xref: /openbmc/qemu/target/arm/cpu.c (revision 14a48c1d)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qapi/error.h"
24 #include "qapi/visitor.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "sysemu/sysemu.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 #include "disas/capstone.h"
37 #include "fpu/softfloat.h"
38 
39 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
40 {
41     ARMCPU *cpu = ARM_CPU(cs);
42     CPUARMState *env = &cpu->env;
43 
44     if (is_a64(env)) {
45         env->pc = value;
46         env->thumb = 0;
47     } else {
48         env->regs[15] = value & ~1;
49         env->thumb = value & 1;
50     }
51 }
52 
53 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
54 {
55     ARMCPU *cpu = ARM_CPU(cs);
56     CPUARMState *env = &cpu->env;
57 
58     /*
59      * It's OK to look at env for the current mode here, because it's
60      * never possible for an AArch64 TB to chain to an AArch32 TB.
61      */
62     if (is_a64(env)) {
63         env->pc = tb->pc;
64     } else {
65         env->regs[15] = tb->pc;
66     }
67 }
68 
69 static bool arm_cpu_has_work(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72 
73     return (cpu->power_state != PSCI_OFF)
74         && cs->interrupt_request &
75         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
76          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
77          | CPU_INTERRUPT_EXITTB);
78 }
79 
80 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
81                                  void *opaque)
82 {
83     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
84 
85     entry->hook = hook;
86     entry->opaque = opaque;
87 
88     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
89 }
90 
91 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
92                                  void *opaque)
93 {
94     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 
96     entry->hook = hook;
97     entry->opaque = opaque;
98 
99     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
100 }
101 
102 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
103 {
104     /* Reset a single ARMCPRegInfo register */
105     ARMCPRegInfo *ri = value;
106     ARMCPU *cpu = opaque;
107 
108     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
109         return;
110     }
111 
112     if (ri->resetfn) {
113         ri->resetfn(&cpu->env, ri);
114         return;
115     }
116 
117     /* A zero offset is never possible as it would be regs[0]
118      * so we use it to indicate that reset is being handled elsewhere.
119      * This is basically only used for fields in non-core coprocessors
120      * (like the pxa2xx ones).
121      */
122     if (!ri->fieldoffset) {
123         return;
124     }
125 
126     if (cpreg_field_is_64bit(ri)) {
127         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
128     } else {
129         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
130     }
131 }
132 
133 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
134 {
135     /* Purely an assertion check: we've already done reset once,
136      * so now check that running the reset for the cpreg doesn't
137      * change its value. This traps bugs where two different cpregs
138      * both try to reset the same state field but to different values.
139      */
140     ARMCPRegInfo *ri = value;
141     ARMCPU *cpu = opaque;
142     uint64_t oldvalue, newvalue;
143 
144     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
145         return;
146     }
147 
148     oldvalue = read_raw_cp_reg(&cpu->env, ri);
149     cp_reg_reset(key, value, opaque);
150     newvalue = read_raw_cp_reg(&cpu->env, ri);
151     assert(oldvalue == newvalue);
152 }
153 
154 /* CPUClass::reset() */
155 static void arm_cpu_reset(CPUState *s)
156 {
157     ARMCPU *cpu = ARM_CPU(s);
158     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
159     CPUARMState *env = &cpu->env;
160 
161     acc->parent_reset(s);
162 
163     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
164 
165     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
166     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
167 
168     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
169     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
170     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
171     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
172 
173     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
174     s->halted = cpu->start_powered_off;
175 
176     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
177         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
178     }
179 
180     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
181         /* 64 bit CPUs always start in 64 bit mode */
182         env->aarch64 = 1;
183 #if defined(CONFIG_USER_ONLY)
184         env->pstate = PSTATE_MODE_EL0t;
185         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
186         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
187         /* Enable all PAC keys.  */
188         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
189                                   SCTLR_EnDA | SCTLR_EnDB);
190         /* Enable all PAC instructions */
191         env->cp15.hcr_el2 |= HCR_API;
192         env->cp15.scr_el3 |= SCR_API;
193         /* and to the FP/Neon instructions */
194         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195         /* and to the SVE instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197         env->cp15.cptr_el[3] |= CPTR_EZ;
198         /* with maximum vector length */
199         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
200         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
201         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          */
207         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209         /* Reset into the highest available EL */
210         if (arm_feature(env, ARM_FEATURE_EL3)) {
211             env->pstate = PSTATE_MODE_EL3h;
212         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213             env->pstate = PSTATE_MODE_EL2h;
214         } else {
215             env->pstate = PSTATE_MODE_EL1h;
216         }
217         env->pc = cpu->rvbar;
218 #endif
219     } else {
220 #if defined(CONFIG_USER_ONLY)
221         /* Userspace expects access to cp10 and cp11 for FP/Neon */
222         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224     }
225 
226 #if defined(CONFIG_USER_ONLY)
227     env->uncached_cpsr = ARM_CPU_MODE_USR;
228     /* For user mode we must enable access to coprocessors */
229     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->cp15.c15_cpar = 3;
232     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233         env->cp15.c15_cpar = 1;
234     }
235 #else
236 
237     /*
238      * If the highest available EL is EL2, AArch32 will start in Hyp
239      * mode; otherwise it starts in SVC. Note that if we start in
240      * AArch64 then these values in the uncached_cpsr will be ignored.
241      */
242     if (arm_feature(env, ARM_FEATURE_EL2) &&
243         !arm_feature(env, ARM_FEATURE_EL3)) {
244         env->uncached_cpsr = ARM_CPU_MODE_HYP;
245     } else {
246         env->uncached_cpsr = ARM_CPU_MODE_SVC;
247     }
248     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249 
250     if (arm_feature(env, ARM_FEATURE_M)) {
251         uint32_t initial_msp; /* Loaded from 0x0 */
252         uint32_t initial_pc; /* Loaded from 0x4 */
253         uint8_t *rom;
254         uint32_t vecbase;
255 
256         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257             env->v7m.secure = true;
258         } else {
259             /* This bit resets to 0 if security is supported, but 1 if
260              * it is not. The bit is not present in v7M, but we set it
261              * here so we can avoid having to make checks on it conditional
262              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263              */
264             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265         }
266 
267         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
268          * that it resets to 1, so QEMU always does that rather than making
269          * it dependent on CPU model. In v8M it is RES1.
270          */
271         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
272         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
273         if (arm_feature(env, ARM_FEATURE_V8)) {
274             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
275             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
276             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
277         }
278         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
279             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
280             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
281         }
282 
283         if (arm_feature(env, ARM_FEATURE_VFP)) {
284             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
285             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
286                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
287         }
288         /* Unlike A/R profile, M profile defines the reset LR value */
289         env->regs[14] = 0xffffffff;
290 
291         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
292 
293         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
294         vecbase = env->v7m.vecbase[env->v7m.secure];
295         rom = rom_ptr(vecbase, 8);
296         if (rom) {
297             /* Address zero is covered by ROM which hasn't yet been
298              * copied into physical memory.
299              */
300             initial_msp = ldl_p(rom);
301             initial_pc = ldl_p(rom + 4);
302         } else {
303             /* Address zero not covered by a ROM blob, or the ROM blob
304              * is in non-modifiable memory and this is a second reset after
305              * it got copied into memory. In the latter case, rom_ptr
306              * will return a NULL pointer and we should use ldl_phys instead.
307              */
308             initial_msp = ldl_phys(s->as, vecbase);
309             initial_pc = ldl_phys(s->as, vecbase + 4);
310         }
311 
312         env->regs[13] = initial_msp & 0xFFFFFFFC;
313         env->regs[15] = initial_pc & ~1;
314         env->thumb = initial_pc & 1;
315     }
316 
317     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
318      * executing as AArch32 then check if highvecs are enabled and
319      * adjust the PC accordingly.
320      */
321     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
322         env->regs[15] = 0xFFFF0000;
323     }
324 
325     /* M profile requires that reset clears the exclusive monitor;
326      * A profile does not, but clearing it makes more sense than having it
327      * set with an exclusive access on address zero.
328      */
329     arm_clear_exclusive(env);
330 
331     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
332 #endif
333 
334     if (arm_feature(env, ARM_FEATURE_PMSA)) {
335         if (cpu->pmsav7_dregion > 0) {
336             if (arm_feature(env, ARM_FEATURE_V8)) {
337                 memset(env->pmsav8.rbar[M_REG_NS], 0,
338                        sizeof(*env->pmsav8.rbar[M_REG_NS])
339                        * cpu->pmsav7_dregion);
340                 memset(env->pmsav8.rlar[M_REG_NS], 0,
341                        sizeof(*env->pmsav8.rlar[M_REG_NS])
342                        * cpu->pmsav7_dregion);
343                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
344                     memset(env->pmsav8.rbar[M_REG_S], 0,
345                            sizeof(*env->pmsav8.rbar[M_REG_S])
346                            * cpu->pmsav7_dregion);
347                     memset(env->pmsav8.rlar[M_REG_S], 0,
348                            sizeof(*env->pmsav8.rlar[M_REG_S])
349                            * cpu->pmsav7_dregion);
350                 }
351             } else if (arm_feature(env, ARM_FEATURE_V7)) {
352                 memset(env->pmsav7.drbar, 0,
353                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
354                 memset(env->pmsav7.drsr, 0,
355                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
356                 memset(env->pmsav7.dracr, 0,
357                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
358             }
359         }
360         env->pmsav7.rnr[M_REG_NS] = 0;
361         env->pmsav7.rnr[M_REG_S] = 0;
362         env->pmsav8.mair0[M_REG_NS] = 0;
363         env->pmsav8.mair0[M_REG_S] = 0;
364         env->pmsav8.mair1[M_REG_NS] = 0;
365         env->pmsav8.mair1[M_REG_S] = 0;
366     }
367 
368     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
369         if (cpu->sau_sregion > 0) {
370             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
371             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
372         }
373         env->sau.rnr = 0;
374         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
375          * the Cortex-M33 does.
376          */
377         env->sau.ctrl = 0;
378     }
379 
380     set_flush_to_zero(1, &env->vfp.standard_fp_status);
381     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
382     set_default_nan_mode(1, &env->vfp.standard_fp_status);
383     set_float_detect_tininess(float_tininess_before_rounding,
384                               &env->vfp.fp_status);
385     set_float_detect_tininess(float_tininess_before_rounding,
386                               &env->vfp.standard_fp_status);
387     set_float_detect_tininess(float_tininess_before_rounding,
388                               &env->vfp.fp_status_f16);
389 #ifndef CONFIG_USER_ONLY
390     if (kvm_enabled()) {
391         kvm_arm_reset_vcpu(cpu);
392     }
393 #endif
394 
395     hw_breakpoint_update_all(cpu);
396     hw_watchpoint_update_all(cpu);
397 }
398 
399 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
400 {
401     CPUClass *cc = CPU_GET_CLASS(cs);
402     CPUARMState *env = cs->env_ptr;
403     uint32_t cur_el = arm_current_el(env);
404     bool secure = arm_is_secure(env);
405     uint32_t target_el;
406     uint32_t excp_idx;
407     bool ret = false;
408 
409     if (interrupt_request & CPU_INTERRUPT_FIQ) {
410         excp_idx = EXCP_FIQ;
411         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
412         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
413             cs->exception_index = excp_idx;
414             env->exception.target_el = target_el;
415             cc->do_interrupt(cs);
416             ret = true;
417         }
418     }
419     if (interrupt_request & CPU_INTERRUPT_HARD) {
420         excp_idx = EXCP_IRQ;
421         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
422         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
423             cs->exception_index = excp_idx;
424             env->exception.target_el = target_el;
425             cc->do_interrupt(cs);
426             ret = true;
427         }
428     }
429     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
430         excp_idx = EXCP_VIRQ;
431         target_el = 1;
432         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
433             cs->exception_index = excp_idx;
434             env->exception.target_el = target_el;
435             cc->do_interrupt(cs);
436             ret = true;
437         }
438     }
439     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
440         excp_idx = EXCP_VFIQ;
441         target_el = 1;
442         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
443             cs->exception_index = excp_idx;
444             env->exception.target_el = target_el;
445             cc->do_interrupt(cs);
446             ret = true;
447         }
448     }
449 
450     return ret;
451 }
452 
453 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
454 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
455 {
456     CPUClass *cc = CPU_GET_CLASS(cs);
457     ARMCPU *cpu = ARM_CPU(cs);
458     CPUARMState *env = &cpu->env;
459     bool ret = false;
460 
461     /* ARMv7-M interrupt masking works differently than -A or -R.
462      * There is no FIQ/IRQ distinction. Instead of I and F bits
463      * masking FIQ and IRQ interrupts, an exception is taken only
464      * if it is higher priority than the current execution priority
465      * (which depends on state like BASEPRI, FAULTMASK and the
466      * currently active exception).
467      */
468     if (interrupt_request & CPU_INTERRUPT_HARD
469         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
470         cs->exception_index = EXCP_IRQ;
471         cc->do_interrupt(cs);
472         ret = true;
473     }
474     return ret;
475 }
476 #endif
477 
478 void arm_cpu_update_virq(ARMCPU *cpu)
479 {
480     /*
481      * Update the interrupt level for VIRQ, which is the logical OR of
482      * the HCR_EL2.VI bit and the input line level from the GIC.
483      */
484     CPUARMState *env = &cpu->env;
485     CPUState *cs = CPU(cpu);
486 
487     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
488         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
489 
490     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
491         if (new_state) {
492             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
493         } else {
494             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
495         }
496     }
497 }
498 
499 void arm_cpu_update_vfiq(ARMCPU *cpu)
500 {
501     /*
502      * Update the interrupt level for VFIQ, which is the logical OR of
503      * the HCR_EL2.VF bit and the input line level from the GIC.
504      */
505     CPUARMState *env = &cpu->env;
506     CPUState *cs = CPU(cpu);
507 
508     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
509         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
510 
511     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
512         if (new_state) {
513             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
514         } else {
515             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
516         }
517     }
518 }
519 
520 #ifndef CONFIG_USER_ONLY
521 static void arm_cpu_set_irq(void *opaque, int irq, int level)
522 {
523     ARMCPU *cpu = opaque;
524     CPUARMState *env = &cpu->env;
525     CPUState *cs = CPU(cpu);
526     static const int mask[] = {
527         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
528         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
529         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
530         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
531     };
532 
533     if (level) {
534         env->irq_line_state |= mask[irq];
535     } else {
536         env->irq_line_state &= ~mask[irq];
537     }
538 
539     switch (irq) {
540     case ARM_CPU_VIRQ:
541         assert(arm_feature(env, ARM_FEATURE_EL2));
542         arm_cpu_update_virq(cpu);
543         break;
544     case ARM_CPU_VFIQ:
545         assert(arm_feature(env, ARM_FEATURE_EL2));
546         arm_cpu_update_vfiq(cpu);
547         break;
548     case ARM_CPU_IRQ:
549     case ARM_CPU_FIQ:
550         if (level) {
551             cpu_interrupt(cs, mask[irq]);
552         } else {
553             cpu_reset_interrupt(cs, mask[irq]);
554         }
555         break;
556     default:
557         g_assert_not_reached();
558     }
559 }
560 
561 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
562 {
563 #ifdef CONFIG_KVM
564     ARMCPU *cpu = opaque;
565     CPUARMState *env = &cpu->env;
566     CPUState *cs = CPU(cpu);
567     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
568     uint32_t linestate_bit;
569 
570     switch (irq) {
571     case ARM_CPU_IRQ:
572         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
573         linestate_bit = CPU_INTERRUPT_HARD;
574         break;
575     case ARM_CPU_FIQ:
576         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
577         linestate_bit = CPU_INTERRUPT_FIQ;
578         break;
579     default:
580         g_assert_not_reached();
581     }
582 
583     if (level) {
584         env->irq_line_state |= linestate_bit;
585     } else {
586         env->irq_line_state &= ~linestate_bit;
587     }
588 
589     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
590     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
591 #endif
592 }
593 
594 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
595 {
596     ARMCPU *cpu = ARM_CPU(cs);
597     CPUARMState *env = &cpu->env;
598 
599     cpu_synchronize_state(cs);
600     return arm_cpu_data_is_big_endian(env);
601 }
602 
603 #endif
604 
605 static inline void set_feature(CPUARMState *env, int feature)
606 {
607     env->features |= 1ULL << feature;
608 }
609 
610 static inline void unset_feature(CPUARMState *env, int feature)
611 {
612     env->features &= ~(1ULL << feature);
613 }
614 
615 static int
616 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
617 {
618   return print_insn_arm(pc | 1, info);
619 }
620 
621 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
622 {
623     ARMCPU *ac = ARM_CPU(cpu);
624     CPUARMState *env = &ac->env;
625     bool sctlr_b;
626 
627     if (is_a64(env)) {
628         /* We might not be compiled with the A64 disassembler
629          * because it needs a C++ compiler. Leave print_insn
630          * unset in this case to use the caller default behaviour.
631          */
632 #if defined(CONFIG_ARM_A64_DIS)
633         info->print_insn = print_insn_arm_a64;
634 #endif
635         info->cap_arch = CS_ARCH_ARM64;
636         info->cap_insn_unit = 4;
637         info->cap_insn_split = 4;
638     } else {
639         int cap_mode;
640         if (env->thumb) {
641             info->print_insn = print_insn_thumb1;
642             info->cap_insn_unit = 2;
643             info->cap_insn_split = 4;
644             cap_mode = CS_MODE_THUMB;
645         } else {
646             info->print_insn = print_insn_arm;
647             info->cap_insn_unit = 4;
648             info->cap_insn_split = 4;
649             cap_mode = CS_MODE_ARM;
650         }
651         if (arm_feature(env, ARM_FEATURE_V8)) {
652             cap_mode |= CS_MODE_V8;
653         }
654         if (arm_feature(env, ARM_FEATURE_M)) {
655             cap_mode |= CS_MODE_MCLASS;
656         }
657         info->cap_arch = CS_ARCH_ARM;
658         info->cap_mode = cap_mode;
659     }
660 
661     sctlr_b = arm_sctlr_b(env);
662     if (bswap_code(sctlr_b)) {
663 #ifdef TARGET_WORDS_BIGENDIAN
664         info->endian = BFD_ENDIAN_LITTLE;
665 #else
666         info->endian = BFD_ENDIAN_BIG;
667 #endif
668     }
669     info->flags &= ~INSN_ARM_BE32;
670 #ifndef CONFIG_USER_ONLY
671     if (sctlr_b) {
672         info->flags |= INSN_ARM_BE32;
673     }
674 #endif
675 }
676 
677 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
678 {
679     uint32_t Aff1 = idx / clustersz;
680     uint32_t Aff0 = idx % clustersz;
681     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
682 }
683 
684 static void cpreg_hashtable_data_destroy(gpointer data)
685 {
686     /*
687      * Destroy function for cpu->cp_regs hashtable data entries.
688      * We must free the name string because it was g_strdup()ed in
689      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
690      * from r->name because we know we definitely allocated it.
691      */
692     ARMCPRegInfo *r = data;
693 
694     g_free((void *)r->name);
695     g_free(r);
696 }
697 
698 static void arm_cpu_initfn(Object *obj)
699 {
700     ARMCPU *cpu = ARM_CPU(obj);
701 
702     cpu_set_cpustate_pointers(cpu);
703     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
704                                          g_free, cpreg_hashtable_data_destroy);
705 
706     QLIST_INIT(&cpu->pre_el_change_hooks);
707     QLIST_INIT(&cpu->el_change_hooks);
708 
709 #ifndef CONFIG_USER_ONLY
710     /* Our inbound IRQ and FIQ lines */
711     if (kvm_enabled()) {
712         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
713          * the same interface as non-KVM CPUs.
714          */
715         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
716     } else {
717         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
718     }
719 
720     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
721                        ARRAY_SIZE(cpu->gt_timer_outputs));
722 
723     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
724                              "gicv3-maintenance-interrupt", 1);
725     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
726                              "pmu-interrupt", 1);
727 #endif
728 
729     /* DTB consumers generally don't in fact care what the 'compatible'
730      * string is, so always provide some string and trust that a hypothetical
731      * picky DTB consumer will also provide a helpful error message.
732      */
733     cpu->dtb_compatible = "qemu,unknown";
734     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
735     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
736 
737     if (tcg_enabled()) {
738         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
739     }
740 }
741 
742 static Property arm_cpu_reset_cbar_property =
743             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
744 
745 static Property arm_cpu_reset_hivecs_property =
746             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
747 
748 static Property arm_cpu_rvbar_property =
749             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
750 
751 static Property arm_cpu_has_el2_property =
752             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
753 
754 static Property arm_cpu_has_el3_property =
755             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
756 
757 static Property arm_cpu_cfgend_property =
758             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
759 
760 /* use property name "pmu" to match other archs and virt tools */
761 static Property arm_cpu_has_pmu_property =
762             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
763 
764 static Property arm_cpu_has_mpu_property =
765             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
766 
767 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
768  * because the CPU initfn will have already set cpu->pmsav7_dregion to
769  * the right value for that particular CPU type, and we don't want
770  * to override that with an incorrect constant value.
771  */
772 static Property arm_cpu_pmsav7_dregion_property =
773             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
774                                            pmsav7_dregion,
775                                            qdev_prop_uint32, uint32_t);
776 
777 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
778                                void *opaque, Error **errp)
779 {
780     ARMCPU *cpu = ARM_CPU(obj);
781 
782     visit_type_uint32(v, name, &cpu->init_svtor, errp);
783 }
784 
785 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
786                                void *opaque, Error **errp)
787 {
788     ARMCPU *cpu = ARM_CPU(obj);
789 
790     visit_type_uint32(v, name, &cpu->init_svtor, errp);
791 }
792 
793 void arm_cpu_post_init(Object *obj)
794 {
795     ARMCPU *cpu = ARM_CPU(obj);
796 
797     /* M profile implies PMSA. We have to do this here rather than
798      * in realize with the other feature-implication checks because
799      * we look at the PMSA bit to see if we should add some properties.
800      */
801     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
802         set_feature(&cpu->env, ARM_FEATURE_PMSA);
803     }
804 
805     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
806         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
807         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
808                                  &error_abort);
809     }
810 
811     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
812         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
813                                  &error_abort);
814     }
815 
816     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
817         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
818                                  &error_abort);
819     }
820 
821     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
822         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
823          * prevent "has_el3" from existing on CPUs which cannot support EL3.
824          */
825         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
826                                  &error_abort);
827 
828 #ifndef CONFIG_USER_ONLY
829         object_property_add_link(obj, "secure-memory",
830                                  TYPE_MEMORY_REGION,
831                                  (Object **)&cpu->secure_memory,
832                                  qdev_prop_allow_set_link_before_realize,
833                                  OBJ_PROP_LINK_STRONG,
834                                  &error_abort);
835 #endif
836     }
837 
838     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
839         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
840                                  &error_abort);
841     }
842 
843     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
844         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
845                                  &error_abort);
846     }
847 
848     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
849         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
850                                  &error_abort);
851         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
852             qdev_property_add_static(DEVICE(obj),
853                                      &arm_cpu_pmsav7_dregion_property,
854                                      &error_abort);
855         }
856     }
857 
858     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
859         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
860                                  qdev_prop_allow_set_link_before_realize,
861                                  OBJ_PROP_LINK_STRONG,
862                                  &error_abort);
863         /*
864          * M profile: initial value of the Secure VTOR. We can't just use
865          * a simple DEFINE_PROP_UINT32 for this because we want to permit
866          * the property to be set after realize.
867          */
868         object_property_add(obj, "init-svtor", "uint32",
869                             arm_get_init_svtor, arm_set_init_svtor,
870                             NULL, NULL, &error_abort);
871     }
872 
873     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
874                              &error_abort);
875 }
876 
877 static void arm_cpu_finalizefn(Object *obj)
878 {
879     ARMCPU *cpu = ARM_CPU(obj);
880     ARMELChangeHook *hook, *next;
881 
882     g_hash_table_destroy(cpu->cp_regs);
883 
884     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
885         QLIST_REMOVE(hook, node);
886         g_free(hook);
887     }
888     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
889         QLIST_REMOVE(hook, node);
890         g_free(hook);
891     }
892 #ifndef CONFIG_USER_ONLY
893     if (cpu->pmu_timer) {
894         timer_del(cpu->pmu_timer);
895         timer_deinit(cpu->pmu_timer);
896         timer_free(cpu->pmu_timer);
897     }
898 #endif
899 }
900 
901 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
902 {
903     CPUState *cs = CPU(dev);
904     ARMCPU *cpu = ARM_CPU(dev);
905     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
906     CPUARMState *env = &cpu->env;
907     int pagebits;
908     Error *local_err = NULL;
909     bool no_aa32 = false;
910 
911     /* If we needed to query the host kernel for the CPU features
912      * then it's possible that might have failed in the initfn, but
913      * this is the first point where we can report it.
914      */
915     if (cpu->host_cpu_probe_failed) {
916         if (!kvm_enabled()) {
917             error_setg(errp, "The 'host' CPU type can only be used with KVM");
918         } else {
919             error_setg(errp, "Failed to retrieve host CPU features");
920         }
921         return;
922     }
923 
924 #ifndef CONFIG_USER_ONLY
925     /* The NVIC and M-profile CPU are two halves of a single piece of
926      * hardware; trying to use one without the other is a command line
927      * error and will result in segfaults if not caught here.
928      */
929     if (arm_feature(env, ARM_FEATURE_M)) {
930         if (!env->nvic) {
931             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
932             return;
933         }
934     } else {
935         if (env->nvic) {
936             error_setg(errp, "This board can only be used with Cortex-M CPUs");
937             return;
938         }
939     }
940 
941     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
942                                            arm_gt_ptimer_cb, cpu);
943     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
944                                            arm_gt_vtimer_cb, cpu);
945     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
946                                           arm_gt_htimer_cb, cpu);
947     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
948                                           arm_gt_stimer_cb, cpu);
949 #endif
950 
951     cpu_exec_realizefn(cs, &local_err);
952     if (local_err != NULL) {
953         error_propagate(errp, local_err);
954         return;
955     }
956 
957     /* Some features automatically imply others: */
958     if (arm_feature(env, ARM_FEATURE_V8)) {
959         if (arm_feature(env, ARM_FEATURE_M)) {
960             set_feature(env, ARM_FEATURE_V7);
961         } else {
962             set_feature(env, ARM_FEATURE_V7VE);
963         }
964     }
965 
966     /*
967      * There exist AArch64 cpus without AArch32 support.  When KVM
968      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
969      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
970      */
971     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
972         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
973     }
974 
975     if (arm_feature(env, ARM_FEATURE_V7VE)) {
976         /* v7 Virtualization Extensions. In real hardware this implies
977          * EL2 and also the presence of the Security Extensions.
978          * For QEMU, for backwards-compatibility we implement some
979          * CPUs or CPU configs which have no actual EL2 or EL3 but do
980          * include the various other features that V7VE implies.
981          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
982          * Security Extensions is ARM_FEATURE_EL3.
983          */
984         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
985         set_feature(env, ARM_FEATURE_LPAE);
986         set_feature(env, ARM_FEATURE_V7);
987     }
988     if (arm_feature(env, ARM_FEATURE_V7)) {
989         set_feature(env, ARM_FEATURE_VAPA);
990         set_feature(env, ARM_FEATURE_THUMB2);
991         set_feature(env, ARM_FEATURE_MPIDR);
992         if (!arm_feature(env, ARM_FEATURE_M)) {
993             set_feature(env, ARM_FEATURE_V6K);
994         } else {
995             set_feature(env, ARM_FEATURE_V6);
996         }
997 
998         /* Always define VBAR for V7 CPUs even if it doesn't exist in
999          * non-EL3 configs. This is needed by some legacy boards.
1000          */
1001         set_feature(env, ARM_FEATURE_VBAR);
1002     }
1003     if (arm_feature(env, ARM_FEATURE_V6K)) {
1004         set_feature(env, ARM_FEATURE_V6);
1005         set_feature(env, ARM_FEATURE_MVFR);
1006     }
1007     if (arm_feature(env, ARM_FEATURE_V6)) {
1008         set_feature(env, ARM_FEATURE_V5);
1009         if (!arm_feature(env, ARM_FEATURE_M)) {
1010             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1011             set_feature(env, ARM_FEATURE_AUXCR);
1012         }
1013     }
1014     if (arm_feature(env, ARM_FEATURE_V5)) {
1015         set_feature(env, ARM_FEATURE_V4T);
1016     }
1017     if (arm_feature(env, ARM_FEATURE_VFP4)) {
1018         set_feature(env, ARM_FEATURE_VFP3);
1019     }
1020     if (arm_feature(env, ARM_FEATURE_VFP3)) {
1021         set_feature(env, ARM_FEATURE_VFP);
1022     }
1023     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1024         set_feature(env, ARM_FEATURE_V7MP);
1025         set_feature(env, ARM_FEATURE_PXN);
1026     }
1027     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1028         set_feature(env, ARM_FEATURE_CBAR);
1029     }
1030     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1031         !arm_feature(env, ARM_FEATURE_M)) {
1032         set_feature(env, ARM_FEATURE_THUMB_DSP);
1033     }
1034 
1035     /*
1036      * We rely on no XScale CPU having VFP so we can use the same bits in the
1037      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1038      */
1039     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1040              arm_feature(env, ARM_FEATURE_XSCALE)));
1041 
1042     if (arm_feature(env, ARM_FEATURE_V7) &&
1043         !arm_feature(env, ARM_FEATURE_M) &&
1044         !arm_feature(env, ARM_FEATURE_PMSA)) {
1045         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1046          * can use 4K pages.
1047          */
1048         pagebits = 12;
1049     } else {
1050         /* For CPUs which might have tiny 1K pages, or which have an
1051          * MPU and might have small region sizes, stick with 1K pages.
1052          */
1053         pagebits = 10;
1054     }
1055     if (!set_preferred_target_page_bits(pagebits)) {
1056         /* This can only ever happen for hotplugging a CPU, or if
1057          * the board code incorrectly creates a CPU which it has
1058          * promised via minimum_page_size that it will not.
1059          */
1060         error_setg(errp, "This CPU requires a smaller page size than the "
1061                    "system is using");
1062         return;
1063     }
1064 
1065     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1066      * We don't support setting cluster ID ([16..23]) (known as Aff2
1067      * in later ARM ARM versions), or any of the higher affinity level fields,
1068      * so these bits always RAZ.
1069      */
1070     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1071         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1072                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1073     }
1074 
1075     if (cpu->reset_hivecs) {
1076             cpu->reset_sctlr |= (1 << 13);
1077     }
1078 
1079     if (cpu->cfgend) {
1080         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1081             cpu->reset_sctlr |= SCTLR_EE;
1082         } else {
1083             cpu->reset_sctlr |= SCTLR_B;
1084         }
1085     }
1086 
1087     if (!cpu->has_el3) {
1088         /* If the has_el3 CPU property is disabled then we need to disable the
1089          * feature.
1090          */
1091         unset_feature(env, ARM_FEATURE_EL3);
1092 
1093         /* Disable the security extension feature bits in the processor feature
1094          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1095          */
1096         cpu->id_pfr1 &= ~0xf0;
1097         cpu->isar.id_aa64pfr0 &= ~0xf000;
1098     }
1099 
1100     if (!cpu->has_el2) {
1101         unset_feature(env, ARM_FEATURE_EL2);
1102     }
1103 
1104     if (!cpu->has_pmu) {
1105         unset_feature(env, ARM_FEATURE_PMU);
1106     }
1107     if (arm_feature(env, ARM_FEATURE_PMU)) {
1108         pmu_init(cpu);
1109 
1110         if (!kvm_enabled()) {
1111             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1112             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1113         }
1114 
1115 #ifndef CONFIG_USER_ONLY
1116         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1117                 cpu);
1118 #endif
1119     } else {
1120         cpu->id_aa64dfr0 &= ~0xf00;
1121         cpu->id_dfr0 &= ~(0xf << 24);
1122         cpu->pmceid0 = 0;
1123         cpu->pmceid1 = 0;
1124     }
1125 
1126     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1127         /* Disable the hypervisor feature bits in the processor feature
1128          * registers if we don't have EL2. These are id_pfr1[15:12] and
1129          * id_aa64pfr0_el1[11:8].
1130          */
1131         cpu->isar.id_aa64pfr0 &= ~0xf00;
1132         cpu->id_pfr1 &= ~0xf000;
1133     }
1134 
1135     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1136      * to false or by setting pmsav7-dregion to 0.
1137      */
1138     if (!cpu->has_mpu) {
1139         cpu->pmsav7_dregion = 0;
1140     }
1141     if (cpu->pmsav7_dregion == 0) {
1142         cpu->has_mpu = false;
1143     }
1144 
1145     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1146         arm_feature(env, ARM_FEATURE_V7)) {
1147         uint32_t nr = cpu->pmsav7_dregion;
1148 
1149         if (nr > 0xff) {
1150             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1151             return;
1152         }
1153 
1154         if (nr) {
1155             if (arm_feature(env, ARM_FEATURE_V8)) {
1156                 /* PMSAv8 */
1157                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1158                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1159                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1160                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1161                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1162                 }
1163             } else {
1164                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1165                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1166                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1167             }
1168         }
1169     }
1170 
1171     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1172         uint32_t nr = cpu->sau_sregion;
1173 
1174         if (nr > 0xff) {
1175             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1176             return;
1177         }
1178 
1179         if (nr) {
1180             env->sau.rbar = g_new0(uint32_t, nr);
1181             env->sau.rlar = g_new0(uint32_t, nr);
1182         }
1183     }
1184 
1185     if (arm_feature(env, ARM_FEATURE_EL3)) {
1186         set_feature(env, ARM_FEATURE_VBAR);
1187     }
1188 
1189     register_cp_regs_for_features(cpu);
1190     arm_cpu_register_gdb_regs_for_features(cpu);
1191 
1192     init_cpreg_list(cpu);
1193 
1194 #ifndef CONFIG_USER_ONLY
1195     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1196         cs->num_ases = 2;
1197 
1198         if (!cpu->secure_memory) {
1199             cpu->secure_memory = cs->memory;
1200         }
1201         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1202                                cpu->secure_memory);
1203     } else {
1204         cs->num_ases = 1;
1205     }
1206     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1207 
1208     /* No core_count specified, default to smp_cpus. */
1209     if (cpu->core_count == -1) {
1210         cpu->core_count = smp_cpus;
1211     }
1212 #endif
1213 
1214     qemu_init_vcpu(cs);
1215     cpu_reset(cs);
1216 
1217     acc->parent_realize(dev, errp);
1218 }
1219 
1220 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1221 {
1222     ObjectClass *oc;
1223     char *typename;
1224     char **cpuname;
1225     const char *cpunamestr;
1226 
1227     cpuname = g_strsplit(cpu_model, ",", 1);
1228     cpunamestr = cpuname[0];
1229 #ifdef CONFIG_USER_ONLY
1230     /* For backwards compatibility usermode emulation allows "-cpu any",
1231      * which has the same semantics as "-cpu max".
1232      */
1233     if (!strcmp(cpunamestr, "any")) {
1234         cpunamestr = "max";
1235     }
1236 #endif
1237     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1238     oc = object_class_by_name(typename);
1239     g_strfreev(cpuname);
1240     g_free(typename);
1241     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1242         object_class_is_abstract(oc)) {
1243         return NULL;
1244     }
1245     return oc;
1246 }
1247 
1248 /* CPU models. These are not needed for the AArch64 linux-user build. */
1249 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1250 
1251 static void arm926_initfn(Object *obj)
1252 {
1253     ARMCPU *cpu = ARM_CPU(obj);
1254 
1255     cpu->dtb_compatible = "arm,arm926";
1256     set_feature(&cpu->env, ARM_FEATURE_V5);
1257     set_feature(&cpu->env, ARM_FEATURE_VFP);
1258     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1259     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1260     cpu->midr = 0x41069265;
1261     cpu->reset_fpsid = 0x41011090;
1262     cpu->ctr = 0x1dd20d2;
1263     cpu->reset_sctlr = 0x00090078;
1264 
1265     /*
1266      * ARMv5 does not have the ID_ISAR registers, but we can still
1267      * set the field to indicate Jazelle support within QEMU.
1268      */
1269     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1270 }
1271 
1272 static void arm946_initfn(Object *obj)
1273 {
1274     ARMCPU *cpu = ARM_CPU(obj);
1275 
1276     cpu->dtb_compatible = "arm,arm946";
1277     set_feature(&cpu->env, ARM_FEATURE_V5);
1278     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1279     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1280     cpu->midr = 0x41059461;
1281     cpu->ctr = 0x0f004006;
1282     cpu->reset_sctlr = 0x00000078;
1283 }
1284 
1285 static void arm1026_initfn(Object *obj)
1286 {
1287     ARMCPU *cpu = ARM_CPU(obj);
1288 
1289     cpu->dtb_compatible = "arm,arm1026";
1290     set_feature(&cpu->env, ARM_FEATURE_V5);
1291     set_feature(&cpu->env, ARM_FEATURE_VFP);
1292     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1293     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1294     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1295     cpu->midr = 0x4106a262;
1296     cpu->reset_fpsid = 0x410110a0;
1297     cpu->ctr = 0x1dd20d2;
1298     cpu->reset_sctlr = 0x00090078;
1299     cpu->reset_auxcr = 1;
1300 
1301     /*
1302      * ARMv5 does not have the ID_ISAR registers, but we can still
1303      * set the field to indicate Jazelle support within QEMU.
1304      */
1305     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1306 
1307     {
1308         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1309         ARMCPRegInfo ifar = {
1310             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1311             .access = PL1_RW,
1312             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1313             .resetvalue = 0
1314         };
1315         define_one_arm_cp_reg(cpu, &ifar);
1316     }
1317 }
1318 
1319 static void arm1136_r2_initfn(Object *obj)
1320 {
1321     ARMCPU *cpu = ARM_CPU(obj);
1322     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1323      * older core than plain "arm1136". In particular this does not
1324      * have the v6K features.
1325      * These ID register values are correct for 1136 but may be wrong
1326      * for 1136_r2 (in particular r0p2 does not actually implement most
1327      * of the ID registers).
1328      */
1329 
1330     cpu->dtb_compatible = "arm,arm1136";
1331     set_feature(&cpu->env, ARM_FEATURE_V6);
1332     set_feature(&cpu->env, ARM_FEATURE_VFP);
1333     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1334     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1335     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1336     cpu->midr = 0x4107b362;
1337     cpu->reset_fpsid = 0x410120b4;
1338     cpu->isar.mvfr0 = 0x11111111;
1339     cpu->isar.mvfr1 = 0x00000000;
1340     cpu->ctr = 0x1dd20d2;
1341     cpu->reset_sctlr = 0x00050078;
1342     cpu->id_pfr0 = 0x111;
1343     cpu->id_pfr1 = 0x1;
1344     cpu->id_dfr0 = 0x2;
1345     cpu->id_afr0 = 0x3;
1346     cpu->id_mmfr0 = 0x01130003;
1347     cpu->id_mmfr1 = 0x10030302;
1348     cpu->id_mmfr2 = 0x01222110;
1349     cpu->isar.id_isar0 = 0x00140011;
1350     cpu->isar.id_isar1 = 0x12002111;
1351     cpu->isar.id_isar2 = 0x11231111;
1352     cpu->isar.id_isar3 = 0x01102131;
1353     cpu->isar.id_isar4 = 0x141;
1354     cpu->reset_auxcr = 7;
1355 }
1356 
1357 static void arm1136_initfn(Object *obj)
1358 {
1359     ARMCPU *cpu = ARM_CPU(obj);
1360 
1361     cpu->dtb_compatible = "arm,arm1136";
1362     set_feature(&cpu->env, ARM_FEATURE_V6K);
1363     set_feature(&cpu->env, ARM_FEATURE_V6);
1364     set_feature(&cpu->env, ARM_FEATURE_VFP);
1365     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1366     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1367     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1368     cpu->midr = 0x4117b363;
1369     cpu->reset_fpsid = 0x410120b4;
1370     cpu->isar.mvfr0 = 0x11111111;
1371     cpu->isar.mvfr1 = 0x00000000;
1372     cpu->ctr = 0x1dd20d2;
1373     cpu->reset_sctlr = 0x00050078;
1374     cpu->id_pfr0 = 0x111;
1375     cpu->id_pfr1 = 0x1;
1376     cpu->id_dfr0 = 0x2;
1377     cpu->id_afr0 = 0x3;
1378     cpu->id_mmfr0 = 0x01130003;
1379     cpu->id_mmfr1 = 0x10030302;
1380     cpu->id_mmfr2 = 0x01222110;
1381     cpu->isar.id_isar0 = 0x00140011;
1382     cpu->isar.id_isar1 = 0x12002111;
1383     cpu->isar.id_isar2 = 0x11231111;
1384     cpu->isar.id_isar3 = 0x01102131;
1385     cpu->isar.id_isar4 = 0x141;
1386     cpu->reset_auxcr = 7;
1387 }
1388 
1389 static void arm1176_initfn(Object *obj)
1390 {
1391     ARMCPU *cpu = ARM_CPU(obj);
1392 
1393     cpu->dtb_compatible = "arm,arm1176";
1394     set_feature(&cpu->env, ARM_FEATURE_V6K);
1395     set_feature(&cpu->env, ARM_FEATURE_VFP);
1396     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1397     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1398     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1399     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1400     set_feature(&cpu->env, ARM_FEATURE_EL3);
1401     cpu->midr = 0x410fb767;
1402     cpu->reset_fpsid = 0x410120b5;
1403     cpu->isar.mvfr0 = 0x11111111;
1404     cpu->isar.mvfr1 = 0x00000000;
1405     cpu->ctr = 0x1dd20d2;
1406     cpu->reset_sctlr = 0x00050078;
1407     cpu->id_pfr0 = 0x111;
1408     cpu->id_pfr1 = 0x11;
1409     cpu->id_dfr0 = 0x33;
1410     cpu->id_afr0 = 0;
1411     cpu->id_mmfr0 = 0x01130003;
1412     cpu->id_mmfr1 = 0x10030302;
1413     cpu->id_mmfr2 = 0x01222100;
1414     cpu->isar.id_isar0 = 0x0140011;
1415     cpu->isar.id_isar1 = 0x12002111;
1416     cpu->isar.id_isar2 = 0x11231121;
1417     cpu->isar.id_isar3 = 0x01102131;
1418     cpu->isar.id_isar4 = 0x01141;
1419     cpu->reset_auxcr = 7;
1420 }
1421 
1422 static void arm11mpcore_initfn(Object *obj)
1423 {
1424     ARMCPU *cpu = ARM_CPU(obj);
1425 
1426     cpu->dtb_compatible = "arm,arm11mpcore";
1427     set_feature(&cpu->env, ARM_FEATURE_V6K);
1428     set_feature(&cpu->env, ARM_FEATURE_VFP);
1429     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1430     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1431     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1432     cpu->midr = 0x410fb022;
1433     cpu->reset_fpsid = 0x410120b4;
1434     cpu->isar.mvfr0 = 0x11111111;
1435     cpu->isar.mvfr1 = 0x00000000;
1436     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1437     cpu->id_pfr0 = 0x111;
1438     cpu->id_pfr1 = 0x1;
1439     cpu->id_dfr0 = 0;
1440     cpu->id_afr0 = 0x2;
1441     cpu->id_mmfr0 = 0x01100103;
1442     cpu->id_mmfr1 = 0x10020302;
1443     cpu->id_mmfr2 = 0x01222000;
1444     cpu->isar.id_isar0 = 0x00100011;
1445     cpu->isar.id_isar1 = 0x12002111;
1446     cpu->isar.id_isar2 = 0x11221011;
1447     cpu->isar.id_isar3 = 0x01102131;
1448     cpu->isar.id_isar4 = 0x141;
1449     cpu->reset_auxcr = 1;
1450 }
1451 
1452 static void cortex_m0_initfn(Object *obj)
1453 {
1454     ARMCPU *cpu = ARM_CPU(obj);
1455     set_feature(&cpu->env, ARM_FEATURE_V6);
1456     set_feature(&cpu->env, ARM_FEATURE_M);
1457 
1458     cpu->midr = 0x410cc200;
1459 }
1460 
1461 static void cortex_m3_initfn(Object *obj)
1462 {
1463     ARMCPU *cpu = ARM_CPU(obj);
1464     set_feature(&cpu->env, ARM_FEATURE_V7);
1465     set_feature(&cpu->env, ARM_FEATURE_M);
1466     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1467     cpu->midr = 0x410fc231;
1468     cpu->pmsav7_dregion = 8;
1469     cpu->id_pfr0 = 0x00000030;
1470     cpu->id_pfr1 = 0x00000200;
1471     cpu->id_dfr0 = 0x00100000;
1472     cpu->id_afr0 = 0x00000000;
1473     cpu->id_mmfr0 = 0x00000030;
1474     cpu->id_mmfr1 = 0x00000000;
1475     cpu->id_mmfr2 = 0x00000000;
1476     cpu->id_mmfr3 = 0x00000000;
1477     cpu->isar.id_isar0 = 0x01141110;
1478     cpu->isar.id_isar1 = 0x02111000;
1479     cpu->isar.id_isar2 = 0x21112231;
1480     cpu->isar.id_isar3 = 0x01111110;
1481     cpu->isar.id_isar4 = 0x01310102;
1482     cpu->isar.id_isar5 = 0x00000000;
1483     cpu->isar.id_isar6 = 0x00000000;
1484 }
1485 
1486 static void cortex_m4_initfn(Object *obj)
1487 {
1488     ARMCPU *cpu = ARM_CPU(obj);
1489 
1490     set_feature(&cpu->env, ARM_FEATURE_V7);
1491     set_feature(&cpu->env, ARM_FEATURE_M);
1492     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1493     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1494     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1495     cpu->midr = 0x410fc240; /* r0p0 */
1496     cpu->pmsav7_dregion = 8;
1497     cpu->isar.mvfr0 = 0x10110021;
1498     cpu->isar.mvfr1 = 0x11000011;
1499     cpu->isar.mvfr2 = 0x00000000;
1500     cpu->id_pfr0 = 0x00000030;
1501     cpu->id_pfr1 = 0x00000200;
1502     cpu->id_dfr0 = 0x00100000;
1503     cpu->id_afr0 = 0x00000000;
1504     cpu->id_mmfr0 = 0x00000030;
1505     cpu->id_mmfr1 = 0x00000000;
1506     cpu->id_mmfr2 = 0x00000000;
1507     cpu->id_mmfr3 = 0x00000000;
1508     cpu->isar.id_isar0 = 0x01141110;
1509     cpu->isar.id_isar1 = 0x02111000;
1510     cpu->isar.id_isar2 = 0x21112231;
1511     cpu->isar.id_isar3 = 0x01111110;
1512     cpu->isar.id_isar4 = 0x01310102;
1513     cpu->isar.id_isar5 = 0x00000000;
1514     cpu->isar.id_isar6 = 0x00000000;
1515 }
1516 
1517 static void cortex_m33_initfn(Object *obj)
1518 {
1519     ARMCPU *cpu = ARM_CPU(obj);
1520 
1521     set_feature(&cpu->env, ARM_FEATURE_V8);
1522     set_feature(&cpu->env, ARM_FEATURE_M);
1523     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1524     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1525     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1526     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1527     cpu->midr = 0x410fd213; /* r0p3 */
1528     cpu->pmsav7_dregion = 16;
1529     cpu->sau_sregion = 8;
1530     cpu->isar.mvfr0 = 0x10110021;
1531     cpu->isar.mvfr1 = 0x11000011;
1532     cpu->isar.mvfr2 = 0x00000040;
1533     cpu->id_pfr0 = 0x00000030;
1534     cpu->id_pfr1 = 0x00000210;
1535     cpu->id_dfr0 = 0x00200000;
1536     cpu->id_afr0 = 0x00000000;
1537     cpu->id_mmfr0 = 0x00101F40;
1538     cpu->id_mmfr1 = 0x00000000;
1539     cpu->id_mmfr2 = 0x01000000;
1540     cpu->id_mmfr3 = 0x00000000;
1541     cpu->isar.id_isar0 = 0x01101110;
1542     cpu->isar.id_isar1 = 0x02212000;
1543     cpu->isar.id_isar2 = 0x20232232;
1544     cpu->isar.id_isar3 = 0x01111131;
1545     cpu->isar.id_isar4 = 0x01310132;
1546     cpu->isar.id_isar5 = 0x00000000;
1547     cpu->isar.id_isar6 = 0x00000000;
1548     cpu->clidr = 0x00000000;
1549     cpu->ctr = 0x8000c000;
1550 }
1551 
1552 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1553 {
1554     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1555     CPUClass *cc = CPU_CLASS(oc);
1556 
1557     acc->info = data;
1558 #ifndef CONFIG_USER_ONLY
1559     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1560 #endif
1561 
1562     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1563 }
1564 
1565 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1566     /* Dummy the TCM region regs for the moment */
1567     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1568       .access = PL1_RW, .type = ARM_CP_CONST },
1569     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1570       .access = PL1_RW, .type = ARM_CP_CONST },
1571     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1572       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1573     REGINFO_SENTINEL
1574 };
1575 
1576 static void cortex_r5_initfn(Object *obj)
1577 {
1578     ARMCPU *cpu = ARM_CPU(obj);
1579 
1580     set_feature(&cpu->env, ARM_FEATURE_V7);
1581     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1582     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1583     cpu->midr = 0x411fc153; /* r1p3 */
1584     cpu->id_pfr0 = 0x0131;
1585     cpu->id_pfr1 = 0x001;
1586     cpu->id_dfr0 = 0x010400;
1587     cpu->id_afr0 = 0x0;
1588     cpu->id_mmfr0 = 0x0210030;
1589     cpu->id_mmfr1 = 0x00000000;
1590     cpu->id_mmfr2 = 0x01200000;
1591     cpu->id_mmfr3 = 0x0211;
1592     cpu->isar.id_isar0 = 0x02101111;
1593     cpu->isar.id_isar1 = 0x13112111;
1594     cpu->isar.id_isar2 = 0x21232141;
1595     cpu->isar.id_isar3 = 0x01112131;
1596     cpu->isar.id_isar4 = 0x0010142;
1597     cpu->isar.id_isar5 = 0x0;
1598     cpu->isar.id_isar6 = 0x0;
1599     cpu->mp_is_up = true;
1600     cpu->pmsav7_dregion = 16;
1601     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1602 }
1603 
1604 static void cortex_r5f_initfn(Object *obj)
1605 {
1606     ARMCPU *cpu = ARM_CPU(obj);
1607 
1608     cortex_r5_initfn(obj);
1609     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1610 }
1611 
1612 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1613     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1614       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1615     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1616       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1617     REGINFO_SENTINEL
1618 };
1619 
1620 static void cortex_a8_initfn(Object *obj)
1621 {
1622     ARMCPU *cpu = ARM_CPU(obj);
1623 
1624     cpu->dtb_compatible = "arm,cortex-a8";
1625     set_feature(&cpu->env, ARM_FEATURE_V7);
1626     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1627     set_feature(&cpu->env, ARM_FEATURE_NEON);
1628     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1629     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1630     set_feature(&cpu->env, ARM_FEATURE_EL3);
1631     cpu->midr = 0x410fc080;
1632     cpu->reset_fpsid = 0x410330c0;
1633     cpu->isar.mvfr0 = 0x11110222;
1634     cpu->isar.mvfr1 = 0x00011111;
1635     cpu->ctr = 0x82048004;
1636     cpu->reset_sctlr = 0x00c50078;
1637     cpu->id_pfr0 = 0x1031;
1638     cpu->id_pfr1 = 0x11;
1639     cpu->id_dfr0 = 0x400;
1640     cpu->id_afr0 = 0;
1641     cpu->id_mmfr0 = 0x31100003;
1642     cpu->id_mmfr1 = 0x20000000;
1643     cpu->id_mmfr2 = 0x01202000;
1644     cpu->id_mmfr3 = 0x11;
1645     cpu->isar.id_isar0 = 0x00101111;
1646     cpu->isar.id_isar1 = 0x12112111;
1647     cpu->isar.id_isar2 = 0x21232031;
1648     cpu->isar.id_isar3 = 0x11112131;
1649     cpu->isar.id_isar4 = 0x00111142;
1650     cpu->dbgdidr = 0x15141000;
1651     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1652     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1653     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1654     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1655     cpu->reset_auxcr = 2;
1656     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1657 }
1658 
1659 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1660     /* power_control should be set to maximum latency. Again,
1661      * default to 0 and set by private hook
1662      */
1663     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1664       .access = PL1_RW, .resetvalue = 0,
1665       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1666     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1667       .access = PL1_RW, .resetvalue = 0,
1668       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1669     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1670       .access = PL1_RW, .resetvalue = 0,
1671       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1672     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1673       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1674     /* TLB lockdown control */
1675     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1676       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1677     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1678       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1679     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1680       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1681     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1682       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1683     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1684       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1685     REGINFO_SENTINEL
1686 };
1687 
1688 static void cortex_a9_initfn(Object *obj)
1689 {
1690     ARMCPU *cpu = ARM_CPU(obj);
1691 
1692     cpu->dtb_compatible = "arm,cortex-a9";
1693     set_feature(&cpu->env, ARM_FEATURE_V7);
1694     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1695     set_feature(&cpu->env, ARM_FEATURE_NEON);
1696     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1697     set_feature(&cpu->env, ARM_FEATURE_EL3);
1698     /* Note that A9 supports the MP extensions even for
1699      * A9UP and single-core A9MP (which are both different
1700      * and valid configurations; we don't model A9UP).
1701      */
1702     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1703     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1704     cpu->midr = 0x410fc090;
1705     cpu->reset_fpsid = 0x41033090;
1706     cpu->isar.mvfr0 = 0x11110222;
1707     cpu->isar.mvfr1 = 0x01111111;
1708     cpu->ctr = 0x80038003;
1709     cpu->reset_sctlr = 0x00c50078;
1710     cpu->id_pfr0 = 0x1031;
1711     cpu->id_pfr1 = 0x11;
1712     cpu->id_dfr0 = 0x000;
1713     cpu->id_afr0 = 0;
1714     cpu->id_mmfr0 = 0x00100103;
1715     cpu->id_mmfr1 = 0x20000000;
1716     cpu->id_mmfr2 = 0x01230000;
1717     cpu->id_mmfr3 = 0x00002111;
1718     cpu->isar.id_isar0 = 0x00101111;
1719     cpu->isar.id_isar1 = 0x13112111;
1720     cpu->isar.id_isar2 = 0x21232041;
1721     cpu->isar.id_isar3 = 0x11112131;
1722     cpu->isar.id_isar4 = 0x00111142;
1723     cpu->dbgdidr = 0x35141000;
1724     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1725     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1726     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1727     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1728 }
1729 
1730 #ifndef CONFIG_USER_ONLY
1731 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1732 {
1733     /* Linux wants the number of processors from here.
1734      * Might as well set the interrupt-controller bit too.
1735      */
1736     return ((smp_cpus - 1) << 24) | (1 << 23);
1737 }
1738 #endif
1739 
1740 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1741 #ifndef CONFIG_USER_ONLY
1742     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1743       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1744       .writefn = arm_cp_write_ignore, },
1745 #endif
1746     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1747       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1748     REGINFO_SENTINEL
1749 };
1750 
1751 static void cortex_a7_initfn(Object *obj)
1752 {
1753     ARMCPU *cpu = ARM_CPU(obj);
1754 
1755     cpu->dtb_compatible = "arm,cortex-a7";
1756     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1757     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1758     set_feature(&cpu->env, ARM_FEATURE_NEON);
1759     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1760     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1761     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1762     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1763     set_feature(&cpu->env, ARM_FEATURE_EL2);
1764     set_feature(&cpu->env, ARM_FEATURE_EL3);
1765     set_feature(&cpu->env, ARM_FEATURE_PMU);
1766     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1767     cpu->midr = 0x410fc075;
1768     cpu->reset_fpsid = 0x41023075;
1769     cpu->isar.mvfr0 = 0x10110222;
1770     cpu->isar.mvfr1 = 0x11111111;
1771     cpu->ctr = 0x84448003;
1772     cpu->reset_sctlr = 0x00c50078;
1773     cpu->id_pfr0 = 0x00001131;
1774     cpu->id_pfr1 = 0x00011011;
1775     cpu->id_dfr0 = 0x02010555;
1776     cpu->id_afr0 = 0x00000000;
1777     cpu->id_mmfr0 = 0x10101105;
1778     cpu->id_mmfr1 = 0x40000000;
1779     cpu->id_mmfr2 = 0x01240000;
1780     cpu->id_mmfr3 = 0x02102211;
1781     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1782      * table 4-41 gives 0x02101110, which includes the arm div insns.
1783      */
1784     cpu->isar.id_isar0 = 0x02101110;
1785     cpu->isar.id_isar1 = 0x13112111;
1786     cpu->isar.id_isar2 = 0x21232041;
1787     cpu->isar.id_isar3 = 0x11112131;
1788     cpu->isar.id_isar4 = 0x10011142;
1789     cpu->dbgdidr = 0x3515f005;
1790     cpu->clidr = 0x0a200023;
1791     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1792     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1793     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1794     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1795 }
1796 
1797 static void cortex_a15_initfn(Object *obj)
1798 {
1799     ARMCPU *cpu = ARM_CPU(obj);
1800 
1801     cpu->dtb_compatible = "arm,cortex-a15";
1802     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1803     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1804     set_feature(&cpu->env, ARM_FEATURE_NEON);
1805     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1806     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1807     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1808     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1809     set_feature(&cpu->env, ARM_FEATURE_EL2);
1810     set_feature(&cpu->env, ARM_FEATURE_EL3);
1811     set_feature(&cpu->env, ARM_FEATURE_PMU);
1812     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1813     cpu->midr = 0x412fc0f1;
1814     cpu->reset_fpsid = 0x410430f0;
1815     cpu->isar.mvfr0 = 0x10110222;
1816     cpu->isar.mvfr1 = 0x11111111;
1817     cpu->ctr = 0x8444c004;
1818     cpu->reset_sctlr = 0x00c50078;
1819     cpu->id_pfr0 = 0x00001131;
1820     cpu->id_pfr1 = 0x00011011;
1821     cpu->id_dfr0 = 0x02010555;
1822     cpu->id_afr0 = 0x00000000;
1823     cpu->id_mmfr0 = 0x10201105;
1824     cpu->id_mmfr1 = 0x20000000;
1825     cpu->id_mmfr2 = 0x01240000;
1826     cpu->id_mmfr3 = 0x02102211;
1827     cpu->isar.id_isar0 = 0x02101110;
1828     cpu->isar.id_isar1 = 0x13112111;
1829     cpu->isar.id_isar2 = 0x21232041;
1830     cpu->isar.id_isar3 = 0x11112131;
1831     cpu->isar.id_isar4 = 0x10011142;
1832     cpu->dbgdidr = 0x3515f021;
1833     cpu->clidr = 0x0a200023;
1834     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1835     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1836     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1837     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1838 }
1839 
1840 static void ti925t_initfn(Object *obj)
1841 {
1842     ARMCPU *cpu = ARM_CPU(obj);
1843     set_feature(&cpu->env, ARM_FEATURE_V4T);
1844     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1845     cpu->midr = ARM_CPUID_TI925T;
1846     cpu->ctr = 0x5109149;
1847     cpu->reset_sctlr = 0x00000070;
1848 }
1849 
1850 static void sa1100_initfn(Object *obj)
1851 {
1852     ARMCPU *cpu = ARM_CPU(obj);
1853 
1854     cpu->dtb_compatible = "intel,sa1100";
1855     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1856     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1857     cpu->midr = 0x4401A11B;
1858     cpu->reset_sctlr = 0x00000070;
1859 }
1860 
1861 static void sa1110_initfn(Object *obj)
1862 {
1863     ARMCPU *cpu = ARM_CPU(obj);
1864     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1865     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1866     cpu->midr = 0x6901B119;
1867     cpu->reset_sctlr = 0x00000070;
1868 }
1869 
1870 static void pxa250_initfn(Object *obj)
1871 {
1872     ARMCPU *cpu = ARM_CPU(obj);
1873 
1874     cpu->dtb_compatible = "marvell,xscale";
1875     set_feature(&cpu->env, ARM_FEATURE_V5);
1876     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1877     cpu->midr = 0x69052100;
1878     cpu->ctr = 0xd172172;
1879     cpu->reset_sctlr = 0x00000078;
1880 }
1881 
1882 static void pxa255_initfn(Object *obj)
1883 {
1884     ARMCPU *cpu = ARM_CPU(obj);
1885 
1886     cpu->dtb_compatible = "marvell,xscale";
1887     set_feature(&cpu->env, ARM_FEATURE_V5);
1888     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1889     cpu->midr = 0x69052d00;
1890     cpu->ctr = 0xd172172;
1891     cpu->reset_sctlr = 0x00000078;
1892 }
1893 
1894 static void pxa260_initfn(Object *obj)
1895 {
1896     ARMCPU *cpu = ARM_CPU(obj);
1897 
1898     cpu->dtb_compatible = "marvell,xscale";
1899     set_feature(&cpu->env, ARM_FEATURE_V5);
1900     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1901     cpu->midr = 0x69052903;
1902     cpu->ctr = 0xd172172;
1903     cpu->reset_sctlr = 0x00000078;
1904 }
1905 
1906 static void pxa261_initfn(Object *obj)
1907 {
1908     ARMCPU *cpu = ARM_CPU(obj);
1909 
1910     cpu->dtb_compatible = "marvell,xscale";
1911     set_feature(&cpu->env, ARM_FEATURE_V5);
1912     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1913     cpu->midr = 0x69052d05;
1914     cpu->ctr = 0xd172172;
1915     cpu->reset_sctlr = 0x00000078;
1916 }
1917 
1918 static void pxa262_initfn(Object *obj)
1919 {
1920     ARMCPU *cpu = ARM_CPU(obj);
1921 
1922     cpu->dtb_compatible = "marvell,xscale";
1923     set_feature(&cpu->env, ARM_FEATURE_V5);
1924     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1925     cpu->midr = 0x69052d06;
1926     cpu->ctr = 0xd172172;
1927     cpu->reset_sctlr = 0x00000078;
1928 }
1929 
1930 static void pxa270a0_initfn(Object *obj)
1931 {
1932     ARMCPU *cpu = ARM_CPU(obj);
1933 
1934     cpu->dtb_compatible = "marvell,xscale";
1935     set_feature(&cpu->env, ARM_FEATURE_V5);
1936     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1937     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1938     cpu->midr = 0x69054110;
1939     cpu->ctr = 0xd172172;
1940     cpu->reset_sctlr = 0x00000078;
1941 }
1942 
1943 static void pxa270a1_initfn(Object *obj)
1944 {
1945     ARMCPU *cpu = ARM_CPU(obj);
1946 
1947     cpu->dtb_compatible = "marvell,xscale";
1948     set_feature(&cpu->env, ARM_FEATURE_V5);
1949     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1950     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1951     cpu->midr = 0x69054111;
1952     cpu->ctr = 0xd172172;
1953     cpu->reset_sctlr = 0x00000078;
1954 }
1955 
1956 static void pxa270b0_initfn(Object *obj)
1957 {
1958     ARMCPU *cpu = ARM_CPU(obj);
1959 
1960     cpu->dtb_compatible = "marvell,xscale";
1961     set_feature(&cpu->env, ARM_FEATURE_V5);
1962     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1963     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1964     cpu->midr = 0x69054112;
1965     cpu->ctr = 0xd172172;
1966     cpu->reset_sctlr = 0x00000078;
1967 }
1968 
1969 static void pxa270b1_initfn(Object *obj)
1970 {
1971     ARMCPU *cpu = ARM_CPU(obj);
1972 
1973     cpu->dtb_compatible = "marvell,xscale";
1974     set_feature(&cpu->env, ARM_FEATURE_V5);
1975     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1976     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1977     cpu->midr = 0x69054113;
1978     cpu->ctr = 0xd172172;
1979     cpu->reset_sctlr = 0x00000078;
1980 }
1981 
1982 static void pxa270c0_initfn(Object *obj)
1983 {
1984     ARMCPU *cpu = ARM_CPU(obj);
1985 
1986     cpu->dtb_compatible = "marvell,xscale";
1987     set_feature(&cpu->env, ARM_FEATURE_V5);
1988     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1989     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1990     cpu->midr = 0x69054114;
1991     cpu->ctr = 0xd172172;
1992     cpu->reset_sctlr = 0x00000078;
1993 }
1994 
1995 static void pxa270c5_initfn(Object *obj)
1996 {
1997     ARMCPU *cpu = ARM_CPU(obj);
1998 
1999     cpu->dtb_compatible = "marvell,xscale";
2000     set_feature(&cpu->env, ARM_FEATURE_V5);
2001     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2002     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2003     cpu->midr = 0x69054117;
2004     cpu->ctr = 0xd172172;
2005     cpu->reset_sctlr = 0x00000078;
2006 }
2007 
2008 #ifndef TARGET_AARCH64
2009 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2010  * otherwise, a CPU with as many features enabled as our emulation supports.
2011  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2012  * this only needs to handle 32 bits.
2013  */
2014 static void arm_max_initfn(Object *obj)
2015 {
2016     ARMCPU *cpu = ARM_CPU(obj);
2017 
2018     if (kvm_enabled()) {
2019         kvm_arm_set_cpu_features_from_host(cpu);
2020     } else {
2021         cortex_a15_initfn(obj);
2022 #ifdef CONFIG_USER_ONLY
2023         /* We don't set these in system emulation mode for the moment,
2024          * since we don't correctly set (all of) the ID registers to
2025          * advertise them.
2026          */
2027         set_feature(&cpu->env, ARM_FEATURE_V8);
2028         {
2029             uint32_t t;
2030 
2031             t = cpu->isar.id_isar5;
2032             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2033             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2034             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2035             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2036             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2037             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2038             cpu->isar.id_isar5 = t;
2039 
2040             t = cpu->isar.id_isar6;
2041             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2042             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2043             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2044             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2045             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2046             cpu->isar.id_isar6 = t;
2047 
2048             t = cpu->isar.mvfr2;
2049             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2050             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2051             cpu->isar.mvfr2 = t;
2052 
2053             t = cpu->id_mmfr4;
2054             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2055             cpu->id_mmfr4 = t;
2056         }
2057 #endif
2058     }
2059 }
2060 #endif
2061 
2062 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2063 
2064 struct ARMCPUInfo {
2065     const char *name;
2066     void (*initfn)(Object *obj);
2067     void (*class_init)(ObjectClass *oc, void *data);
2068 };
2069 
2070 static const ARMCPUInfo arm_cpus[] = {
2071 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2072     { .name = "arm926",      .initfn = arm926_initfn },
2073     { .name = "arm946",      .initfn = arm946_initfn },
2074     { .name = "arm1026",     .initfn = arm1026_initfn },
2075     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2076      * older core than plain "arm1136". In particular this does not
2077      * have the v6K features.
2078      */
2079     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2080     { .name = "arm1136",     .initfn = arm1136_initfn },
2081     { .name = "arm1176",     .initfn = arm1176_initfn },
2082     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2083     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2084                              .class_init = arm_v7m_class_init },
2085     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2086                              .class_init = arm_v7m_class_init },
2087     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2088                              .class_init = arm_v7m_class_init },
2089     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2090                              .class_init = arm_v7m_class_init },
2091     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2092     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2093     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2094     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2095     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2096     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2097     { .name = "ti925t",      .initfn = ti925t_initfn },
2098     { .name = "sa1100",      .initfn = sa1100_initfn },
2099     { .name = "sa1110",      .initfn = sa1110_initfn },
2100     { .name = "pxa250",      .initfn = pxa250_initfn },
2101     { .name = "pxa255",      .initfn = pxa255_initfn },
2102     { .name = "pxa260",      .initfn = pxa260_initfn },
2103     { .name = "pxa261",      .initfn = pxa261_initfn },
2104     { .name = "pxa262",      .initfn = pxa262_initfn },
2105     /* "pxa270" is an alias for "pxa270-a0" */
2106     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2107     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2108     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2109     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2110     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2111     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2112     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2113 #ifndef TARGET_AARCH64
2114     { .name = "max",         .initfn = arm_max_initfn },
2115 #endif
2116 #ifdef CONFIG_USER_ONLY
2117     { .name = "any",         .initfn = arm_max_initfn },
2118 #endif
2119 #endif
2120     { .name = NULL }
2121 };
2122 
2123 static Property arm_cpu_properties[] = {
2124     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2125     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2126     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2127     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2128                         mp_affinity, ARM64_AFFINITY_INVALID),
2129     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2130     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2131     DEFINE_PROP_END_OF_LIST()
2132 };
2133 
2134 static gchar *arm_gdb_arch_name(CPUState *cs)
2135 {
2136     ARMCPU *cpu = ARM_CPU(cs);
2137     CPUARMState *env = &cpu->env;
2138 
2139     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2140         return g_strdup("iwmmxt");
2141     }
2142     return g_strdup("arm");
2143 }
2144 
2145 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2146 {
2147     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2148     CPUClass *cc = CPU_CLASS(acc);
2149     DeviceClass *dc = DEVICE_CLASS(oc);
2150 
2151     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2152                                     &acc->parent_realize);
2153     dc->props = arm_cpu_properties;
2154 
2155     acc->parent_reset = cc->reset;
2156     cc->reset = arm_cpu_reset;
2157 
2158     cc->class_by_name = arm_cpu_class_by_name;
2159     cc->has_work = arm_cpu_has_work;
2160     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2161     cc->dump_state = arm_cpu_dump_state;
2162     cc->set_pc = arm_cpu_set_pc;
2163     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2164     cc->gdb_read_register = arm_cpu_gdb_read_register;
2165     cc->gdb_write_register = arm_cpu_gdb_write_register;
2166 #ifndef CONFIG_USER_ONLY
2167     cc->do_interrupt = arm_cpu_do_interrupt;
2168     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2169     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2170     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2171     cc->asidx_from_attrs = arm_asidx_from_attrs;
2172     cc->vmsd = &vmstate_arm_cpu;
2173     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2174     cc->write_elf64_note = arm_cpu_write_elf64_note;
2175     cc->write_elf32_note = arm_cpu_write_elf32_note;
2176 #endif
2177     cc->gdb_num_core_regs = 26;
2178     cc->gdb_core_xml_file = "arm-core.xml";
2179     cc->gdb_arch_name = arm_gdb_arch_name;
2180     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2181     cc->gdb_stop_before_watchpoint = true;
2182     cc->debug_excp_handler = arm_debug_excp_handler;
2183     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2184 #if !defined(CONFIG_USER_ONLY)
2185     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2186 #endif
2187 
2188     cc->disas_set_info = arm_disas_set_info;
2189 #ifdef CONFIG_TCG
2190     cc->tcg_initialize = arm_translate_init;
2191     cc->tlb_fill = arm_cpu_tlb_fill;
2192 #endif
2193 }
2194 
2195 #ifdef CONFIG_KVM
2196 static void arm_host_initfn(Object *obj)
2197 {
2198     ARMCPU *cpu = ARM_CPU(obj);
2199 
2200     kvm_arm_set_cpu_features_from_host(cpu);
2201     arm_cpu_post_init(obj);
2202 }
2203 
2204 static const TypeInfo host_arm_cpu_type_info = {
2205     .name = TYPE_ARM_HOST_CPU,
2206 #ifdef TARGET_AARCH64
2207     .parent = TYPE_AARCH64_CPU,
2208 #else
2209     .parent = TYPE_ARM_CPU,
2210 #endif
2211     .instance_init = arm_host_initfn,
2212 };
2213 
2214 #endif
2215 
2216 static void arm_cpu_instance_init(Object *obj)
2217 {
2218     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2219 
2220     acc->info->initfn(obj);
2221     arm_cpu_post_init(obj);
2222 }
2223 
2224 static void cpu_register_class_init(ObjectClass *oc, void *data)
2225 {
2226     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2227 
2228     acc->info = data;
2229 }
2230 
2231 static void cpu_register(const ARMCPUInfo *info)
2232 {
2233     TypeInfo type_info = {
2234         .parent = TYPE_ARM_CPU,
2235         .instance_size = sizeof(ARMCPU),
2236         .instance_init = arm_cpu_instance_init,
2237         .class_size = sizeof(ARMCPUClass),
2238         .class_init = info->class_init ?: cpu_register_class_init,
2239         .class_data = (void *)info,
2240     };
2241 
2242     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2243     type_register(&type_info);
2244     g_free((void *)type_info.name);
2245 }
2246 
2247 static const TypeInfo arm_cpu_type_info = {
2248     .name = TYPE_ARM_CPU,
2249     .parent = TYPE_CPU,
2250     .instance_size = sizeof(ARMCPU),
2251     .instance_init = arm_cpu_initfn,
2252     .instance_finalize = arm_cpu_finalizefn,
2253     .abstract = true,
2254     .class_size = sizeof(ARMCPUClass),
2255     .class_init = arm_cpu_class_init,
2256 };
2257 
2258 static const TypeInfo idau_interface_type_info = {
2259     .name = TYPE_IDAU_INTERFACE,
2260     .parent = TYPE_INTERFACE,
2261     .class_size = sizeof(IDAUInterfaceClass),
2262 };
2263 
2264 static void arm_cpu_register_types(void)
2265 {
2266     const ARMCPUInfo *info = arm_cpus;
2267 
2268     type_register_static(&arm_cpu_type_info);
2269     type_register_static(&idau_interface_type_info);
2270 
2271     while (info->name) {
2272         cpu_register(info);
2273         info++;
2274     }
2275 
2276 #ifdef CONFIG_KVM
2277     type_register_static(&host_arm_cpu_type_info);
2278 #endif
2279 }
2280 
2281 type_init(arm_cpu_register_types)
2282