3 = 0x01102131;
1026     cpu->id_isar4 = 0x141;
1027     cpu->reset_auxcr = 7;
1028 }
1029 
1030 static void arm1136_initfn(Object *obj)
1031 {
1032     ARMCPU *cpu = ARM_CPU(obj);
1033 
1034     cpu->dtb_compatible = "arm,arm1136";
1035     set_feature(&cpu->env, ARM_FEATURE_V6K);
1036     set_feature(&cpu->env, ARM_FEATURE_V6);
1037     set_feature(&cpu->env, ARM_FEATURE_VFP);
1038     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1039     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1040     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1041     cpu->midr = 0x4117b363;
1042     cpu->reset_fpsid = 0x410120b4;
1043     cpu->mvfr0 = 0x11111111;
1044     cpu->mvfr1 = 0x00000000;
1045     cpu->ctr = 0x1dd20d2;
1046     cpu->reset_sctlr = 0x00050078;
1047     cpu->id_pfr0 = 0x111;
1048     cpu->id_pfr1 = 0x1;
1049     cpu->id_dfr0 = 0x2;
1050     cpu->id_afr0 = 0x3;
1051     cpu->id_mmfr0 = 0x01130003;
1052     cpu->id_mmfr1 = 0x10030302;
1053     cpu->id_mmfr2 = 0x01222110;
1054     cpu->id_isar0 = 0x00140011;
1055     cpu->id_isar1 = 0x12002111;
1056     cpu->id_isar2 = 0x11231111;
1057     cpu->id_isar3 = 0x01102131;
1058     cpu->id_isar4 = 0x141;
1059     cpu->reset_auxcr = 7;
1060 }
1061 
1062 static void arm1176_initfn(Object *obj)
1063 {
1064     ARMCPU *cpu = ARM_CPU(obj);
1065 
1066     cpu->dtb_compatible = "arm,arm1176";
1067     set_feature(&cpu->env, ARM_FEATURE_V6K);
1068     set_feature(&cpu->env, ARM_FEATURE_VFP);
1069     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1070     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1071     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1072     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1073     set_feature(&cpu->env, ARM_FEATURE_EL3);
1074     cpu->midr = 0x410fb767;
1075     cpu->reset_fpsid = 0x410120b5;
1076     cpu->mvfr0 = 0x11111111;
1077     cpu->mvfr1 = 0x00000000;
1078     cpu->ctr = 0x1dd20d2;
1079     cpu->reset_sctlr = 0x00050078;
1080     cpu->id_pfr0 = 0x111;
1081     cpu->id_pfr1 = 0x11;
1082     cpu->id_dfr0 = 0x33;
1083     cpu->id_afr0 = 0;
1084     cpu->id_mmfr0 = 0x01130003;
1085     cpu->id_mmfr1 = 0x10030302;
1086     cpu->id_mmfr2 = 0x01222100;
1087     cpu->id_isar0 = 0x0140011;
1088     cpu->id_isar1 = 0x12002111;
1089     cpu->id_isar2 = 0x11231121;
1090     cpu->id_isar3 = 0x01102131;
1091     cpu->id_isar4 = 0x01141;
1092     cpu->reset_auxcr = 7;
1093 }
1094 
1095 static void arm11mpcore_initfn(Object *obj)
1096 {
1097     ARMCPU *cpu = ARM_CPU(obj);
1098 
1099     cpu->dtb_compatible = "arm,arm11mpcore";
1100     set_feature(&cpu->env, ARM_FEATURE_V6K);
1101     set_feature(&cpu->env, ARM_FEATURE_VFP);
1102     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1103     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1104     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1105     cpu->midr = 0x410fb022;
1106     cpu->reset_fpsid = 0x410120b4;
1107     cpu->mvfr0 = 0x11111111;
1108     cpu->mvfr1 = 0x00000000;
1109     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1110     cpu->id_pfr0 = 0x111;
1111     cpu->id_pfr1 = 0x1;
1112     cpu->id_dfr0 = 0;
1113     cpu->id_afr0 = 0x2;
1114     cpu->id_mmfr0 = 0x01100103;
1115     cpu->id_mmfr1 = 0x10020302;
1116     cpu->id_mmfr2 = 0x01222000;
1117     cpu->id_isar0 = 0x00100011;
1118     cpu->id_isar1 = 0x12002111;
1119     cpu->id_isar2 = 0x11221011;
1120     cpu->id_isar3 = 0x01102131;
1121     cpu->id_isar4 = 0x141;
1122     cpu->reset_auxcr = 1;
1123 }
1124 
1125 static void cortex_m3_initfn(Object *obj)
1126 {
1127     ARMCPU *cpu = ARM_CPU(obj);
1128     set_feature(&cpu->env, ARM_FEATURE_V7);
1129     set_feature(&cpu->env, ARM_FEATURE_M);
1130     cpu->midr = 0x410fc231;
1131     cpu->pmsav7_dregion = 8;
1132 }
1133 
1134 static void cortex_m4_initfn(Object *obj)
1135 {
1136     ARMCPU *cpu = ARM_CPU(obj);
1137 
1138     set_feature(&cpu->env, ARM_FEATURE_V7);
1139     set_feature(&cpu->env, ARM_FEATURE_M);
1140     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1141     cpu->midr = 0x410fc240; /* r0p0 */
1142     cpu->pmsav7_dregion = 8;
1143 }
1144 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1145 {
1146     CPUClass *cc = CPU_CLASS(oc);
1147 
1148 #ifndef CONFIG_USER_ONLY
1149     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1150 #endif
1151 
1152     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1153 }
1154 
1155 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1156     /* Dummy the TCM region regs for the moment */
1157     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1158       .access = PL1_RW, .type = ARM_CP_CONST },
1159     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1160       .access = PL1_RW, .type = ARM_CP_CONST },
1161     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1162       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1163     REGINFO_SENTINEL
1164 };
1165 
1166 static void cortex_r5_initfn(Object *obj)
1167 {
1168     ARMCPU *cpu = ARM_CPU(obj);
1169 
1170     set_feature(&cpu->env, ARM_FEATURE_V7);
1171     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1172     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1173     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1174     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1175     cpu->midr = 0x411fc153; /* r1p3 */
1176     cpu->id_pfr0 = 0x0131;
1177     cpu->id_pfr1 = 0x001;
1178     cpu->id_dfr0 = 0x010400;
1179     cpu->id_afr0 = 0x0;
1180     cpu->id_mmfr0 = 0x0210030;
1181     cpu->id_mmfr1 = 0x00000000;
1182     cpu->id_mmfr2 = 0x01200000;
1183     cpu->id_mmfr3 = 0x0211;
1184     cpu->id_isar0 = 0x2101111;
1185     cpu->id_isar1 = 0x13112111;
1186     cpu->id_isar2 = 0x21232141;
1187     cpu->id_isar3 = 0x01112131;
1188     cpu->id_isar4 = 0x0010142;
1189     cpu->id_isar5 = 0x0;
1190     cpu->mp_is_up = true;
1191     cpu->pmsav7_dregion = 16;
1192     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1193 }
1194 
1195 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1196     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1197       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1198     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1199       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1200     REGINFO_SENTINEL
1201 };
1202 
1203 static void cortex_a8_initfn(Object *obj)
1204 {
1205     ARMCPU *cpu = ARM_CPU(obj);
1206 
1207     cpu->dtb_compatible = "arm,cortex-a8";
1208     set_feature(&cpu->env, ARM_FEATURE_V7);
1209     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1210     set_feature(&cpu->env, ARM_FEATURE_NEON);
1211     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1212     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1213     set_feature(&cpu->env, ARM_FEATURE_EL3);
1214     cpu->midr = 0x410fc080;
1215     cpu->reset_fpsid = 0x410330c0;
1216     cpu->mvfr0 = 0x11110222;
1217     cpu->mvfr1 = 0x00011111;
1218     cpu->ctr = 0x82048004;
1219     cpu->reset_sctlr = 0x00c50078;
1220     cpu->id_pfr0 = 0x1031;
1221     cpu->id_pfr1 = 0x11;
1222     cpu->id_dfr0 = 0x400;
1223     cpu->id_afr0 = 0;
1224     cpu->id_mmfr0 = 0x31100003;
1225     cpu->id_mmfr1 = 0x20000000;
1226     cpu->id_mmfr2 = 0x01202000;
1227     cpu->id_mmfr3 = 0x11;
1228     cpu->id_isar0 = 0x00101111;
1229     cpu->id_isar1 = 0x12112111;
1230     cpu->id_isar2 = 0x21232031;
1231     cpu->id_isar3 = 0x11112131;
1232     cpu->id_isar4 = 0x00111142;
1233     cpu->dbgdidr = 0x15141000;
1234     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1235     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1236     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1237     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1238     cpu->reset_auxcr = 2;
1239     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1240 }
1241 
1242 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1243     /* power_control should be set to maximum latency. Again,
1244      * default to 0 and set by private hook
1245      */
1246     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1247       .access = PL1_RW, .resetvalue = 0,
1248       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1249     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1250       .access = PL1_RW, .resetvalue = 0,
1251       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1252     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1253       .access = PL1_RW, .resetvalue = 0,
1254       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1255     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1256       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1257     /* TLB lockdown control */
1258     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1259       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1260     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1261       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1262     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1263       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1264     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1265       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1266     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1267       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1268     REGINFO_SENTINEL
1269 };
1270 
1271 static void cortex_a9_initfn(Object *obj)
1272 {
1273     ARMCPU *cpu = ARM_CPU(obj);
1274 
1275     cpu->dtb_compatible = "arm,cortex-a9";
1276     set_feature(&cpu->env, ARM_FEATURE_V7);
1277     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1278     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1279     set_feature(&cpu->env, ARM_FEATURE_NEON);
1280     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1281     set_feature(&cpu->env, ARM_FEATURE_EL3);
1282     /* Note that A9 supports the MP extensions even for
1283      * A9UP and single-core A9MP (which are both different
1284      * and valid configurations; we don't model A9UP).
1285      */
1286     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1287     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1288     cpu->midr = 0x410fc090;
1289     cpu->reset_fpsid = 0x41033090;
1290     cpu->mvfr0 = 0x11110222;
1291     cpu->mvfr1 = 0x01111111;
1292     cpu->ctr = 0x80038003;
1293     cpu->reset_sctlr = 0x00c50078;
1294     cpu->id_pfr0 = 0x1031;
1295     cpu->id_pfr1 = 0x11;
1296     cpu->id_dfr0 = 0x000;
1297     cpu->id_afr0 = 0;
1298     cpu->id_mmfr0 = 0x00100103;
1299     cpu->id_mmfr1 = 0x20000000;
1300     cpu->id_mmfr2 = 0x01230000;
1301     cpu->id_mmfr3 = 0x00002111;
1302     cpu->id_isar0 = 0x00101111;
1303     cpu->id_isar1 = 0x13112111;
1304     cpu->id_isar2 = 0x21232041;
1305     cpu->id_isar3 = 0x11112131;
1306     cpu->id_isar4 = 0x00111142;
1307     cpu->dbgdidr = 0x35141000;
1308     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1309     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1310     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1311     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1312 }
1313 
1314 #ifndef CONFIG_USER_ONLY
1315 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1316 {
1317     /* Linux wants the number of processors from here.
1318      * Might as well set the interrupt-controller bit too.
1319      */
1320     return ((smp_cpus - 1) << 24) | (1 << 23);
1321 }
1322 #endif
1323 
1324 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1325 #ifndef CONFIG_USER_ONLY
1326     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1327       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1328       .writefn = arm_cp_write_ignore, },
1329 #endif
1330     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1331       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1332     REGINFO_SENTINEL
1333 };
1334 
1335 static void cortex_a7_initfn(Object *obj)
1336 {
1337     ARMCPU *cpu = ARM_CPU(obj);
1338 
1339     cpu->dtb_compatible = "arm,cortex-a7";
1340     set_feature(&cpu->env, ARM_FEATURE_V7);
1341     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1342     set_feature(&cpu->env, ARM_FEATURE_NEON);
1343     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1344     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1345     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1346     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1347     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1348     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1349     set_feature(&cpu->env, ARM_FEATURE_EL3);
1350     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1351     cpu->midr = 0x410fc075;
1352     cpu->reset_fpsid = 0x41023075;
1353     cpu->mvfr0 = 0x10110222;
1354     cpu->mvfr1 = 0x11111111;
1355     cpu->ctr = 0x84448003;
1356     cpu->reset_sctlr = 0x00c50078;
1357     cpu->id_pfr0 = 0x00001131;
1358     cpu->id_pfr1 = 0x00011011;
1359     cpu->id_dfr0 = 0x02010555;
1360     cpu->pmceid0 = 0x00000000;
1361     cpu->pmceid1 = 0x00000000;
1362     cpu->id_afr0 = 0x00000000;
1363     cpu->id_mmfr0 = 0x10101105;
1364     cpu->id_mmfr1 = 0x40000000;
1365     cpu->id_mmfr2 = 0x01240000;
1366     cpu->id_mmfr3 = 0x02102211;
1367     cpu->id_isar0 = 0x01101110;
1368     cpu->id_isar1 = 0x13112111;
1369     cpu->id_isar2 = 0x21232041;
1370     cpu->id_isar3 = 0x11112131;
1371     cpu->id_isar4 = 0x10011142;
1372     cpu->dbgdidr = 0x3515f005;
1373     cpu->clidr = 0x0a200023;
1374     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1375     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1376     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1377     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1378 }
1379 
1380 static void cortex_a15_initfn(Object *obj)
1381 {
1382     ARMCPU *cpu = ARM_CPU(obj);
1383 
1384     cpu->dtb_compatible = "arm,cortex-a15";
1385     set_feature(&cpu->env, ARM_FEATURE_V7);
1386     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1387     set_feature(&cpu->env, ARM_FEATURE_NEON);
1388     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1389     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1390     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1391     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1392     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1393     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1394     set_feature(&cpu->env, ARM_FEATURE_EL3);
1395     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1396     cpu->midr = 0x412fc0f1;
1397     cpu->reset_fpsid = 0x410430f0;
1398     cpu->mvfr0 = 0x10110222;
1399     cpu->mvfr1 = 0x11111111;
1400     cpu->ctr = 0x8444c004;
1401     cpu->reset_sctlr = 0x00c50078;
1402     cpu->id_pfr0 = 0x00001131;
1403     cpu->id_pfr1 = 0x00011011;
1404     cpu->id_dfr0 = 0x02010555;
1405     cpu->pmceid0 = 0x0000000;
1406     cpu->pmceid1 = 0x00000000;
1407     cpu->id_afr0 = 0x00000000;
1408     cpu->id_mmfr0 = 0x10201105;
1409     cpu->id_mmfr1 = 0x20000000;
1410     cpu->id_mmfr2 = 0x01240000;
1411     cpu->id_mmfr3 = 0x02102211;
1412     cpu->id_isar0 = 0x02101110;
1413     cpu->id_isar1 = 0x13112111;
1414     cpu->id_isar2 = 0x21232041;
1415     cpu->id_isar3 = 0x11112131;
1416     cpu->id_isar4 = 0x10011142;
1417     cpu->dbgdidr = 0x3515f021;
1418     cpu->clidr = 0x0a200023;
1419     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1420     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1421     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1422     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1423 }
1424 
1425 static void ti925t_initfn(Object *obj)
1426 {
1427     ARMCPU *cpu = ARM_CPU(obj);
1428     set_feature(&cpu->env, ARM_FEATURE_V4T);
1429     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1430     cpu->midr = ARM_CPUID_TI925T;
1431     cpu->ctr = 0x5109149;
1432     cpu->reset_sctlr = 0x00000070;
1433 }
1434 
1435 static void sa1100_initfn(Object *obj)
1436 {
1437     ARMCPU *cpu = ARM_CPU(obj);
1438 
1439     cpu->dtb_compatible = "intel,sa1100";
1440     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1441     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1442     cpu->midr = 0x4401A11B;
1443     cpu->reset_sctlr = 0x00000070;
1444 }
1445 
1446 static void sa1110_initfn(Object *obj)
1447 {
1448     ARMCPU *cpu = ARM_CPU(obj);
1449     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1450     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1451     cpu->midr = 0x6901B119;
1452     cpu->reset_sctlr = 0x00000070;
1453 }
1454 
1455 static void pxa250_initfn(Object *obj)
1456 {
1457     ARMCPU *cpu = ARM_CPU(obj);
1458 
1459     cpu->dtb_compatible = "marvell,xscale";
1460     set_feature(&cpu->env, ARM_FEATURE_V5);
1461     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1462     cpu->midr = 0x69052100;
1463     cpu->ctr = 0xd172172;
1464     cpu->reset_sctlr = 0x00000078;
1465 }
1466 
1467 static void pxa255_initfn(Object *obj)
1468 {
1469     ARMCPU *cpu = ARM_CPU(obj);
1470 
1471     cpu->dtb_compatible = "marvell,xscale";
1472     set_feature(&cpu->env, ARM_FEATURE_V5);
1473     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1474     cpu->midr = 0x69052d00;
1475     cpu->ctr = 0xd172172;
1476     cpu->reset_sctlr = 0x00000078;
1477 }
1478 
1479 static void pxa260_initfn(Object *obj)
1480 {
1481     ARMCPU *cpu = ARM_CPU(obj);
1482 
1483     cpu->dtb_compatible = "marvell,xscale";
1484     set_feature(&cpu->env, ARM_FEATURE_V5);
1485     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1486     cpu->midr = 0x69052903;
1487     cpu->ctr = 0xd172172;
1488     cpu->reset_sctlr = 0x00000078;
1489 }
1490 
1491 static void pxa261_initfn(Object *obj)
1492 {
1493     ARMCPU *cpu = ARM_CPU(obj);
1494 
1495     cpu->dtb_compatible = "marvell,xscale";
1496     set_feature(&cpu->env, ARM_FEATURE_V5);
1497     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1498     cpu->midr = 0x69052d05;
1499     cpu->ctr = 0xd172172;
1500     cpu->reset_sctlr = 0x00000078;
1501 }
1502 
1503 static void pxa262_initfn(Object *obj)
1504 {
1505     ARMCPU *cpu = ARM_CPU(obj);
1506 
1507     cpu->dtb_compatible = "marvell,xscale";
1508     set_feature(&cpu->env, ARM_FEATURE_V5);
1509     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1510     cpu->midr = 0x69052d06;
1511     cpu->ctr = 0xd172172;
1512     cpu->reset_sctlr = 0x00000078;
1513 }
1514 
1515 static void pxa270a0_initfn(Object *obj)
1516 {
1517     ARMCPU *cpu = ARM_CPU(obj);
1518 
1519     cpu->dtb_compatible = "marvell,xscale";
1520     set_feature(&cpu->env, ARM_FEATURE_V5);
1521     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1522     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1523     cpu->midr = 0x69054110;
1524     cpu->ctr = 0xd172172;
1525     cpu->reset_sctlr = 0x00000078;
1526 }
1527 
1528 static void pxa270a1_initfn(Object *obj)
1529 {
1530     ARMCPU *cpu = ARM_CPU(obj);
1531 
1532     cpu->dtb_compatible = "marvell,xscale";
1533     set_feature(&cpu->env, ARM_FEATURE_V5);
1534     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1535     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1536     cpu->midr = 0x69054111;
1537     cpu->ctr = 0xd172172;
1538     cpu->reset_sctlr = 0x00000078;
1539 }
1540 
1541 static void pxa270b0_initfn(Object *obj)
1542 {
1543     ARMCPU *cpu = ARM_CPU(obj);
1544 
1545     cpu->dtb_compatible = "marvell,xscale";
1546     set_feature(&cpu->env, ARM_FEATURE_V5);
1547     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1548     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1549     cpu->midr = 0x69054112;
1550     cpu->ctr = 0xd172172;
1551     cpu->reset_sctlr = 0x00000078;
1552 }
1553 
1554 static void pxa270b1_initfn(Object *obj)
1555 {
1556     ARMCPU *cpu = ARM_CPU(obj);
1557 
1558     cpu->dtb_compatible = "marvell,xscale";
1559     set_feature(&cpu->env, ARM_FEATURE_V5);
1560     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1561     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1562     cpu->midr = 0x69054113;
1563     cpu->ctr = 0xd172172;
1564     cpu->reset_sctlr = 0x00000078;
1565 }
1566 
1567 static void pxa270c0_initfn(Object *obj)
1568 {
1569     ARMCPU *cpu = ARM_CPU(obj);
1570 
1571     cpu->dtb_compatible = "marvell,xscale";
1572     set_feature(&cpu->env, ARM_FEATURE_V5);
1573     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1574     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1575     cpu->midr = 0x69054114;
1576     cpu->ctr = 0xd172172;
1577     cpu->reset_sctlr = 0x00000078;
1578 }
1579 
1580 static void pxa270c5_initfn(Object *obj)
1581 {
1582     ARMCPU *cpu = ARM_CPU(obj);
1583 
1584     cpu->dtb_compatible = "marvell,xscale";
1585     set_feature(&cpu->env, ARM_FEATURE_V5);
1586     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1587     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1588     cpu->midr = 0x69054117;
1589     cpu->ctr = 0xd172172;
1590     cpu->reset_sctlr = 0x00000078;
1591 }
1592 
1593 #ifdef CONFIG_USER_ONLY
1594 static void arm_any_initfn(Object *obj)
1595 {
1596     ARMCPU *cpu = ARM_CPU(obj);
1597     set_feature(&cpu->env, ARM_FEATURE_V8);
1598     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1599     set_feature(&cpu->env, ARM_FEATURE_NEON);
1600     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1601     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1602     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1603     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1604     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1605     set_feature(&cpu->env, ARM_FEATURE_CRC);
1606     cpu->midr = 0xffffffff;
1607 }
1608 #endif
1609 
1610 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1611 
1612 typedef struct ARMCPUInfo {
1613     const char *name;
1614     void (*initfn)(Object *obj);
1615     void (*class_init)(ObjectClass *oc, void *data);
1616 } ARMCPUInfo;
1617 
1618 static const ARMCPUInfo arm_cpus[] = {
1619 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1620     { .name = "arm926",      .initfn = arm926_initfn },
1621     { .name = "arm946",      .initfn = arm946_initfn },
1622     { .name = "arm1026",     .initfn = arm1026_initfn },
1623     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1624      * older core than plain "arm1136". In particular this does not
1625      * have the v6K features.
1626      */
1627     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1628     { .name = "arm1136",     .initfn = arm1136_initfn },
1629     { .name = "arm1176",     .initfn = arm1176_initfn },
1630     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1631     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1632                              .class_init = arm_v7m_class_init },
1633     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1634                              .class_init = arm_v7m_class_init },
1635     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1636     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1637     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1638     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1639     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1640     { .name = "ti925t",      .initfn = ti925t_initfn },
1641     { .name = "sa1100",      .initfn = sa1100_initfn },
1642     { .name = "sa1110",      .initfn = sa1110_initfn },
1643     { .name = "pxa250",      .initfn = pxa250_initfn },
1644     { .name = "pxa255",      .initfn = pxa255_initfn },
1645     { .name = "pxa260",      .initfn = pxa260_initfn },
1646     { .name = "pxa261",      .initfn = pxa261_initfn },
1647     { .name = "pxa262",      .initfn = pxa262_initfn },
1648     /* "pxa270" is an alias for "pxa270-a0" */
1649     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1650     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1651     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1652     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1653     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1654     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1655     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1656 #ifdef CONFIG_USER_ONLY
1657     { .name = "any",         .initfn = arm_any_initfn },
1658 #endif
1659 #endif
1660     { .name = NULL }
1661 };
1662 
1663 static Property arm_cpu_properties[] = {
1664     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1665     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1666     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1667     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1668                         mp_affinity, ARM64_AFFINITY_INVALID),
1669     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1670     DEFINE_PROP_END_OF_LIST()
1671 };
1672 
1673 #ifdef CONFIG_USER_ONLY
1674 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1675                                     int mmu_idx)
1676 {
1677     ARMCPU *cpu = ARM_CPU(cs);
1678     CPUARMState *env = &cpu->env;
1679 
1680     env->exception.vaddress = address;
1681     if (rw == 2) {
1682         cs->exception_index = EXCP_PREFETCH_ABORT;
1683     } else {
1684         cs->exception_index = EXCP_DATA_ABORT;
1685     }
1686     return 1;
1687 }
1688 #endif
1689 
1690 static gchar *arm_gdb_arch_name(CPUState *cs)
1691 {
1692     ARMCPU *cpu = ARM_CPU(cs);
1693     CPUARMState *env = &cpu->env;
1694 
1695     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1696         return g_strdup("iwmmxt");
1697     }
1698     return g_strdup("arm");
1699 }
1700 
1701 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1702 {
1703     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1704     CPUClass *cc = CPU_CLASS(acc);
1705     DeviceClass *dc = DEVICE_CLASS(oc);
1706 
1707     acc->parent_realize = dc->realize;
1708     dc->realize = arm_cpu_realizefn;
1709     dc->props = arm_cpu_properties;
1710 
1711     acc->parent_reset = cc->reset;
1712     cc->reset = arm_cpu_reset;
1713 
1714     cc->class_by_name = arm_cpu_class_by_name;
1715     cc->has_work = arm_cpu_has_work;
1716     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1717     cc->dump_state = arm_cpu_dump_state;
1718     cc->set_pc = arm_cpu_set_pc;
1719     cc->gdb_read_register = arm_cpu_gdb_read_register;
1720     cc->gdb_write_register = arm_cpu_gdb_write_register;
1721 #ifdef CONFIG_USER_ONLY
1722     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1723 #else
1724     cc->do_interrupt = arm_cpu_do_interrupt;
1725     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1726     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1727     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1728     cc->asidx_from_attrs = arm_asidx_from_attrs;
1729     cc->vmsd = &vmstate_arm_cpu;
1730     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1731     cc->write_elf64_note = arm_cpu_write_elf64_note;
1732     cc->write_elf32_note = arm_cpu_write_elf32_note;
1733 #endif
1734     cc->gdb_num_core_regs = 26;
1735     cc->gdb_core_xml_file = "arm-core.xml";
1736     cc->gdb_arch_name = arm_gdb_arch_name;
1737     cc->gdb_stop_before_watchpoint = true;
1738     cc->debug_excp_handler = arm_debug_excp_handler;
1739     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1740 #if !defined(CONFIG_USER_ONLY)
1741     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1742 #endif
1743 
1744     cc->disas_set_info = arm_disas_set_info;
1745 }
1746 
1747 static void cpu_register(const ARMCPUInfo *info)
1748 {
1749     TypeInfo type_info = {
1750         .parent = TYPE_ARM_CPU,
1751         .instance_size = sizeof(ARMCPU),
1752         .instance_init = info->initfn,
1753         .class_size = sizeof(ARMCPUClass),
1754         .class_init = info->class_init,
1755     };
1756 
1757     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1758     type_register(&type_info);
1759     g_free((void *)type_info.name);
1760 }
1761 
1762 static const TypeInfo arm_cpu_type_info = {
1763     .name = TYPE_ARM_CPU,
1764     .parent = TYPE_CPU,
1765     .instance_size = sizeof(ARMCPU),
1766     .instance_init = arm_cpu_initfn,
1767     .instance_post_init = arm_cpu_post_init,
1768     .instance_finalize = arm_cpu_finalizefn,
1769     .abstract = true,
1770     .class_size = sizeof(ARMCPUClass),
1771     .class_init = arm_cpu_class_init,
1772 };
1773 
1774 static void arm_cpu_register_types(void)
1775 {
1776     const ARMCPUInfo *info = arm_cpus;
1777 
1778     type_register_static(&arm_cpu_type_info);
1779 
1780     while (info->name) {
1781         cpu_register(info);
1782         info++;
1783     }
1784 }
1785 
1786 type_init(arm_cpu_register_types)
1787