xref: /openbmc/qemu/target/arm/cpu.c (revision 10054016eda1b13bdd8340d100fd029cc8b58f36)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204                              cpu->sve_max_vq - 1 : 0;
205         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207         /*
208          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
209          * turning on both here will produce smaller code and otherwise
210          * make no difference to the user-level emulation.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214         /* Reset into the highest available EL */
215         if (arm_feature(env, ARM_FEATURE_EL3)) {
216             env->pstate = PSTATE_MODE_EL3h;
217         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218             env->pstate = PSTATE_MODE_EL2h;
219         } else {
220             env->pstate = PSTATE_MODE_EL1h;
221         }
222         env->pc = cpu->rvbar;
223 #endif
224     } else {
225 #if defined(CONFIG_USER_ONLY)
226         /* Userspace expects access to cp10 and cp11 for FP/Neon */
227         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229     }
230 
231 #if defined(CONFIG_USER_ONLY)
232     env->uncached_cpsr = ARM_CPU_MODE_USR;
233     /* For user mode we must enable access to coprocessors */
234     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236         env->cp15.c15_cpar = 3;
237     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238         env->cp15.c15_cpar = 1;
239     }
240 #else
241 
242     /*
243      * If the highest available EL is EL2, AArch32 will start in Hyp
244      * mode; otherwise it starts in SVC. Note that if we start in
245      * AArch64 then these values in the uncached_cpsr will be ignored.
246      */
247     if (arm_feature(env, ARM_FEATURE_EL2) &&
248         !arm_feature(env, ARM_FEATURE_EL3)) {
249         env->uncached_cpsr = ARM_CPU_MODE_HYP;
250     } else {
251         env->uncached_cpsr = ARM_CPU_MODE_SVC;
252     }
253     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 
255     if (arm_feature(env, ARM_FEATURE_M)) {
256         uint32_t initial_msp; /* Loaded from 0x0 */
257         uint32_t initial_pc; /* Loaded from 0x4 */
258         uint8_t *rom;
259         uint32_t vecbase;
260 
261         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262             env->v7m.secure = true;
263         } else {
264             /* This bit resets to 0 if security is supported, but 1 if
265              * it is not. The bit is not present in v7M, but we set it
266              * here so we can avoid having to make checks on it conditional
267              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268              */
269             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270             /*
271              * Set NSACR to indicate "NS access permitted to everything";
272              * this avoids having to have all the tests of it being
273              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274              * v8.1M the guest-visible value of NSACR in a CPU without the
275              * Security Extension is 0xcff.
276              */
277             env->v7m.nsacr = 0xcff;
278         }
279 
280         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281          * that it resets to 1, so QEMU always does that rather than making
282          * it dependent on CPU model. In v8M it is RES1.
283          */
284         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286         if (arm_feature(env, ARM_FEATURE_V8)) {
287             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290         }
291         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294         }
295 
296         if (arm_feature(env, ARM_FEATURE_VFP)) {
297             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300         }
301         /* Unlike A/R profile, M profile defines the reset LR value */
302         env->regs[14] = 0xffffffff;
303 
304         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305 
306         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307         vecbase = env->v7m.vecbase[env->v7m.secure];
308         rom = rom_ptr(vecbase, 8);
309         if (rom) {
310             /* Address zero is covered by ROM which hasn't yet been
311              * copied into physical memory.
312              */
313             initial_msp = ldl_p(rom);
314             initial_pc = ldl_p(rom + 4);
315         } else {
316             /* Address zero not covered by a ROM blob, or the ROM blob
317              * is in non-modifiable memory and this is a second reset after
318              * it got copied into memory. In the latter case, rom_ptr
319              * will return a NULL pointer and we should use ldl_phys instead.
320              */
321             initial_msp = ldl_phys(s->as, vecbase);
322             initial_pc = ldl_phys(s->as, vecbase + 4);
323         }
324 
325         env->regs[13] = initial_msp & 0xFFFFFFFC;
326         env->regs[15] = initial_pc & ~1;
327         env->thumb = initial_pc & 1;
328     }
329 
330     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
331      * executing as AArch32 then check if highvecs are enabled and
332      * adjust the PC accordingly.
333      */
334     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335         env->regs[15] = 0xFFFF0000;
336     }
337 
338     /* M profile requires that reset clears the exclusive monitor;
339      * A profile does not, but clearing it makes more sense than having it
340      * set with an exclusive access on address zero.
341      */
342     arm_clear_exclusive(env);
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_PMSA)) {
348         if (cpu->pmsav7_dregion > 0) {
349             if (arm_feature(env, ARM_FEATURE_V8)) {
350                 memset(env->pmsav8.rbar[M_REG_NS], 0,
351                        sizeof(*env->pmsav8.rbar[M_REG_NS])
352                        * cpu->pmsav7_dregion);
353                 memset(env->pmsav8.rlar[M_REG_NS], 0,
354                        sizeof(*env->pmsav8.rlar[M_REG_NS])
355                        * cpu->pmsav7_dregion);
356                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357                     memset(env->pmsav8.rbar[M_REG_S], 0,
358                            sizeof(*env->pmsav8.rbar[M_REG_S])
359                            * cpu->pmsav7_dregion);
360                     memset(env->pmsav8.rlar[M_REG_S], 0,
361                            sizeof(*env->pmsav8.rlar[M_REG_S])
362                            * cpu->pmsav7_dregion);
363                 }
364             } else if (arm_feature(env, ARM_FEATURE_V7)) {
365                 memset(env->pmsav7.drbar, 0,
366                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.drsr, 0,
368                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369                 memset(env->pmsav7.dracr, 0,
370                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371             }
372         }
373         env->pmsav7.rnr[M_REG_NS] = 0;
374         env->pmsav7.rnr[M_REG_S] = 0;
375         env->pmsav8.mair0[M_REG_NS] = 0;
376         env->pmsav8.mair0[M_REG_S] = 0;
377         env->pmsav8.mair1[M_REG_NS] = 0;
378         env->pmsav8.mair1[M_REG_S] = 0;
379     }
380 
381     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382         if (cpu->sau_sregion > 0) {
383             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385         }
386         env->sau.rnr = 0;
387         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388          * the Cortex-M33 does.
389          */
390         env->sau.ctrl = 0;
391     }
392 
393     set_flush_to_zero(1, &env->vfp.standard_fp_status);
394     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395     set_default_nan_mode(1, &env->vfp.standard_fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.standard_fp_status);
400     set_float_detect_tininess(float_tininess_before_rounding,
401                               &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403     if (kvm_enabled()) {
404         kvm_arm_reset_vcpu(cpu);
405     }
406 #endif
407 
408     hw_breakpoint_update_all(cpu);
409     hw_watchpoint_update_all(cpu);
410     arm_rebuild_hflags(env);
411 }
412 
413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
414                                      unsigned int target_el,
415                                      unsigned int cur_el, bool secure,
416                                      uint64_t hcr_el2)
417 {
418     CPUARMState *env = cs->env_ptr;
419     bool pstate_unmasked;
420     bool unmasked = false;
421 
422     /*
423      * Don't take exceptions if they target a lower EL.
424      * This check should catch any exceptions that would not be taken
425      * but left pending.
426      */
427     if (cur_el > target_el) {
428         return false;
429     }
430 
431     switch (excp_idx) {
432     case EXCP_FIQ:
433         pstate_unmasked = !(env->daif & PSTATE_F);
434         break;
435 
436     case EXCP_IRQ:
437         pstate_unmasked = !(env->daif & PSTATE_I);
438         break;
439 
440     case EXCP_VFIQ:
441         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
442             /* VFIQs are only taken when hypervized and non-secure.  */
443             return false;
444         }
445         return !(env->daif & PSTATE_F);
446     case EXCP_VIRQ:
447         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
448             /* VIRQs are only taken when hypervized and non-secure.  */
449             return false;
450         }
451         return !(env->daif & PSTATE_I);
452     default:
453         g_assert_not_reached();
454     }
455 
456     /*
457      * Use the target EL, current execution state and SCR/HCR settings to
458      * determine whether the corresponding CPSR bit is used to mask the
459      * interrupt.
460      */
461     if ((target_el > cur_el) && (target_el != 1)) {
462         /* Exceptions targeting a higher EL may not be maskable */
463         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464             /*
465              * 64-bit masking rules are simple: exceptions to EL3
466              * can't be masked, and exceptions to EL2 can only be
467              * masked from Secure state. The HCR and SCR settings
468              * don't affect the masking logic, only the interrupt routing.
469              */
470             if (target_el == 3 || !secure) {
471                 unmasked = true;
472             }
473         } else {
474             /*
475              * The old 32-bit-only environment has a more complicated
476              * masking setup. HCR and SCR bits not only affect interrupt
477              * routing but also change the behaviour of masking.
478              */
479             bool hcr, scr;
480 
481             switch (excp_idx) {
482             case EXCP_FIQ:
483                 /*
484                  * If FIQs are routed to EL3 or EL2 then there are cases where
485                  * we override the CPSR.F in determining if the exception is
486                  * masked or not. If neither of these are set then we fall back
487                  * to the CPSR.F setting otherwise we further assess the state
488                  * below.
489                  */
490                 hcr = hcr_el2 & HCR_FMO;
491                 scr = (env->cp15.scr_el3 & SCR_FIQ);
492 
493                 /*
494                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
495                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
496                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
497                  * when non-secure but only when FIQs are only routed to EL3.
498                  */
499                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
500                 break;
501             case EXCP_IRQ:
502                 /*
503                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
504                  * we may override the CPSR.I masking when in non-secure state.
505                  * The SCR.IRQ setting has already been taken into consideration
506                  * when setting the target EL, so it does not have a further
507                  * affect here.
508                  */
509                 hcr = hcr_el2 & HCR_IMO;
510                 scr = false;
511                 break;
512             default:
513                 g_assert_not_reached();
514             }
515 
516             if ((scr || hcr) && !secure) {
517                 unmasked = true;
518             }
519         }
520     }
521 
522     /*
523      * The PSTATE bits only mask the interrupt if we have not overriden the
524      * ability above.
525      */
526     return unmasked || pstate_unmasked;
527 }
528 
529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
530 {
531     CPUClass *cc = CPU_GET_CLASS(cs);
532     CPUARMState *env = cs->env_ptr;
533     uint32_t cur_el = arm_current_el(env);
534     bool secure = arm_is_secure(env);
535     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
536     uint32_t target_el;
537     uint32_t excp_idx;
538 
539     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
540 
541     if (interrupt_request & CPU_INTERRUPT_FIQ) {
542         excp_idx = EXCP_FIQ;
543         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
544         if (arm_excp_unmasked(cs, excp_idx, target_el,
545                               cur_el, secure, hcr_el2)) {
546             goto found;
547         }
548     }
549     if (interrupt_request & CPU_INTERRUPT_HARD) {
550         excp_idx = EXCP_IRQ;
551         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
552         if (arm_excp_unmasked(cs, excp_idx, target_el,
553                               cur_el, secure, hcr_el2)) {
554             goto found;
555         }
556     }
557     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
558         excp_idx = EXCP_VIRQ;
559         target_el = 1;
560         if (arm_excp_unmasked(cs, excp_idx, target_el,
561                               cur_el, secure, hcr_el2)) {
562             goto found;
563         }
564     }
565     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
566         excp_idx = EXCP_VFIQ;
567         target_el = 1;
568         if (arm_excp_unmasked(cs, excp_idx, target_el,
569                               cur_el, secure, hcr_el2)) {
570             goto found;
571         }
572     }
573     return false;
574 
575  found:
576     cs->exception_index = excp_idx;
577     env->exception.target_el = target_el;
578     cc->do_interrupt(cs);
579     return true;
580 }
581 
582 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
583 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
584 {
585     CPUClass *cc = CPU_GET_CLASS(cs);
586     ARMCPU *cpu = ARM_CPU(cs);
587     CPUARMState *env = &cpu->env;
588     bool ret = false;
589 
590     /* ARMv7-M interrupt masking works differently than -A or -R.
591      * There is no FIQ/IRQ distinction. Instead of I and F bits
592      * masking FIQ and IRQ interrupts, an exception is taken only
593      * if it is higher priority than the current execution priority
594      * (which depends on state like BASEPRI, FAULTMASK and the
595      * currently active exception).
596      */
597     if (interrupt_request & CPU_INTERRUPT_HARD
598         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
599         cs->exception_index = EXCP_IRQ;
600         cc->do_interrupt(cs);
601         ret = true;
602     }
603     return ret;
604 }
605 #endif
606 
607 void arm_cpu_update_virq(ARMCPU *cpu)
608 {
609     /*
610      * Update the interrupt level for VIRQ, which is the logical OR of
611      * the HCR_EL2.VI bit and the input line level from the GIC.
612      */
613     CPUARMState *env = &cpu->env;
614     CPUState *cs = CPU(cpu);
615 
616     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
617         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
618 
619     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
620         if (new_state) {
621             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
622         } else {
623             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
624         }
625     }
626 }
627 
628 void arm_cpu_update_vfiq(ARMCPU *cpu)
629 {
630     /*
631      * Update the interrupt level for VFIQ, which is the logical OR of
632      * the HCR_EL2.VF bit and the input line level from the GIC.
633      */
634     CPUARMState *env = &cpu->env;
635     CPUState *cs = CPU(cpu);
636 
637     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
638         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
639 
640     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
641         if (new_state) {
642             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
643         } else {
644             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
645         }
646     }
647 }
648 
649 #ifndef CONFIG_USER_ONLY
650 static void arm_cpu_set_irq(void *opaque, int irq, int level)
651 {
652     ARMCPU *cpu = opaque;
653     CPUARMState *env = &cpu->env;
654     CPUState *cs = CPU(cpu);
655     static const int mask[] = {
656         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
657         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
658         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
659         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
660     };
661 
662     if (level) {
663         env->irq_line_state |= mask[irq];
664     } else {
665         env->irq_line_state &= ~mask[irq];
666     }
667 
668     switch (irq) {
669     case ARM_CPU_VIRQ:
670         assert(arm_feature(env, ARM_FEATURE_EL2));
671         arm_cpu_update_virq(cpu);
672         break;
673     case ARM_CPU_VFIQ:
674         assert(arm_feature(env, ARM_FEATURE_EL2));
675         arm_cpu_update_vfiq(cpu);
676         break;
677     case ARM_CPU_IRQ:
678     case ARM_CPU_FIQ:
679         if (level) {
680             cpu_interrupt(cs, mask[irq]);
681         } else {
682             cpu_reset_interrupt(cs, mask[irq]);
683         }
684         break;
685     default:
686         g_assert_not_reached();
687     }
688 }
689 
690 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
691 {
692 #ifdef CONFIG_KVM
693     ARMCPU *cpu = opaque;
694     CPUARMState *env = &cpu->env;
695     CPUState *cs = CPU(cpu);
696     uint32_t linestate_bit;
697     int irq_id;
698 
699     switch (irq) {
700     case ARM_CPU_IRQ:
701         irq_id = KVM_ARM_IRQ_CPU_IRQ;
702         linestate_bit = CPU_INTERRUPT_HARD;
703         break;
704     case ARM_CPU_FIQ:
705         irq_id = KVM_ARM_IRQ_CPU_FIQ;
706         linestate_bit = CPU_INTERRUPT_FIQ;
707         break;
708     default:
709         g_assert_not_reached();
710     }
711 
712     if (level) {
713         env->irq_line_state |= linestate_bit;
714     } else {
715         env->irq_line_state &= ~linestate_bit;
716     }
717     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
718 #endif
719 }
720 
721 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
722 {
723     ARMCPU *cpu = ARM_CPU(cs);
724     CPUARMState *env = &cpu->env;
725 
726     cpu_synchronize_state(cs);
727     return arm_cpu_data_is_big_endian(env);
728 }
729 
730 #endif
731 
732 static inline void set_feature(CPUARMState *env, int feature)
733 {
734     env->features |= 1ULL << feature;
735 }
736 
737 static inline void unset_feature(CPUARMState *env, int feature)
738 {
739     env->features &= ~(1ULL << feature);
740 }
741 
742 static int
743 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
744 {
745   return print_insn_arm(pc | 1, info);
746 }
747 
748 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
749 {
750     ARMCPU *ac = ARM_CPU(cpu);
751     CPUARMState *env = &ac->env;
752     bool sctlr_b;
753 
754     if (is_a64(env)) {
755         /* We might not be compiled with the A64 disassembler
756          * because it needs a C++ compiler. Leave print_insn
757          * unset in this case to use the caller default behaviour.
758          */
759 #if defined(CONFIG_ARM_A64_DIS)
760         info->print_insn = print_insn_arm_a64;
761 #endif
762         info->cap_arch = CS_ARCH_ARM64;
763         info->cap_insn_unit = 4;
764         info->cap_insn_split = 4;
765     } else {
766         int cap_mode;
767         if (env->thumb) {
768             info->print_insn = print_insn_thumb1;
769             info->cap_insn_unit = 2;
770             info->cap_insn_split = 4;
771             cap_mode = CS_MODE_THUMB;
772         } else {
773             info->print_insn = print_insn_arm;
774             info->cap_insn_unit = 4;
775             info->cap_insn_split = 4;
776             cap_mode = CS_MODE_ARM;
777         }
778         if (arm_feature(env, ARM_FEATURE_V8)) {
779             cap_mode |= CS_MODE_V8;
780         }
781         if (arm_feature(env, ARM_FEATURE_M)) {
782             cap_mode |= CS_MODE_MCLASS;
783         }
784         info->cap_arch = CS_ARCH_ARM;
785         info->cap_mode = cap_mode;
786     }
787 
788     sctlr_b = arm_sctlr_b(env);
789     if (bswap_code(sctlr_b)) {
790 #ifdef TARGET_WORDS_BIGENDIAN
791         info->endian = BFD_ENDIAN_LITTLE;
792 #else
793         info->endian = BFD_ENDIAN_BIG;
794 #endif
795     }
796     info->flags &= ~INSN_ARM_BE32;
797 #ifndef CONFIG_USER_ONLY
798     if (sctlr_b) {
799         info->flags |= INSN_ARM_BE32;
800     }
801 #endif
802 }
803 
804 #ifdef TARGET_AARCH64
805 
806 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
807 {
808     ARMCPU *cpu = ARM_CPU(cs);
809     CPUARMState *env = &cpu->env;
810     uint32_t psr = pstate_read(env);
811     int i;
812     int el = arm_current_el(env);
813     const char *ns_status;
814 
815     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
816     for (i = 0; i < 32; i++) {
817         if (i == 31) {
818             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
819         } else {
820             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
821                          (i + 2) % 3 ? " " : "\n");
822         }
823     }
824 
825     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
826         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
827     } else {
828         ns_status = "";
829     }
830     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
831                  psr,
832                  psr & PSTATE_N ? 'N' : '-',
833                  psr & PSTATE_Z ? 'Z' : '-',
834                  psr & PSTATE_C ? 'C' : '-',
835                  psr & PSTATE_V ? 'V' : '-',
836                  ns_status,
837                  el,
838                  psr & PSTATE_SP ? 'h' : 't');
839 
840     if (cpu_isar_feature(aa64_bti, cpu)) {
841         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
842     }
843     if (!(flags & CPU_DUMP_FPU)) {
844         qemu_fprintf(f, "\n");
845         return;
846     }
847     if (fp_exception_el(env, el) != 0) {
848         qemu_fprintf(f, "    FPU disabled\n");
849         return;
850     }
851     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
852                  vfp_get_fpcr(env), vfp_get_fpsr(env));
853 
854     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
855         int j, zcr_len = sve_zcr_len_for_el(env, el);
856 
857         for (i = 0; i <= FFR_PRED_NUM; i++) {
858             bool eol;
859             if (i == FFR_PRED_NUM) {
860                 qemu_fprintf(f, "FFR=");
861                 /* It's last, so end the line.  */
862                 eol = true;
863             } else {
864                 qemu_fprintf(f, "P%02d=", i);
865                 switch (zcr_len) {
866                 case 0:
867                     eol = i % 8 == 7;
868                     break;
869                 case 1:
870                     eol = i % 6 == 5;
871                     break;
872                 case 2:
873                 case 3:
874                     eol = i % 3 == 2;
875                     break;
876                 default:
877                     /* More than one quadword per predicate.  */
878                     eol = true;
879                     break;
880                 }
881             }
882             for (j = zcr_len / 4; j >= 0; j--) {
883                 int digits;
884                 if (j * 4 + 4 <= zcr_len + 1) {
885                     digits = 16;
886                 } else {
887                     digits = (zcr_len % 4 + 1) * 4;
888                 }
889                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
890                              env->vfp.pregs[i].p[j],
891                              j ? ":" : eol ? "\n" : " ");
892             }
893         }
894 
895         for (i = 0; i < 32; i++) {
896             if (zcr_len == 0) {
897                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
898                              i, env->vfp.zregs[i].d[1],
899                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
900             } else if (zcr_len == 1) {
901                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
902                              ":%016" PRIx64 ":%016" PRIx64 "\n",
903                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
904                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
905             } else {
906                 for (j = zcr_len; j >= 0; j--) {
907                     bool odd = (zcr_len - j) % 2 != 0;
908                     if (j == zcr_len) {
909                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
910                     } else if (!odd) {
911                         if (j > 0) {
912                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
913                         } else {
914                             qemu_fprintf(f, "     [%x]=", j);
915                         }
916                     }
917                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
918                                  env->vfp.zregs[i].d[j * 2 + 1],
919                                  env->vfp.zregs[i].d[j * 2],
920                                  odd || j == 0 ? "\n" : ":");
921                 }
922             }
923         }
924     } else {
925         for (i = 0; i < 32; i++) {
926             uint64_t *q = aa64_vfp_qreg(env, i);
927             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
928                          i, q[1], q[0], (i & 1 ? "\n" : " "));
929         }
930     }
931 }
932 
933 #else
934 
935 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
936 {
937     g_assert_not_reached();
938 }
939 
940 #endif
941 
942 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
943 {
944     ARMCPU *cpu = ARM_CPU(cs);
945     CPUARMState *env = &cpu->env;
946     int i;
947 
948     if (is_a64(env)) {
949         aarch64_cpu_dump_state(cs, f, flags);
950         return;
951     }
952 
953     for (i = 0; i < 16; i++) {
954         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
955         if ((i % 4) == 3) {
956             qemu_fprintf(f, "\n");
957         } else {
958             qemu_fprintf(f, " ");
959         }
960     }
961 
962     if (arm_feature(env, ARM_FEATURE_M)) {
963         uint32_t xpsr = xpsr_read(env);
964         const char *mode;
965         const char *ns_status = "";
966 
967         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
968             ns_status = env->v7m.secure ? "S " : "NS ";
969         }
970 
971         if (xpsr & XPSR_EXCP) {
972             mode = "handler";
973         } else {
974             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
975                 mode = "unpriv-thread";
976             } else {
977                 mode = "priv-thread";
978             }
979         }
980 
981         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
982                      xpsr,
983                      xpsr & XPSR_N ? 'N' : '-',
984                      xpsr & XPSR_Z ? 'Z' : '-',
985                      xpsr & XPSR_C ? 'C' : '-',
986                      xpsr & XPSR_V ? 'V' : '-',
987                      xpsr & XPSR_T ? 'T' : 'A',
988                      ns_status,
989                      mode);
990     } else {
991         uint32_t psr = cpsr_read(env);
992         const char *ns_status = "";
993 
994         if (arm_feature(env, ARM_FEATURE_EL3) &&
995             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
996             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
997         }
998 
999         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1000                      psr,
1001                      psr & CPSR_N ? 'N' : '-',
1002                      psr & CPSR_Z ? 'Z' : '-',
1003                      psr & CPSR_C ? 'C' : '-',
1004                      psr & CPSR_V ? 'V' : '-',
1005                      psr & CPSR_T ? 'T' : 'A',
1006                      ns_status,
1007                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1008     }
1009 
1010     if (flags & CPU_DUMP_FPU) {
1011         int numvfpregs = 0;
1012         if (arm_feature(env, ARM_FEATURE_VFP)) {
1013             numvfpregs += 16;
1014         }
1015         if (arm_feature(env, ARM_FEATURE_VFP3)) {
1016             numvfpregs += 16;
1017         }
1018         for (i = 0; i < numvfpregs; i++) {
1019             uint64_t v = *aa32_vfp_dreg(env, i);
1020             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1021                          i * 2, (uint32_t)v,
1022                          i * 2 + 1, (uint32_t)(v >> 32),
1023                          i, v);
1024         }
1025         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1026     }
1027 }
1028 
1029 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1030 {
1031     uint32_t Aff1 = idx / clustersz;
1032     uint32_t Aff0 = idx % clustersz;
1033     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1034 }
1035 
1036 static void cpreg_hashtable_data_destroy(gpointer data)
1037 {
1038     /*
1039      * Destroy function for cpu->cp_regs hashtable data entries.
1040      * We must free the name string because it was g_strdup()ed in
1041      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1042      * from r->name because we know we definitely allocated it.
1043      */
1044     ARMCPRegInfo *r = data;
1045 
1046     g_free((void *)r->name);
1047     g_free(r);
1048 }
1049 
1050 static void arm_cpu_initfn(Object *obj)
1051 {
1052     ARMCPU *cpu = ARM_CPU(obj);
1053 
1054     cpu_set_cpustate_pointers(cpu);
1055     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1056                                          g_free, cpreg_hashtable_data_destroy);
1057 
1058     QLIST_INIT(&cpu->pre_el_change_hooks);
1059     QLIST_INIT(&cpu->el_change_hooks);
1060 
1061 #ifndef CONFIG_USER_ONLY
1062     /* Our inbound IRQ and FIQ lines */
1063     if (kvm_enabled()) {
1064         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1065          * the same interface as non-KVM CPUs.
1066          */
1067         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1068     } else {
1069         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1070     }
1071 
1072     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1073                        ARRAY_SIZE(cpu->gt_timer_outputs));
1074 
1075     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1076                              "gicv3-maintenance-interrupt", 1);
1077     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1078                              "pmu-interrupt", 1);
1079 #endif
1080 
1081     /* DTB consumers generally don't in fact care what the 'compatible'
1082      * string is, so always provide some string and trust that a hypothetical
1083      * picky DTB consumer will also provide a helpful error message.
1084      */
1085     cpu->dtb_compatible = "qemu,unknown";
1086     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1087     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1088 
1089     if (tcg_enabled()) {
1090         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1091     }
1092 }
1093 
1094 static Property arm_cpu_gt_cntfrq_property =
1095             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1096                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1097 
1098 static Property arm_cpu_reset_cbar_property =
1099             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1100 
1101 static Property arm_cpu_reset_hivecs_property =
1102             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1103 
1104 static Property arm_cpu_rvbar_property =
1105             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1106 
1107 static Property arm_cpu_has_el2_property =
1108             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1109 
1110 static Property arm_cpu_has_el3_property =
1111             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1112 
1113 static Property arm_cpu_cfgend_property =
1114             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1115 
1116 static Property arm_cpu_has_vfp_property =
1117             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1118 
1119 static Property arm_cpu_has_neon_property =
1120             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1121 
1122 static Property arm_cpu_has_dsp_property =
1123             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1124 
1125 static Property arm_cpu_has_mpu_property =
1126             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1127 
1128 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1129  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1130  * the right value for that particular CPU type, and we don't want
1131  * to override that with an incorrect constant value.
1132  */
1133 static Property arm_cpu_pmsav7_dregion_property =
1134             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1135                                            pmsav7_dregion,
1136                                            qdev_prop_uint32, uint32_t);
1137 
1138 static bool arm_get_pmu(Object *obj, Error **errp)
1139 {
1140     ARMCPU *cpu = ARM_CPU(obj);
1141 
1142     return cpu->has_pmu;
1143 }
1144 
1145 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1146 {
1147     ARMCPU *cpu = ARM_CPU(obj);
1148 
1149     if (value) {
1150         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1151             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1152             return;
1153         }
1154         set_feature(&cpu->env, ARM_FEATURE_PMU);
1155     } else {
1156         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1157     }
1158     cpu->has_pmu = value;
1159 }
1160 
1161 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1162                                void *opaque, Error **errp)
1163 {
1164     ARMCPU *cpu = ARM_CPU(obj);
1165 
1166     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1167 }
1168 
1169 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1170                                void *opaque, Error **errp)
1171 {
1172     ARMCPU *cpu = ARM_CPU(obj);
1173 
1174     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1175 }
1176 
1177 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1178 {
1179     /*
1180      * The exact approach to calculating guest ticks is:
1181      *
1182      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1183      *              NANOSECONDS_PER_SECOND);
1184      *
1185      * We don't do that. Rather we intentionally use integer division
1186      * truncation below and in the caller for the conversion of host monotonic
1187      * time to guest ticks to provide the exact inverse for the semantics of
1188      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1189      * it loses precision when representing frequencies where
1190      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1191      * provide an exact inverse leads to scheduling timers with negative
1192      * periods, which in turn leads to sticky behaviour in the guest.
1193      *
1194      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1195      * cannot become zero.
1196      */
1197     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1198       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1199 }
1200 
1201 void arm_cpu_post_init(Object *obj)
1202 {
1203     ARMCPU *cpu = ARM_CPU(obj);
1204 
1205     /* M profile implies PMSA. We have to do this here rather than
1206      * in realize with the other feature-implication checks because
1207      * we look at the PMSA bit to see if we should add some properties.
1208      */
1209     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1210         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1211     }
1212     /* Similarly for the VFP feature bits */
1213     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1214         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1215     }
1216     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1217         set_feature(&cpu->env, ARM_FEATURE_VFP);
1218     }
1219 
1220     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1221         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1222         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1223     }
1224 
1225     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1226         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1227     }
1228 
1229     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1230         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1231     }
1232 
1233     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1234         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1235          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1236          */
1237         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1238 
1239 #ifndef CONFIG_USER_ONLY
1240         object_property_add_link(obj, "secure-memory",
1241                                  TYPE_MEMORY_REGION,
1242                                  (Object **)&cpu->secure_memory,
1243                                  qdev_prop_allow_set_link_before_realize,
1244                                  OBJ_PROP_LINK_STRONG,
1245                                  &error_abort);
1246 #endif
1247     }
1248 
1249     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1250         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1251     }
1252 
1253     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1254         cpu->has_pmu = true;
1255         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1256                                  &error_abort);
1257     }
1258 
1259     /*
1260      * Allow user to turn off VFP and Neon support, but only for TCG --
1261      * KVM does not currently allow us to lie to the guest about its
1262      * ID/feature registers, so the guest always sees what the host has.
1263      */
1264     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1265         cpu->has_vfp = true;
1266         if (!kvm_enabled()) {
1267             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1268         }
1269     }
1270 
1271     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1272         cpu->has_neon = true;
1273         if (!kvm_enabled()) {
1274             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1275         }
1276     }
1277 
1278     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1279         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1280         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1281     }
1282 
1283     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1284         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1285         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1286             qdev_property_add_static(DEVICE(obj),
1287                                      &arm_cpu_pmsav7_dregion_property);
1288         }
1289     }
1290 
1291     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1292         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1293                                  qdev_prop_allow_set_link_before_realize,
1294                                  OBJ_PROP_LINK_STRONG,
1295                                  &error_abort);
1296         /*
1297          * M profile: initial value of the Secure VTOR. We can't just use
1298          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1299          * the property to be set after realize.
1300          */
1301         object_property_add(obj, "init-svtor", "uint32",
1302                             arm_get_init_svtor, arm_set_init_svtor,
1303                             NULL, NULL, &error_abort);
1304     }
1305 
1306     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1307 
1308     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1309         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1310     }
1311 }
1312 
1313 static void arm_cpu_finalizefn(Object *obj)
1314 {
1315     ARMCPU *cpu = ARM_CPU(obj);
1316     ARMELChangeHook *hook, *next;
1317 
1318     g_hash_table_destroy(cpu->cp_regs);
1319 
1320     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1321         QLIST_REMOVE(hook, node);
1322         g_free(hook);
1323     }
1324     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1325         QLIST_REMOVE(hook, node);
1326         g_free(hook);
1327     }
1328 #ifndef CONFIG_USER_ONLY
1329     if (cpu->pmu_timer) {
1330         timer_del(cpu->pmu_timer);
1331         timer_deinit(cpu->pmu_timer);
1332         timer_free(cpu->pmu_timer);
1333     }
1334 #endif
1335 }
1336 
1337 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1338 {
1339     Error *local_err = NULL;
1340 
1341     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1342         arm_cpu_sve_finalize(cpu, &local_err);
1343         if (local_err != NULL) {
1344             error_propagate(errp, local_err);
1345             return;
1346         }
1347     }
1348 }
1349 
1350 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1351 {
1352     CPUState *cs = CPU(dev);
1353     ARMCPU *cpu = ARM_CPU(dev);
1354     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1355     CPUARMState *env = &cpu->env;
1356     int pagebits;
1357     Error *local_err = NULL;
1358     bool no_aa32 = false;
1359 
1360     /* If we needed to query the host kernel for the CPU features
1361      * then it's possible that might have failed in the initfn, but
1362      * this is the first point where we can report it.
1363      */
1364     if (cpu->host_cpu_probe_failed) {
1365         if (!kvm_enabled()) {
1366             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1367         } else {
1368             error_setg(errp, "Failed to retrieve host CPU features");
1369         }
1370         return;
1371     }
1372 
1373 #ifndef CONFIG_USER_ONLY
1374     /* The NVIC and M-profile CPU are two halves of a single piece of
1375      * hardware; trying to use one without the other is a command line
1376      * error and will result in segfaults if not caught here.
1377      */
1378     if (arm_feature(env, ARM_FEATURE_M)) {
1379         if (!env->nvic) {
1380             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1381             return;
1382         }
1383     } else {
1384         if (env->nvic) {
1385             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1386             return;
1387         }
1388     }
1389 
1390     {
1391         uint64_t scale;
1392 
1393         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1394             if (!cpu->gt_cntfrq_hz) {
1395                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1396                            cpu->gt_cntfrq_hz);
1397                 return;
1398             }
1399             scale = gt_cntfrq_period_ns(cpu);
1400         } else {
1401             scale = GTIMER_SCALE;
1402         }
1403 
1404         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1405                                                arm_gt_ptimer_cb, cpu);
1406         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1407                                                arm_gt_vtimer_cb, cpu);
1408         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1409                                               arm_gt_htimer_cb, cpu);
1410         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1411                                               arm_gt_stimer_cb, cpu);
1412         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1413                                                   arm_gt_hvtimer_cb, cpu);
1414     }
1415 #endif
1416 
1417     cpu_exec_realizefn(cs, &local_err);
1418     if (local_err != NULL) {
1419         error_propagate(errp, local_err);
1420         return;
1421     }
1422 
1423     arm_cpu_finalize_features(cpu, &local_err);
1424     if (local_err != NULL) {
1425         error_propagate(errp, local_err);
1426         return;
1427     }
1428 
1429     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1430         cpu->has_vfp != cpu->has_neon) {
1431         /*
1432          * This is an architectural requirement for AArch64; AArch32 is
1433          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1434          */
1435         error_setg(errp,
1436                    "AArch64 CPUs must have both VFP and Neon or neither");
1437         return;
1438     }
1439 
1440     if (!cpu->has_vfp) {
1441         uint64_t t;
1442         uint32_t u;
1443 
1444         unset_feature(env, ARM_FEATURE_VFP);
1445         unset_feature(env, ARM_FEATURE_VFP3);
1446         unset_feature(env, ARM_FEATURE_VFP4);
1447 
1448         t = cpu->isar.id_aa64isar1;
1449         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1450         cpu->isar.id_aa64isar1 = t;
1451 
1452         t = cpu->isar.id_aa64pfr0;
1453         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1454         cpu->isar.id_aa64pfr0 = t;
1455 
1456         u = cpu->isar.id_isar6;
1457         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1458         cpu->isar.id_isar6 = u;
1459 
1460         u = cpu->isar.mvfr0;
1461         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1462         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1463         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1464         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1465         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1466         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1467         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1468         cpu->isar.mvfr0 = u;
1469 
1470         u = cpu->isar.mvfr1;
1471         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1472         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1473         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1474         cpu->isar.mvfr1 = u;
1475 
1476         u = cpu->isar.mvfr2;
1477         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1478         cpu->isar.mvfr2 = u;
1479     }
1480 
1481     if (!cpu->has_neon) {
1482         uint64_t t;
1483         uint32_t u;
1484 
1485         unset_feature(env, ARM_FEATURE_NEON);
1486 
1487         t = cpu->isar.id_aa64isar0;
1488         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1489         cpu->isar.id_aa64isar0 = t;
1490 
1491         t = cpu->isar.id_aa64isar1;
1492         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1493         cpu->isar.id_aa64isar1 = t;
1494 
1495         t = cpu->isar.id_aa64pfr0;
1496         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1497         cpu->isar.id_aa64pfr0 = t;
1498 
1499         u = cpu->isar.id_isar5;
1500         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1501         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1502         cpu->isar.id_isar5 = u;
1503 
1504         u = cpu->isar.id_isar6;
1505         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1506         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1507         cpu->isar.id_isar6 = u;
1508 
1509         u = cpu->isar.mvfr1;
1510         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1511         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1512         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1513         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1514         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1515         cpu->isar.mvfr1 = u;
1516 
1517         u = cpu->isar.mvfr2;
1518         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1519         cpu->isar.mvfr2 = u;
1520     }
1521 
1522     if (!cpu->has_neon && !cpu->has_vfp) {
1523         uint64_t t;
1524         uint32_t u;
1525 
1526         t = cpu->isar.id_aa64isar0;
1527         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1528         cpu->isar.id_aa64isar0 = t;
1529 
1530         t = cpu->isar.id_aa64isar1;
1531         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1532         cpu->isar.id_aa64isar1 = t;
1533 
1534         u = cpu->isar.mvfr0;
1535         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1536         cpu->isar.mvfr0 = u;
1537     }
1538 
1539     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1540         uint32_t u;
1541 
1542         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1543 
1544         u = cpu->isar.id_isar1;
1545         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1546         cpu->isar.id_isar1 = u;
1547 
1548         u = cpu->isar.id_isar2;
1549         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1550         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1551         cpu->isar.id_isar2 = u;
1552 
1553         u = cpu->isar.id_isar3;
1554         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1555         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1556         cpu->isar.id_isar3 = u;
1557     }
1558 
1559     /* Some features automatically imply others: */
1560     if (arm_feature(env, ARM_FEATURE_V8)) {
1561         if (arm_feature(env, ARM_FEATURE_M)) {
1562             set_feature(env, ARM_FEATURE_V7);
1563         } else {
1564             set_feature(env, ARM_FEATURE_V7VE);
1565         }
1566     }
1567 
1568     /*
1569      * There exist AArch64 cpus without AArch32 support.  When KVM
1570      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1571      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1572      * As a general principle, we also do not make ID register
1573      * consistency checks anywhere unless using TCG, because only
1574      * for TCG would a consistency-check failure be a QEMU bug.
1575      */
1576     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1577         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1578     }
1579 
1580     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1581         /* v7 Virtualization Extensions. In real hardware this implies
1582          * EL2 and also the presence of the Security Extensions.
1583          * For QEMU, for backwards-compatibility we implement some
1584          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1585          * include the various other features that V7VE implies.
1586          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1587          * Security Extensions is ARM_FEATURE_EL3.
1588          */
1589         assert(!tcg_enabled() || no_aa32 ||
1590                cpu_isar_feature(aa32_arm_div, cpu));
1591         set_feature(env, ARM_FEATURE_LPAE);
1592         set_feature(env, ARM_FEATURE_V7);
1593     }
1594     if (arm_feature(env, ARM_FEATURE_V7)) {
1595         set_feature(env, ARM_FEATURE_VAPA);
1596         set_feature(env, ARM_FEATURE_THUMB2);
1597         set_feature(env, ARM_FEATURE_MPIDR);
1598         if (!arm_feature(env, ARM_FEATURE_M)) {
1599             set_feature(env, ARM_FEATURE_V6K);
1600         } else {
1601             set_feature(env, ARM_FEATURE_V6);
1602         }
1603 
1604         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1605          * non-EL3 configs. This is needed by some legacy boards.
1606          */
1607         set_feature(env, ARM_FEATURE_VBAR);
1608     }
1609     if (arm_feature(env, ARM_FEATURE_V6K)) {
1610         set_feature(env, ARM_FEATURE_V6);
1611         set_feature(env, ARM_FEATURE_MVFR);
1612     }
1613     if (arm_feature(env, ARM_FEATURE_V6)) {
1614         set_feature(env, ARM_FEATURE_V5);
1615         if (!arm_feature(env, ARM_FEATURE_M)) {
1616             assert(!tcg_enabled() || no_aa32 ||
1617                    cpu_isar_feature(aa32_jazelle, cpu));
1618             set_feature(env, ARM_FEATURE_AUXCR);
1619         }
1620     }
1621     if (arm_feature(env, ARM_FEATURE_V5)) {
1622         set_feature(env, ARM_FEATURE_V4T);
1623     }
1624     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1625         set_feature(env, ARM_FEATURE_V7MP);
1626         set_feature(env, ARM_FEATURE_PXN);
1627     }
1628     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1629         set_feature(env, ARM_FEATURE_CBAR);
1630     }
1631     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1632         !arm_feature(env, ARM_FEATURE_M)) {
1633         set_feature(env, ARM_FEATURE_THUMB_DSP);
1634     }
1635 
1636     /*
1637      * We rely on no XScale CPU having VFP so we can use the same bits in the
1638      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1639      */
1640     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1641              arm_feature(env, ARM_FEATURE_XSCALE)));
1642 
1643     if (arm_feature(env, ARM_FEATURE_V7) &&
1644         !arm_feature(env, ARM_FEATURE_M) &&
1645         !arm_feature(env, ARM_FEATURE_PMSA)) {
1646         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1647          * can use 4K pages.
1648          */
1649         pagebits = 12;
1650     } else {
1651         /* For CPUs which might have tiny 1K pages, or which have an
1652          * MPU and might have small region sizes, stick with 1K pages.
1653          */
1654         pagebits = 10;
1655     }
1656     if (!set_preferred_target_page_bits(pagebits)) {
1657         /* This can only ever happen for hotplugging a CPU, or if
1658          * the board code incorrectly creates a CPU which it has
1659          * promised via minimum_page_size that it will not.
1660          */
1661         error_setg(errp, "This CPU requires a smaller page size than the "
1662                    "system is using");
1663         return;
1664     }
1665 
1666     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1667      * We don't support setting cluster ID ([16..23]) (known as Aff2
1668      * in later ARM ARM versions), or any of the higher affinity level fields,
1669      * so these bits always RAZ.
1670      */
1671     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1672         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1673                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1674     }
1675 
1676     if (cpu->reset_hivecs) {
1677             cpu->reset_sctlr |= (1 << 13);
1678     }
1679 
1680     if (cpu->cfgend) {
1681         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1682             cpu->reset_sctlr |= SCTLR_EE;
1683         } else {
1684             cpu->reset_sctlr |= SCTLR_B;
1685         }
1686     }
1687 
1688     if (!cpu->has_el3) {
1689         /* If the has_el3 CPU property is disabled then we need to disable the
1690          * feature.
1691          */
1692         unset_feature(env, ARM_FEATURE_EL3);
1693 
1694         /* Disable the security extension feature bits in the processor feature
1695          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1696          */
1697         cpu->id_pfr1 &= ~0xf0;
1698         cpu->isar.id_aa64pfr0 &= ~0xf000;
1699     }
1700 
1701     if (!cpu->has_el2) {
1702         unset_feature(env, ARM_FEATURE_EL2);
1703     }
1704 
1705     if (!cpu->has_pmu) {
1706         unset_feature(env, ARM_FEATURE_PMU);
1707     }
1708     if (arm_feature(env, ARM_FEATURE_PMU)) {
1709         pmu_init(cpu);
1710 
1711         if (!kvm_enabled()) {
1712             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1713             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1714         }
1715 
1716 #ifndef CONFIG_USER_ONLY
1717         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1718                 cpu);
1719 #endif
1720     } else {
1721         cpu->isar.id_aa64dfr0 =
1722             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1723         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1724         cpu->pmceid0 = 0;
1725         cpu->pmceid1 = 0;
1726     }
1727 
1728     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1729         /* Disable the hypervisor feature bits in the processor feature
1730          * registers if we don't have EL2. These are id_pfr1[15:12] and
1731          * id_aa64pfr0_el1[11:8].
1732          */
1733         cpu->isar.id_aa64pfr0 &= ~0xf00;
1734         cpu->id_pfr1 &= ~0xf000;
1735     }
1736 
1737     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1738      * to false or by setting pmsav7-dregion to 0.
1739      */
1740     if (!cpu->has_mpu) {
1741         cpu->pmsav7_dregion = 0;
1742     }
1743     if (cpu->pmsav7_dregion == 0) {
1744         cpu->has_mpu = false;
1745     }
1746 
1747     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1748         arm_feature(env, ARM_FEATURE_V7)) {
1749         uint32_t nr = cpu->pmsav7_dregion;
1750 
1751         if (nr > 0xff) {
1752             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1753             return;
1754         }
1755 
1756         if (nr) {
1757             if (arm_feature(env, ARM_FEATURE_V8)) {
1758                 /* PMSAv8 */
1759                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1760                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1761                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1762                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1763                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1764                 }
1765             } else {
1766                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1767                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1768                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1769             }
1770         }
1771     }
1772 
1773     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1774         uint32_t nr = cpu->sau_sregion;
1775 
1776         if (nr > 0xff) {
1777             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1778             return;
1779         }
1780 
1781         if (nr) {
1782             env->sau.rbar = g_new0(uint32_t, nr);
1783             env->sau.rlar = g_new0(uint32_t, nr);
1784         }
1785     }
1786 
1787     if (arm_feature(env, ARM_FEATURE_EL3)) {
1788         set_feature(env, ARM_FEATURE_VBAR);
1789     }
1790 
1791     register_cp_regs_for_features(cpu);
1792     arm_cpu_register_gdb_regs_for_features(cpu);
1793 
1794     init_cpreg_list(cpu);
1795 
1796 #ifndef CONFIG_USER_ONLY
1797     MachineState *ms = MACHINE(qdev_get_machine());
1798     unsigned int smp_cpus = ms->smp.cpus;
1799 
1800     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1801         cs->num_ases = 2;
1802 
1803         if (!cpu->secure_memory) {
1804             cpu->secure_memory = cs->memory;
1805         }
1806         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1807                                cpu->secure_memory);
1808     } else {
1809         cs->num_ases = 1;
1810     }
1811     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1812 
1813     /* No core_count specified, default to smp_cpus. */
1814     if (cpu->core_count == -1) {
1815         cpu->core_count = smp_cpus;
1816     }
1817 #endif
1818 
1819     qemu_init_vcpu(cs);
1820     cpu_reset(cs);
1821 
1822     acc->parent_realize(dev, errp);
1823 }
1824 
1825 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1826 {
1827     ObjectClass *oc;
1828     char *typename;
1829     char **cpuname;
1830     const char *cpunamestr;
1831 
1832     cpuname = g_strsplit(cpu_model, ",", 1);
1833     cpunamestr = cpuname[0];
1834 #ifdef CONFIG_USER_ONLY
1835     /* For backwards compatibility usermode emulation allows "-cpu any",
1836      * which has the same semantics as "-cpu max".
1837      */
1838     if (!strcmp(cpunamestr, "any")) {
1839         cpunamestr = "max";
1840     }
1841 #endif
1842     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1843     oc = object_class_by_name(typename);
1844     g_strfreev(cpuname);
1845     g_free(typename);
1846     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1847         object_class_is_abstract(oc)) {
1848         return NULL;
1849     }
1850     return oc;
1851 }
1852 
1853 /* CPU models. These are not needed for the AArch64 linux-user build. */
1854 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1855 
1856 static void arm926_initfn(Object *obj)
1857 {
1858     ARMCPU *cpu = ARM_CPU(obj);
1859 
1860     cpu->dtb_compatible = "arm,arm926";
1861     set_feature(&cpu->env, ARM_FEATURE_V5);
1862     set_feature(&cpu->env, ARM_FEATURE_VFP);
1863     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1864     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1865     cpu->midr = 0x41069265;
1866     cpu->reset_fpsid = 0x41011090;
1867     cpu->ctr = 0x1dd20d2;
1868     cpu->reset_sctlr = 0x00090078;
1869 
1870     /*
1871      * ARMv5 does not have the ID_ISAR registers, but we can still
1872      * set the field to indicate Jazelle support within QEMU.
1873      */
1874     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1875     /*
1876      * Similarly, we need to set MVFR0 fields to enable double precision
1877      * and short vector support even though ARMv5 doesn't have this register.
1878      */
1879     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1880     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1881 }
1882 
1883 static void arm946_initfn(Object *obj)
1884 {
1885     ARMCPU *cpu = ARM_CPU(obj);
1886 
1887     cpu->dtb_compatible = "arm,arm946";
1888     set_feature(&cpu->env, ARM_FEATURE_V5);
1889     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1890     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1891     cpu->midr = 0x41059461;
1892     cpu->ctr = 0x0f004006;
1893     cpu->reset_sctlr = 0x00000078;
1894 }
1895 
1896 static void arm1026_initfn(Object *obj)
1897 {
1898     ARMCPU *cpu = ARM_CPU(obj);
1899 
1900     cpu->dtb_compatible = "arm,arm1026";
1901     set_feature(&cpu->env, ARM_FEATURE_V5);
1902     set_feature(&cpu->env, ARM_FEATURE_VFP);
1903     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1904     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1905     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1906     cpu->midr = 0x4106a262;
1907     cpu->reset_fpsid = 0x410110a0;
1908     cpu->ctr = 0x1dd20d2;
1909     cpu->reset_sctlr = 0x00090078;
1910     cpu->reset_auxcr = 1;
1911 
1912     /*
1913      * ARMv5 does not have the ID_ISAR registers, but we can still
1914      * set the field to indicate Jazelle support within QEMU.
1915      */
1916     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1917     /*
1918      * Similarly, we need to set MVFR0 fields to enable double precision
1919      * and short vector support even though ARMv5 doesn't have this register.
1920      */
1921     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1922     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1923 
1924     {
1925         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1926         ARMCPRegInfo ifar = {
1927             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1928             .access = PL1_RW,
1929             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1930             .resetvalue = 0
1931         };
1932         define_one_arm_cp_reg(cpu, &ifar);
1933     }
1934 }
1935 
1936 static void arm1136_r2_initfn(Object *obj)
1937 {
1938     ARMCPU *cpu = ARM_CPU(obj);
1939     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1940      * older core than plain "arm1136". In particular this does not
1941      * have the v6K features.
1942      * These ID register values are correct for 1136 but may be wrong
1943      * for 1136_r2 (in particular r0p2 does not actually implement most
1944      * of the ID registers).
1945      */
1946 
1947     cpu->dtb_compatible = "arm,arm1136";
1948     set_feature(&cpu->env, ARM_FEATURE_V6);
1949     set_feature(&cpu->env, ARM_FEATURE_VFP);
1950     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1951     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1952     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1953     cpu->midr = 0x4107b362;
1954     cpu->reset_fpsid = 0x410120b4;
1955     cpu->isar.mvfr0 = 0x11111111;
1956     cpu->isar.mvfr1 = 0x00000000;
1957     cpu->ctr = 0x1dd20d2;
1958     cpu->reset_sctlr = 0x00050078;
1959     cpu->id_pfr0 = 0x111;
1960     cpu->id_pfr1 = 0x1;
1961     cpu->isar.id_dfr0 = 0x2;
1962     cpu->id_afr0 = 0x3;
1963     cpu->isar.id_mmfr0 = 0x01130003;
1964     cpu->isar.id_mmfr1 = 0x10030302;
1965     cpu->isar.id_mmfr2 = 0x01222110;
1966     cpu->isar.id_isar0 = 0x00140011;
1967     cpu->isar.id_isar1 = 0x12002111;
1968     cpu->isar.id_isar2 = 0x11231111;
1969     cpu->isar.id_isar3 = 0x01102131;
1970     cpu->isar.id_isar4 = 0x141;
1971     cpu->reset_auxcr = 7;
1972 }
1973 
1974 static void arm1136_initfn(Object *obj)
1975 {
1976     ARMCPU *cpu = ARM_CPU(obj);
1977 
1978     cpu->dtb_compatible = "arm,arm1136";
1979     set_feature(&cpu->env, ARM_FEATURE_V6K);
1980     set_feature(&cpu->env, ARM_FEATURE_V6);
1981     set_feature(&cpu->env, ARM_FEATURE_VFP);
1982     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1983     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1984     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1985     cpu->midr = 0x4117b363;
1986     cpu->reset_fpsid = 0x410120b4;
1987     cpu->isar.mvfr0 = 0x11111111;
1988     cpu->isar.mvfr1 = 0x00000000;
1989     cpu->ctr = 0x1dd20d2;
1990     cpu->reset_sctlr = 0x00050078;
1991     cpu->id_pfr0 = 0x111;
1992     cpu->id_pfr1 = 0x1;
1993     cpu->isar.id_dfr0 = 0x2;
1994     cpu->id_afr0 = 0x3;
1995     cpu->isar.id_mmfr0 = 0x01130003;
1996     cpu->isar.id_mmfr1 = 0x10030302;
1997     cpu->isar.id_mmfr2 = 0x01222110;
1998     cpu->isar.id_isar0 = 0x00140011;
1999     cpu->isar.id_isar1 = 0x12002111;
2000     cpu->isar.id_isar2 = 0x11231111;
2001     cpu->isar.id_isar3 = 0x01102131;
2002     cpu->isar.id_isar4 = 0x141;
2003     cpu->reset_auxcr = 7;
2004 }
2005 
2006 static void arm1176_initfn(Object *obj)
2007 {
2008     ARMCPU *cpu = ARM_CPU(obj);
2009 
2010     cpu->dtb_compatible = "arm,arm1176";
2011     set_feature(&cpu->env, ARM_FEATURE_V6K);
2012     set_feature(&cpu->env, ARM_FEATURE_VFP);
2013     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2014     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2015     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
2016     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
2017     set_feature(&cpu->env, ARM_FEATURE_EL3);
2018     cpu->midr = 0x410fb767;
2019     cpu->reset_fpsid = 0x410120b5;
2020     cpu->isar.mvfr0 = 0x11111111;
2021     cpu->isar.mvfr1 = 0x00000000;
2022     cpu->ctr = 0x1dd20d2;
2023     cpu->reset_sctlr = 0x00050078;
2024     cpu->id_pfr0 = 0x111;
2025     cpu->id_pfr1 = 0x11;
2026     cpu->isar.id_dfr0 = 0x33;
2027     cpu->id_afr0 = 0;
2028     cpu->isar.id_mmfr0 = 0x01130003;
2029     cpu->isar.id_mmfr1 = 0x10030302;
2030     cpu->isar.id_mmfr2 = 0x01222100;
2031     cpu->isar.id_isar0 = 0x0140011;
2032     cpu->isar.id_isar1 = 0x12002111;
2033     cpu->isar.id_isar2 = 0x11231121;
2034     cpu->isar.id_isar3 = 0x01102131;
2035     cpu->isar.id_isar4 = 0x01141;
2036     cpu->reset_auxcr = 7;
2037 }
2038 
2039 static void arm11mpcore_initfn(Object *obj)
2040 {
2041     ARMCPU *cpu = ARM_CPU(obj);
2042 
2043     cpu->dtb_compatible = "arm,arm11mpcore";
2044     set_feature(&cpu->env, ARM_FEATURE_V6K);
2045     set_feature(&cpu->env, ARM_FEATURE_VFP);
2046     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2047     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2048     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2049     cpu->midr = 0x410fb022;
2050     cpu->reset_fpsid = 0x410120b4;
2051     cpu->isar.mvfr0 = 0x11111111;
2052     cpu->isar.mvfr1 = 0x00000000;
2053     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2054     cpu->id_pfr0 = 0x111;
2055     cpu->id_pfr1 = 0x1;
2056     cpu->isar.id_dfr0 = 0;
2057     cpu->id_afr0 = 0x2;
2058     cpu->isar.id_mmfr0 = 0x01100103;
2059     cpu->isar.id_mmfr1 = 0x10020302;
2060     cpu->isar.id_mmfr2 = 0x01222000;
2061     cpu->isar.id_isar0 = 0x00100011;
2062     cpu->isar.id_isar1 = 0x12002111;
2063     cpu->isar.id_isar2 = 0x11221011;
2064     cpu->isar.id_isar3 = 0x01102131;
2065     cpu->isar.id_isar4 = 0x141;
2066     cpu->reset_auxcr = 1;
2067 }
2068 
2069 static void cortex_m0_initfn(Object *obj)
2070 {
2071     ARMCPU *cpu = ARM_CPU(obj);
2072     set_feature(&cpu->env, ARM_FEATURE_V6);
2073     set_feature(&cpu->env, ARM_FEATURE_M);
2074 
2075     cpu->midr = 0x410cc200;
2076 }
2077 
2078 static void cortex_m3_initfn(Object *obj)
2079 {
2080     ARMCPU *cpu = ARM_CPU(obj);
2081     set_feature(&cpu->env, ARM_FEATURE_V7);
2082     set_feature(&cpu->env, ARM_FEATURE_M);
2083     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2084     cpu->midr = 0x410fc231;
2085     cpu->pmsav7_dregion = 8;
2086     cpu->id_pfr0 = 0x00000030;
2087     cpu->id_pfr1 = 0x00000200;
2088     cpu->isar.id_dfr0 = 0x00100000;
2089     cpu->id_afr0 = 0x00000000;
2090     cpu->isar.id_mmfr0 = 0x00000030;
2091     cpu->isar.id_mmfr1 = 0x00000000;
2092     cpu->isar.id_mmfr2 = 0x00000000;
2093     cpu->isar.id_mmfr3 = 0x00000000;
2094     cpu->isar.id_isar0 = 0x01141110;
2095     cpu->isar.id_isar1 = 0x02111000;
2096     cpu->isar.id_isar2 = 0x21112231;
2097     cpu->isar.id_isar3 = 0x01111110;
2098     cpu->isar.id_isar4 = 0x01310102;
2099     cpu->isar.id_isar5 = 0x00000000;
2100     cpu->isar.id_isar6 = 0x00000000;
2101 }
2102 
2103 static void cortex_m4_initfn(Object *obj)
2104 {
2105     ARMCPU *cpu = ARM_CPU(obj);
2106 
2107     set_feature(&cpu->env, ARM_FEATURE_V7);
2108     set_feature(&cpu->env, ARM_FEATURE_M);
2109     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2110     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2111     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2112     cpu->midr = 0x410fc240; /* r0p0 */
2113     cpu->pmsav7_dregion = 8;
2114     cpu->isar.mvfr0 = 0x10110021;
2115     cpu->isar.mvfr1 = 0x11000011;
2116     cpu->isar.mvfr2 = 0x00000000;
2117     cpu->id_pfr0 = 0x00000030;
2118     cpu->id_pfr1 = 0x00000200;
2119     cpu->isar.id_dfr0 = 0x00100000;
2120     cpu->id_afr0 = 0x00000000;
2121     cpu->isar.id_mmfr0 = 0x00000030;
2122     cpu->isar.id_mmfr1 = 0x00000000;
2123     cpu->isar.id_mmfr2 = 0x00000000;
2124     cpu->isar.id_mmfr3 = 0x00000000;
2125     cpu->isar.id_isar0 = 0x01141110;
2126     cpu->isar.id_isar1 = 0x02111000;
2127     cpu->isar.id_isar2 = 0x21112231;
2128     cpu->isar.id_isar3 = 0x01111110;
2129     cpu->isar.id_isar4 = 0x01310102;
2130     cpu->isar.id_isar5 = 0x00000000;
2131     cpu->isar.id_isar6 = 0x00000000;
2132 }
2133 
2134 static void cortex_m7_initfn(Object *obj)
2135 {
2136     ARMCPU *cpu = ARM_CPU(obj);
2137 
2138     set_feature(&cpu->env, ARM_FEATURE_V7);
2139     set_feature(&cpu->env, ARM_FEATURE_M);
2140     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2141     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2142     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2143     cpu->midr = 0x411fc272; /* r1p2 */
2144     cpu->pmsav7_dregion = 8;
2145     cpu->isar.mvfr0 = 0x10110221;
2146     cpu->isar.mvfr1 = 0x12000011;
2147     cpu->isar.mvfr2 = 0x00000040;
2148     cpu->id_pfr0 = 0x00000030;
2149     cpu->id_pfr1 = 0x00000200;
2150     cpu->isar.id_dfr0 = 0x00100000;
2151     cpu->id_afr0 = 0x00000000;
2152     cpu->isar.id_mmfr0 = 0x00100030;
2153     cpu->isar.id_mmfr1 = 0x00000000;
2154     cpu->isar.id_mmfr2 = 0x01000000;
2155     cpu->isar.id_mmfr3 = 0x00000000;
2156     cpu->isar.id_isar0 = 0x01101110;
2157     cpu->isar.id_isar1 = 0x02112000;
2158     cpu->isar.id_isar2 = 0x20232231;
2159     cpu->isar.id_isar3 = 0x01111131;
2160     cpu->isar.id_isar4 = 0x01310132;
2161     cpu->isar.id_isar5 = 0x00000000;
2162     cpu->isar.id_isar6 = 0x00000000;
2163 }
2164 
2165 static void cortex_m33_initfn(Object *obj)
2166 {
2167     ARMCPU *cpu = ARM_CPU(obj);
2168 
2169     set_feature(&cpu->env, ARM_FEATURE_V8);
2170     set_feature(&cpu->env, ARM_FEATURE_M);
2171     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2172     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2173     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2174     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2175     cpu->midr = 0x410fd213; /* r0p3 */
2176     cpu->pmsav7_dregion = 16;
2177     cpu->sau_sregion = 8;
2178     cpu->isar.mvfr0 = 0x10110021;
2179     cpu->isar.mvfr1 = 0x11000011;
2180     cpu->isar.mvfr2 = 0x00000040;
2181     cpu->id_pfr0 = 0x00000030;
2182     cpu->id_pfr1 = 0x00000210;
2183     cpu->isar.id_dfr0 = 0x00200000;
2184     cpu->id_afr0 = 0x00000000;
2185     cpu->isar.id_mmfr0 = 0x00101F40;
2186     cpu->isar.id_mmfr1 = 0x00000000;
2187     cpu->isar.id_mmfr2 = 0x01000000;
2188     cpu->isar.id_mmfr3 = 0x00000000;
2189     cpu->isar.id_isar0 = 0x01101110;
2190     cpu->isar.id_isar1 = 0x02212000;
2191     cpu->isar.id_isar2 = 0x20232232;
2192     cpu->isar.id_isar3 = 0x01111131;
2193     cpu->isar.id_isar4 = 0x01310132;
2194     cpu->isar.id_isar5 = 0x00000000;
2195     cpu->isar.id_isar6 = 0x00000000;
2196     cpu->clidr = 0x00000000;
2197     cpu->ctr = 0x8000c000;
2198 }
2199 
2200 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2201 {
2202     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2203     CPUClass *cc = CPU_CLASS(oc);
2204 
2205     acc->info = data;
2206 #ifndef CONFIG_USER_ONLY
2207     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2208 #endif
2209 
2210     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2211 }
2212 
2213 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2214     /* Dummy the TCM region regs for the moment */
2215     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2216       .access = PL1_RW, .type = ARM_CP_CONST },
2217     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2218       .access = PL1_RW, .type = ARM_CP_CONST },
2219     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2220       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2221     REGINFO_SENTINEL
2222 };
2223 
2224 static void cortex_r5_initfn(Object *obj)
2225 {
2226     ARMCPU *cpu = ARM_CPU(obj);
2227 
2228     set_feature(&cpu->env, ARM_FEATURE_V7);
2229     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2230     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2231     set_feature(&cpu->env, ARM_FEATURE_PMU);
2232     cpu->midr = 0x411fc153; /* r1p3 */
2233     cpu->id_pfr0 = 0x0131;
2234     cpu->id_pfr1 = 0x001;
2235     cpu->isar.id_dfr0 = 0x010400;
2236     cpu->id_afr0 = 0x0;
2237     cpu->isar.id_mmfr0 = 0x0210030;
2238     cpu->isar.id_mmfr1 = 0x00000000;
2239     cpu->isar.id_mmfr2 = 0x01200000;
2240     cpu->isar.id_mmfr3 = 0x0211;
2241     cpu->isar.id_isar0 = 0x02101111;
2242     cpu->isar.id_isar1 = 0x13112111;
2243     cpu->isar.id_isar2 = 0x21232141;
2244     cpu->isar.id_isar3 = 0x01112131;
2245     cpu->isar.id_isar4 = 0x0010142;
2246     cpu->isar.id_isar5 = 0x0;
2247     cpu->isar.id_isar6 = 0x0;
2248     cpu->mp_is_up = true;
2249     cpu->pmsav7_dregion = 16;
2250     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2251 }
2252 
2253 static void cortex_r5f_initfn(Object *obj)
2254 {
2255     ARMCPU *cpu = ARM_CPU(obj);
2256 
2257     cortex_r5_initfn(obj);
2258     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2259     cpu->isar.mvfr0 = 0x10110221;
2260     cpu->isar.mvfr1 = 0x00000011;
2261 }
2262 
2263 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2264     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2265       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2266     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2267       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2268     REGINFO_SENTINEL
2269 };
2270 
2271 static void cortex_a8_initfn(Object *obj)
2272 {
2273     ARMCPU *cpu = ARM_CPU(obj);
2274 
2275     cpu->dtb_compatible = "arm,cortex-a8";
2276     set_feature(&cpu->env, ARM_FEATURE_V7);
2277     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2278     set_feature(&cpu->env, ARM_FEATURE_NEON);
2279     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2280     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2281     set_feature(&cpu->env, ARM_FEATURE_EL3);
2282     cpu->midr = 0x410fc080;
2283     cpu->reset_fpsid = 0x410330c0;
2284     cpu->isar.mvfr0 = 0x11110222;
2285     cpu->isar.mvfr1 = 0x00011111;
2286     cpu->ctr = 0x82048004;
2287     cpu->reset_sctlr = 0x00c50078;
2288     cpu->id_pfr0 = 0x1031;
2289     cpu->id_pfr1 = 0x11;
2290     cpu->isar.id_dfr0 = 0x400;
2291     cpu->id_afr0 = 0;
2292     cpu->isar.id_mmfr0 = 0x31100003;
2293     cpu->isar.id_mmfr1 = 0x20000000;
2294     cpu->isar.id_mmfr2 = 0x01202000;
2295     cpu->isar.id_mmfr3 = 0x11;
2296     cpu->isar.id_isar0 = 0x00101111;
2297     cpu->isar.id_isar1 = 0x12112111;
2298     cpu->isar.id_isar2 = 0x21232031;
2299     cpu->isar.id_isar3 = 0x11112131;
2300     cpu->isar.id_isar4 = 0x00111142;
2301     cpu->isar.dbgdidr = 0x15141000;
2302     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2303     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2304     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2305     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2306     cpu->reset_auxcr = 2;
2307     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2308 }
2309 
2310 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2311     /* power_control should be set to maximum latency. Again,
2312      * default to 0 and set by private hook
2313      */
2314     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2315       .access = PL1_RW, .resetvalue = 0,
2316       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2317     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2318       .access = PL1_RW, .resetvalue = 0,
2319       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2320     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2321       .access = PL1_RW, .resetvalue = 0,
2322       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2323     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2324       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2325     /* TLB lockdown control */
2326     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2327       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2328     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2329       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2330     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2331       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2332     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2333       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2334     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2335       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2336     REGINFO_SENTINEL
2337 };
2338 
2339 static void cortex_a9_initfn(Object *obj)
2340 {
2341     ARMCPU *cpu = ARM_CPU(obj);
2342 
2343     cpu->dtb_compatible = "arm,cortex-a9";
2344     set_feature(&cpu->env, ARM_FEATURE_V7);
2345     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2346     set_feature(&cpu->env, ARM_FEATURE_NEON);
2347     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2348     set_feature(&cpu->env, ARM_FEATURE_EL3);
2349     /* Note that A9 supports the MP extensions even for
2350      * A9UP and single-core A9MP (which are both different
2351      * and valid configurations; we don't model A9UP).
2352      */
2353     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2354     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2355     cpu->midr = 0x410fc090;
2356     cpu->reset_fpsid = 0x41033090;
2357     cpu->isar.mvfr0 = 0x11110222;
2358     cpu->isar.mvfr1 = 0x01111111;
2359     cpu->ctr = 0x80038003;
2360     cpu->reset_sctlr = 0x00c50078;
2361     cpu->id_pfr0 = 0x1031;
2362     cpu->id_pfr1 = 0x11;
2363     cpu->isar.id_dfr0 = 0x000;
2364     cpu->id_afr0 = 0;
2365     cpu->isar.id_mmfr0 = 0x00100103;
2366     cpu->isar.id_mmfr1 = 0x20000000;
2367     cpu->isar.id_mmfr2 = 0x01230000;
2368     cpu->isar.id_mmfr3 = 0x00002111;
2369     cpu->isar.id_isar0 = 0x00101111;
2370     cpu->isar.id_isar1 = 0x13112111;
2371     cpu->isar.id_isar2 = 0x21232041;
2372     cpu->isar.id_isar3 = 0x11112131;
2373     cpu->isar.id_isar4 = 0x00111142;
2374     cpu->isar.dbgdidr = 0x35141000;
2375     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2376     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2377     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2378     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2379 }
2380 
2381 #ifndef CONFIG_USER_ONLY
2382 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2383 {
2384     MachineState *ms = MACHINE(qdev_get_machine());
2385 
2386     /* Linux wants the number of processors from here.
2387      * Might as well set the interrupt-controller bit too.
2388      */
2389     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2390 }
2391 #endif
2392 
2393 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2394 #ifndef CONFIG_USER_ONLY
2395     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2396       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2397       .writefn = arm_cp_write_ignore, },
2398 #endif
2399     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2400       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2401     REGINFO_SENTINEL
2402 };
2403 
2404 static void cortex_a7_initfn(Object *obj)
2405 {
2406     ARMCPU *cpu = ARM_CPU(obj);
2407 
2408     cpu->dtb_compatible = "arm,cortex-a7";
2409     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2410     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2411     set_feature(&cpu->env, ARM_FEATURE_NEON);
2412     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2413     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2414     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2415     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2416     set_feature(&cpu->env, ARM_FEATURE_EL2);
2417     set_feature(&cpu->env, ARM_FEATURE_EL3);
2418     set_feature(&cpu->env, ARM_FEATURE_PMU);
2419     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2420     cpu->midr = 0x410fc075;
2421     cpu->reset_fpsid = 0x41023075;
2422     cpu->isar.mvfr0 = 0x10110222;
2423     cpu->isar.mvfr1 = 0x11111111;
2424     cpu->ctr = 0x84448003;
2425     cpu->reset_sctlr = 0x00c50078;
2426     cpu->id_pfr0 = 0x00001131;
2427     cpu->id_pfr1 = 0x00011011;
2428     cpu->isar.id_dfr0 = 0x02010555;
2429     cpu->id_afr0 = 0x00000000;
2430     cpu->isar.id_mmfr0 = 0x10101105;
2431     cpu->isar.id_mmfr1 = 0x40000000;
2432     cpu->isar.id_mmfr2 = 0x01240000;
2433     cpu->isar.id_mmfr3 = 0x02102211;
2434     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2435      * table 4-41 gives 0x02101110, which includes the arm div insns.
2436      */
2437     cpu->isar.id_isar0 = 0x02101110;
2438     cpu->isar.id_isar1 = 0x13112111;
2439     cpu->isar.id_isar2 = 0x21232041;
2440     cpu->isar.id_isar3 = 0x11112131;
2441     cpu->isar.id_isar4 = 0x10011142;
2442     cpu->isar.dbgdidr = 0x3515f005;
2443     cpu->clidr = 0x0a200023;
2444     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2445     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2446     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2447     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2448 }
2449 
2450 static void cortex_a15_initfn(Object *obj)
2451 {
2452     ARMCPU *cpu = ARM_CPU(obj);
2453 
2454     cpu->dtb_compatible = "arm,cortex-a15";
2455     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2456     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2457     set_feature(&cpu->env, ARM_FEATURE_NEON);
2458     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2459     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2460     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2461     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2462     set_feature(&cpu->env, ARM_FEATURE_EL2);
2463     set_feature(&cpu->env, ARM_FEATURE_EL3);
2464     set_feature(&cpu->env, ARM_FEATURE_PMU);
2465     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2466     cpu->midr = 0x412fc0f1;
2467     cpu->reset_fpsid = 0x410430f0;
2468     cpu->isar.mvfr0 = 0x10110222;
2469     cpu->isar.mvfr1 = 0x11111111;
2470     cpu->ctr = 0x8444c004;
2471     cpu->reset_sctlr = 0x00c50078;
2472     cpu->id_pfr0 = 0x00001131;
2473     cpu->id_pfr1 = 0x00011011;
2474     cpu->isar.id_dfr0 = 0x02010555;
2475     cpu->id_afr0 = 0x00000000;
2476     cpu->isar.id_mmfr0 = 0x10201105;
2477     cpu->isar.id_mmfr1 = 0x20000000;
2478     cpu->isar.id_mmfr2 = 0x01240000;
2479     cpu->isar.id_mmfr3 = 0x02102211;
2480     cpu->isar.id_isar0 = 0x02101110;
2481     cpu->isar.id_isar1 = 0x13112111;
2482     cpu->isar.id_isar2 = 0x21232041;
2483     cpu->isar.id_isar3 = 0x11112131;
2484     cpu->isar.id_isar4 = 0x10011142;
2485     cpu->isar.dbgdidr = 0x3515f021;
2486     cpu->clidr = 0x0a200023;
2487     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2488     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2489     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2490     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2491 }
2492 
2493 static void ti925t_initfn(Object *obj)
2494 {
2495     ARMCPU *cpu = ARM_CPU(obj);
2496     set_feature(&cpu->env, ARM_FEATURE_V4T);
2497     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2498     cpu->midr = ARM_CPUID_TI925T;
2499     cpu->ctr = 0x5109149;
2500     cpu->reset_sctlr = 0x00000070;
2501 }
2502 
2503 static void sa1100_initfn(Object *obj)
2504 {
2505     ARMCPU *cpu = ARM_CPU(obj);
2506 
2507     cpu->dtb_compatible = "intel,sa1100";
2508     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2509     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2510     cpu->midr = 0x4401A11B;
2511     cpu->reset_sctlr = 0x00000070;
2512 }
2513 
2514 static void sa1110_initfn(Object *obj)
2515 {
2516     ARMCPU *cpu = ARM_CPU(obj);
2517     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2518     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2519     cpu->midr = 0x6901B119;
2520     cpu->reset_sctlr = 0x00000070;
2521 }
2522 
2523 static void pxa250_initfn(Object *obj)
2524 {
2525     ARMCPU *cpu = ARM_CPU(obj);
2526 
2527     cpu->dtb_compatible = "marvell,xscale";
2528     set_feature(&cpu->env, ARM_FEATURE_V5);
2529     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2530     cpu->midr = 0x69052100;
2531     cpu->ctr = 0xd172172;
2532     cpu->reset_sctlr = 0x00000078;
2533 }
2534 
2535 static void pxa255_initfn(Object *obj)
2536 {
2537     ARMCPU *cpu = ARM_CPU(obj);
2538 
2539     cpu->dtb_compatible = "marvell,xscale";
2540     set_feature(&cpu->env, ARM_FEATURE_V5);
2541     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2542     cpu->midr = 0x69052d00;
2543     cpu->ctr = 0xd172172;
2544     cpu->reset_sctlr = 0x00000078;
2545 }
2546 
2547 static void pxa260_initfn(Object *obj)
2548 {
2549     ARMCPU *cpu = ARM_CPU(obj);
2550 
2551     cpu->dtb_compatible = "marvell,xscale";
2552     set_feature(&cpu->env, ARM_FEATURE_V5);
2553     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2554     cpu->midr = 0x69052903;
2555     cpu->ctr = 0xd172172;
2556     cpu->reset_sctlr = 0x00000078;
2557 }
2558 
2559 static void pxa261_initfn(Object *obj)
2560 {
2561     ARMCPU *cpu = ARM_CPU(obj);
2562 
2563     cpu->dtb_compatible = "marvell,xscale";
2564     set_feature(&cpu->env, ARM_FEATURE_V5);
2565     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2566     cpu->midr = 0x69052d05;
2567     cpu->ctr = 0xd172172;
2568     cpu->reset_sctlr = 0x00000078;
2569 }
2570 
2571 static void pxa262_initfn(Object *obj)
2572 {
2573     ARMCPU *cpu = ARM_CPU(obj);
2574 
2575     cpu->dtb_compatible = "marvell,xscale";
2576     set_feature(&cpu->env, ARM_FEATURE_V5);
2577     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2578     cpu->midr = 0x69052d06;
2579     cpu->ctr = 0xd172172;
2580     cpu->reset_sctlr = 0x00000078;
2581 }
2582 
2583 static void pxa270a0_initfn(Object *obj)
2584 {
2585     ARMCPU *cpu = ARM_CPU(obj);
2586 
2587     cpu->dtb_compatible = "marvell,xscale";
2588     set_feature(&cpu->env, ARM_FEATURE_V5);
2589     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2590     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2591     cpu->midr = 0x69054110;
2592     cpu->ctr = 0xd172172;
2593     cpu->reset_sctlr = 0x00000078;
2594 }
2595 
2596 static void pxa270a1_initfn(Object *obj)
2597 {
2598     ARMCPU *cpu = ARM_CPU(obj);
2599 
2600     cpu->dtb_compatible = "marvell,xscale";
2601     set_feature(&cpu->env, ARM_FEATURE_V5);
2602     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2603     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2604     cpu->midr = 0x69054111;
2605     cpu->ctr = 0xd172172;
2606     cpu->reset_sctlr = 0x00000078;
2607 }
2608 
2609 static void pxa270b0_initfn(Object *obj)
2610 {
2611     ARMCPU *cpu = ARM_CPU(obj);
2612 
2613     cpu->dtb_compatible = "marvell,xscale";
2614     set_feature(&cpu->env, ARM_FEATURE_V5);
2615     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2616     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2617     cpu->midr = 0x69054112;
2618     cpu->ctr = 0xd172172;
2619     cpu->reset_sctlr = 0x00000078;
2620 }
2621 
2622 static void pxa270b1_initfn(Object *obj)
2623 {
2624     ARMCPU *cpu = ARM_CPU(obj);
2625 
2626     cpu->dtb_compatible = "marvell,xscale";
2627     set_feature(&cpu->env, ARM_FEATURE_V5);
2628     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2629     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2630     cpu->midr = 0x69054113;
2631     cpu->ctr = 0xd172172;
2632     cpu->reset_sctlr = 0x00000078;
2633 }
2634 
2635 static void pxa270c0_initfn(Object *obj)
2636 {
2637     ARMCPU *cpu = ARM_CPU(obj);
2638 
2639     cpu->dtb_compatible = "marvell,xscale";
2640     set_feature(&cpu->env, ARM_FEATURE_V5);
2641     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2642     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2643     cpu->midr = 0x69054114;
2644     cpu->ctr = 0xd172172;
2645     cpu->reset_sctlr = 0x00000078;
2646 }
2647 
2648 static void pxa270c5_initfn(Object *obj)
2649 {
2650     ARMCPU *cpu = ARM_CPU(obj);
2651 
2652     cpu->dtb_compatible = "marvell,xscale";
2653     set_feature(&cpu->env, ARM_FEATURE_V5);
2654     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2655     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2656     cpu->midr = 0x69054117;
2657     cpu->ctr = 0xd172172;
2658     cpu->reset_sctlr = 0x00000078;
2659 }
2660 
2661 #ifndef TARGET_AARCH64
2662 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2663  * otherwise, a CPU with as many features enabled as our emulation supports.
2664  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2665  * this only needs to handle 32 bits.
2666  */
2667 static void arm_max_initfn(Object *obj)
2668 {
2669     ARMCPU *cpu = ARM_CPU(obj);
2670 
2671     if (kvm_enabled()) {
2672         kvm_arm_set_cpu_features_from_host(cpu);
2673         kvm_arm_add_vcpu_properties(obj);
2674     } else {
2675         cortex_a15_initfn(obj);
2676 
2677         /* old-style VFP short-vector support */
2678         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2679 
2680 #ifdef CONFIG_USER_ONLY
2681         /* We don't set these in system emulation mode for the moment,
2682          * since we don't correctly set (all of) the ID registers to
2683          * advertise them.
2684          */
2685         set_feature(&cpu->env, ARM_FEATURE_V8);
2686         {
2687             uint32_t t;
2688 
2689             t = cpu->isar.id_isar5;
2690             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2691             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2692             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2693             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2694             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2695             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2696             cpu->isar.id_isar5 = t;
2697 
2698             t = cpu->isar.id_isar6;
2699             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2700             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2701             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2702             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2703             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2704             cpu->isar.id_isar6 = t;
2705 
2706             t = cpu->isar.mvfr1;
2707             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2708             cpu->isar.mvfr1 = t;
2709 
2710             t = cpu->isar.mvfr2;
2711             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2712             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2713             cpu->isar.mvfr2 = t;
2714 
2715             t = cpu->isar.id_mmfr3;
2716             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2717             cpu->isar.id_mmfr3 = t;
2718 
2719             t = cpu->isar.id_mmfr4;
2720             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2721             cpu->isar.id_mmfr4 = t;
2722         }
2723 #endif
2724     }
2725 }
2726 #endif
2727 
2728 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2729 
2730 struct ARMCPUInfo {
2731     const char *name;
2732     void (*initfn)(Object *obj);
2733     void (*class_init)(ObjectClass *oc, void *data);
2734 };
2735 
2736 static const ARMCPUInfo arm_cpus[] = {
2737 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2738     { .name = "arm926",      .initfn = arm926_initfn },
2739     { .name = "arm946",      .initfn = arm946_initfn },
2740     { .name = "arm1026",     .initfn = arm1026_initfn },
2741     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2742      * older core than plain "arm1136". In particular this does not
2743      * have the v6K features.
2744      */
2745     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2746     { .name = "arm1136",     .initfn = arm1136_initfn },
2747     { .name = "arm1176",     .initfn = arm1176_initfn },
2748     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2749     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2750                              .class_init = arm_v7m_class_init },
2751     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2752                              .class_init = arm_v7m_class_init },
2753     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2754                              .class_init = arm_v7m_class_init },
2755     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2756                              .class_init = arm_v7m_class_init },
2757     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2758                              .class_init = arm_v7m_class_init },
2759     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2760     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2761     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2762     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2763     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2764     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2765     { .name = "ti925t",      .initfn = ti925t_initfn },
2766     { .name = "sa1100",      .initfn = sa1100_initfn },
2767     { .name = "sa1110",      .initfn = sa1110_initfn },
2768     { .name = "pxa250",      .initfn = pxa250_initfn },
2769     { .name = "pxa255",      .initfn = pxa255_initfn },
2770     { .name = "pxa260",      .initfn = pxa260_initfn },
2771     { .name = "pxa261",      .initfn = pxa261_initfn },
2772     { .name = "pxa262",      .initfn = pxa262_initfn },
2773     /* "pxa270" is an alias for "pxa270-a0" */
2774     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2775     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2776     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2777     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2778     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2779     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2780     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2781 #ifndef TARGET_AARCH64
2782     { .name = "max",         .initfn = arm_max_initfn },
2783 #endif
2784 #ifdef CONFIG_USER_ONLY
2785     { .name = "any",         .initfn = arm_max_initfn },
2786 #endif
2787 #endif
2788     { .name = NULL }
2789 };
2790 
2791 static Property arm_cpu_properties[] = {
2792     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2793     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2794     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2795     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2796                         mp_affinity, ARM64_AFFINITY_INVALID),
2797     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2798     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2799     DEFINE_PROP_END_OF_LIST()
2800 };
2801 
2802 static gchar *arm_gdb_arch_name(CPUState *cs)
2803 {
2804     ARMCPU *cpu = ARM_CPU(cs);
2805     CPUARMState *env = &cpu->env;
2806 
2807     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2808         return g_strdup("iwmmxt");
2809     }
2810     return g_strdup("arm");
2811 }
2812 
2813 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2814 {
2815     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2816     CPUClass *cc = CPU_CLASS(acc);
2817     DeviceClass *dc = DEVICE_CLASS(oc);
2818 
2819     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2820                                     &acc->parent_realize);
2821 
2822     device_class_set_props(dc, arm_cpu_properties);
2823     cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2824 
2825     cc->class_by_name = arm_cpu_class_by_name;
2826     cc->has_work = arm_cpu_has_work;
2827     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2828     cc->dump_state = arm_cpu_dump_state;
2829     cc->set_pc = arm_cpu_set_pc;
2830     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2831     cc->gdb_read_register = arm_cpu_gdb_read_register;
2832     cc->gdb_write_register = arm_cpu_gdb_write_register;
2833 #ifndef CONFIG_USER_ONLY
2834     cc->do_interrupt = arm_cpu_do_interrupt;
2835     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2836     cc->asidx_from_attrs = arm_asidx_from_attrs;
2837     cc->vmsd = &vmstate_arm_cpu;
2838     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2839     cc->write_elf64_note = arm_cpu_write_elf64_note;
2840     cc->write_elf32_note = arm_cpu_write_elf32_note;
2841 #endif
2842     cc->gdb_num_core_regs = 26;
2843     cc->gdb_core_xml_file = "arm-core.xml";
2844     cc->gdb_arch_name = arm_gdb_arch_name;
2845     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2846     cc->gdb_stop_before_watchpoint = true;
2847     cc->disas_set_info = arm_disas_set_info;
2848 #ifdef CONFIG_TCG
2849     cc->tcg_initialize = arm_translate_init;
2850     cc->tlb_fill = arm_cpu_tlb_fill;
2851     cc->debug_excp_handler = arm_debug_excp_handler;
2852     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2853 #if !defined(CONFIG_USER_ONLY)
2854     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2855     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2856     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2857 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2858 #endif
2859 }
2860 
2861 #ifdef CONFIG_KVM
2862 static void arm_host_initfn(Object *obj)
2863 {
2864     ARMCPU *cpu = ARM_CPU(obj);
2865 
2866     kvm_arm_set_cpu_features_from_host(cpu);
2867     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2868         aarch64_add_sve_properties(obj);
2869     }
2870     kvm_arm_add_vcpu_properties(obj);
2871     arm_cpu_post_init(obj);
2872 }
2873 
2874 static const TypeInfo host_arm_cpu_type_info = {
2875     .name = TYPE_ARM_HOST_CPU,
2876 #ifdef TARGET_AARCH64
2877     .parent = TYPE_AARCH64_CPU,
2878 #else
2879     .parent = TYPE_ARM_CPU,
2880 #endif
2881     .instance_init = arm_host_initfn,
2882 };
2883 
2884 #endif
2885 
2886 static void arm_cpu_instance_init(Object *obj)
2887 {
2888     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2889 
2890     acc->info->initfn(obj);
2891     arm_cpu_post_init(obj);
2892 }
2893 
2894 static void cpu_register_class_init(ObjectClass *oc, void *data)
2895 {
2896     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2897 
2898     acc->info = data;
2899 }
2900 
2901 static void cpu_register(const ARMCPUInfo *info)
2902 {
2903     TypeInfo type_info = {
2904         .parent = TYPE_ARM_CPU,
2905         .instance_size = sizeof(ARMCPU),
2906         .instance_init = arm_cpu_instance_init,
2907         .class_size = sizeof(ARMCPUClass),
2908         .class_init = info->class_init ?: cpu_register_class_init,
2909         .class_data = (void *)info,
2910     };
2911 
2912     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2913     type_register(&type_info);
2914     g_free((void *)type_info.name);
2915 }
2916 
2917 static const TypeInfo arm_cpu_type_info = {
2918     .name = TYPE_ARM_CPU,
2919     .parent = TYPE_CPU,
2920     .instance_size = sizeof(ARMCPU),
2921     .instance_init = arm_cpu_initfn,
2922     .instance_finalize = arm_cpu_finalizefn,
2923     .abstract = true,
2924     .class_size = sizeof(ARMCPUClass),
2925     .class_init = arm_cpu_class_init,
2926 };
2927 
2928 static const TypeInfo idau_interface_type_info = {
2929     .name = TYPE_IDAU_INTERFACE,
2930     .parent = TYPE_INTERFACE,
2931     .class_size = sizeof(IDAUInterfaceClass),
2932 };
2933 
2934 static void arm_cpu_register_types(void)
2935 {
2936     const ARMCPUInfo *info = arm_cpus;
2937 
2938     type_register_static(&arm_cpu_type_info);
2939     type_register_static(&idau_interface_type_info);
2940 
2941     while (info->name) {
2942         cpu_register(info);
2943         info++;
2944     }
2945 
2946 #ifdef CONFIG_KVM
2947     type_register_static(&host_arm_cpu_type_info);
2948 #endif
2949 }
2950 
2951 type_init(arm_cpu_register_types)
2952