xref: /openbmc/qemu/target/arm/cpu.c (revision 1d48474d)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189             env->v7m.secure = true;
190         } else {
191             /* This bit resets to 0 if security is supported, but 1 if
192              * it is not. The bit is not present in v7M, but we set it
193              * here so we can avoid having to make checks on it conditional
194              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
195              */
196             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
197         }
198 
199         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200          * that it resets to 1, so QEMU always does that rather than making
201          * it dependent on CPU model. In v8M it is RES1.
202          */
203         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
204         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
205         if (arm_feature(env, ARM_FEATURE_V8)) {
206             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
208             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
209         }
210 
211         /* Unlike A/R profile, M profile defines the reset LR value */
212         env->regs[14] = 0xffffffff;
213 
214         /* Load the initial SP and PC from the vector table at address 0 */
215         rom = rom_ptr(0);
216         if (rom) {
217             /* Address zero is covered by ROM which hasn't yet been
218              * copied into physical memory.
219              */
220             initial_msp = ldl_p(rom);
221             initial_pc = ldl_p(rom + 4);
222         } else {
223             /* Address zero not covered by a ROM blob, or the ROM blob
224              * is in non-modifiable memory and this is a second reset after
225              * it got copied into memory. In the latter case, rom_ptr
226              * will return a NULL pointer and we should use ldl_phys instead.
227              */
228             initial_msp = ldl_phys(s->as, 0);
229             initial_pc = ldl_phys(s->as, 4);
230         }
231 
232         env->regs[13] = initial_msp & 0xFFFFFFFC;
233         env->regs[15] = initial_pc & ~1;
234         env->thumb = initial_pc & 1;
235     }
236 
237     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
238      * executing as AArch32 then check if highvecs are enabled and
239      * adjust the PC accordingly.
240      */
241     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
242         env->regs[15] = 0xFFFF0000;
243     }
244 
245     /* M profile requires that reset clears the exclusive monitor;
246      * A profile does not, but clearing it makes more sense than having it
247      * set with an exclusive access on address zero.
248      */
249     arm_clear_exclusive(env);
250 
251     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
252 #endif
253 
254     if (arm_feature(env, ARM_FEATURE_PMSA)) {
255         if (cpu->pmsav7_dregion > 0) {
256             if (arm_feature(env, ARM_FEATURE_V8)) {
257                 memset(env->pmsav8.rbar[M_REG_NS], 0,
258                        sizeof(*env->pmsav8.rbar[M_REG_NS])
259                        * cpu->pmsav7_dregion);
260                 memset(env->pmsav8.rlar[M_REG_NS], 0,
261                        sizeof(*env->pmsav8.rlar[M_REG_NS])
262                        * cpu->pmsav7_dregion);
263                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
264                     memset(env->pmsav8.rbar[M_REG_S], 0,
265                            sizeof(*env->pmsav8.rbar[M_REG_S])
266                            * cpu->pmsav7_dregion);
267                     memset(env->pmsav8.rlar[M_REG_S], 0,
268                            sizeof(*env->pmsav8.rlar[M_REG_S])
269                            * cpu->pmsav7_dregion);
270                 }
271             } else if (arm_feature(env, ARM_FEATURE_V7)) {
272                 memset(env->pmsav7.drbar, 0,
273                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
274                 memset(env->pmsav7.drsr, 0,
275                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
276                 memset(env->pmsav7.dracr, 0,
277                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
278             }
279         }
280         env->pmsav7.rnr[M_REG_NS] = 0;
281         env->pmsav7.rnr[M_REG_S] = 0;
282         env->pmsav8.mair0[M_REG_NS] = 0;
283         env->pmsav8.mair0[M_REG_S] = 0;
284         env->pmsav8.mair1[M_REG_NS] = 0;
285         env->pmsav8.mair1[M_REG_S] = 0;
286     }
287 
288     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
289         if (cpu->sau_sregion > 0) {
290             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
291             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
292         }
293         env->sau.rnr = 0;
294         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
295          * the Cortex-M33 does.
296          */
297         env->sau.ctrl = 0;
298     }
299 
300     set_flush_to_zero(1, &env->vfp.standard_fp_status);
301     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
302     set_default_nan_mode(1, &env->vfp.standard_fp_status);
303     set_float_detect_tininess(float_tininess_before_rounding,
304                               &env->vfp.fp_status);
305     set_float_detect_tininess(float_tininess_before_rounding,
306                               &env->vfp.standard_fp_status);
307 #ifndef CONFIG_USER_ONLY
308     if (kvm_enabled()) {
309         kvm_arm_reset_vcpu(cpu);
310     }
311 #endif
312 
313     hw_breakpoint_update_all(cpu);
314     hw_watchpoint_update_all(cpu);
315 }
316 
317 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
318 {
319     CPUClass *cc = CPU_GET_CLASS(cs);
320     CPUARMState *env = cs->env_ptr;
321     uint32_t cur_el = arm_current_el(env);
322     bool secure = arm_is_secure(env);
323     uint32_t target_el;
324     uint32_t excp_idx;
325     bool ret = false;
326 
327     if (interrupt_request & CPU_INTERRUPT_FIQ) {
328         excp_idx = EXCP_FIQ;
329         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
330         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
331             cs->exception_index = excp_idx;
332             env->exception.target_el = target_el;
333             cc->do_interrupt(cs);
334             ret = true;
335         }
336     }
337     if (interrupt_request & CPU_INTERRUPT_HARD) {
338         excp_idx = EXCP_IRQ;
339         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
340         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
341             cs->exception_index = excp_idx;
342             env->exception.target_el = target_el;
343             cc->do_interrupt(cs);
344             ret = true;
345         }
346     }
347     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
348         excp_idx = EXCP_VIRQ;
349         target_el = 1;
350         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
351             cs->exception_index = excp_idx;
352             env->exception.target_el = target_el;
353             cc->do_interrupt(cs);
354             ret = true;
355         }
356     }
357     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
358         excp_idx = EXCP_VFIQ;
359         target_el = 1;
360         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
361             cs->exception_index = excp_idx;
362             env->exception.target_el = target_el;
363             cc->do_interrupt(cs);
364             ret = true;
365         }
366     }
367 
368     return ret;
369 }
370 
371 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
372 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
373 {
374     CPUClass *cc = CPU_GET_CLASS(cs);
375     ARMCPU *cpu = ARM_CPU(cs);
376     CPUARMState *env = &cpu->env;
377     bool ret = false;
378 
379     /* ARMv7-M interrupt masking works differently than -A or -R.
380      * There is no FIQ/IRQ distinction. Instead of I and F bits
381      * masking FIQ and IRQ interrupts, an exception is taken only
382      * if it is higher priority than the current execution priority
383      * (which depends on state like BASEPRI, FAULTMASK and the
384      * currently active exception).
385      */
386     if (interrupt_request & CPU_INTERRUPT_HARD
387         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
388         cs->exception_index = EXCP_IRQ;
389         cc->do_interrupt(cs);
390         ret = true;
391     }
392     return ret;
393 }
394 #endif
395 
396 #ifndef CONFIG_USER_ONLY
397 static void arm_cpu_set_irq(void *opaque, int irq, int level)
398 {
399     ARMCPU *cpu = opaque;
400     CPUARMState *env = &cpu->env;
401     CPUState *cs = CPU(cpu);
402     static const int mask[] = {
403         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
404         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
405         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
406         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
407     };
408 
409     switch (irq) {
410     case ARM_CPU_VIRQ:
411     case ARM_CPU_VFIQ:
412         assert(arm_feature(env, ARM_FEATURE_EL2));
413         /* fall through */
414     case ARM_CPU_IRQ:
415     case ARM_CPU_FIQ:
416         if (level) {
417             cpu_interrupt(cs, mask[irq]);
418         } else {
419             cpu_reset_interrupt(cs, mask[irq]);
420         }
421         break;
422     default:
423         g_assert_not_reached();
424     }
425 }
426 
427 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
428 {
429 #ifdef CONFIG_KVM
430     ARMCPU *cpu = opaque;
431     CPUState *cs = CPU(cpu);
432     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
433 
434     switch (irq) {
435     case ARM_CPU_IRQ:
436         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
437         break;
438     case ARM_CPU_FIQ:
439         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
440         break;
441     default:
442         g_assert_not_reached();
443     }
444     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
445     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
446 #endif
447 }
448 
449 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
450 {
451     ARMCPU *cpu = ARM_CPU(cs);
452     CPUARMState *env = &cpu->env;
453 
454     cpu_synchronize_state(cs);
455     return arm_cpu_data_is_big_endian(env);
456 }
457 
458 #endif
459 
460 static inline void set_feature(CPUARMState *env, int feature)
461 {
462     env->features |= 1ULL << feature;
463 }
464 
465 static inline void unset_feature(CPUARMState *env, int feature)
466 {
467     env->features &= ~(1ULL << feature);
468 }
469 
470 static int
471 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
472 {
473   return print_insn_arm(pc | 1, info);
474 }
475 
476 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
477 {
478     ARMCPU *ac = ARM_CPU(cpu);
479     CPUARMState *env = &ac->env;
480     bool sctlr_b;
481 
482     if (is_a64(env)) {
483         /* We might not be compiled with the A64 disassembler
484          * because it needs a C++ compiler. Leave print_insn
485          * unset in this case to use the caller default behaviour.
486          */
487 #if defined(CONFIG_ARM_A64_DIS)
488         info->print_insn = print_insn_arm_a64;
489 #endif
490     } else if (env->thumb) {
491         info->print_insn = print_insn_thumb1;
492     } else {
493         info->print_insn = print_insn_arm;
494     }
495 
496     sctlr_b = arm_sctlr_b(env);
497     if (bswap_code(sctlr_b)) {
498 #ifdef TARGET_WORDS_BIGENDIAN
499         info->endian = BFD_ENDIAN_LITTLE;
500 #else
501         info->endian = BFD_ENDIAN_BIG;
502 #endif
503     }
504     info->flags &= ~INSN_ARM_BE32;
505 #ifndef CONFIG_USER_ONLY
506     if (sctlr_b) {
507         info->flags |= INSN_ARM_BE32;
508     }
509 #endif
510 }
511 
512 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
513 {
514     uint32_t Aff1 = idx / clustersz;
515     uint32_t Aff0 = idx % clustersz;
516     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
517 }
518 
519 static void arm_cpu_initfn(Object *obj)
520 {
521     CPUState *cs = CPU(obj);
522     ARMCPU *cpu = ARM_CPU(obj);
523     static bool inited;
524 
525     cs->env_ptr = &cpu->env;
526     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
527                                          g_free, g_free);
528 
529 #ifndef CONFIG_USER_ONLY
530     /* Our inbound IRQ and FIQ lines */
531     if (kvm_enabled()) {
532         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
533          * the same interface as non-KVM CPUs.
534          */
535         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
536     } else {
537         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
538     }
539 
540     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
541                                                 arm_gt_ptimer_cb, cpu);
542     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
543                                                 arm_gt_vtimer_cb, cpu);
544     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
545                                                 arm_gt_htimer_cb, cpu);
546     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
547                                                 arm_gt_stimer_cb, cpu);
548     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
549                        ARRAY_SIZE(cpu->gt_timer_outputs));
550 
551     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
552                              "gicv3-maintenance-interrupt", 1);
553     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
554                              "pmu-interrupt", 1);
555 #endif
556 
557     /* DTB consumers generally don't in fact care what the 'compatible'
558      * string is, so always provide some string and trust that a hypothetical
559      * picky DTB consumer will also provide a helpful error message.
560      */
561     cpu->dtb_compatible = "qemu,unknown";
562     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
563     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
564 
565     if (tcg_enabled()) {
566         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
567         if (!inited) {
568             inited = true;
569             arm_translate_init();
570         }
571     }
572 }
573 
574 static Property arm_cpu_reset_cbar_property =
575             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
576 
577 static Property arm_cpu_reset_hivecs_property =
578             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
579 
580 static Property arm_cpu_rvbar_property =
581             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
582 
583 static Property arm_cpu_has_el2_property =
584             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
585 
586 static Property arm_cpu_has_el3_property =
587             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
588 
589 static Property arm_cpu_cfgend_property =
590             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
591 
592 /* use property name "pmu" to match other archs and virt tools */
593 static Property arm_cpu_has_pmu_property =
594             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
595 
596 static Property arm_cpu_has_mpu_property =
597             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
598 
599 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
600  * because the CPU initfn will have already set cpu->pmsav7_dregion to
601  * the right value for that particular CPU type, and we don't want
602  * to override that with an incorrect constant value.
603  */
604 static Property arm_cpu_pmsav7_dregion_property =
605             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
606                                            pmsav7_dregion,
607                                            qdev_prop_uint32, uint32_t);
608 
609 static void arm_cpu_post_init(Object *obj)
610 {
611     ARMCPU *cpu = ARM_CPU(obj);
612 
613     /* M profile implies PMSA. We have to do this here rather than
614      * in realize with the other feature-implication checks because
615      * we look at the PMSA bit to see if we should add some properties.
616      */
617     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
618         set_feature(&cpu->env, ARM_FEATURE_PMSA);
619     }
620 
621     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
622         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
623         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
624                                  &error_abort);
625     }
626 
627     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
628         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
629                                  &error_abort);
630     }
631 
632     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
633         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
634                                  &error_abort);
635     }
636 
637     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
638         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
639          * prevent "has_el3" from existing on CPUs which cannot support EL3.
640          */
641         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
642                                  &error_abort);
643 
644 #ifndef CONFIG_USER_ONLY
645         object_property_add_link(obj, "secure-memory",
646                                  TYPE_MEMORY_REGION,
647                                  (Object **)&cpu->secure_memory,
648                                  qdev_prop_allow_set_link_before_realize,
649                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
650                                  &error_abort);
651 #endif
652     }
653 
654     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
655         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
656                                  &error_abort);
657     }
658 
659     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
660         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
661                                  &error_abort);
662     }
663 
664     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
665         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
666                                  &error_abort);
667         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
668             qdev_property_add_static(DEVICE(obj),
669                                      &arm_cpu_pmsav7_dregion_property,
670                                      &error_abort);
671         }
672     }
673 
674     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
675                              &error_abort);
676 }
677 
678 static void arm_cpu_finalizefn(Object *obj)
679 {
680     ARMCPU *cpu = ARM_CPU(obj);
681     g_hash_table_destroy(cpu->cp_regs);
682 }
683 
684 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
685 {
686     CPUState *cs = CPU(dev);
687     ARMCPU *cpu = ARM_CPU(dev);
688     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
689     CPUARMState *env = &cpu->env;
690     int pagebits;
691     Error *local_err = NULL;
692 #ifndef CONFIG_USER_ONLY
693     AddressSpace *as;
694 #endif
695 
696     cpu_exec_realizefn(cs, &local_err);
697     if (local_err != NULL) {
698         error_propagate(errp, local_err);
699         return;
700     }
701 
702     /* Some features automatically imply others: */
703     if (arm_feature(env, ARM_FEATURE_V8)) {
704         set_feature(env, ARM_FEATURE_V7);
705         set_feature(env, ARM_FEATURE_ARM_DIV);
706         set_feature(env, ARM_FEATURE_LPAE);
707     }
708     if (arm_feature(env, ARM_FEATURE_V7)) {
709         set_feature(env, ARM_FEATURE_VAPA);
710         set_feature(env, ARM_FEATURE_THUMB2);
711         set_feature(env, ARM_FEATURE_MPIDR);
712         if (!arm_feature(env, ARM_FEATURE_M)) {
713             set_feature(env, ARM_FEATURE_V6K);
714         } else {
715             set_feature(env, ARM_FEATURE_V6);
716         }
717 
718         /* Always define VBAR for V7 CPUs even if it doesn't exist in
719          * non-EL3 configs. This is needed by some legacy boards.
720          */
721         set_feature(env, ARM_FEATURE_VBAR);
722     }
723     if (arm_feature(env, ARM_FEATURE_V6K)) {
724         set_feature(env, ARM_FEATURE_V6);
725         set_feature(env, ARM_FEATURE_MVFR);
726     }
727     if (arm_feature(env, ARM_FEATURE_V6)) {
728         set_feature(env, ARM_FEATURE_V5);
729         set_feature(env, ARM_FEATURE_JAZELLE);
730         if (!arm_feature(env, ARM_FEATURE_M)) {
731             set_feature(env, ARM_FEATURE_AUXCR);
732         }
733     }
734     if (arm_feature(env, ARM_FEATURE_V5)) {
735         set_feature(env, ARM_FEATURE_V4T);
736     }
737     if (arm_feature(env, ARM_FEATURE_M)) {
738         set_feature(env, ARM_FEATURE_THUMB_DIV);
739     }
740     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
741         set_feature(env, ARM_FEATURE_THUMB_DIV);
742     }
743     if (arm_feature(env, ARM_FEATURE_VFP4)) {
744         set_feature(env, ARM_FEATURE_VFP3);
745         set_feature(env, ARM_FEATURE_VFP_FP16);
746     }
747     if (arm_feature(env, ARM_FEATURE_VFP3)) {
748         set_feature(env, ARM_FEATURE_VFP);
749     }
750     if (arm_feature(env, ARM_FEATURE_LPAE)) {
751         set_feature(env, ARM_FEATURE_V7MP);
752         set_feature(env, ARM_FEATURE_PXN);
753     }
754     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
755         set_feature(env, ARM_FEATURE_CBAR);
756     }
757     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
758         !arm_feature(env, ARM_FEATURE_M)) {
759         set_feature(env, ARM_FEATURE_THUMB_DSP);
760     }
761 
762     if (arm_feature(env, ARM_FEATURE_V7) &&
763         !arm_feature(env, ARM_FEATURE_M) &&
764         !arm_feature(env, ARM_FEATURE_PMSA)) {
765         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
766          * can use 4K pages.
767          */
768         pagebits = 12;
769     } else {
770         /* For CPUs which might have tiny 1K pages, or which have an
771          * MPU and might have small region sizes, stick with 1K pages.
772          */
773         pagebits = 10;
774     }
775     if (!set_preferred_target_page_bits(pagebits)) {
776         /* This can only ever happen for hotplugging a CPU, or if
777          * the board code incorrectly creates a CPU which it has
778          * promised via minimum_page_size that it will not.
779          */
780         error_setg(errp, "This CPU requires a smaller page size than the "
781                    "system is using");
782         return;
783     }
784 
785     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
786      * We don't support setting cluster ID ([16..23]) (known as Aff2
787      * in later ARM ARM versions), or any of the higher affinity level fields,
788      * so these bits always RAZ.
789      */
790     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
791         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
792                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
793     }
794 
795     if (cpu->reset_hivecs) {
796             cpu->reset_sctlr |= (1 << 13);
797     }
798 
799     if (cpu->cfgend) {
800         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
801             cpu->reset_sctlr |= SCTLR_EE;
802         } else {
803             cpu->reset_sctlr |= SCTLR_B;
804         }
805     }
806 
807     if (!cpu->has_el3) {
808         /* If the has_el3 CPU property is disabled then we need to disable the
809          * feature.
810          */
811         unset_feature(env, ARM_FEATURE_EL3);
812 
813         /* Disable the security extension feature bits in the processor feature
814          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
815          */
816         cpu->id_pfr1 &= ~0xf0;
817         cpu->id_aa64pfr0 &= ~0xf000;
818     }
819 
820     if (!cpu->has_el2) {
821         unset_feature(env, ARM_FEATURE_EL2);
822     }
823 
824     if (!cpu->has_pmu) {
825         unset_feature(env, ARM_FEATURE_PMU);
826         cpu->id_aa64dfr0 &= ~0xf00;
827     }
828 
829     if (!arm_feature(env, ARM_FEATURE_EL2)) {
830         /* Disable the hypervisor feature bits in the processor feature
831          * registers if we don't have EL2. These are id_pfr1[15:12] and
832          * id_aa64pfr0_el1[11:8].
833          */
834         cpu->id_aa64pfr0 &= ~0xf00;
835         cpu->id_pfr1 &= ~0xf000;
836     }
837 
838     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
839      * to false or by setting pmsav7-dregion to 0.
840      */
841     if (!cpu->has_mpu) {
842         cpu->pmsav7_dregion = 0;
843     }
844     if (cpu->pmsav7_dregion == 0) {
845         cpu->has_mpu = false;
846     }
847 
848     if (arm_feature(env, ARM_FEATURE_PMSA) &&
849         arm_feature(env, ARM_FEATURE_V7)) {
850         uint32_t nr = cpu->pmsav7_dregion;
851 
852         if (nr > 0xff) {
853             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
854             return;
855         }
856 
857         if (nr) {
858             if (arm_feature(env, ARM_FEATURE_V8)) {
859                 /* PMSAv8 */
860                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
861                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
862                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
863                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
864                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
865                 }
866             } else {
867                 env->pmsav7.drbar = g_new0(uint32_t, nr);
868                 env->pmsav7.drsr = g_new0(uint32_t, nr);
869                 env->pmsav7.dracr = g_new0(uint32_t, nr);
870             }
871         }
872     }
873 
874     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
875         uint32_t nr = cpu->sau_sregion;
876 
877         if (nr > 0xff) {
878             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
879             return;
880         }
881 
882         if (nr) {
883             env->sau.rbar = g_new0(uint32_t, nr);
884             env->sau.rlar = g_new0(uint32_t, nr);
885         }
886     }
887 
888     if (arm_feature(env, ARM_FEATURE_EL3)) {
889         set_feature(env, ARM_FEATURE_VBAR);
890     }
891 
892     register_cp_regs_for_features(cpu);
893     arm_cpu_register_gdb_regs_for_features(cpu);
894 
895     init_cpreg_list(cpu);
896 
897 #ifndef CONFIG_USER_ONLY
898     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
899         as = g_new0(AddressSpace, 1);
900 
901         cs->num_ases = 2;
902 
903         if (!cpu->secure_memory) {
904             cpu->secure_memory = cs->memory;
905         }
906         address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
907         cpu_address_space_init(cs, as, ARMASIdx_S);
908     } else {
909         cs->num_ases = 1;
910     }
911     as = g_new0(AddressSpace, 1);
912     address_space_init(as, cs->memory, "cpu-memory");
913     cpu_address_space_init(cs, as, ARMASIdx_NS);
914 #endif
915 
916     qemu_init_vcpu(cs);
917     cpu_reset(cs);
918 
919     acc->parent_realize(dev, errp);
920 }
921 
922 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
923 {
924     ObjectClass *oc;
925     char *typename;
926     char **cpuname;
927 
928     cpuname = g_strsplit(cpu_model, ",", 1);
929     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
930     oc = object_class_by_name(typename);
931     g_strfreev(cpuname);
932     g_free(typename);
933     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
934         object_class_is_abstract(oc)) {
935         return NULL;
936     }
937     return oc;
938 }
939 
940 /* CPU models. These are not needed for the AArch64 linux-user build. */
941 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
942 
943 static void arm926_initfn(Object *obj)
944 {
945     ARMCPU *cpu = ARM_CPU(obj);
946 
947     cpu->dtb_compatible = "arm,arm926";
948     set_feature(&cpu->env, ARM_FEATURE_V5);
949     set_feature(&cpu->env, ARM_FEATURE_VFP);
950     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
951     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
952     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
953     cpu->midr = 0x41069265;
954     cpu->reset_fpsid = 0x41011090;
955     cpu->ctr = 0x1dd20d2;
956     cpu->reset_sctlr = 0x00090078;
957 }
958 
959 static void arm946_initfn(Object *obj)
960 {
961     ARMCPU *cpu = ARM_CPU(obj);
962 
963     cpu->dtb_compatible = "arm,arm946";
964     set_feature(&cpu->env, ARM_FEATURE_V5);
965     set_feature(&cpu->env, ARM_FEATURE_PMSA);
966     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
967     cpu->midr = 0x41059461;
968     cpu->ctr = 0x0f004006;
969     cpu->reset_sctlr = 0x00000078;
970 }
971 
972 static void arm1026_initfn(Object *obj)
973 {
974     ARMCPU *cpu = ARM_CPU(obj);
975 
976     cpu->dtb_compatible = "arm,arm1026";
977     set_feature(&cpu->env, ARM_FEATURE_V5);
978     set_feature(&cpu->env, ARM_FEATURE_VFP);
979     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
980     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
981     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
982     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
983     cpu->midr = 0x4106a262;
984     cpu->reset_fpsid = 0x410110a0;
985     cpu->ctr = 0x1dd20d2;
986     cpu->reset_sctlr = 0x00090078;
987     cpu->reset_auxcr = 1;
988     {
989         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
990         ARMCPRegInfo ifar = {
991             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
992             .access = PL1_RW,
993             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
994             .resetvalue = 0
995         };
996         define_one_arm_cp_reg(cpu, &ifar);
997     }
998 }
999 
1000 static void arm1136_r2_initfn(Object *obj)
1001 {
1002     ARMCPU *cpu = ARM_CPU(obj);
1003     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1004      * older core than plain "arm1136". In particular this does not
1005      * have the v6K features.
1006      * These ID register values are correct for 1136 but may be wrong
1007      * for 1136_r2 (in particular r0p2 does not actually implement most
1008      * of the ID registers).
1009      */
1010 
1011     cpu->dtb_compatible = "arm,arm1136";
1012     set_feature(&cpu->env, ARM_FEATURE_V6);
1013     set_feature(&cpu->env, ARM_FEATURE_VFP);
1014     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1015     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1016     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1017     cpu->midr = 0x4107b362;
1018     cpu->reset_fpsid = 0x410120b4;
1019     cpu->mvfr0 = 0x11111111;
1020     cpu->mvfr1 = 0x00000000;
1021     cpu->ctr = 0x1dd20d2;
1022     cpu->reset_sctlr = 0x00050078;
1023     cpu->id_pfr0 = 0x111;
1024     cpu->id_pfr1 = 0x1;
1025     cpu->id_dfr0 = 0x2;
1026     cpu->id_afr0 = 0x3;
1027     cpu->id_mmfr0 = 0x01130003;
1028     cpu->id_mmfr1 = 0x10030302;
1029     cpu->id_mmfr2 = 0x01222110;
1030     cpu->id_isar0 = 0x00140011;
1031     cpu->id_isar1 = 0x12002111;
1032     cpu->id_isar2 = 0x11231111;
1033     cpu->id_isar3 = 0x01102131;
1034     cpu->id_isar4 = 0x141;
1035     cpu->reset_auxcr = 7;
1036 }
1037 
1038 static void arm1136_initfn(Object *obj)
1039 {
1040     ARMCPU *cpu = ARM_CPU(obj);
1041 
1042     cpu->dtb_compatible = "arm,arm1136";
1043     set_feature(&cpu->env, ARM_FEATURE_V6K);
1044     set_feature(&cpu->env, ARM_FEATURE_V6);
1045     set_feature(&cpu->env, ARM_FEATURE_VFP);
1046     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1047     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1048     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1049     cpu->midr = 0x4117b363;
1050     cpu->reset_fpsid = 0x410120b4;
1051     cpu->mvfr0 = 0x11111111;
1052     cpu->mvfr1 = 0x00000000;
1053     cpu->ctr = 0x1dd20d2;
1054     cpu->reset_sctlr = 0x00050078;
1055     cpu->id_pfr0 = 0x111;
1056     cpu->id_pfr1 = 0x1;
1057     cpu->id_dfr0 = 0x2;
1058     cpu->id_afr0 = 0x3;
1059     cpu->id_mmfr0 = 0x01130003;
1060     cpu->id_mmfr1 = 0x10030302;
1061     cpu->id_mmfr2 = 0x01222110;
1062     cpu->id_isar0 = 0x00140011;
1063     cpu->id_isar1 = 0x12002111;
1064     cpu->id_isar2 = 0x11231111;
1065     cpu->id_isar3 = 0x01102131;
1066     cpu->id_isar4 = 0x141;
1067     cpu->reset_auxcr = 7;
1068 }
1069 
1070 static void arm1176_initfn(Object *obj)
1071 {
1072     ARMCPU *cpu = ARM_CPU(obj);
1073 
1074     cpu->dtb_compatible = "arm,arm1176";
1075     set_feature(&cpu->env, ARM_FEATURE_V6K);
1076     set_feature(&cpu->env, ARM_FEATURE_VFP);
1077     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1078     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1079     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1080     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1081     set_feature(&cpu->env, ARM_FEATURE_EL3);
1082     cpu->midr = 0x410fb767;
1083     cpu->reset_fpsid = 0x410120b5;
1084     cpu->mvfr0 = 0x11111111;
1085     cpu->mvfr1 = 0x00000000;
1086     cpu->ctr = 0x1dd20d2;
1087     cpu->reset_sctlr = 0x00050078;
1088     cpu->id_pfr0 = 0x111;
1089     cpu->id_pfr1 = 0x11;
1090     cpu->id_dfr0 = 0x33;
1091     cpu->id_afr0 = 0;
1092     cpu->id_mmfr0 = 0x01130003;
1093     cpu->id_mmfr1 = 0x10030302;
1094     cpu->id_mmfr2 = 0x01222100;
1095     cpu->id_isar0 = 0x0140011;
1096     cpu->id_isar1 = 0x12002111;
1097     cpu->id_isar2 = 0x11231121;
1098     cpu->id_isar3 = 0x01102131;
1099     cpu->id_isar4 = 0x01141;
1100     cpu->reset_auxcr = 7;
1101 }
1102 
1103 static void arm11mpcore_initfn(Object *obj)
1104 {
1105     ARMCPU *cpu = ARM_CPU(obj);
1106 
1107     cpu->dtb_compatible = "arm,arm11mpcore";
1108     set_feature(&cpu->env, ARM_FEATURE_V6K);
1109     set_feature(&cpu->env, ARM_FEATURE_VFP);
1110     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1111     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1112     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1113     cpu->midr = 0x410fb022;
1114     cpu->reset_fpsid = 0x410120b4;
1115     cpu->mvfr0 = 0x11111111;
1116     cpu->mvfr1 = 0x00000000;
1117     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1118     cpu->id_pfr0 = 0x111;
1119     cpu->id_pfr1 = 0x1;
1120     cpu->id_dfr0 = 0;
1121     cpu->id_afr0 = 0x2;
1122     cpu->id_mmfr0 = 0x01100103;
1123     cpu->id_mmfr1 = 0x10020302;
1124     cpu->id_mmfr2 = 0x01222000;
1125     cpu->id_isar0 = 0x00100011;
1126     cpu->id_isar1 = 0x12002111;
1127     cpu->id_isar2 = 0x11221011;
1128     cpu->id_isar3 = 0x01102131;
1129     cpu->id_isar4 = 0x141;
1130     cpu->reset_auxcr = 1;
1131 }
1132 
1133 static void cortex_m3_initfn(Object *obj)
1134 {
1135     ARMCPU *cpu = ARM_CPU(obj);
1136     set_feature(&cpu->env, ARM_FEATURE_V7);
1137     set_feature(&cpu->env, ARM_FEATURE_M);
1138     cpu->midr = 0x410fc231;
1139     cpu->pmsav7_dregion = 8;
1140 }
1141 
1142 static void cortex_m4_initfn(Object *obj)
1143 {
1144     ARMCPU *cpu = ARM_CPU(obj);
1145 
1146     set_feature(&cpu->env, ARM_FEATURE_V7);
1147     set_feature(&cpu->env, ARM_FEATURE_M);
1148     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1149     cpu->midr = 0x410fc240; /* r0p0 */
1150     cpu->pmsav7_dregion = 8;
1151 }
1152 
1153 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1154 {
1155     CPUClass *cc = CPU_CLASS(oc);
1156 
1157 #ifndef CONFIG_USER_ONLY
1158     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1159 #endif
1160 
1161     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1162 }
1163 
1164 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1165     /* Dummy the TCM region regs for the moment */
1166     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1167       .access = PL1_RW, .type = ARM_CP_CONST },
1168     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1169       .access = PL1_RW, .type = ARM_CP_CONST },
1170     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1171       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1172     REGINFO_SENTINEL
1173 };
1174 
1175 static void cortex_r5_initfn(Object *obj)
1176 {
1177     ARMCPU *cpu = ARM_CPU(obj);
1178 
1179     set_feature(&cpu->env, ARM_FEATURE_V7);
1180     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1181     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1182     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1183     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1184     cpu->midr = 0x411fc153; /* r1p3 */
1185     cpu->id_pfr0 = 0x0131;
1186     cpu->id_pfr1 = 0x001;
1187     cpu->id_dfr0 = 0x010400;
1188     cpu->id_afr0 = 0x0;
1189     cpu->id_mmfr0 = 0x0210030;
1190     cpu->id_mmfr1 = 0x00000000;
1191     cpu->id_mmfr2 = 0x01200000;
1192     cpu->id_mmfr3 = 0x0211;
1193     cpu->id_isar0 = 0x2101111;
1194     cpu->id_isar1 = 0x13112111;
1195     cpu->id_isar2 = 0x21232141;
1196     cpu->id_isar3 = 0x01112131;
1197     cpu->id_isar4 = 0x0010142;
1198     cpu->id_isar5 = 0x0;
1199     cpu->mp_is_up = true;
1200     cpu->pmsav7_dregion = 16;
1201     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1202 }
1203 
1204 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1205     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1206       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1207     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1208       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1209     REGINFO_SENTINEL
1210 };
1211 
1212 static void cortex_a8_initfn(Object *obj)
1213 {
1214     ARMCPU *cpu = ARM_CPU(obj);
1215 
1216     cpu->dtb_compatible = "arm,cortex-a8";
1217     set_feature(&cpu->env, ARM_FEATURE_V7);
1218     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1219     set_feature(&cpu->env, ARM_FEATURE_NEON);
1220     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1221     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1222     set_feature(&cpu->env, ARM_FEATURE_EL3);
1223     cpu->midr = 0x410fc080;
1224     cpu->reset_fpsid = 0x410330c0;
1225     cpu->mvfr0 = 0x11110222;
1226     cpu->mvfr1 = 0x00011111;
1227     cpu->ctr = 0x82048004;
1228     cpu->reset_sctlr = 0x00c50078;
1229     cpu->id_pfr0 = 0x1031;
1230     cpu->id_pfr1 = 0x11;
1231     cpu->id_dfr0 = 0x400;
1232     cpu->id_afr0 = 0;
1233     cpu->id_mmfr0 = 0x31100003;
1234     cpu->id_mmfr1 = 0x20000000;
1235     cpu->id_mmfr2 = 0x01202000;
1236     cpu->id_mmfr3 = 0x11;
1237     cpu->id_isar0 = 0x00101111;
1238     cpu->id_isar1 = 0x12112111;
1239     cpu->id_isar2 = 0x21232031;
1240     cpu->id_isar3 = 0x11112131;
1241     cpu->id_isar4 = 0x00111142;
1242     cpu->dbgdidr = 0x15141000;
1243     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1244     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1245     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1246     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1247     cpu->reset_auxcr = 2;
1248     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1249 }
1250 
1251 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1252     /* power_control should be set to maximum latency. Again,
1253      * default to 0 and set by private hook
1254      */
1255     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1256       .access = PL1_RW, .resetvalue = 0,
1257       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1258     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1259       .access = PL1_RW, .resetvalue = 0,
1260       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1261     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1262       .access = PL1_RW, .resetvalue = 0,
1263       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1264     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1265       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1266     /* TLB lockdown control */
1267     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1268       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1269     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1270       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1271     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1272       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1273     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1274       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1275     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1276       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1277     REGINFO_SENTINEL
1278 };
1279 
1280 static void cortex_a9_initfn(Object *obj)
1281 {
1282     ARMCPU *cpu = ARM_CPU(obj);
1283 
1284     cpu->dtb_compatible = "arm,cortex-a9";
1285     set_feature(&cpu->env, ARM_FEATURE_V7);
1286     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1287     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1288     set_feature(&cpu->env, ARM_FEATURE_NEON);
1289     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1290     set_feature(&cpu->env, ARM_FEATURE_EL3);
1291     /* Note that A9 supports the MP extensions even for
1292      * A9UP and single-core A9MP (which are both different
1293      * and valid configurations; we don't model A9UP).
1294      */
1295     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1296     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1297     cpu->midr = 0x410fc090;
1298     cpu->reset_fpsid = 0x41033090;
1299     cpu->mvfr0 = 0x11110222;
1300     cpu->mvfr1 = 0x01111111;
1301     cpu->ctr = 0x80038003;
1302     cpu->reset_sctlr = 0x00c50078;
1303     cpu->id_pfr0 = 0x1031;
1304     cpu->id_pfr1 = 0x11;
1305     cpu->id_dfr0 = 0x000;
1306     cpu->id_afr0 = 0;
1307     cpu->id_mmfr0 = 0x00100103;
1308     cpu->id_mmfr1 = 0x20000000;
1309     cpu->id_mmfr2 = 0x01230000;
1310     cpu->id_mmfr3 = 0x00002111;
1311     cpu->id_isar0 = 0x00101111;
1312     cpu->id_isar1 = 0x13112111;
1313     cpu->id_isar2 = 0x21232041;
1314     cpu->id_isar3 = 0x11112131;
1315     cpu->id_isar4 = 0x00111142;
1316     cpu->dbgdidr = 0x35141000;
1317     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1318     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1319     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1320     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1321 }
1322 
1323 #ifndef CONFIG_USER_ONLY
1324 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1325 {
1326     /* Linux wants the number of processors from here.
1327      * Might as well set the interrupt-controller bit too.
1328      */
1329     return ((smp_cpus - 1) << 24) | (1 << 23);
1330 }
1331 #endif
1332 
1333 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1334 #ifndef CONFIG_USER_ONLY
1335     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1336       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1337       .writefn = arm_cp_write_ignore, },
1338 #endif
1339     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1340       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1341     REGINFO_SENTINEL
1342 };
1343 
1344 static void cortex_a7_initfn(Object *obj)
1345 {
1346     ARMCPU *cpu = ARM_CPU(obj);
1347 
1348     cpu->dtb_compatible = "arm,cortex-a7";
1349     set_feature(&cpu->env, ARM_FEATURE_V7);
1350     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1351     set_feature(&cpu->env, ARM_FEATURE_NEON);
1352     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1353     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1354     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1355     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1356     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1357     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1358     set_feature(&cpu->env, ARM_FEATURE_EL3);
1359     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1360     cpu->midr = 0x410fc075;
1361     cpu->reset_fpsid = 0x41023075;
1362     cpu->mvfr0 = 0x10110222;
1363     cpu->mvfr1 = 0x11111111;
1364     cpu->ctr = 0x84448003;
1365     cpu->reset_sctlr = 0x00c50078;
1366     cpu->id_pfr0 = 0x00001131;
1367     cpu->id_pfr1 = 0x00011011;
1368     cpu->id_dfr0 = 0x02010555;
1369     cpu->pmceid0 = 0x00000000;
1370     cpu->pmceid1 = 0x00000000;
1371     cpu->id_afr0 = 0x00000000;
1372     cpu->id_mmfr0 = 0x10101105;
1373     cpu->id_mmfr1 = 0x40000000;
1374     cpu->id_mmfr2 = 0x01240000;
1375     cpu->id_mmfr3 = 0x02102211;
1376     cpu->id_isar0 = 0x01101110;
1377     cpu->id_isar1 = 0x13112111;
1378     cpu->id_isar2 = 0x21232041;
1379     cpu->id_isar3 = 0x11112131;
1380     cpu->id_isar4 = 0x10011142;
1381     cpu->dbgdidr = 0x3515f005;
1382     cpu->clidr = 0x0a200023;
1383     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1384     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1385     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1386     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1387 }
1388 
1389 static void cortex_a15_initfn(Object *obj)
1390 {
1391     ARMCPU *cpu = ARM_CPU(obj);
1392 
1393     cpu->dtb_compatible = "arm,cortex-a15";
1394     set_feature(&cpu->env, ARM_FEATURE_V7);
1395     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1396     set_feature(&cpu->env, ARM_FEATURE_NEON);
1397     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1398     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1399     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1400     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1401     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1402     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1403     set_feature(&cpu->env, ARM_FEATURE_EL3);
1404     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1405     cpu->midr = 0x412fc0f1;
1406     cpu->reset_fpsid = 0x410430f0;
1407     cpu->mvfr0 = 0x10110222;
1408     cpu->mvfr1 = 0x11111111;
1409     cpu->ctr = 0x8444c004;
1410     cpu->reset_sctlr = 0x00c50078;
1411     cpu->id_pfr0 = 0x00001131;
1412     cpu->id_pfr1 = 0x00011011;
1413     cpu->id_dfr0 = 0x02010555;
1414     cpu->pmceid0 = 0x0000000;
1415     cpu->pmceid1 = 0x00000000;
1416     cpu->id_afr0 = 0x00000000;
1417     cpu->id_mmfr0 = 0x10201105;
1418     cpu->id_mmfr1 = 0x20000000;
1419     cpu->id_mmfr2 = 0x01240000;
1420     cpu->id_mmfr3 = 0x02102211;
1421     cpu->id_isar0 = 0x02101110;
1422     cpu->id_isar1 = 0x13112111;
1423     cpu->id_isar2 = 0x21232041;
1424     cpu->id_isar3 = 0x11112131;
1425     cpu->id_isar4 = 0x10011142;
1426     cpu->dbgdidr = 0x3515f021;
1427     cpu->clidr = 0x0a200023;
1428     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1429     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1430     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1431     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1432 }
1433 
1434 static void ti925t_initfn(Object *obj)
1435 {
1436     ARMCPU *cpu = ARM_CPU(obj);
1437     set_feature(&cpu->env, ARM_FEATURE_V4T);
1438     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1439     cpu->midr = ARM_CPUID_TI925T;
1440     cpu->ctr = 0x5109149;
1441     cpu->reset_sctlr = 0x00000070;
1442 }
1443 
1444 static void sa1100_initfn(Object *obj)
1445 {
1446     ARMCPU *cpu = ARM_CPU(obj);
1447 
1448     cpu->dtb_compatible = "intel,sa1100";
1449     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1450     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1451     cpu->midr = 0x4401A11B;
1452     cpu->reset_sctlr = 0x00000070;
1453 }
1454 
1455 static void sa1110_initfn(Object *obj)
1456 {
1457     ARMCPU *cpu = ARM_CPU(obj);
1458     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1459     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1460     cpu->midr = 0x6901B119;
1461     cpu->reset_sctlr = 0x00000070;
1462 }
1463 
1464 static void pxa250_initfn(Object *obj)
1465 {
1466     ARMCPU *cpu = ARM_CPU(obj);
1467 
1468     cpu->dtb_compatible = "marvell,xscale";
1469     set_feature(&cpu->env, ARM_FEATURE_V5);
1470     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1471     cpu->midr = 0x69052100;
1472     cpu->ctr = 0xd172172;
1473     cpu->reset_sctlr = 0x00000078;
1474 }
1475 
1476 static void pxa255_initfn(Object *obj)
1477 {
1478     ARMCPU *cpu = ARM_CPU(obj);
1479 
1480     cpu->dtb_compatible = "marvell,xscale";
1481     set_feature(&cpu->env, ARM_FEATURE_V5);
1482     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1483     cpu->midr = 0x69052d00;
1484     cpu->ctr = 0xd172172;
1485     cpu->reset_sctlr = 0x00000078;
1486 }
1487 
1488 static void pxa260_initfn(Object *obj)
1489 {
1490     ARMCPU *cpu = ARM_CPU(obj);
1491 
1492     cpu->dtb_compatible = "marvell,xscale";
1493     set_feature(&cpu->env, ARM_FEATURE_V5);
1494     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1495     cpu->midr = 0x69052903;
1496     cpu->ctr = 0xd172172;
1497     cpu->reset_sctlr = 0x00000078;
1498 }
1499 
1500 static void pxa261_initfn(Object *obj)
1501 {
1502     ARMCPU *cpu = ARM_CPU(obj);
1503 
1504     cpu->dtb_compatible = "marvell,xscale";
1505     set_feature(&cpu->env, ARM_FEATURE_V5);
1506     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1507     cpu->midr = 0x69052d05;
1508     cpu->ctr = 0xd172172;
1509     cpu->reset_sctlr = 0x00000078;
1510 }
1511 
1512 static void pxa262_initfn(Object *obj)
1513 {
1514     ARMCPU *cpu = ARM_CPU(obj);
1515 
1516     cpu->dtb_compatible = "marvell,xscale";
1517     set_feature(&cpu->env, ARM_FEATURE_V5);
1518     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1519     cpu->midr = 0x69052d06;
1520     cpu->ctr = 0xd172172;
1521     cpu->reset_sctlr = 0x00000078;
1522 }
1523 
1524 static void pxa270a0_initfn(Object *obj)
1525 {
1526     ARMCPU *cpu = ARM_CPU(obj);
1527 
1528     cpu->dtb_compatible = "marvell,xscale";
1529     set_feature(&cpu->env, ARM_FEATURE_V5);
1530     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1531     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1532     cpu->midr = 0x69054110;
1533     cpu->ctr = 0xd172172;
1534     cpu->reset_sctlr = 0x00000078;
1535 }
1536 
1537 static void pxa270a1_initfn(Object *obj)
1538 {
1539     ARMCPU *cpu = ARM_CPU(obj);
1540 
1541     cpu->dtb_compatible = "marvell,xscale";
1542     set_feature(&cpu->env, ARM_FEATURE_V5);
1543     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1544     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1545     cpu->midr = 0x69054111;
1546     cpu->ctr = 0xd172172;
1547     cpu->reset_sctlr = 0x00000078;
1548 }
1549 
1550 static void pxa270b0_initfn(Object *obj)
1551 {
1552     ARMCPU *cpu = ARM_CPU(obj);
1553 
1554     cpu->dtb_compatible = "marvell,xscale";
1555     set_feature(&cpu->env, ARM_FEATURE_V5);
1556     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1557     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1558     cpu->midr = 0x69054112;
1559     cpu->ctr = 0xd172172;
1560     cpu->reset_sctlr = 0x00000078;
1561 }
1562 
1563 static void pxa270b1_initfn(Object *obj)
1564 {
1565     ARMCPU *cpu = ARM_CPU(obj);
1566 
1567     cpu->dtb_compatible = "marvell,xscale";
1568     set_feature(&cpu->env, ARM_FEATURE_V5);
1569     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1570     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1571     cpu->midr = 0x69054113;
1572     cpu->ctr = 0xd172172;
1573     cpu->reset_sctlr = 0x00000078;
1574 }
1575 
1576 static void pxa270c0_initfn(Object *obj)
1577 {
1578     ARMCPU *cpu = ARM_CPU(obj);
1579 
1580     cpu->dtb_compatible = "marvell,xscale";
1581     set_feature(&cpu->env, ARM_FEATURE_V5);
1582     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1583     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1584     cpu->midr = 0x69054114;
1585     cpu->ctr = 0xd172172;
1586     cpu->reset_sctlr = 0x00000078;
1587 }
1588 
1589 static void pxa270c5_initfn(Object *obj)
1590 {
1591     ARMCPU *cpu = ARM_CPU(obj);
1592 
1593     cpu->dtb_compatible = "marvell,xscale";
1594     set_feature(&cpu->env, ARM_FEATURE_V5);
1595     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1596     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1597     cpu->midr = 0x69054117;
1598     cpu->ctr = 0xd172172;
1599     cpu->reset_sctlr = 0x00000078;
1600 }
1601 
1602 #ifdef CONFIG_USER_ONLY
1603 static void arm_any_initfn(Object *obj)
1604 {
1605     ARMCPU *cpu = ARM_CPU(obj);
1606     set_feature(&cpu->env, ARM_FEATURE_V8);
1607     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1608     set_feature(&cpu->env, ARM_FEATURE_NEON);
1609     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1610     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1611     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1612     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1613     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1614     set_feature(&cpu->env, ARM_FEATURE_CRC);
1615     cpu->midr = 0xffffffff;
1616 }
1617 #endif
1618 
1619 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1620 
1621 typedef struct ARMCPUInfo {
1622     const char *name;
1623     void (*initfn)(Object *obj);
1624     void (*class_init)(ObjectClass *oc, void *data);
1625 } ARMCPUInfo;
1626 
1627 static const ARMCPUInfo arm_cpus[] = {
1628 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1629     { .name = "arm926",      .initfn = arm926_initfn },
1630     { .name = "arm946",      .initfn = arm946_initfn },
1631     { .name = "arm1026",     .initfn = arm1026_initfn },
1632     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1633      * older core than plain "arm1136". In particular this does not
1634      * have the v6K features.
1635      */
1636     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1637     { .name = "arm1136",     .initfn = arm1136_initfn },
1638     { .name = "arm1176",     .initfn = arm1176_initfn },
1639     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1640     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1641                              .class_init = arm_v7m_class_init },
1642     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1643                              .class_init = arm_v7m_class_init },
1644     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1645     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1646     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1647     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1648     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1649     { .name = "ti925t",      .initfn = ti925t_initfn },
1650     { .name = "sa1100",      .initfn = sa1100_initfn },
1651     { .name = "sa1110",      .initfn = sa1110_initfn },
1652     { .name = "pxa250",      .initfn = pxa250_initfn },
1653     { .name = "pxa255",      .initfn = pxa255_initfn },
1654     { .name = "pxa260",      .initfn = pxa260_initfn },
1655     { .name = "pxa261",      .initfn = pxa261_initfn },
1656     { .name = "pxa262",      .initfn = pxa262_initfn },
1657     /* "pxa270" is an alias for "pxa270-a0" */
1658     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1659     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1660     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1661     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1662     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1663     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1664     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1665 #ifdef CONFIG_USER_ONLY
1666     { .name = "any",         .initfn = arm_any_initfn },
1667 #endif
1668 #endif
1669     { .name = NULL }
1670 };
1671 
1672 static Property arm_cpu_properties[] = {
1673     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1674     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1675     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1676     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1677                         mp_affinity, ARM64_AFFINITY_INVALID),
1678     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1679     DEFINE_PROP_END_OF_LIST()
1680 };
1681 
1682 #ifdef CONFIG_USER_ONLY
1683 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1684                                     int mmu_idx)
1685 {
1686     ARMCPU *cpu = ARM_CPU(cs);
1687     CPUARMState *env = &cpu->env;
1688 
1689     env->exception.vaddress = address;
1690     if (rw == 2) {
1691         cs->exception_index = EXCP_PREFETCH_ABORT;
1692     } else {
1693         cs->exception_index = EXCP_DATA_ABORT;
1694     }
1695     return 1;
1696 }
1697 #endif
1698 
1699 static gchar *arm_gdb_arch_name(CPUState *cs)
1700 {
1701     ARMCPU *cpu = ARM_CPU(cs);
1702     CPUARMState *env = &cpu->env;
1703 
1704     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1705         return g_strdup("iwmmxt");
1706     }
1707     return g_strdup("arm");
1708 }
1709 
1710 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1711 {
1712     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1713     CPUClass *cc = CPU_CLASS(acc);
1714     DeviceClass *dc = DEVICE_CLASS(oc);
1715 
1716     acc->parent_realize = dc->realize;
1717     dc->realize = arm_cpu_realizefn;
1718     dc->props = arm_cpu_properties;
1719 
1720     acc->parent_reset = cc->reset;
1721     cc->reset = arm_cpu_reset;
1722 
1723     cc->class_by_name = arm_cpu_class_by_name;
1724     cc->has_work = arm_cpu_has_work;
1725     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1726     cc->dump_state = arm_cpu_dump_state;
1727     cc->set_pc = arm_cpu_set_pc;
1728     cc->gdb_read_register = arm_cpu_gdb_read_register;
1729     cc->gdb_write_register = arm_cpu_gdb_write_register;
1730 #ifdef CONFIG_USER_ONLY
1731     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1732 #else
1733     cc->do_interrupt = arm_cpu_do_interrupt;
1734     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1735     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1736     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1737     cc->asidx_from_attrs = arm_asidx_from_attrs;
1738     cc->vmsd = &vmstate_arm_cpu;
1739     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1740     cc->write_elf64_note = arm_cpu_write_elf64_note;
1741     cc->write_elf32_note = arm_cpu_write_elf32_note;
1742 #endif
1743     cc->gdb_num_core_regs = 26;
1744     cc->gdb_core_xml_file = "arm-core.xml";
1745     cc->gdb_arch_name = arm_gdb_arch_name;
1746     cc->gdb_stop_before_watchpoint = true;
1747     cc->debug_excp_handler = arm_debug_excp_handler;
1748     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1749 #if !defined(CONFIG_USER_ONLY)
1750     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1751 #endif
1752 
1753     cc->disas_set_info = arm_disas_set_info;
1754 }
1755 
1756 static void cpu_register(const ARMCPUInfo *info)
1757 {
1758     TypeInfo type_info = {
1759         .parent = TYPE_ARM_CPU,
1760         .instance_size = sizeof(ARMCPU),
1761         .instance_init = info->initfn,
1762         .class_size = sizeof(ARMCPUClass),
1763         .class_init = info->class_init,
1764     };
1765 
1766     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1767     type_register(&type_info);
1768     g_free((void *)type_info.name);
1769 }
1770 
1771 static const TypeInfo arm_cpu_type_info = {
1772     .name = TYPE_ARM_CPU,
1773     .parent = TYPE_CPU,
1774     .instance_size = sizeof(ARMCPU),
1775     .instance_init = arm_cpu_initfn,
1776     .instance_post_init = arm_cpu_post_init,
1777     .instance_finalize = arm_cpu_finalizefn,
1778     .abstract = true,
1779     .class_size = sizeof(ARMCPUClass),
1780     .class_init = arm_cpu_class_init,
1781 };
1782 
1783 static void arm_cpu_register_types(void)
1784 {
1785     const ARMCPUInfo *info = arm_cpus;
1786 
1787     type_register_static(&arm_cpu_type_info);
1788 
1789     while (info->name) {
1790         cpu_register(info);
1791         info++;
1792     }
1793 }
1794 
1795 type_init(arm_cpu_register_types)
1796