xref: /openbmc/qemu/target/arm/cpu.c (revision 10df8ff1)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* Enable all PAC instructions */
166         env->cp15.hcr_el2 |= HCR_API;
167         env->cp15.scr_el3 |= SCR_API;
168         /* and to the FP/Neon instructions */
169         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
170         /* and to the SVE instructions */
171         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
172         env->cp15.cptr_el[3] |= CPTR_EZ;
173         /* with maximum vector length */
174         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
175         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
176         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
177 #else
178         /* Reset into the highest available EL */
179         if (arm_feature(env, ARM_FEATURE_EL3)) {
180             env->pstate = PSTATE_MODE_EL3h;
181         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
182             env->pstate = PSTATE_MODE_EL2h;
183         } else {
184             env->pstate = PSTATE_MODE_EL1h;
185         }
186         env->pc = cpu->rvbar;
187 #endif
188     } else {
189 #if defined(CONFIG_USER_ONLY)
190         /* Userspace expects access to cp10 and cp11 for FP/Neon */
191         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
192 #endif
193     }
194 
195 #if defined(CONFIG_USER_ONLY)
196     env->uncached_cpsr = ARM_CPU_MODE_USR;
197     /* For user mode we must enable access to coprocessors */
198     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
199     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
200         env->cp15.c15_cpar = 3;
201     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
202         env->cp15.c15_cpar = 1;
203     }
204 #else
205 
206     /*
207      * If the highest available EL is EL2, AArch32 will start in Hyp
208      * mode; otherwise it starts in SVC. Note that if we start in
209      * AArch64 then these values in the uncached_cpsr will be ignored.
210      */
211     if (arm_feature(env, ARM_FEATURE_EL2) &&
212         !arm_feature(env, ARM_FEATURE_EL3)) {
213         env->uncached_cpsr = ARM_CPU_MODE_HYP;
214     } else {
215         env->uncached_cpsr = ARM_CPU_MODE_SVC;
216     }
217     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
218 
219     if (arm_feature(env, ARM_FEATURE_M)) {
220         uint32_t initial_msp; /* Loaded from 0x0 */
221         uint32_t initial_pc; /* Loaded from 0x4 */
222         uint8_t *rom;
223         uint32_t vecbase;
224 
225         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
226             env->v7m.secure = true;
227         } else {
228             /* This bit resets to 0 if security is supported, but 1 if
229              * it is not. The bit is not present in v7M, but we set it
230              * here so we can avoid having to make checks on it conditional
231              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
232              */
233             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
234         }
235 
236         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
237          * that it resets to 1, so QEMU always does that rather than making
238          * it dependent on CPU model. In v8M it is RES1.
239          */
240         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
241         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
242         if (arm_feature(env, ARM_FEATURE_V8)) {
243             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
244             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
245             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
246         }
247         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
248             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
249             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
250         }
251 
252         /* Unlike A/R profile, M profile defines the reset LR value */
253         env->regs[14] = 0xffffffff;
254 
255         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
256 
257         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
258         vecbase = env->v7m.vecbase[env->v7m.secure];
259         rom = rom_ptr(vecbase, 8);
260         if (rom) {
261             /* Address zero is covered by ROM which hasn't yet been
262              * copied into physical memory.
263              */
264             initial_msp = ldl_p(rom);
265             initial_pc = ldl_p(rom + 4);
266         } else {
267             /* Address zero not covered by a ROM blob, or the ROM blob
268              * is in non-modifiable memory and this is a second reset after
269              * it got copied into memory. In the latter case, rom_ptr
270              * will return a NULL pointer and we should use ldl_phys instead.
271              */
272             initial_msp = ldl_phys(s->as, vecbase);
273             initial_pc = ldl_phys(s->as, vecbase + 4);
274         }
275 
276         env->regs[13] = initial_msp & 0xFFFFFFFC;
277         env->regs[15] = initial_pc & ~1;
278         env->thumb = initial_pc & 1;
279     }
280 
281     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
282      * executing as AArch32 then check if highvecs are enabled and
283      * adjust the PC accordingly.
284      */
285     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
286         env->regs[15] = 0xFFFF0000;
287     }
288 
289     /* M profile requires that reset clears the exclusive monitor;
290      * A profile does not, but clearing it makes more sense than having it
291      * set with an exclusive access on address zero.
292      */
293     arm_clear_exclusive(env);
294 
295     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
296 #endif
297 
298     if (arm_feature(env, ARM_FEATURE_PMSA)) {
299         if (cpu->pmsav7_dregion > 0) {
300             if (arm_feature(env, ARM_FEATURE_V8)) {
301                 memset(env->pmsav8.rbar[M_REG_NS], 0,
302                        sizeof(*env->pmsav8.rbar[M_REG_NS])
303                        * cpu->pmsav7_dregion);
304                 memset(env->pmsav8.rlar[M_REG_NS], 0,
305                        sizeof(*env->pmsav8.rlar[M_REG_NS])
306                        * cpu->pmsav7_dregion);
307                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
308                     memset(env->pmsav8.rbar[M_REG_S], 0,
309                            sizeof(*env->pmsav8.rbar[M_REG_S])
310                            * cpu->pmsav7_dregion);
311                     memset(env->pmsav8.rlar[M_REG_S], 0,
312                            sizeof(*env->pmsav8.rlar[M_REG_S])
313                            * cpu->pmsav7_dregion);
314                 }
315             } else if (arm_feature(env, ARM_FEATURE_V7)) {
316                 memset(env->pmsav7.drbar, 0,
317                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
318                 memset(env->pmsav7.drsr, 0,
319                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
320                 memset(env->pmsav7.dracr, 0,
321                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
322             }
323         }
324         env->pmsav7.rnr[M_REG_NS] = 0;
325         env->pmsav7.rnr[M_REG_S] = 0;
326         env->pmsav8.mair0[M_REG_NS] = 0;
327         env->pmsav8.mair0[M_REG_S] = 0;
328         env->pmsav8.mair1[M_REG_NS] = 0;
329         env->pmsav8.mair1[M_REG_S] = 0;
330     }
331 
332     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
333         if (cpu->sau_sregion > 0) {
334             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
335             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
336         }
337         env->sau.rnr = 0;
338         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
339          * the Cortex-M33 does.
340          */
341         env->sau.ctrl = 0;
342     }
343 
344     set_flush_to_zero(1, &env->vfp.standard_fp_status);
345     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
346     set_default_nan_mode(1, &env->vfp.standard_fp_status);
347     set_float_detect_tininess(float_tininess_before_rounding,
348                               &env->vfp.fp_status);
349     set_float_detect_tininess(float_tininess_before_rounding,
350                               &env->vfp.standard_fp_status);
351     set_float_detect_tininess(float_tininess_before_rounding,
352                               &env->vfp.fp_status_f16);
353 #ifndef CONFIG_USER_ONLY
354     if (kvm_enabled()) {
355         kvm_arm_reset_vcpu(cpu);
356     }
357 #endif
358 
359     hw_breakpoint_update_all(cpu);
360     hw_watchpoint_update_all(cpu);
361 }
362 
363 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
364 {
365     CPUClass *cc = CPU_GET_CLASS(cs);
366     CPUARMState *env = cs->env_ptr;
367     uint32_t cur_el = arm_current_el(env);
368     bool secure = arm_is_secure(env);
369     uint32_t target_el;
370     uint32_t excp_idx;
371     bool ret = false;
372 
373     if (interrupt_request & CPU_INTERRUPT_FIQ) {
374         excp_idx = EXCP_FIQ;
375         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
376         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
377             cs->exception_index = excp_idx;
378             env->exception.target_el = target_el;
379             cc->do_interrupt(cs);
380             ret = true;
381         }
382     }
383     if (interrupt_request & CPU_INTERRUPT_HARD) {
384         excp_idx = EXCP_IRQ;
385         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
386         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
387             cs->exception_index = excp_idx;
388             env->exception.target_el = target_el;
389             cc->do_interrupt(cs);
390             ret = true;
391         }
392     }
393     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
394         excp_idx = EXCP_VIRQ;
395         target_el = 1;
396         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
397             cs->exception_index = excp_idx;
398             env->exception.target_el = target_el;
399             cc->do_interrupt(cs);
400             ret = true;
401         }
402     }
403     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
404         excp_idx = EXCP_VFIQ;
405         target_el = 1;
406         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
407             cs->exception_index = excp_idx;
408             env->exception.target_el = target_el;
409             cc->do_interrupt(cs);
410             ret = true;
411         }
412     }
413 
414     return ret;
415 }
416 
417 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
418 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
419 {
420     CPUClass *cc = CPU_GET_CLASS(cs);
421     ARMCPU *cpu = ARM_CPU(cs);
422     CPUARMState *env = &cpu->env;
423     bool ret = false;
424 
425     /* ARMv7-M interrupt masking works differently than -A or -R.
426      * There is no FIQ/IRQ distinction. Instead of I and F bits
427      * masking FIQ and IRQ interrupts, an exception is taken only
428      * if it is higher priority than the current execution priority
429      * (which depends on state like BASEPRI, FAULTMASK and the
430      * currently active exception).
431      */
432     if (interrupt_request & CPU_INTERRUPT_HARD
433         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
434         cs->exception_index = EXCP_IRQ;
435         cc->do_interrupt(cs);
436         ret = true;
437     }
438     return ret;
439 }
440 #endif
441 
442 void arm_cpu_update_virq(ARMCPU *cpu)
443 {
444     /*
445      * Update the interrupt level for VIRQ, which is the logical OR of
446      * the HCR_EL2.VI bit and the input line level from the GIC.
447      */
448     CPUARMState *env = &cpu->env;
449     CPUState *cs = CPU(cpu);
450 
451     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
452         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
453 
454     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
455         if (new_state) {
456             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
457         } else {
458             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
459         }
460     }
461 }
462 
463 void arm_cpu_update_vfiq(ARMCPU *cpu)
464 {
465     /*
466      * Update the interrupt level for VFIQ, which is the logical OR of
467      * the HCR_EL2.VF bit and the input line level from the GIC.
468      */
469     CPUARMState *env = &cpu->env;
470     CPUState *cs = CPU(cpu);
471 
472     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
473         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
474 
475     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
476         if (new_state) {
477             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
478         } else {
479             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
480         }
481     }
482 }
483 
484 #ifndef CONFIG_USER_ONLY
485 static void arm_cpu_set_irq(void *opaque, int irq, int level)
486 {
487     ARMCPU *cpu = opaque;
488     CPUARMState *env = &cpu->env;
489     CPUState *cs = CPU(cpu);
490     static const int mask[] = {
491         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
492         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
493         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
494         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
495     };
496 
497     if (level) {
498         env->irq_line_state |= mask[irq];
499     } else {
500         env->irq_line_state &= ~mask[irq];
501     }
502 
503     switch (irq) {
504     case ARM_CPU_VIRQ:
505         assert(arm_feature(env, ARM_FEATURE_EL2));
506         arm_cpu_update_virq(cpu);
507         break;
508     case ARM_CPU_VFIQ:
509         assert(arm_feature(env, ARM_FEATURE_EL2));
510         arm_cpu_update_vfiq(cpu);
511         break;
512     case ARM_CPU_IRQ:
513     case ARM_CPU_FIQ:
514         if (level) {
515             cpu_interrupt(cs, mask[irq]);
516         } else {
517             cpu_reset_interrupt(cs, mask[irq]);
518         }
519         break;
520     default:
521         g_assert_not_reached();
522     }
523 }
524 
525 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
526 {
527 #ifdef CONFIG_KVM
528     ARMCPU *cpu = opaque;
529     CPUARMState *env = &cpu->env;
530     CPUState *cs = CPU(cpu);
531     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
532     uint32_t linestate_bit;
533 
534     switch (irq) {
535     case ARM_CPU_IRQ:
536         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
537         linestate_bit = CPU_INTERRUPT_HARD;
538         break;
539     case ARM_CPU_FIQ:
540         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
541         linestate_bit = CPU_INTERRUPT_FIQ;
542         break;
543     default:
544         g_assert_not_reached();
545     }
546 
547     if (level) {
548         env->irq_line_state |= linestate_bit;
549     } else {
550         env->irq_line_state &= ~linestate_bit;
551     }
552 
553     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
554     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
555 #endif
556 }
557 
558 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
559 {
560     ARMCPU *cpu = ARM_CPU(cs);
561     CPUARMState *env = &cpu->env;
562 
563     cpu_synchronize_state(cs);
564     return arm_cpu_data_is_big_endian(env);
565 }
566 
567 #endif
568 
569 static inline void set_feature(CPUARMState *env, int feature)
570 {
571     env->features |= 1ULL << feature;
572 }
573 
574 static inline void unset_feature(CPUARMState *env, int feature)
575 {
576     env->features &= ~(1ULL << feature);
577 }
578 
579 static int
580 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
581 {
582   return print_insn_arm(pc | 1, info);
583 }
584 
585 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
586 {
587     ARMCPU *ac = ARM_CPU(cpu);
588     CPUARMState *env = &ac->env;
589     bool sctlr_b;
590 
591     if (is_a64(env)) {
592         /* We might not be compiled with the A64 disassembler
593          * because it needs a C++ compiler. Leave print_insn
594          * unset in this case to use the caller default behaviour.
595          */
596 #if defined(CONFIG_ARM_A64_DIS)
597         info->print_insn = print_insn_arm_a64;
598 #endif
599         info->cap_arch = CS_ARCH_ARM64;
600         info->cap_insn_unit = 4;
601         info->cap_insn_split = 4;
602     } else {
603         int cap_mode;
604         if (env->thumb) {
605             info->print_insn = print_insn_thumb1;
606             info->cap_insn_unit = 2;
607             info->cap_insn_split = 4;
608             cap_mode = CS_MODE_THUMB;
609         } else {
610             info->print_insn = print_insn_arm;
611             info->cap_insn_unit = 4;
612             info->cap_insn_split = 4;
613             cap_mode = CS_MODE_ARM;
614         }
615         if (arm_feature(env, ARM_FEATURE_V8)) {
616             cap_mode |= CS_MODE_V8;
617         }
618         if (arm_feature(env, ARM_FEATURE_M)) {
619             cap_mode |= CS_MODE_MCLASS;
620         }
621         info->cap_arch = CS_ARCH_ARM;
622         info->cap_mode = cap_mode;
623     }
624 
625     sctlr_b = arm_sctlr_b(env);
626     if (bswap_code(sctlr_b)) {
627 #ifdef TARGET_WORDS_BIGENDIAN
628         info->endian = BFD_ENDIAN_LITTLE;
629 #else
630         info->endian = BFD_ENDIAN_BIG;
631 #endif
632     }
633     info->flags &= ~INSN_ARM_BE32;
634 #ifndef CONFIG_USER_ONLY
635     if (sctlr_b) {
636         info->flags |= INSN_ARM_BE32;
637     }
638 #endif
639 }
640 
641 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
642 {
643     uint32_t Aff1 = idx / clustersz;
644     uint32_t Aff0 = idx % clustersz;
645     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
646 }
647 
648 static void cpreg_hashtable_data_destroy(gpointer data)
649 {
650     /*
651      * Destroy function for cpu->cp_regs hashtable data entries.
652      * We must free the name string because it was g_strdup()ed in
653      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
654      * from r->name because we know we definitely allocated it.
655      */
656     ARMCPRegInfo *r = data;
657 
658     g_free((void *)r->name);
659     g_free(r);
660 }
661 
662 static void arm_cpu_initfn(Object *obj)
663 {
664     CPUState *cs = CPU(obj);
665     ARMCPU *cpu = ARM_CPU(obj);
666 
667     cs->env_ptr = &cpu->env;
668     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
669                                          g_free, cpreg_hashtable_data_destroy);
670 
671     QLIST_INIT(&cpu->pre_el_change_hooks);
672     QLIST_INIT(&cpu->el_change_hooks);
673 
674 #ifndef CONFIG_USER_ONLY
675     /* Our inbound IRQ and FIQ lines */
676     if (kvm_enabled()) {
677         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
678          * the same interface as non-KVM CPUs.
679          */
680         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
681     } else {
682         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
683     }
684 
685     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
686                        ARRAY_SIZE(cpu->gt_timer_outputs));
687 
688     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
689                              "gicv3-maintenance-interrupt", 1);
690     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
691                              "pmu-interrupt", 1);
692 #endif
693 
694     /* DTB consumers generally don't in fact care what the 'compatible'
695      * string is, so always provide some string and trust that a hypothetical
696      * picky DTB consumer will also provide a helpful error message.
697      */
698     cpu->dtb_compatible = "qemu,unknown";
699     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
700     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
701 
702     if (tcg_enabled()) {
703         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
704     }
705 }
706 
707 static Property arm_cpu_reset_cbar_property =
708             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
709 
710 static Property arm_cpu_reset_hivecs_property =
711             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
712 
713 static Property arm_cpu_rvbar_property =
714             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
715 
716 static Property arm_cpu_has_el2_property =
717             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
718 
719 static Property arm_cpu_has_el3_property =
720             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
721 
722 static Property arm_cpu_cfgend_property =
723             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
724 
725 /* use property name "pmu" to match other archs and virt tools */
726 static Property arm_cpu_has_pmu_property =
727             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
728 
729 static Property arm_cpu_has_mpu_property =
730             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
731 
732 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
733  * because the CPU initfn will have already set cpu->pmsav7_dregion to
734  * the right value for that particular CPU type, and we don't want
735  * to override that with an incorrect constant value.
736  */
737 static Property arm_cpu_pmsav7_dregion_property =
738             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
739                                            pmsav7_dregion,
740                                            qdev_prop_uint32, uint32_t);
741 
742 /* M profile: initial value of the Secure VTOR */
743 static Property arm_cpu_initsvtor_property =
744             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
745 
746 void arm_cpu_post_init(Object *obj)
747 {
748     ARMCPU *cpu = ARM_CPU(obj);
749 
750     /* M profile implies PMSA. We have to do this here rather than
751      * in realize with the other feature-implication checks because
752      * we look at the PMSA bit to see if we should add some properties.
753      */
754     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
755         set_feature(&cpu->env, ARM_FEATURE_PMSA);
756     }
757 
758     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
759         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
760         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
761                                  &error_abort);
762     }
763 
764     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
765         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
766                                  &error_abort);
767     }
768 
769     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
770         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
771                                  &error_abort);
772     }
773 
774     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
775         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
776          * prevent "has_el3" from existing on CPUs which cannot support EL3.
777          */
778         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
779                                  &error_abort);
780 
781 #ifndef CONFIG_USER_ONLY
782         object_property_add_link(obj, "secure-memory",
783                                  TYPE_MEMORY_REGION,
784                                  (Object **)&cpu->secure_memory,
785                                  qdev_prop_allow_set_link_before_realize,
786                                  OBJ_PROP_LINK_STRONG,
787                                  &error_abort);
788 #endif
789     }
790 
791     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
792         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
793                                  &error_abort);
794     }
795 
796     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
797         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
798                                  &error_abort);
799     }
800 
801     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
802         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
803                                  &error_abort);
804         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
805             qdev_property_add_static(DEVICE(obj),
806                                      &arm_cpu_pmsav7_dregion_property,
807                                      &error_abort);
808         }
809     }
810 
811     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
812         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
813                                  qdev_prop_allow_set_link_before_realize,
814                                  OBJ_PROP_LINK_STRONG,
815                                  &error_abort);
816         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
817                                  &error_abort);
818     }
819 
820     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
821                              &error_abort);
822 }
823 
824 static void arm_cpu_finalizefn(Object *obj)
825 {
826     ARMCPU *cpu = ARM_CPU(obj);
827     ARMELChangeHook *hook, *next;
828 
829     g_hash_table_destroy(cpu->cp_regs);
830 
831     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
832         QLIST_REMOVE(hook, node);
833         g_free(hook);
834     }
835     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
836         QLIST_REMOVE(hook, node);
837         g_free(hook);
838     }
839 }
840 
841 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
842 {
843     CPUState *cs = CPU(dev);
844     ARMCPU *cpu = ARM_CPU(dev);
845     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
846     CPUARMState *env = &cpu->env;
847     int pagebits;
848     Error *local_err = NULL;
849     bool no_aa32 = false;
850 
851     /* If we needed to query the host kernel for the CPU features
852      * then it's possible that might have failed in the initfn, but
853      * this is the first point where we can report it.
854      */
855     if (cpu->host_cpu_probe_failed) {
856         if (!kvm_enabled()) {
857             error_setg(errp, "The 'host' CPU type can only be used with KVM");
858         } else {
859             error_setg(errp, "Failed to retrieve host CPU features");
860         }
861         return;
862     }
863 
864 #ifndef CONFIG_USER_ONLY
865     /* The NVIC and M-profile CPU are two halves of a single piece of
866      * hardware; trying to use one without the other is a command line
867      * error and will result in segfaults if not caught here.
868      */
869     if (arm_feature(env, ARM_FEATURE_M)) {
870         if (!env->nvic) {
871             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
872             return;
873         }
874     } else {
875         if (env->nvic) {
876             error_setg(errp, "This board can only be used with Cortex-M CPUs");
877             return;
878         }
879     }
880 
881     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
882                                            arm_gt_ptimer_cb, cpu);
883     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
884                                            arm_gt_vtimer_cb, cpu);
885     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
886                                           arm_gt_htimer_cb, cpu);
887     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
888                                           arm_gt_stimer_cb, cpu);
889 #endif
890 
891     cpu_exec_realizefn(cs, &local_err);
892     if (local_err != NULL) {
893         error_propagate(errp, local_err);
894         return;
895     }
896 
897     /* Some features automatically imply others: */
898     if (arm_feature(env, ARM_FEATURE_V8)) {
899         if (arm_feature(env, ARM_FEATURE_M)) {
900             set_feature(env, ARM_FEATURE_V7);
901         } else {
902             set_feature(env, ARM_FEATURE_V7VE);
903         }
904     }
905 
906     /*
907      * There exist AArch64 cpus without AArch32 support.  When KVM
908      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
909      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
910      */
911     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
912         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
913     }
914 
915     if (arm_feature(env, ARM_FEATURE_V7VE)) {
916         /* v7 Virtualization Extensions. In real hardware this implies
917          * EL2 and also the presence of the Security Extensions.
918          * For QEMU, for backwards-compatibility we implement some
919          * CPUs or CPU configs which have no actual EL2 or EL3 but do
920          * include the various other features that V7VE implies.
921          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
922          * Security Extensions is ARM_FEATURE_EL3.
923          */
924         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
925         set_feature(env, ARM_FEATURE_LPAE);
926         set_feature(env, ARM_FEATURE_V7);
927     }
928     if (arm_feature(env, ARM_FEATURE_V7)) {
929         set_feature(env, ARM_FEATURE_VAPA);
930         set_feature(env, ARM_FEATURE_THUMB2);
931         set_feature(env, ARM_FEATURE_MPIDR);
932         if (!arm_feature(env, ARM_FEATURE_M)) {
933             set_feature(env, ARM_FEATURE_V6K);
934         } else {
935             set_feature(env, ARM_FEATURE_V6);
936         }
937 
938         /* Always define VBAR for V7 CPUs even if it doesn't exist in
939          * non-EL3 configs. This is needed by some legacy boards.
940          */
941         set_feature(env, ARM_FEATURE_VBAR);
942     }
943     if (arm_feature(env, ARM_FEATURE_V6K)) {
944         set_feature(env, ARM_FEATURE_V6);
945         set_feature(env, ARM_FEATURE_MVFR);
946     }
947     if (arm_feature(env, ARM_FEATURE_V6)) {
948         set_feature(env, ARM_FEATURE_V5);
949         if (!arm_feature(env, ARM_FEATURE_M)) {
950             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
951             set_feature(env, ARM_FEATURE_AUXCR);
952         }
953     }
954     if (arm_feature(env, ARM_FEATURE_V5)) {
955         set_feature(env, ARM_FEATURE_V4T);
956     }
957     if (arm_feature(env, ARM_FEATURE_VFP4)) {
958         set_feature(env, ARM_FEATURE_VFP3);
959         set_feature(env, ARM_FEATURE_VFP_FP16);
960     }
961     if (arm_feature(env, ARM_FEATURE_VFP3)) {
962         set_feature(env, ARM_FEATURE_VFP);
963     }
964     if (arm_feature(env, ARM_FEATURE_LPAE)) {
965         set_feature(env, ARM_FEATURE_V7MP);
966         set_feature(env, ARM_FEATURE_PXN);
967     }
968     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
969         set_feature(env, ARM_FEATURE_CBAR);
970     }
971     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
972         !arm_feature(env, ARM_FEATURE_M)) {
973         set_feature(env, ARM_FEATURE_THUMB_DSP);
974     }
975 
976     if (arm_feature(env, ARM_FEATURE_V7) &&
977         !arm_feature(env, ARM_FEATURE_M) &&
978         !arm_feature(env, ARM_FEATURE_PMSA)) {
979         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
980          * can use 4K pages.
981          */
982         pagebits = 12;
983     } else {
984         /* For CPUs which might have tiny 1K pages, or which have an
985          * MPU and might have small region sizes, stick with 1K pages.
986          */
987         pagebits = 10;
988     }
989     if (!set_preferred_target_page_bits(pagebits)) {
990         /* This can only ever happen for hotplugging a CPU, or if
991          * the board code incorrectly creates a CPU which it has
992          * promised via minimum_page_size that it will not.
993          */
994         error_setg(errp, "This CPU requires a smaller page size than the "
995                    "system is using");
996         return;
997     }
998 
999     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1000      * We don't support setting cluster ID ([16..23]) (known as Aff2
1001      * in later ARM ARM versions), or any of the higher affinity level fields,
1002      * so these bits always RAZ.
1003      */
1004     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1005         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1006                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1007     }
1008 
1009     if (cpu->reset_hivecs) {
1010             cpu->reset_sctlr |= (1 << 13);
1011     }
1012 
1013     if (cpu->cfgend) {
1014         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1015             cpu->reset_sctlr |= SCTLR_EE;
1016         } else {
1017             cpu->reset_sctlr |= SCTLR_B;
1018         }
1019     }
1020 
1021     if (!cpu->has_el3) {
1022         /* If the has_el3 CPU property is disabled then we need to disable the
1023          * feature.
1024          */
1025         unset_feature(env, ARM_FEATURE_EL3);
1026 
1027         /* Disable the security extension feature bits in the processor feature
1028          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1029          */
1030         cpu->id_pfr1 &= ~0xf0;
1031         cpu->isar.id_aa64pfr0 &= ~0xf000;
1032     }
1033 
1034     if (!cpu->has_el2) {
1035         unset_feature(env, ARM_FEATURE_EL2);
1036     }
1037 
1038     if (!cpu->has_pmu) {
1039         unset_feature(env, ARM_FEATURE_PMU);
1040     }
1041     if (arm_feature(env, ARM_FEATURE_PMU)) {
1042         cpu->pmceid0 = get_pmceid(&cpu->env, 0);
1043         cpu->pmceid1 = get_pmceid(&cpu->env, 1);
1044 
1045         if (!kvm_enabled()) {
1046             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1047             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1048         }
1049     } else {
1050         cpu->id_aa64dfr0 &= ~0xf00;
1051         cpu->pmceid0 = 0;
1052         cpu->pmceid1 = 0;
1053     }
1054 
1055     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1056         /* Disable the hypervisor feature bits in the processor feature
1057          * registers if we don't have EL2. These are id_pfr1[15:12] and
1058          * id_aa64pfr0_el1[11:8].
1059          */
1060         cpu->isar.id_aa64pfr0 &= ~0xf00;
1061         cpu->id_pfr1 &= ~0xf000;
1062     }
1063 
1064     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1065      * to false or by setting pmsav7-dregion to 0.
1066      */
1067     if (!cpu->has_mpu) {
1068         cpu->pmsav7_dregion = 0;
1069     }
1070     if (cpu->pmsav7_dregion == 0) {
1071         cpu->has_mpu = false;
1072     }
1073 
1074     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1075         arm_feature(env, ARM_FEATURE_V7)) {
1076         uint32_t nr = cpu->pmsav7_dregion;
1077 
1078         if (nr > 0xff) {
1079             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1080             return;
1081         }
1082 
1083         if (nr) {
1084             if (arm_feature(env, ARM_FEATURE_V8)) {
1085                 /* PMSAv8 */
1086                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1087                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1088                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1089                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1090                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1091                 }
1092             } else {
1093                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1094                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1095                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1096             }
1097         }
1098     }
1099 
1100     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1101         uint32_t nr = cpu->sau_sregion;
1102 
1103         if (nr > 0xff) {
1104             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1105             return;
1106         }
1107 
1108         if (nr) {
1109             env->sau.rbar = g_new0(uint32_t, nr);
1110             env->sau.rlar = g_new0(uint32_t, nr);
1111         }
1112     }
1113 
1114     if (arm_feature(env, ARM_FEATURE_EL3)) {
1115         set_feature(env, ARM_FEATURE_VBAR);
1116     }
1117 
1118     register_cp_regs_for_features(cpu);
1119     arm_cpu_register_gdb_regs_for_features(cpu);
1120 
1121     init_cpreg_list(cpu);
1122 
1123 #ifndef CONFIG_USER_ONLY
1124     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1125         cs->num_ases = 2;
1126 
1127         if (!cpu->secure_memory) {
1128             cpu->secure_memory = cs->memory;
1129         }
1130         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1131                                cpu->secure_memory);
1132     } else {
1133         cs->num_ases = 1;
1134     }
1135     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1136 
1137     /* No core_count specified, default to smp_cpus. */
1138     if (cpu->core_count == -1) {
1139         cpu->core_count = smp_cpus;
1140     }
1141 #endif
1142 
1143     qemu_init_vcpu(cs);
1144     cpu_reset(cs);
1145 
1146     acc->parent_realize(dev, errp);
1147 }
1148 
1149 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1150 {
1151     ObjectClass *oc;
1152     char *typename;
1153     char **cpuname;
1154     const char *cpunamestr;
1155 
1156     cpuname = g_strsplit(cpu_model, ",", 1);
1157     cpunamestr = cpuname[0];
1158 #ifdef CONFIG_USER_ONLY
1159     /* For backwards compatibility usermode emulation allows "-cpu any",
1160      * which has the same semantics as "-cpu max".
1161      */
1162     if (!strcmp(cpunamestr, "any")) {
1163         cpunamestr = "max";
1164     }
1165 #endif
1166     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1167     oc = object_class_by_name(typename);
1168     g_strfreev(cpuname);
1169     g_free(typename);
1170     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1171         object_class_is_abstract(oc)) {
1172         return NULL;
1173     }
1174     return oc;
1175 }
1176 
1177 /* CPU models. These are not needed for the AArch64 linux-user build. */
1178 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1179 
1180 static void arm926_initfn(Object *obj)
1181 {
1182     ARMCPU *cpu = ARM_CPU(obj);
1183 
1184     cpu->dtb_compatible = "arm,arm926";
1185     set_feature(&cpu->env, ARM_FEATURE_V5);
1186     set_feature(&cpu->env, ARM_FEATURE_VFP);
1187     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1188     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1189     cpu->midr = 0x41069265;
1190     cpu->reset_fpsid = 0x41011090;
1191     cpu->ctr = 0x1dd20d2;
1192     cpu->reset_sctlr = 0x00090078;
1193 
1194     /*
1195      * ARMv5 does not have the ID_ISAR registers, but we can still
1196      * set the field to indicate Jazelle support within QEMU.
1197      */
1198     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1199 }
1200 
1201 static void arm946_initfn(Object *obj)
1202 {
1203     ARMCPU *cpu = ARM_CPU(obj);
1204 
1205     cpu->dtb_compatible = "arm,arm946";
1206     set_feature(&cpu->env, ARM_FEATURE_V5);
1207     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1208     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1209     cpu->midr = 0x41059461;
1210     cpu->ctr = 0x0f004006;
1211     cpu->reset_sctlr = 0x00000078;
1212 }
1213 
1214 static void arm1026_initfn(Object *obj)
1215 {
1216     ARMCPU *cpu = ARM_CPU(obj);
1217 
1218     cpu->dtb_compatible = "arm,arm1026";
1219     set_feature(&cpu->env, ARM_FEATURE_V5);
1220     set_feature(&cpu->env, ARM_FEATURE_VFP);
1221     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1222     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1223     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1224     cpu->midr = 0x4106a262;
1225     cpu->reset_fpsid = 0x410110a0;
1226     cpu->ctr = 0x1dd20d2;
1227     cpu->reset_sctlr = 0x00090078;
1228     cpu->reset_auxcr = 1;
1229 
1230     /*
1231      * ARMv5 does not have the ID_ISAR registers, but we can still
1232      * set the field to indicate Jazelle support within QEMU.
1233      */
1234     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1235 
1236     {
1237         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1238         ARMCPRegInfo ifar = {
1239             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1240             .access = PL1_RW,
1241             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1242             .resetvalue = 0
1243         };
1244         define_one_arm_cp_reg(cpu, &ifar);
1245     }
1246 }
1247 
1248 static void arm1136_r2_initfn(Object *obj)
1249 {
1250     ARMCPU *cpu = ARM_CPU(obj);
1251     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1252      * older core than plain "arm1136". In particular this does not
1253      * have the v6K features.
1254      * These ID register values are correct for 1136 but may be wrong
1255      * for 1136_r2 (in particular r0p2 does not actually implement most
1256      * of the ID registers).
1257      */
1258 
1259     cpu->dtb_compatible = "arm,arm1136";
1260     set_feature(&cpu->env, ARM_FEATURE_V6);
1261     set_feature(&cpu->env, ARM_FEATURE_VFP);
1262     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1263     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1264     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1265     cpu->midr = 0x4107b362;
1266     cpu->reset_fpsid = 0x410120b4;
1267     cpu->isar.mvfr0 = 0x11111111;
1268     cpu->isar.mvfr1 = 0x00000000;
1269     cpu->ctr = 0x1dd20d2;
1270     cpu->reset_sctlr = 0x00050078;
1271     cpu->id_pfr0 = 0x111;
1272     cpu->id_pfr1 = 0x1;
1273     cpu->id_dfr0 = 0x2;
1274     cpu->id_afr0 = 0x3;
1275     cpu->id_mmfr0 = 0x01130003;
1276     cpu->id_mmfr1 = 0x10030302;
1277     cpu->id_mmfr2 = 0x01222110;
1278     cpu->isar.id_isar0 = 0x00140011;
1279     cpu->isar.id_isar1 = 0x12002111;
1280     cpu->isar.id_isar2 = 0x11231111;
1281     cpu->isar.id_isar3 = 0x01102131;
1282     cpu->isar.id_isar4 = 0x141;
1283     cpu->reset_auxcr = 7;
1284 }
1285 
1286 static void arm1136_initfn(Object *obj)
1287 {
1288     ARMCPU *cpu = ARM_CPU(obj);
1289 
1290     cpu->dtb_compatible = "arm,arm1136";
1291     set_feature(&cpu->env, ARM_FEATURE_V6K);
1292     set_feature(&cpu->env, ARM_FEATURE_V6);
1293     set_feature(&cpu->env, ARM_FEATURE_VFP);
1294     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1295     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1296     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1297     cpu->midr = 0x4117b363;
1298     cpu->reset_fpsid = 0x410120b4;
1299     cpu->isar.mvfr0 = 0x11111111;
1300     cpu->isar.mvfr1 = 0x00000000;
1301     cpu->ctr = 0x1dd20d2;
1302     cpu->reset_sctlr = 0x00050078;
1303     cpu->id_pfr0 = 0x111;
1304     cpu->id_pfr1 = 0x1;
1305     cpu->id_dfr0 = 0x2;
1306     cpu->id_afr0 = 0x3;
1307     cpu->id_mmfr0 = 0x01130003;
1308     cpu->id_mmfr1 = 0x10030302;
1309     cpu->id_mmfr2 = 0x01222110;
1310     cpu->isar.id_isar0 = 0x00140011;
1311     cpu->isar.id_isar1 = 0x12002111;
1312     cpu->isar.id_isar2 = 0x11231111;
1313     cpu->isar.id_isar3 = 0x01102131;
1314     cpu->isar.id_isar4 = 0x141;
1315     cpu->reset_auxcr = 7;
1316 }
1317 
1318 static void arm1176_initfn(Object *obj)
1319 {
1320     ARMCPU *cpu = ARM_CPU(obj);
1321 
1322     cpu->dtb_compatible = "arm,arm1176";
1323     set_feature(&cpu->env, ARM_FEATURE_V6K);
1324     set_feature(&cpu->env, ARM_FEATURE_VFP);
1325     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1326     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1327     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1328     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1329     set_feature(&cpu->env, ARM_FEATURE_EL3);
1330     cpu->midr = 0x410fb767;
1331     cpu->reset_fpsid = 0x410120b5;
1332     cpu->isar.mvfr0 = 0x11111111;
1333     cpu->isar.mvfr1 = 0x00000000;
1334     cpu->ctr = 0x1dd20d2;
1335     cpu->reset_sctlr = 0x00050078;
1336     cpu->id_pfr0 = 0x111;
1337     cpu->id_pfr1 = 0x11;
1338     cpu->id_dfr0 = 0x33;
1339     cpu->id_afr0 = 0;
1340     cpu->id_mmfr0 = 0x01130003;
1341     cpu->id_mmfr1 = 0x10030302;
1342     cpu->id_mmfr2 = 0x01222100;
1343     cpu->isar.id_isar0 = 0x0140011;
1344     cpu->isar.id_isar1 = 0x12002111;
1345     cpu->isar.id_isar2 = 0x11231121;
1346     cpu->isar.id_isar3 = 0x01102131;
1347     cpu->isar.id_isar4 = 0x01141;
1348     cpu->reset_auxcr = 7;
1349 }
1350 
1351 static void arm11mpcore_initfn(Object *obj)
1352 {
1353     ARMCPU *cpu = ARM_CPU(obj);
1354 
1355     cpu->dtb_compatible = "arm,arm11mpcore";
1356     set_feature(&cpu->env, ARM_FEATURE_V6K);
1357     set_feature(&cpu->env, ARM_FEATURE_VFP);
1358     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1359     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1360     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1361     cpu->midr = 0x410fb022;
1362     cpu->reset_fpsid = 0x410120b4;
1363     cpu->isar.mvfr0 = 0x11111111;
1364     cpu->isar.mvfr1 = 0x00000000;
1365     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1366     cpu->id_pfr0 = 0x111;
1367     cpu->id_pfr1 = 0x1;
1368     cpu->id_dfr0 = 0;
1369     cpu->id_afr0 = 0x2;
1370     cpu->id_mmfr0 = 0x01100103;
1371     cpu->id_mmfr1 = 0x10020302;
1372     cpu->id_mmfr2 = 0x01222000;
1373     cpu->isar.id_isar0 = 0x00100011;
1374     cpu->isar.id_isar1 = 0x12002111;
1375     cpu->isar.id_isar2 = 0x11221011;
1376     cpu->isar.id_isar3 = 0x01102131;
1377     cpu->isar.id_isar4 = 0x141;
1378     cpu->reset_auxcr = 1;
1379 }
1380 
1381 static void cortex_m0_initfn(Object *obj)
1382 {
1383     ARMCPU *cpu = ARM_CPU(obj);
1384     set_feature(&cpu->env, ARM_FEATURE_V6);
1385     set_feature(&cpu->env, ARM_FEATURE_M);
1386 
1387     cpu->midr = 0x410cc200;
1388 }
1389 
1390 static void cortex_m3_initfn(Object *obj)
1391 {
1392     ARMCPU *cpu = ARM_CPU(obj);
1393     set_feature(&cpu->env, ARM_FEATURE_V7);
1394     set_feature(&cpu->env, ARM_FEATURE_M);
1395     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1396     cpu->midr = 0x410fc231;
1397     cpu->pmsav7_dregion = 8;
1398     cpu->id_pfr0 = 0x00000030;
1399     cpu->id_pfr1 = 0x00000200;
1400     cpu->id_dfr0 = 0x00100000;
1401     cpu->id_afr0 = 0x00000000;
1402     cpu->id_mmfr0 = 0x00000030;
1403     cpu->id_mmfr1 = 0x00000000;
1404     cpu->id_mmfr2 = 0x00000000;
1405     cpu->id_mmfr3 = 0x00000000;
1406     cpu->isar.id_isar0 = 0x01141110;
1407     cpu->isar.id_isar1 = 0x02111000;
1408     cpu->isar.id_isar2 = 0x21112231;
1409     cpu->isar.id_isar3 = 0x01111110;
1410     cpu->isar.id_isar4 = 0x01310102;
1411     cpu->isar.id_isar5 = 0x00000000;
1412     cpu->isar.id_isar6 = 0x00000000;
1413 }
1414 
1415 static void cortex_m4_initfn(Object *obj)
1416 {
1417     ARMCPU *cpu = ARM_CPU(obj);
1418 
1419     set_feature(&cpu->env, ARM_FEATURE_V7);
1420     set_feature(&cpu->env, ARM_FEATURE_M);
1421     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1422     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1423     cpu->midr = 0x410fc240; /* r0p0 */
1424     cpu->pmsav7_dregion = 8;
1425     cpu->id_pfr0 = 0x00000030;
1426     cpu->id_pfr1 = 0x00000200;
1427     cpu->id_dfr0 = 0x00100000;
1428     cpu->id_afr0 = 0x00000000;
1429     cpu->id_mmfr0 = 0x00000030;
1430     cpu->id_mmfr1 = 0x00000000;
1431     cpu->id_mmfr2 = 0x00000000;
1432     cpu->id_mmfr3 = 0x00000000;
1433     cpu->isar.id_isar0 = 0x01141110;
1434     cpu->isar.id_isar1 = 0x02111000;
1435     cpu->isar.id_isar2 = 0x21112231;
1436     cpu->isar.id_isar3 = 0x01111110;
1437     cpu->isar.id_isar4 = 0x01310102;
1438     cpu->isar.id_isar5 = 0x00000000;
1439     cpu->isar.id_isar6 = 0x00000000;
1440 }
1441 
1442 static void cortex_m33_initfn(Object *obj)
1443 {
1444     ARMCPU *cpu = ARM_CPU(obj);
1445 
1446     set_feature(&cpu->env, ARM_FEATURE_V8);
1447     set_feature(&cpu->env, ARM_FEATURE_M);
1448     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1449     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1450     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1451     cpu->midr = 0x410fd213; /* r0p3 */
1452     cpu->pmsav7_dregion = 16;
1453     cpu->sau_sregion = 8;
1454     cpu->id_pfr0 = 0x00000030;
1455     cpu->id_pfr1 = 0x00000210;
1456     cpu->id_dfr0 = 0x00200000;
1457     cpu->id_afr0 = 0x00000000;
1458     cpu->id_mmfr0 = 0x00101F40;
1459     cpu->id_mmfr1 = 0x00000000;
1460     cpu->id_mmfr2 = 0x01000000;
1461     cpu->id_mmfr3 = 0x00000000;
1462     cpu->isar.id_isar0 = 0x01101110;
1463     cpu->isar.id_isar1 = 0x02212000;
1464     cpu->isar.id_isar2 = 0x20232232;
1465     cpu->isar.id_isar3 = 0x01111131;
1466     cpu->isar.id_isar4 = 0x01310132;
1467     cpu->isar.id_isar5 = 0x00000000;
1468     cpu->isar.id_isar6 = 0x00000000;
1469     cpu->clidr = 0x00000000;
1470     cpu->ctr = 0x8000c000;
1471 }
1472 
1473 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1474 {
1475     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1476     CPUClass *cc = CPU_CLASS(oc);
1477 
1478     acc->info = data;
1479 #ifndef CONFIG_USER_ONLY
1480     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1481 #endif
1482 
1483     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1484 }
1485 
1486 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1487     /* Dummy the TCM region regs for the moment */
1488     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1489       .access = PL1_RW, .type = ARM_CP_CONST },
1490     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1491       .access = PL1_RW, .type = ARM_CP_CONST },
1492     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1493       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1494     REGINFO_SENTINEL
1495 };
1496 
1497 static void cortex_r5_initfn(Object *obj)
1498 {
1499     ARMCPU *cpu = ARM_CPU(obj);
1500 
1501     set_feature(&cpu->env, ARM_FEATURE_V7);
1502     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1503     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1504     cpu->midr = 0x411fc153; /* r1p3 */
1505     cpu->id_pfr0 = 0x0131;
1506     cpu->id_pfr1 = 0x001;
1507     cpu->id_dfr0 = 0x010400;
1508     cpu->id_afr0 = 0x0;
1509     cpu->id_mmfr0 = 0x0210030;
1510     cpu->id_mmfr1 = 0x00000000;
1511     cpu->id_mmfr2 = 0x01200000;
1512     cpu->id_mmfr3 = 0x0211;
1513     cpu->isar.id_isar0 = 0x02101111;
1514     cpu->isar.id_isar1 = 0x13112111;
1515     cpu->isar.id_isar2 = 0x21232141;
1516     cpu->isar.id_isar3 = 0x01112131;
1517     cpu->isar.id_isar4 = 0x0010142;
1518     cpu->isar.id_isar5 = 0x0;
1519     cpu->isar.id_isar6 = 0x0;
1520     cpu->mp_is_up = true;
1521     cpu->pmsav7_dregion = 16;
1522     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1523 }
1524 
1525 static void cortex_r5f_initfn(Object *obj)
1526 {
1527     ARMCPU *cpu = ARM_CPU(obj);
1528 
1529     cortex_r5_initfn(obj);
1530     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1531 }
1532 
1533 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1534     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1535       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1536     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1537       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1538     REGINFO_SENTINEL
1539 };
1540 
1541 static void cortex_a8_initfn(Object *obj)
1542 {
1543     ARMCPU *cpu = ARM_CPU(obj);
1544 
1545     cpu->dtb_compatible = "arm,cortex-a8";
1546     set_feature(&cpu->env, ARM_FEATURE_V7);
1547     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1548     set_feature(&cpu->env, ARM_FEATURE_NEON);
1549     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1550     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1551     set_feature(&cpu->env, ARM_FEATURE_EL3);
1552     cpu->midr = 0x410fc080;
1553     cpu->reset_fpsid = 0x410330c0;
1554     cpu->isar.mvfr0 = 0x11110222;
1555     cpu->isar.mvfr1 = 0x00011111;
1556     cpu->ctr = 0x82048004;
1557     cpu->reset_sctlr = 0x00c50078;
1558     cpu->id_pfr0 = 0x1031;
1559     cpu->id_pfr1 = 0x11;
1560     cpu->id_dfr0 = 0x400;
1561     cpu->id_afr0 = 0;
1562     cpu->id_mmfr0 = 0x31100003;
1563     cpu->id_mmfr1 = 0x20000000;
1564     cpu->id_mmfr2 = 0x01202000;
1565     cpu->id_mmfr3 = 0x11;
1566     cpu->isar.id_isar0 = 0x00101111;
1567     cpu->isar.id_isar1 = 0x12112111;
1568     cpu->isar.id_isar2 = 0x21232031;
1569     cpu->isar.id_isar3 = 0x11112131;
1570     cpu->isar.id_isar4 = 0x00111142;
1571     cpu->dbgdidr = 0x15141000;
1572     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1573     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1574     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1575     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1576     cpu->reset_auxcr = 2;
1577     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1578 }
1579 
1580 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1581     /* power_control should be set to maximum latency. Again,
1582      * default to 0 and set by private hook
1583      */
1584     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1585       .access = PL1_RW, .resetvalue = 0,
1586       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1587     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1588       .access = PL1_RW, .resetvalue = 0,
1589       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1590     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1591       .access = PL1_RW, .resetvalue = 0,
1592       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1593     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1594       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1595     /* TLB lockdown control */
1596     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1597       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1598     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1599       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1600     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1601       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1602     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1603       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1604     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1605       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1606     REGINFO_SENTINEL
1607 };
1608 
1609 static void cortex_a9_initfn(Object *obj)
1610 {
1611     ARMCPU *cpu = ARM_CPU(obj);
1612 
1613     cpu->dtb_compatible = "arm,cortex-a9";
1614     set_feature(&cpu->env, ARM_FEATURE_V7);
1615     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1616     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1617     set_feature(&cpu->env, ARM_FEATURE_NEON);
1618     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1619     set_feature(&cpu->env, ARM_FEATURE_EL3);
1620     /* Note that A9 supports the MP extensions even for
1621      * A9UP and single-core A9MP (which are both different
1622      * and valid configurations; we don't model A9UP).
1623      */
1624     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1625     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1626     cpu->midr = 0x410fc090;
1627     cpu->reset_fpsid = 0x41033090;
1628     cpu->isar.mvfr0 = 0x11110222;
1629     cpu->isar.mvfr1 = 0x01111111;
1630     cpu->ctr = 0x80038003;
1631     cpu->reset_sctlr = 0x00c50078;
1632     cpu->id_pfr0 = 0x1031;
1633     cpu->id_pfr1 = 0x11;
1634     cpu->id_dfr0 = 0x000;
1635     cpu->id_afr0 = 0;
1636     cpu->id_mmfr0 = 0x00100103;
1637     cpu->id_mmfr1 = 0x20000000;
1638     cpu->id_mmfr2 = 0x01230000;
1639     cpu->id_mmfr3 = 0x00002111;
1640     cpu->isar.id_isar0 = 0x00101111;
1641     cpu->isar.id_isar1 = 0x13112111;
1642     cpu->isar.id_isar2 = 0x21232041;
1643     cpu->isar.id_isar3 = 0x11112131;
1644     cpu->isar.id_isar4 = 0x00111142;
1645     cpu->dbgdidr = 0x35141000;
1646     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1647     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1648     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1649     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1650 }
1651 
1652 #ifndef CONFIG_USER_ONLY
1653 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1654 {
1655     /* Linux wants the number of processors from here.
1656      * Might as well set the interrupt-controller bit too.
1657      */
1658     return ((smp_cpus - 1) << 24) | (1 << 23);
1659 }
1660 #endif
1661 
1662 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1663 #ifndef CONFIG_USER_ONLY
1664     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1665       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1666       .writefn = arm_cp_write_ignore, },
1667 #endif
1668     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1669       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1670     REGINFO_SENTINEL
1671 };
1672 
1673 static void cortex_a7_initfn(Object *obj)
1674 {
1675     ARMCPU *cpu = ARM_CPU(obj);
1676 
1677     cpu->dtb_compatible = "arm,cortex-a7";
1678     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1679     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1680     set_feature(&cpu->env, ARM_FEATURE_NEON);
1681     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1682     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1683     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1684     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1685     set_feature(&cpu->env, ARM_FEATURE_EL2);
1686     set_feature(&cpu->env, ARM_FEATURE_EL3);
1687     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1688     cpu->midr = 0x410fc075;
1689     cpu->reset_fpsid = 0x41023075;
1690     cpu->isar.mvfr0 = 0x10110222;
1691     cpu->isar.mvfr1 = 0x11111111;
1692     cpu->ctr = 0x84448003;
1693     cpu->reset_sctlr = 0x00c50078;
1694     cpu->id_pfr0 = 0x00001131;
1695     cpu->id_pfr1 = 0x00011011;
1696     cpu->id_dfr0 = 0x02010555;
1697     cpu->id_afr0 = 0x00000000;
1698     cpu->id_mmfr0 = 0x10101105;
1699     cpu->id_mmfr1 = 0x40000000;
1700     cpu->id_mmfr2 = 0x01240000;
1701     cpu->id_mmfr3 = 0x02102211;
1702     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1703      * table 4-41 gives 0x02101110, which includes the arm div insns.
1704      */
1705     cpu->isar.id_isar0 = 0x02101110;
1706     cpu->isar.id_isar1 = 0x13112111;
1707     cpu->isar.id_isar2 = 0x21232041;
1708     cpu->isar.id_isar3 = 0x11112131;
1709     cpu->isar.id_isar4 = 0x10011142;
1710     cpu->dbgdidr = 0x3515f005;
1711     cpu->clidr = 0x0a200023;
1712     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1713     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1714     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1715     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1716 }
1717 
1718 static void cortex_a15_initfn(Object *obj)
1719 {
1720     ARMCPU *cpu = ARM_CPU(obj);
1721 
1722     cpu->dtb_compatible = "arm,cortex-a15";
1723     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1724     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1725     set_feature(&cpu->env, ARM_FEATURE_NEON);
1726     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1727     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1728     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1729     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1730     set_feature(&cpu->env, ARM_FEATURE_EL2);
1731     set_feature(&cpu->env, ARM_FEATURE_EL3);
1732     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1733     cpu->midr = 0x412fc0f1;
1734     cpu->reset_fpsid = 0x410430f0;
1735     cpu->isar.mvfr0 = 0x10110222;
1736     cpu->isar.mvfr1 = 0x11111111;
1737     cpu->ctr = 0x8444c004;
1738     cpu->reset_sctlr = 0x00c50078;
1739     cpu->id_pfr0 = 0x00001131;
1740     cpu->id_pfr1 = 0x00011011;
1741     cpu->id_dfr0 = 0x02010555;
1742     cpu->id_afr0 = 0x00000000;
1743     cpu->id_mmfr0 = 0x10201105;
1744     cpu->id_mmfr1 = 0x20000000;
1745     cpu->id_mmfr2 = 0x01240000;
1746     cpu->id_mmfr3 = 0x02102211;
1747     cpu->isar.id_isar0 = 0x02101110;
1748     cpu->isar.id_isar1 = 0x13112111;
1749     cpu->isar.id_isar2 = 0x21232041;
1750     cpu->isar.id_isar3 = 0x11112131;
1751     cpu->isar.id_isar4 = 0x10011142;
1752     cpu->dbgdidr = 0x3515f021;
1753     cpu->clidr = 0x0a200023;
1754     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1755     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1756     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1757     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1758 }
1759 
1760 static void ti925t_initfn(Object *obj)
1761 {
1762     ARMCPU *cpu = ARM_CPU(obj);
1763     set_feature(&cpu->env, ARM_FEATURE_V4T);
1764     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1765     cpu->midr = ARM_CPUID_TI925T;
1766     cpu->ctr = 0x5109149;
1767     cpu->reset_sctlr = 0x00000070;
1768 }
1769 
1770 static void sa1100_initfn(Object *obj)
1771 {
1772     ARMCPU *cpu = ARM_CPU(obj);
1773 
1774     cpu->dtb_compatible = "intel,sa1100";
1775     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1776     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1777     cpu->midr = 0x4401A11B;
1778     cpu->reset_sctlr = 0x00000070;
1779 }
1780 
1781 static void sa1110_initfn(Object *obj)
1782 {
1783     ARMCPU *cpu = ARM_CPU(obj);
1784     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1785     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1786     cpu->midr = 0x6901B119;
1787     cpu->reset_sctlr = 0x00000070;
1788 }
1789 
1790 static void pxa250_initfn(Object *obj)
1791 {
1792     ARMCPU *cpu = ARM_CPU(obj);
1793 
1794     cpu->dtb_compatible = "marvell,xscale";
1795     set_feature(&cpu->env, ARM_FEATURE_V5);
1796     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1797     cpu->midr = 0x69052100;
1798     cpu->ctr = 0xd172172;
1799     cpu->reset_sctlr = 0x00000078;
1800 }
1801 
1802 static void pxa255_initfn(Object *obj)
1803 {
1804     ARMCPU *cpu = ARM_CPU(obj);
1805 
1806     cpu->dtb_compatible = "marvell,xscale";
1807     set_feature(&cpu->env, ARM_FEATURE_V5);
1808     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1809     cpu->midr = 0x69052d00;
1810     cpu->ctr = 0xd172172;
1811     cpu->reset_sctlr = 0x00000078;
1812 }
1813 
1814 static void pxa260_initfn(Object *obj)
1815 {
1816     ARMCPU *cpu = ARM_CPU(obj);
1817 
1818     cpu->dtb_compatible = "marvell,xscale";
1819     set_feature(&cpu->env, ARM_FEATURE_V5);
1820     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1821     cpu->midr = 0x69052903;
1822     cpu->ctr = 0xd172172;
1823     cpu->reset_sctlr = 0x00000078;
1824 }
1825 
1826 static void pxa261_initfn(Object *obj)
1827 {
1828     ARMCPU *cpu = ARM_CPU(obj);
1829 
1830     cpu->dtb_compatible = "marvell,xscale";
1831     set_feature(&cpu->env, ARM_FEATURE_V5);
1832     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1833     cpu->midr = 0x69052d05;
1834     cpu->ctr = 0xd172172;
1835     cpu->reset_sctlr = 0x00000078;
1836 }
1837 
1838 static void pxa262_initfn(Object *obj)
1839 {
1840     ARMCPU *cpu = ARM_CPU(obj);
1841 
1842     cpu->dtb_compatible = "marvell,xscale";
1843     set_feature(&cpu->env, ARM_FEATURE_V5);
1844     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1845     cpu->midr = 0x69052d06;
1846     cpu->ctr = 0xd172172;
1847     cpu->reset_sctlr = 0x00000078;
1848 }
1849 
1850 static void pxa270a0_initfn(Object *obj)
1851 {
1852     ARMCPU *cpu = ARM_CPU(obj);
1853 
1854     cpu->dtb_compatible = "marvell,xscale";
1855     set_feature(&cpu->env, ARM_FEATURE_V5);
1856     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1857     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1858     cpu->midr = 0x69054110;
1859     cpu->ctr = 0xd172172;
1860     cpu->reset_sctlr = 0x00000078;
1861 }
1862 
1863 static void pxa270a1_initfn(Object *obj)
1864 {
1865     ARMCPU *cpu = ARM_CPU(obj);
1866 
1867     cpu->dtb_compatible = "marvell,xscale";
1868     set_feature(&cpu->env, ARM_FEATURE_V5);
1869     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1870     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1871     cpu->midr = 0x69054111;
1872     cpu->ctr = 0xd172172;
1873     cpu->reset_sctlr = 0x00000078;
1874 }
1875 
1876 static void pxa270b0_initfn(Object *obj)
1877 {
1878     ARMCPU *cpu = ARM_CPU(obj);
1879 
1880     cpu->dtb_compatible = "marvell,xscale";
1881     set_feature(&cpu->env, ARM_FEATURE_V5);
1882     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1883     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1884     cpu->midr = 0x69054112;
1885     cpu->ctr = 0xd172172;
1886     cpu->reset_sctlr = 0x00000078;
1887 }
1888 
1889 static void pxa270b1_initfn(Object *obj)
1890 {
1891     ARMCPU *cpu = ARM_CPU(obj);
1892 
1893     cpu->dtb_compatible = "marvell,xscale";
1894     set_feature(&cpu->env, ARM_FEATURE_V5);
1895     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1896     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1897     cpu->midr = 0x69054113;
1898     cpu->ctr = 0xd172172;
1899     cpu->reset_sctlr = 0x00000078;
1900 }
1901 
1902 static void pxa270c0_initfn(Object *obj)
1903 {
1904     ARMCPU *cpu = ARM_CPU(obj);
1905 
1906     cpu->dtb_compatible = "marvell,xscale";
1907     set_feature(&cpu->env, ARM_FEATURE_V5);
1908     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1909     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1910     cpu->midr = 0x69054114;
1911     cpu->ctr = 0xd172172;
1912     cpu->reset_sctlr = 0x00000078;
1913 }
1914 
1915 static void pxa270c5_initfn(Object *obj)
1916 {
1917     ARMCPU *cpu = ARM_CPU(obj);
1918 
1919     cpu->dtb_compatible = "marvell,xscale";
1920     set_feature(&cpu->env, ARM_FEATURE_V5);
1921     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1922     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1923     cpu->midr = 0x69054117;
1924     cpu->ctr = 0xd172172;
1925     cpu->reset_sctlr = 0x00000078;
1926 }
1927 
1928 #ifndef TARGET_AARCH64
1929 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1930  * otherwise, a CPU with as many features enabled as our emulation supports.
1931  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1932  * this only needs to handle 32 bits.
1933  */
1934 static void arm_max_initfn(Object *obj)
1935 {
1936     ARMCPU *cpu = ARM_CPU(obj);
1937 
1938     if (kvm_enabled()) {
1939         kvm_arm_set_cpu_features_from_host(cpu);
1940     } else {
1941         cortex_a15_initfn(obj);
1942 #ifdef CONFIG_USER_ONLY
1943         /* We don't set these in system emulation mode for the moment,
1944          * since we don't correctly set (all of) the ID registers to
1945          * advertise them.
1946          */
1947         set_feature(&cpu->env, ARM_FEATURE_V8);
1948         {
1949             uint32_t t;
1950 
1951             t = cpu->isar.id_isar5;
1952             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1953             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1954             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1955             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1956             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1957             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1958             cpu->isar.id_isar5 = t;
1959 
1960             t = cpu->isar.id_isar6;
1961             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1962             cpu->isar.id_isar6 = t;
1963 
1964             t = cpu->id_mmfr4;
1965             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
1966             cpu->id_mmfr4 = t;
1967         }
1968 #endif
1969     }
1970 }
1971 #endif
1972 
1973 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1974 
1975 struct ARMCPUInfo {
1976     const char *name;
1977     void (*initfn)(Object *obj);
1978     void (*class_init)(ObjectClass *oc, void *data);
1979 };
1980 
1981 static const ARMCPUInfo arm_cpus[] = {
1982 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1983     { .name = "arm926",      .initfn = arm926_initfn },
1984     { .name = "arm946",      .initfn = arm946_initfn },
1985     { .name = "arm1026",     .initfn = arm1026_initfn },
1986     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1987      * older core than plain "arm1136". In particular this does not
1988      * have the v6K features.
1989      */
1990     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1991     { .name = "arm1136",     .initfn = arm1136_initfn },
1992     { .name = "arm1176",     .initfn = arm1176_initfn },
1993     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1994     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1995                              .class_init = arm_v7m_class_init },
1996     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1997                              .class_init = arm_v7m_class_init },
1998     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1999                              .class_init = arm_v7m_class_init },
2000     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2001                              .class_init = arm_v7m_class_init },
2002     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2003     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2004     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2005     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2006     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2007     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2008     { .name = "ti925t",      .initfn = ti925t_initfn },
2009     { .name = "sa1100",      .initfn = sa1100_initfn },
2010     { .name = "sa1110",      .initfn = sa1110_initfn },
2011     { .name = "pxa250",      .initfn = pxa250_initfn },
2012     { .name = "pxa255",      .initfn = pxa255_initfn },
2013     { .name = "pxa260",      .initfn = pxa260_initfn },
2014     { .name = "pxa261",      .initfn = pxa261_initfn },
2015     { .name = "pxa262",      .initfn = pxa262_initfn },
2016     /* "pxa270" is an alias for "pxa270-a0" */
2017     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2018     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2019     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2020     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2021     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2022     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2023     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2024 #ifndef TARGET_AARCH64
2025     { .name = "max",         .initfn = arm_max_initfn },
2026 #endif
2027 #ifdef CONFIG_USER_ONLY
2028     { .name = "any",         .initfn = arm_max_initfn },
2029 #endif
2030 #endif
2031     { .name = NULL }
2032 };
2033 
2034 static Property arm_cpu_properties[] = {
2035     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2036     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2037     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2038     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2039                         mp_affinity, ARM64_AFFINITY_INVALID),
2040     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2041     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2042     DEFINE_PROP_END_OF_LIST()
2043 };
2044 
2045 #ifdef CONFIG_USER_ONLY
2046 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2047                                     int rw, int mmu_idx)
2048 {
2049     ARMCPU *cpu = ARM_CPU(cs);
2050     CPUARMState *env = &cpu->env;
2051 
2052     env->exception.vaddress = address;
2053     if (rw == 2) {
2054         cs->exception_index = EXCP_PREFETCH_ABORT;
2055     } else {
2056         cs->exception_index = EXCP_DATA_ABORT;
2057     }
2058     return 1;
2059 }
2060 #endif
2061 
2062 static gchar *arm_gdb_arch_name(CPUState *cs)
2063 {
2064     ARMCPU *cpu = ARM_CPU(cs);
2065     CPUARMState *env = &cpu->env;
2066 
2067     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2068         return g_strdup("iwmmxt");
2069     }
2070     return g_strdup("arm");
2071 }
2072 
2073 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2074 {
2075     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2076     CPUClass *cc = CPU_CLASS(acc);
2077     DeviceClass *dc = DEVICE_CLASS(oc);
2078 
2079     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2080                                     &acc->parent_realize);
2081     dc->props = arm_cpu_properties;
2082 
2083     acc->parent_reset = cc->reset;
2084     cc->reset = arm_cpu_reset;
2085 
2086     cc->class_by_name = arm_cpu_class_by_name;
2087     cc->has_work = arm_cpu_has_work;
2088     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2089     cc->dump_state = arm_cpu_dump_state;
2090     cc->set_pc = arm_cpu_set_pc;
2091     cc->gdb_read_register = arm_cpu_gdb_read_register;
2092     cc->gdb_write_register = arm_cpu_gdb_write_register;
2093 #ifdef CONFIG_USER_ONLY
2094     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2095 #else
2096     cc->do_interrupt = arm_cpu_do_interrupt;
2097     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2098     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2099     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2100     cc->asidx_from_attrs = arm_asidx_from_attrs;
2101     cc->vmsd = &vmstate_arm_cpu;
2102     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2103     cc->write_elf64_note = arm_cpu_write_elf64_note;
2104     cc->write_elf32_note = arm_cpu_write_elf32_note;
2105 #endif
2106     cc->gdb_num_core_regs = 26;
2107     cc->gdb_core_xml_file = "arm-core.xml";
2108     cc->gdb_arch_name = arm_gdb_arch_name;
2109     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2110     cc->gdb_stop_before_watchpoint = true;
2111     cc->debug_excp_handler = arm_debug_excp_handler;
2112     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2113 #if !defined(CONFIG_USER_ONLY)
2114     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2115 #endif
2116 
2117     cc->disas_set_info = arm_disas_set_info;
2118 #ifdef CONFIG_TCG
2119     cc->tcg_initialize = arm_translate_init;
2120 #endif
2121 }
2122 
2123 #ifdef CONFIG_KVM
2124 static void arm_host_initfn(Object *obj)
2125 {
2126     ARMCPU *cpu = ARM_CPU(obj);
2127 
2128     kvm_arm_set_cpu_features_from_host(cpu);
2129     arm_cpu_post_init(obj);
2130 }
2131 
2132 static const TypeInfo host_arm_cpu_type_info = {
2133     .name = TYPE_ARM_HOST_CPU,
2134 #ifdef TARGET_AARCH64
2135     .parent = TYPE_AARCH64_CPU,
2136 #else
2137     .parent = TYPE_ARM_CPU,
2138 #endif
2139     .instance_init = arm_host_initfn,
2140 };
2141 
2142 #endif
2143 
2144 static void arm_cpu_instance_init(Object *obj)
2145 {
2146     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2147 
2148     acc->info->initfn(obj);
2149     arm_cpu_post_init(obj);
2150 }
2151 
2152 static void cpu_register_class_init(ObjectClass *oc, void *data)
2153 {
2154     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2155 
2156     acc->info = data;
2157 }
2158 
2159 static void cpu_register(const ARMCPUInfo *info)
2160 {
2161     TypeInfo type_info = {
2162         .parent = TYPE_ARM_CPU,
2163         .instance_size = sizeof(ARMCPU),
2164         .instance_init = arm_cpu_instance_init,
2165         .class_size = sizeof(ARMCPUClass),
2166         .class_init = info->class_init ?: cpu_register_class_init,
2167         .class_data = (void *)info,
2168     };
2169 
2170     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2171     type_register(&type_info);
2172     g_free((void *)type_info.name);
2173 }
2174 
2175 static const TypeInfo arm_cpu_type_info = {
2176     .name = TYPE_ARM_CPU,
2177     .parent = TYPE_CPU,
2178     .instance_size = sizeof(ARMCPU),
2179     .instance_init = arm_cpu_initfn,
2180     .instance_finalize = arm_cpu_finalizefn,
2181     .abstract = true,
2182     .class_size = sizeof(ARMCPUClass),
2183     .class_init = arm_cpu_class_init,
2184 };
2185 
2186 static const TypeInfo idau_interface_type_info = {
2187     .name = TYPE_IDAU_INTERFACE,
2188     .parent = TYPE_INTERFACE,
2189     .class_size = sizeof(IDAUInterfaceClass),
2190 };
2191 
2192 static void arm_cpu_register_types(void)
2193 {
2194     const ARMCPUInfo *info = arm_cpus;
2195 
2196     type_register_static(&arm_cpu_type_info);
2197     type_register_static(&idau_interface_type_info);
2198 
2199     while (info->name) {
2200         cpu_register(info);
2201         info++;
2202     }
2203 
2204 #ifdef CONFIG_KVM
2205     type_register_static(&host_arm_cpu_type_info);
2206 #endif
2207 }
2208 
2209 type_init(arm_cpu_register_types)
2210