xref: /openbmc/qemu/target/arm/cpu.c (revision 0c4a94b8)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 #include "disas/capstone.h"
37 #include "fpu/softfloat.h"
38 
39 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
40 {
41     ARMCPU *cpu = ARM_CPU(cs);
42 
43     cpu->env.regs[15] = value;
44 }
45 
46 static bool arm_cpu_has_work(CPUState *cs)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49 
50     return (cpu->power_state != PSCI_OFF)
51         && cs->interrupt_request &
52         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
53          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
54          | CPU_INTERRUPT_EXITTB);
55 }
56 
57 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
58                                  void *opaque)
59 {
60     /* We currently only support registering a single hook function */
61     assert(!cpu->el_change_hook);
62     cpu->el_change_hook = hook;
63     cpu->el_change_hook_opaque = opaque;
64 }
65 
66 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
67 {
68     /* Reset a single ARMCPRegInfo register */
69     ARMCPRegInfo *ri = value;
70     ARMCPU *cpu = opaque;
71 
72     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
73         return;
74     }
75 
76     if (ri->resetfn) {
77         ri->resetfn(&cpu->env, ri);
78         return;
79     }
80 
81     /* A zero offset is never possible as it would be regs[0]
82      * so we use it to indicate that reset is being handled elsewhere.
83      * This is basically only used for fields in non-core coprocessors
84      * (like the pxa2xx ones).
85      */
86     if (!ri->fieldoffset) {
87         return;
88     }
89 
90     if (cpreg_field_is_64bit(ri)) {
91         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
92     } else {
93         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
94     }
95 }
96 
97 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
98 {
99     /* Purely an assertion check: we've already done reset once,
100      * so now check that running the reset for the cpreg doesn't
101      * change its value. This traps bugs where two different cpregs
102      * both try to reset the same state field but to different values.
103      */
104     ARMCPRegInfo *ri = value;
105     ARMCPU *cpu = opaque;
106     uint64_t oldvalue, newvalue;
107 
108     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
109         return;
110     }
111 
112     oldvalue = read_raw_cp_reg(&cpu->env, ri);
113     cp_reg_reset(key, value, opaque);
114     newvalue = read_raw_cp_reg(&cpu->env, ri);
115     assert(oldvalue == newvalue);
116 }
117 
118 /* CPUClass::reset() */
119 static void arm_cpu_reset(CPUState *s)
120 {
121     ARMCPU *cpu = ARM_CPU(s);
122     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
123     CPUARMState *env = &cpu->env;
124 
125     acc->parent_reset(s);
126 
127     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
128 
129     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
130     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
131 
132     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
133     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
134     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
135     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
136 
137     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
138     s->halted = cpu->start_powered_off;
139 
140     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
141         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
142     }
143 
144     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
145         /* 64 bit CPUs always start in 64 bit mode */
146         env->aarch64 = 1;
147 #if defined(CONFIG_USER_ONLY)
148         env->pstate = PSTATE_MODE_EL0t;
149         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
150         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
151         /* and to the FP/Neon instructions */
152         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
153 #else
154         /* Reset into the highest available EL */
155         if (arm_feature(env, ARM_FEATURE_EL3)) {
156             env->pstate = PSTATE_MODE_EL3h;
157         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
158             env->pstate = PSTATE_MODE_EL2h;
159         } else {
160             env->pstate = PSTATE_MODE_EL1h;
161         }
162         env->pc = cpu->rvbar;
163 #endif
164     } else {
165 #if defined(CONFIG_USER_ONLY)
166         /* Userspace expects access to cp10 and cp11 for FP/Neon */
167         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
168 #endif
169     }
170 
171 #if defined(CONFIG_USER_ONLY)
172     env->uncached_cpsr = ARM_CPU_MODE_USR;
173     /* For user mode we must enable access to coprocessors */
174     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
175     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
176         env->cp15.c15_cpar = 3;
177     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
178         env->cp15.c15_cpar = 1;
179     }
180 #else
181     /* SVC mode with interrupts disabled.  */
182     env->uncached_cpsr = ARM_CPU_MODE_SVC;
183     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
184 
185     if (arm_feature(env, ARM_FEATURE_M)) {
186         uint32_t initial_msp; /* Loaded from 0x0 */
187         uint32_t initial_pc; /* Loaded from 0x4 */
188         uint8_t *rom;
189 
190         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
191             env->v7m.secure = true;
192         } else {
193             /* This bit resets to 0 if security is supported, but 1 if
194              * it is not. The bit is not present in v7M, but we set it
195              * here so we can avoid having to make checks on it conditional
196              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
197              */
198             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
199         }
200 
201         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
202          * that it resets to 1, so QEMU always does that rather than making
203          * it dependent on CPU model. In v8M it is RES1.
204          */
205         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
206         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
207         if (arm_feature(env, ARM_FEATURE_V8)) {
208             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
209             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
210             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
211         }
212 
213         /* Unlike A/R profile, M profile defines the reset LR value */
214         env->regs[14] = 0xffffffff;
215 
216         /* Load the initial SP and PC from the vector table at address 0 */
217         rom = rom_ptr(0);
218         if (rom) {
219             /* Address zero is covered by ROM which hasn't yet been
220              * copied into physical memory.
221              */
222             initial_msp = ldl_p(rom);
223             initial_pc = ldl_p(rom + 4);
224         } else {
225             /* Address zero not covered by a ROM blob, or the ROM blob
226              * is in non-modifiable memory and this is a second reset after
227              * it got copied into memory. In the latter case, rom_ptr
228              * will return a NULL pointer and we should use ldl_phys instead.
229              */
230             initial_msp = ldl_phys(s->as, 0);
231             initial_pc = ldl_phys(s->as, 4);
232         }
233 
234         env->regs[13] = initial_msp & 0xFFFFFFFC;
235         env->regs[15] = initial_pc & ~1;
236         env->thumb = initial_pc & 1;
237     }
238 
239     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
240      * executing as AArch32 then check if highvecs are enabled and
241      * adjust the PC accordingly.
242      */
243     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
244         env->regs[15] = 0xFFFF0000;
245     }
246 
247     /* M profile requires that reset clears the exclusive monitor;
248      * A profile does not, but clearing it makes more sense than having it
249      * set with an exclusive access on address zero.
250      */
251     arm_clear_exclusive(env);
252 
253     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
254 #endif
255 
256     if (arm_feature(env, ARM_FEATURE_PMSA)) {
257         if (cpu->pmsav7_dregion > 0) {
258             if (arm_feature(env, ARM_FEATURE_V8)) {
259                 memset(env->pmsav8.rbar[M_REG_NS], 0,
260                        sizeof(*env->pmsav8.rbar[M_REG_NS])
261                        * cpu->pmsav7_dregion);
262                 memset(env->pmsav8.rlar[M_REG_NS], 0,
263                        sizeof(*env->pmsav8.rlar[M_REG_NS])
264                        * cpu->pmsav7_dregion);
265                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
266                     memset(env->pmsav8.rbar[M_REG_S], 0,
267                            sizeof(*env->pmsav8.rbar[M_REG_S])
268                            * cpu->pmsav7_dregion);
269                     memset(env->pmsav8.rlar[M_REG_S], 0,
270                            sizeof(*env->pmsav8.rlar[M_REG_S])
271                            * cpu->pmsav7_dregion);
272                 }
273             } else if (arm_feature(env, ARM_FEATURE_V7)) {
274                 memset(env->pmsav7.drbar, 0,
275                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
276                 memset(env->pmsav7.drsr, 0,
277                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
278                 memset(env->pmsav7.dracr, 0,
279                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
280             }
281         }
282         env->pmsav7.rnr[M_REG_NS] = 0;
283         env->pmsav7.rnr[M_REG_S] = 0;
284         env->pmsav8.mair0[M_REG_NS] = 0;
285         env->pmsav8.mair0[M_REG_S] = 0;
286         env->pmsav8.mair1[M_REG_NS] = 0;
287         env->pmsav8.mair1[M_REG_S] = 0;
288     }
289 
290     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
291         if (cpu->sau_sregion > 0) {
292             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
293             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
294         }
295         env->sau.rnr = 0;
296         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
297          * the Cortex-M33 does.
298          */
299         env->sau.ctrl = 0;
300     }
301 
302     set_flush_to_zero(1, &env->vfp.standard_fp_status);
303     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
304     set_default_nan_mode(1, &env->vfp.standard_fp_status);
305     set_float_detect_tininess(float_tininess_before_rounding,
306                               &env->vfp.fp_status);
307     set_float_detect_tininess(float_tininess_before_rounding,
308                               &env->vfp.standard_fp_status);
309 #ifndef CONFIG_USER_ONLY
310     if (kvm_enabled()) {
311         kvm_arm_reset_vcpu(cpu);
312     }
313 #endif
314 
315     hw_breakpoint_update_all(cpu);
316     hw_watchpoint_update_all(cpu);
317 }
318 
319 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
320 {
321     CPUClass *cc = CPU_GET_CLASS(cs);
322     CPUARMState *env = cs->env_ptr;
323     uint32_t cur_el = arm_current_el(env);
324     bool secure = arm_is_secure(env);
325     uint32_t target_el;
326     uint32_t excp_idx;
327     bool ret = false;
328 
329     if (interrupt_request & CPU_INTERRUPT_FIQ) {
330         excp_idx = EXCP_FIQ;
331         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
332         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
333             cs->exception_index = excp_idx;
334             env->exception.target_el = target_el;
335             cc->do_interrupt(cs);
336             ret = true;
337         }
338     }
339     if (interrupt_request & CPU_INTERRUPT_HARD) {
340         excp_idx = EXCP_IRQ;
341         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
342         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
343             cs->exception_index = excp_idx;
344             env->exception.target_el = target_el;
345             cc->do_interrupt(cs);
346             ret = true;
347         }
348     }
349     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
350         excp_idx = EXCP_VIRQ;
351         target_el = 1;
352         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
353             cs->exception_index = excp_idx;
354             env->exception.target_el = target_el;
355             cc->do_interrupt(cs);
356             ret = true;
357         }
358     }
359     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
360         excp_idx = EXCP_VFIQ;
361         target_el = 1;
362         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
363             cs->exception_index = excp_idx;
364             env->exception.target_el = target_el;
365             cc->do_interrupt(cs);
366             ret = true;
367         }
368     }
369 
370     return ret;
371 }
372 
373 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
374 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
375 {
376     CPUClass *cc = CPU_GET_CLASS(cs);
377     ARMCPU *cpu = ARM_CPU(cs);
378     CPUARMState *env = &cpu->env;
379     bool ret = false;
380 
381     /* ARMv7-M interrupt masking works differently than -A or -R.
382      * There is no FIQ/IRQ distinction. Instead of I and F bits
383      * masking FIQ and IRQ interrupts, an exception is taken only
384      * if it is higher priority than the current execution priority
385      * (which depends on state like BASEPRI, FAULTMASK and the
386      * currently active exception).
387      */
388     if (interrupt_request & CPU_INTERRUPT_HARD
389         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
390         cs->exception_index = EXCP_IRQ;
391         cc->do_interrupt(cs);
392         ret = true;
393     }
394     return ret;
395 }
396 #endif
397 
398 #ifndef CONFIG_USER_ONLY
399 static void arm_cpu_set_irq(void *opaque, int irq, int level)
400 {
401     ARMCPU *cpu = opaque;
402     CPUARMState *env = &cpu->env;
403     CPUState *cs = CPU(cpu);
404     static const int mask[] = {
405         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
406         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
407         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
408         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
409     };
410 
411     switch (irq) {
412     case ARM_CPU_VIRQ:
413     case ARM_CPU_VFIQ:
414         assert(arm_feature(env, ARM_FEATURE_EL2));
415         /* fall through */
416     case ARM_CPU_IRQ:
417     case ARM_CPU_FIQ:
418         if (level) {
419             cpu_interrupt(cs, mask[irq]);
420         } else {
421             cpu_reset_interrupt(cs, mask[irq]);
422         }
423         break;
424     default:
425         g_assert_not_reached();
426     }
427 }
428 
429 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
430 {
431 #ifdef CONFIG_KVM
432     ARMCPU *cpu = opaque;
433     CPUState *cs = CPU(cpu);
434     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
435 
436     switch (irq) {
437     case ARM_CPU_IRQ:
438         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
439         break;
440     case ARM_CPU_FIQ:
441         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
442         break;
443     default:
444         g_assert_not_reached();
445     }
446     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
447     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
448 #endif
449 }
450 
451 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
452 {
453     ARMCPU *cpu = ARM_CPU(cs);
454     CPUARMState *env = &cpu->env;
455 
456     cpu_synchronize_state(cs);
457     return arm_cpu_data_is_big_endian(env);
458 }
459 
460 #endif
461 
462 static inline void set_feature(CPUARMState *env, int feature)
463 {
464     env->features |= 1ULL << feature;
465 }
466 
467 static inline void unset_feature(CPUARMState *env, int feature)
468 {
469     env->features &= ~(1ULL << feature);
470 }
471 
472 static int
473 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
474 {
475   return print_insn_arm(pc | 1, info);
476 }
477 
478 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
479 {
480     ARMCPU *ac = ARM_CPU(cpu);
481     CPUARMState *env = &ac->env;
482     bool sctlr_b;
483 
484     if (is_a64(env)) {
485         /* We might not be compiled with the A64 disassembler
486          * because it needs a C++ compiler. Leave print_insn
487          * unset in this case to use the caller default behaviour.
488          */
489 #if defined(CONFIG_ARM_A64_DIS)
490         info->print_insn = print_insn_arm_a64;
491 #endif
492         info->cap_arch = CS_ARCH_ARM64;
493         info->cap_insn_unit = 4;
494         info->cap_insn_split = 4;
495     } else {
496         int cap_mode;
497         if (env->thumb) {
498             info->print_insn = print_insn_thumb1;
499             info->cap_insn_unit = 2;
500             info->cap_insn_split = 4;
501             cap_mode = CS_MODE_THUMB;
502         } else {
503             info->print_insn = print_insn_arm;
504             info->cap_insn_unit = 4;
505             info->cap_insn_split = 4;
506             cap_mode = CS_MODE_ARM;
507         }
508         if (arm_feature(env, ARM_FEATURE_V8)) {
509             cap_mode |= CS_MODE_V8;
510         }
511         if (arm_feature(env, ARM_FEATURE_M)) {
512             cap_mode |= CS_MODE_MCLASS;
513         }
514         info->cap_arch = CS_ARCH_ARM;
515         info->cap_mode = cap_mode;
516     }
517 
518     sctlr_b = arm_sctlr_b(env);
519     if (bswap_code(sctlr_b)) {
520 #ifdef TARGET_WORDS_BIGENDIAN
521         info->endian = BFD_ENDIAN_LITTLE;
522 #else
523         info->endian = BFD_ENDIAN_BIG;
524 #endif
525     }
526     info->flags &= ~INSN_ARM_BE32;
527 #ifndef CONFIG_USER_ONLY
528     if (sctlr_b) {
529         info->flags |= INSN_ARM_BE32;
530     }
531 #endif
532 }
533 
534 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
535 {
536     uint32_t Aff1 = idx / clustersz;
537     uint32_t Aff0 = idx % clustersz;
538     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
539 }
540 
541 static void arm_cpu_initfn(Object *obj)
542 {
543     CPUState *cs = CPU(obj);
544     ARMCPU *cpu = ARM_CPU(obj);
545 
546     cs->env_ptr = &cpu->env;
547     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
548                                          g_free, g_free);
549 
550 #ifndef CONFIG_USER_ONLY
551     /* Our inbound IRQ and FIQ lines */
552     if (kvm_enabled()) {
553         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
554          * the same interface as non-KVM CPUs.
555          */
556         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
557     } else {
558         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
559     }
560 
561     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
562                                                 arm_gt_ptimer_cb, cpu);
563     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
564                                                 arm_gt_vtimer_cb, cpu);
565     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
566                                                 arm_gt_htimer_cb, cpu);
567     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
568                                                 arm_gt_stimer_cb, cpu);
569     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
570                        ARRAY_SIZE(cpu->gt_timer_outputs));
571 
572     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
573                              "gicv3-maintenance-interrupt", 1);
574     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
575                              "pmu-interrupt", 1);
576 #endif
577 
578     /* DTB consumers generally don't in fact care what the 'compatible'
579      * string is, so always provide some string and trust that a hypothetical
580      * picky DTB consumer will also provide a helpful error message.
581      */
582     cpu->dtb_compatible = "qemu,unknown";
583     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
584     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
585 
586     if (tcg_enabled()) {
587         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
588     }
589 }
590 
591 static Property arm_cpu_reset_cbar_property =
592             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
593 
594 static Property arm_cpu_reset_hivecs_property =
595             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
596 
597 static Property arm_cpu_rvbar_property =
598             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
599 
600 static Property arm_cpu_has_el2_property =
601             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
602 
603 static Property arm_cpu_has_el3_property =
604             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
605 
606 static Property arm_cpu_cfgend_property =
607             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
608 
609 /* use property name "pmu" to match other archs and virt tools */
610 static Property arm_cpu_has_pmu_property =
611             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
612 
613 static Property arm_cpu_has_mpu_property =
614             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
615 
616 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
617  * because the CPU initfn will have already set cpu->pmsav7_dregion to
618  * the right value for that particular CPU type, and we don't want
619  * to override that with an incorrect constant value.
620  */
621 static Property arm_cpu_pmsav7_dregion_property =
622             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
623                                            pmsav7_dregion,
624                                            qdev_prop_uint32, uint32_t);
625 
626 static void arm_cpu_post_init(Object *obj)
627 {
628     ARMCPU *cpu = ARM_CPU(obj);
629 
630     /* M profile implies PMSA. We have to do this here rather than
631      * in realize with the other feature-implication checks because
632      * we look at the PMSA bit to see if we should add some properties.
633      */
634     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
635         set_feature(&cpu->env, ARM_FEATURE_PMSA);
636     }
637 
638     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
639         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
640         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
641                                  &error_abort);
642     }
643 
644     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
645         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
646                                  &error_abort);
647     }
648 
649     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
650         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
651                                  &error_abort);
652     }
653 
654     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
655         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
656          * prevent "has_el3" from existing on CPUs which cannot support EL3.
657          */
658         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
659                                  &error_abort);
660 
661 #ifndef CONFIG_USER_ONLY
662         object_property_add_link(obj, "secure-memory",
663                                  TYPE_MEMORY_REGION,
664                                  (Object **)&cpu->secure_memory,
665                                  qdev_prop_allow_set_link_before_realize,
666                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
667                                  &error_abort);
668 #endif
669     }
670 
671     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
672         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
673                                  &error_abort);
674     }
675 
676     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
677         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
678                                  &error_abort);
679     }
680 
681     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
682         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
683                                  &error_abort);
684         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
685             qdev_property_add_static(DEVICE(obj),
686                                      &arm_cpu_pmsav7_dregion_property,
687                                      &error_abort);
688         }
689     }
690 
691     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
692                              &error_abort);
693 }
694 
695 static void arm_cpu_finalizefn(Object *obj)
696 {
697     ARMCPU *cpu = ARM_CPU(obj);
698     g_hash_table_destroy(cpu->cp_regs);
699 }
700 
701 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
702 {
703     CPUState *cs = CPU(dev);
704     ARMCPU *cpu = ARM_CPU(dev);
705     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
706     CPUARMState *env = &cpu->env;
707     int pagebits;
708     Error *local_err = NULL;
709 
710     cpu_exec_realizefn(cs, &local_err);
711     if (local_err != NULL) {
712         error_propagate(errp, local_err);
713         return;
714     }
715 
716     /* Some features automatically imply others: */
717     if (arm_feature(env, ARM_FEATURE_V8)) {
718         set_feature(env, ARM_FEATURE_V7);
719         set_feature(env, ARM_FEATURE_ARM_DIV);
720         set_feature(env, ARM_FEATURE_LPAE);
721     }
722     if (arm_feature(env, ARM_FEATURE_V7)) {
723         set_feature(env, ARM_FEATURE_VAPA);
724         set_feature(env, ARM_FEATURE_THUMB2);
725         set_feature(env, ARM_FEATURE_MPIDR);
726         if (!arm_feature(env, ARM_FEATURE_M)) {
727             set_feature(env, ARM_FEATURE_V6K);
728         } else {
729             set_feature(env, ARM_FEATURE_V6);
730         }
731 
732         /* Always define VBAR for V7 CPUs even if it doesn't exist in
733          * non-EL3 configs. This is needed by some legacy boards.
734          */
735         set_feature(env, ARM_FEATURE_VBAR);
736     }
737     if (arm_feature(env, ARM_FEATURE_V6K)) {
738         set_feature(env, ARM_FEATURE_V6);
739         set_feature(env, ARM_FEATURE_MVFR);
740     }
741     if (arm_feature(env, ARM_FEATURE_V6)) {
742         set_feature(env, ARM_FEATURE_V5);
743         set_feature(env, ARM_FEATURE_JAZELLE);
744         if (!arm_feature(env, ARM_FEATURE_M)) {
745             set_feature(env, ARM_FEATURE_AUXCR);
746         }
747     }
748     if (arm_feature(env, ARM_FEATURE_V5)) {
749         set_feature(env, ARM_FEATURE_V4T);
750     }
751     if (arm_feature(env, ARM_FEATURE_M)) {
752         set_feature(env, ARM_FEATURE_THUMB_DIV);
753     }
754     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
755         set_feature(env, ARM_FEATURE_THUMB_DIV);
756     }
757     if (arm_feature(env, ARM_FEATURE_VFP4)) {
758         set_feature(env, ARM_FEATURE_VFP3);
759         set_feature(env, ARM_FEATURE_VFP_FP16);
760     }
761     if (arm_feature(env, ARM_FEATURE_VFP3)) {
762         set_feature(env, ARM_FEATURE_VFP);
763     }
764     if (arm_feature(env, ARM_FEATURE_LPAE)) {
765         set_feature(env, ARM_FEATURE_V7MP);
766         set_feature(env, ARM_FEATURE_PXN);
767     }
768     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
769         set_feature(env, ARM_FEATURE_CBAR);
770     }
771     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
772         !arm_feature(env, ARM_FEATURE_M)) {
773         set_feature(env, ARM_FEATURE_THUMB_DSP);
774     }
775 
776     if (arm_feature(env, ARM_FEATURE_V7) &&
777         !arm_feature(env, ARM_FEATURE_M) &&
778         !arm_feature(env, ARM_FEATURE_PMSA)) {
779         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
780          * can use 4K pages.
781          */
782         pagebits = 12;
783     } else {
784         /* For CPUs which might have tiny 1K pages, or which have an
785          * MPU and might have small region sizes, stick with 1K pages.
786          */
787         pagebits = 10;
788     }
789     if (!set_preferred_target_page_bits(pagebits)) {
790         /* This can only ever happen for hotplugging a CPU, or if
791          * the board code incorrectly creates a CPU which it has
792          * promised via minimum_page_size that it will not.
793          */
794         error_setg(errp, "This CPU requires a smaller page size than the "
795                    "system is using");
796         return;
797     }
798 
799     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
800      * We don't support setting cluster ID ([16..23]) (known as Aff2
801      * in later ARM ARM versions), or any of the higher affinity level fields,
802      * so these bits always RAZ.
803      */
804     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
805         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
806                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
807     }
808 
809     if (cpu->reset_hivecs) {
810             cpu->reset_sctlr |= (1 << 13);
811     }
812 
813     if (cpu->cfgend) {
814         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
815             cpu->reset_sctlr |= SCTLR_EE;
816         } else {
817             cpu->reset_sctlr |= SCTLR_B;
818         }
819     }
820 
821     if (!cpu->has_el3) {
822         /* If the has_el3 CPU property is disabled then we need to disable the
823          * feature.
824          */
825         unset_feature(env, ARM_FEATURE_EL3);
826 
827         /* Disable the security extension feature bits in the processor feature
828          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
829          */
830         cpu->id_pfr1 &= ~0xf0;
831         cpu->id_aa64pfr0 &= ~0xf000;
832     }
833 
834     if (!cpu->has_el2) {
835         unset_feature(env, ARM_FEATURE_EL2);
836     }
837 
838     if (!cpu->has_pmu) {
839         unset_feature(env, ARM_FEATURE_PMU);
840         cpu->id_aa64dfr0 &= ~0xf00;
841     }
842 
843     if (!arm_feature(env, ARM_FEATURE_EL2)) {
844         /* Disable the hypervisor feature bits in the processor feature
845          * registers if we don't have EL2. These are id_pfr1[15:12] and
846          * id_aa64pfr0_el1[11:8].
847          */
848         cpu->id_aa64pfr0 &= ~0xf00;
849         cpu->id_pfr1 &= ~0xf000;
850     }
851 
852     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
853      * to false or by setting pmsav7-dregion to 0.
854      */
855     if (!cpu->has_mpu) {
856         cpu->pmsav7_dregion = 0;
857     }
858     if (cpu->pmsav7_dregion == 0) {
859         cpu->has_mpu = false;
860     }
861 
862     if (arm_feature(env, ARM_FEATURE_PMSA) &&
863         arm_feature(env, ARM_FEATURE_V7)) {
864         uint32_t nr = cpu->pmsav7_dregion;
865 
866         if (nr > 0xff) {
867             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
868             return;
869         }
870 
871         if (nr) {
872             if (arm_feature(env, ARM_FEATURE_V8)) {
873                 /* PMSAv8 */
874                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
875                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
876                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
877                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
878                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
879                 }
880             } else {
881                 env->pmsav7.drbar = g_new0(uint32_t, nr);
882                 env->pmsav7.drsr = g_new0(uint32_t, nr);
883                 env->pmsav7.dracr = g_new0(uint32_t, nr);
884             }
885         }
886     }
887 
888     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
889         uint32_t nr = cpu->sau_sregion;
890 
891         if (nr > 0xff) {
892             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
893             return;
894         }
895 
896         if (nr) {
897             env->sau.rbar = g_new0(uint32_t, nr);
898             env->sau.rlar = g_new0(uint32_t, nr);
899         }
900     }
901 
902     if (arm_feature(env, ARM_FEATURE_EL3)) {
903         set_feature(env, ARM_FEATURE_VBAR);
904     }
905 
906     register_cp_regs_for_features(cpu);
907     arm_cpu_register_gdb_regs_for_features(cpu);
908 
909     init_cpreg_list(cpu);
910 
911 #ifndef CONFIG_USER_ONLY
912     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
913         cs->num_ases = 2;
914 
915         if (!cpu->secure_memory) {
916             cpu->secure_memory = cs->memory;
917         }
918         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
919                                cpu->secure_memory);
920     } else {
921         cs->num_ases = 1;
922     }
923     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
924 #endif
925 
926     qemu_init_vcpu(cs);
927     cpu_reset(cs);
928 
929     acc->parent_realize(dev, errp);
930 }
931 
932 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
933 {
934     ObjectClass *oc;
935     char *typename;
936     char **cpuname;
937 
938     cpuname = g_strsplit(cpu_model, ",", 1);
939     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
940     oc = object_class_by_name(typename);
941     g_strfreev(cpuname);
942     g_free(typename);
943     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
944         object_class_is_abstract(oc)) {
945         return NULL;
946     }
947     return oc;
948 }
949 
950 /* CPU models. These are not needed for the AArch64 linux-user build. */
951 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
952 
953 static void arm926_initfn(Object *obj)
954 {
955     ARMCPU *cpu = ARM_CPU(obj);
956 
957     cpu->dtb_compatible = "arm,arm926";
958     set_feature(&cpu->env, ARM_FEATURE_V5);
959     set_feature(&cpu->env, ARM_FEATURE_VFP);
960     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
961     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
962     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
963     cpu->midr = 0x41069265;
964     cpu->reset_fpsid = 0x41011090;
965     cpu->ctr = 0x1dd20d2;
966     cpu->reset_sctlr = 0x00090078;
967 }
968 
969 static void arm946_initfn(Object *obj)
970 {
971     ARMCPU *cpu = ARM_CPU(obj);
972 
973     cpu->dtb_compatible = "arm,arm946";
974     set_feature(&cpu->env, ARM_FEATURE_V5);
975     set_feature(&cpu->env, ARM_FEATURE_PMSA);
976     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
977     cpu->midr = 0x41059461;
978     cpu->ctr = 0x0f004006;
979     cpu->reset_sctlr = 0x00000078;
980 }
981 
982 static void arm1026_initfn(Object *obj)
983 {
984     ARMCPU *cpu = ARM_CPU(obj);
985 
986     cpu->dtb_compatible = "arm,arm1026";
987     set_feature(&cpu->env, ARM_FEATURE_V5);
988     set_feature(&cpu->env, ARM_FEATURE_VFP);
989     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
990     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
991     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
992     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
993     cpu->midr = 0x4106a262;
994     cpu->reset_fpsid = 0x410110a0;
995     cpu->ctr = 0x1dd20d2;
996     cpu->reset_sctlr = 0x00090078;
997     cpu->reset_auxcr = 1;
998     {
999         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1000         ARMCPRegInfo ifar = {
1001             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1002             .access = PL1_RW,
1003             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1004             .resetvalue = 0
1005         };
1006         define_one_arm_cp_reg(cpu, &ifar);
1007     }
1008 }
1009 
1010 static void arm1136_r2_initfn(Object *obj)
1011 {
1012     ARMCPU *cpu = ARM_CPU(obj);
1013     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1014      * older core than plain "arm1136". In particular this does not
1015      * have the v6K features.
1016      * These ID register values are correct for 1136 but may be wrong
1017      * for 1136_r2 (in particular r0p2 does not actually implement most
1018      * of the ID registers).
1019      */
1020 
1021     cpu->dtb_compatible = "arm,arm1136";
1022     set_feature(&cpu->env, ARM_FEATURE_V6);
1023     set_feature(&cpu->env, ARM_FEATURE_VFP);
1024     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1025     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1026     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1027     cpu->midr = 0x4107b362;
1028     cpu->reset_fpsid = 0x410120b4;
1029     cpu->mvfr0 = 0x11111111;
1030     cpu->mvfr1 = 0x00000000;
1031     cpu->ctr = 0x1dd20d2;
1032     cpu->reset_sctlr = 0x00050078;
1033     cpu->id_pfr0 = 0x111;
1034     cpu->id_pfr1 = 0x1;
1035     cpu->id_dfr0 = 0x2;
1036     cpu->id_afr0 = 0x3;
1037     cpu->id_mmfr0 = 0x01130003;
1038     cpu->id_mmfr1 = 0x10030302;
1039     cpu->id_mmfr2 = 0x01222110;
1040     cpu->id_isar0 = 0x00140011;
1041     cpu->id_isar1 = 0x12002111;
1042     cpu->id_isar2 = 0x11231111;
1043     cpu->id_isar3 = 0x01102131;
1044     cpu->id_isar4 = 0x141;
1045     cpu->reset_auxcr = 7;
1046 }
1047 
1048 static void arm1136_initfn(Object *obj)
1049 {
1050     ARMCPU *cpu = ARM_CPU(obj);
1051 
1052     cpu->dtb_compatible = "arm,arm1136";
1053     set_feature(&cpu->env, ARM_FEATURE_V6K);
1054     set_feature(&cpu->env, ARM_FEATURE_V6);
1055     set_feature(&cpu->env, ARM_FEATURE_VFP);
1056     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1057     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1058     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1059     cpu->midr = 0x4117b363;
1060     cpu->reset_fpsid = 0x410120b4;
1061     cpu->mvfr0 = 0x11111111;
1062     cpu->mvfr1 = 0x00000000;
1063     cpu->ctr = 0x1dd20d2;
1064     cpu->reset_sctlr = 0x00050078;
1065     cpu->id_pfr0 = 0x111;
1066     cpu->id_pfr1 = 0x1;
1067     cpu->id_dfr0 = 0x2;
1068     cpu->id_afr0 = 0x3;
1069     cpu->id_mmfr0 = 0x01130003;
1070     cpu->id_mmfr1 = 0x10030302;
1071     cpu->id_mmfr2 = 0x01222110;
1072     cpu->id_isar0 = 0x00140011;
1073     cpu->id_isar1 = 0x12002111;
1074     cpu->id_isar2 = 0x11231111;
1075     cpu->id_isar3 = 0x01102131;
1076     cpu->id_isar4 = 0x141;
1077     cpu->reset_auxcr = 7;
1078 }
1079 
1080 static void arm1176_initfn(Object *obj)
1081 {
1082     ARMCPU *cpu = ARM_CPU(obj);
1083 
1084     cpu->dtb_compatible = "arm,arm1176";
1085     set_feature(&cpu->env, ARM_FEATURE_V6K);
1086     set_feature(&cpu->env, ARM_FEATURE_VFP);
1087     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1088     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1089     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1090     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1091     set_feature(&cpu->env, ARM_FEATURE_EL3);
1092     cpu->midr = 0x410fb767;
1093     cpu->reset_fpsid = 0x410120b5;
1094     cpu->mvfr0 = 0x11111111;
1095     cpu->mvfr1 = 0x00000000;
1096     cpu->ctr = 0x1dd20d2;
1097     cpu->reset_sctlr = 0x00050078;
1098     cpu->id_pfr0 = 0x111;
1099     cpu->id_pfr1 = 0x11;
1100     cpu->id_dfr0 = 0x33;
1101     cpu->id_afr0 = 0;
1102     cpu->id_mmfr0 = 0x01130003;
1103     cpu->id_mmfr1 = 0x10030302;
1104     cpu->id_mmfr2 = 0x01222100;
1105     cpu->id_isar0 = 0x0140011;
1106     cpu->id_isar1 = 0x12002111;
1107     cpu->id_isar2 = 0x11231121;
1108     cpu->id_isar3 = 0x01102131;
1109     cpu->id_isar4 = 0x01141;
1110     cpu->reset_auxcr = 7;
1111 }
1112 
1113 static void arm11mpcore_initfn(Object *obj)
1114 {
1115     ARMCPU *cpu = ARM_CPU(obj);
1116 
1117     cpu->dtb_compatible = "arm,arm11mpcore";
1118     set_feature(&cpu->env, ARM_FEATURE_V6K);
1119     set_feature(&cpu->env, ARM_FEATURE_VFP);
1120     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1121     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1122     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1123     cpu->midr = 0x410fb022;
1124     cpu->reset_fpsid = 0x410120b4;
1125     cpu->mvfr0 = 0x11111111;
1126     cpu->mvfr1 = 0x00000000;
1127     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1128     cpu->id_pfr0 = 0x111;
1129     cpu->id_pfr1 = 0x1;
1130     cpu->id_dfr0 = 0;
1131     cpu->id_afr0 = 0x2;
1132     cpu->id_mmfr0 = 0x01100103;
1133     cpu->id_mmfr1 = 0x10020302;
1134     cpu->id_mmfr2 = 0x01222000;
1135     cpu->id_isar0 = 0x00100011;
1136     cpu->id_isar1 = 0x12002111;
1137     cpu->id_isar2 = 0x11221011;
1138     cpu->id_isar3 = 0x01102131;
1139     cpu->id_isar4 = 0x141;
1140     cpu->reset_auxcr = 1;
1141 }
1142 
1143 static void cortex_m3_initfn(Object *obj)
1144 {
1145     ARMCPU *cpu = ARM_CPU(obj);
1146     set_feature(&cpu->env, ARM_FEATURE_V7);
1147     set_feature(&cpu->env, ARM_FEATURE_M);
1148     cpu->midr = 0x410fc231;
1149     cpu->pmsav7_dregion = 8;
1150     cpu->id_pfr0 = 0x00000030;
1151     cpu->id_pfr1 = 0x00000200;
1152     cpu->id_dfr0 = 0x00100000;
1153     cpu->id_afr0 = 0x00000000;
1154     cpu->id_mmfr0 = 0x00000030;
1155     cpu->id_mmfr1 = 0x00000000;
1156     cpu->id_mmfr2 = 0x00000000;
1157     cpu->id_mmfr3 = 0x00000000;
1158     cpu->id_isar0 = 0x01141110;
1159     cpu->id_isar1 = 0x02111000;
1160     cpu->id_isar2 = 0x21112231;
1161     cpu->id_isar3 = 0x01111110;
1162     cpu->id_isar4 = 0x01310102;
1163     cpu->id_isar5 = 0x00000000;
1164 }
1165 
1166 static void cortex_m4_initfn(Object *obj)
1167 {
1168     ARMCPU *cpu = ARM_CPU(obj);
1169 
1170     set_feature(&cpu->env, ARM_FEATURE_V7);
1171     set_feature(&cpu->env, ARM_FEATURE_M);
1172     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1173     cpu->midr = 0x410fc240; /* r0p0 */
1174     cpu->pmsav7_dregion = 8;
1175     cpu->id_pfr0 = 0x00000030;
1176     cpu->id_pfr1 = 0x00000200;
1177     cpu->id_dfr0 = 0x00100000;
1178     cpu->id_afr0 = 0x00000000;
1179     cpu->id_mmfr0 = 0x00000030;
1180     cpu->id_mmfr1 = 0x00000000;
1181     cpu->id_mmfr2 = 0x00000000;
1182     cpu->id_mmfr3 = 0x00000000;
1183     cpu->id_isar0 = 0x01141110;
1184     cpu->id_isar1 = 0x02111000;
1185     cpu->id_isar2 = 0x21112231;
1186     cpu->id_isar3 = 0x01111110;
1187     cpu->id_isar4 = 0x01310102;
1188     cpu->id_isar5 = 0x00000000;
1189 }
1190 
1191 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1192 {
1193     CPUClass *cc = CPU_CLASS(oc);
1194 
1195 #ifndef CONFIG_USER_ONLY
1196     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1197 #endif
1198 
1199     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1200 }
1201 
1202 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1203     /* Dummy the TCM region regs for the moment */
1204     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1205       .access = PL1_RW, .type = ARM_CP_CONST },
1206     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1207       .access = PL1_RW, .type = ARM_CP_CONST },
1208     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1209       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1210     REGINFO_SENTINEL
1211 };
1212 
1213 static void cortex_r5_initfn(Object *obj)
1214 {
1215     ARMCPU *cpu = ARM_CPU(obj);
1216 
1217     set_feature(&cpu->env, ARM_FEATURE_V7);
1218     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1219     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1220     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1221     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1222     cpu->midr = 0x411fc153; /* r1p3 */
1223     cpu->id_pfr0 = 0x0131;
1224     cpu->id_pfr1 = 0x001;
1225     cpu->id_dfr0 = 0x010400;
1226     cpu->id_afr0 = 0x0;
1227     cpu->id_mmfr0 = 0x0210030;
1228     cpu->id_mmfr1 = 0x00000000;
1229     cpu->id_mmfr2 = 0x01200000;
1230     cpu->id_mmfr3 = 0x0211;
1231     cpu->id_isar0 = 0x2101111;
1232     cpu->id_isar1 = 0x13112111;
1233     cpu->id_isar2 = 0x21232141;
1234     cpu->id_isar3 = 0x01112131;
1235     cpu->id_isar4 = 0x0010142;
1236     cpu->id_isar5 = 0x0;
1237     cpu->mp_is_up = true;
1238     cpu->pmsav7_dregion = 16;
1239     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1240 }
1241 
1242 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1243     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1244       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1245     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1246       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1247     REGINFO_SENTINEL
1248 };
1249 
1250 static void cortex_a8_initfn(Object *obj)
1251 {
1252     ARMCPU *cpu = ARM_CPU(obj);
1253 
1254     cpu->dtb_compatible = "arm,cortex-a8";
1255     set_feature(&cpu->env, ARM_FEATURE_V7);
1256     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1257     set_feature(&cpu->env, ARM_FEATURE_NEON);
1258     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1259     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1260     set_feature(&cpu->env, ARM_FEATURE_EL3);
1261     cpu->midr = 0x410fc080;
1262     cpu->reset_fpsid = 0x410330c0;
1263     cpu->mvfr0 = 0x11110222;
1264     cpu->mvfr1 = 0x00011111;
1265     cpu->ctr = 0x82048004;
1266     cpu->reset_sctlr = 0x00c50078;
1267     cpu->id_pfr0 = 0x1031;
1268     cpu->id_pfr1 = 0x11;
1269     cpu->id_dfr0 = 0x400;
1270     cpu->id_afr0 = 0;
1271     cpu->id_mmfr0 = 0x31100003;
1272     cpu->id_mmfr1 = 0x20000000;
1273     cpu->id_mmfr2 = 0x01202000;
1274     cpu->id_mmfr3 = 0x11;
1275     cpu->id_isar0 = 0x00101111;
1276     cpu->id_isar1 = 0x12112111;
1277     cpu->id_isar2 = 0x21232031;
1278     cpu->id_isar3 = 0x11112131;
1279     cpu->id_isar4 = 0x00111142;
1280     cpu->dbgdidr = 0x15141000;
1281     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1282     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1283     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1284     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1285     cpu->reset_auxcr = 2;
1286     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1287 }
1288 
1289 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1290     /* power_control should be set to maximum latency. Again,
1291      * default to 0 and set by private hook
1292      */
1293     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1294       .access = PL1_RW, .resetvalue = 0,
1295       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1296     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1297       .access = PL1_RW, .resetvalue = 0,
1298       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1299     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1300       .access = PL1_RW, .resetvalue = 0,
1301       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1302     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1303       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1304     /* TLB lockdown control */
1305     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1306       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1307     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1308       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1309     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1310       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1311     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1312       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1313     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1314       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1315     REGINFO_SENTINEL
1316 };
1317 
1318 static void cortex_a9_initfn(Object *obj)
1319 {
1320     ARMCPU *cpu = ARM_CPU(obj);
1321 
1322     cpu->dtb_compatible = "arm,cortex-a9";
1323     set_feature(&cpu->env, ARM_FEATURE_V7);
1324     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1325     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1326     set_feature(&cpu->env, ARM_FEATURE_NEON);
1327     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1328     set_feature(&cpu->env, ARM_FEATURE_EL3);
1329     /* Note that A9 supports the MP extensions even for
1330      * A9UP and single-core A9MP (which are both different
1331      * and valid configurations; we don't model A9UP).
1332      */
1333     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1334     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1335     cpu->midr = 0x410fc090;
1336     cpu->reset_fpsid = 0x41033090;
1337     cpu->mvfr0 = 0x11110222;
1338     cpu->mvfr1 = 0x01111111;
1339     cpu->ctr = 0x80038003;
1340     cpu->reset_sctlr = 0x00c50078;
1341     cpu->id_pfr0 = 0x1031;
1342     cpu->id_pfr1 = 0x11;
1343     cpu->id_dfr0 = 0x000;
1344     cpu->id_afr0 = 0;
1345     cpu->id_mmfr0 = 0x00100103;
1346     cpu->id_mmfr1 = 0x20000000;
1347     cpu->id_mmfr2 = 0x01230000;
1348     cpu->id_mmfr3 = 0x00002111;
1349     cpu->id_isar0 = 0x00101111;
1350     cpu->id_isar1 = 0x13112111;
1351     cpu->id_isar2 = 0x21232041;
1352     cpu->id_isar3 = 0x11112131;
1353     cpu->id_isar4 = 0x00111142;
1354     cpu->dbgdidr = 0x35141000;
1355     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1356     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1357     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1358     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1359 }
1360 
1361 #ifndef CONFIG_USER_ONLY
1362 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1363 {
1364     /* Linux wants the number of processors from here.
1365      * Might as well set the interrupt-controller bit too.
1366      */
1367     return ((smp_cpus - 1) << 24) | (1 << 23);
1368 }
1369 #endif
1370 
1371 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1372 #ifndef CONFIG_USER_ONLY
1373     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1374       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1375       .writefn = arm_cp_write_ignore, },
1376 #endif
1377     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1378       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1379     REGINFO_SENTINEL
1380 };
1381 
1382 static void cortex_a7_initfn(Object *obj)
1383 {
1384     ARMCPU *cpu = ARM_CPU(obj);
1385 
1386     cpu->dtb_compatible = "arm,cortex-a7";
1387     set_feature(&cpu->env, ARM_FEATURE_V7);
1388     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1389     set_feature(&cpu->env, ARM_FEATURE_NEON);
1390     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1391     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1392     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1393     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1394     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1395     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1396     set_feature(&cpu->env, ARM_FEATURE_EL3);
1397     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1398     cpu->midr = 0x410fc075;
1399     cpu->reset_fpsid = 0x41023075;
1400     cpu->mvfr0 = 0x10110222;
1401     cpu->mvfr1 = 0x11111111;
1402     cpu->ctr = 0x84448003;
1403     cpu->reset_sctlr = 0x00c50078;
1404     cpu->id_pfr0 = 0x00001131;
1405     cpu->id_pfr1 = 0x00011011;
1406     cpu->id_dfr0 = 0x02010555;
1407     cpu->pmceid0 = 0x00000000;
1408     cpu->pmceid1 = 0x00000000;
1409     cpu->id_afr0 = 0x00000000;
1410     cpu->id_mmfr0 = 0x10101105;
1411     cpu->id_mmfr1 = 0x40000000;
1412     cpu->id_mmfr2 = 0x01240000;
1413     cpu->id_mmfr3 = 0x02102211;
1414     cpu->id_isar0 = 0x01101110;
1415     cpu->id_isar1 = 0x13112111;
1416     cpu->id_isar2 = 0x21232041;
1417     cpu->id_isar3 = 0x11112131;
1418     cpu->id_isar4 = 0x10011142;
1419     cpu->dbgdidr = 0x3515f005;
1420     cpu->clidr = 0x0a200023;
1421     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1422     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1423     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1424     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1425 }
1426 
1427 static void cortex_a15_initfn(Object *obj)
1428 {
1429     ARMCPU *cpu = ARM_CPU(obj);
1430 
1431     cpu->dtb_compatible = "arm,cortex-a15";
1432     set_feature(&cpu->env, ARM_FEATURE_V7);
1433     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1434     set_feature(&cpu->env, ARM_FEATURE_NEON);
1435     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1436     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1437     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1438     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1439     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1440     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1441     set_feature(&cpu->env, ARM_FEATURE_EL3);
1442     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1443     cpu->midr = 0x412fc0f1;
1444     cpu->reset_fpsid = 0x410430f0;
1445     cpu->mvfr0 = 0x10110222;
1446     cpu->mvfr1 = 0x11111111;
1447     cpu->ctr = 0x8444c004;
1448     cpu->reset_sctlr = 0x00c50078;
1449     cpu->id_pfr0 = 0x00001131;
1450     cpu->id_pfr1 = 0x00011011;
1451     cpu->id_dfr0 = 0x02010555;
1452     cpu->pmceid0 = 0x0000000;
1453     cpu->pmceid1 = 0x00000000;
1454     cpu->id_afr0 = 0x00000000;
1455     cpu->id_mmfr0 = 0x10201105;
1456     cpu->id_mmfr1 = 0x20000000;
1457     cpu->id_mmfr2 = 0x01240000;
1458     cpu->id_mmfr3 = 0x02102211;
1459     cpu->id_isar0 = 0x02101110;
1460     cpu->id_isar1 = 0x13112111;
1461     cpu->id_isar2 = 0x21232041;
1462     cpu->id_isar3 = 0x11112131;
1463     cpu->id_isar4 = 0x10011142;
1464     cpu->dbgdidr = 0x3515f021;
1465     cpu->clidr = 0x0a200023;
1466     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1467     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1468     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1469     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1470 }
1471 
1472 static void ti925t_initfn(Object *obj)
1473 {
1474     ARMCPU *cpu = ARM_CPU(obj);
1475     set_feature(&cpu->env, ARM_FEATURE_V4T);
1476     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1477     cpu->midr = ARM_CPUID_TI925T;
1478     cpu->ctr = 0x5109149;
1479     cpu->reset_sctlr = 0x00000070;
1480 }
1481 
1482 static void sa1100_initfn(Object *obj)
1483 {
1484     ARMCPU *cpu = ARM_CPU(obj);
1485 
1486     cpu->dtb_compatible = "intel,sa1100";
1487     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1488     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1489     cpu->midr = 0x4401A11B;
1490     cpu->reset_sctlr = 0x00000070;
1491 }
1492 
1493 static void sa1110_initfn(Object *obj)
1494 {
1495     ARMCPU *cpu = ARM_CPU(obj);
1496     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1497     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1498     cpu->midr = 0x6901B119;
1499     cpu->reset_sctlr = 0x00000070;
1500 }
1501 
1502 static void pxa250_initfn(Object *obj)
1503 {
1504     ARMCPU *cpu = ARM_CPU(obj);
1505 
1506     cpu->dtb_compatible = "marvell,xscale";
1507     set_feature(&cpu->env, ARM_FEATURE_V5);
1508     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1509     cpu->midr = 0x69052100;
1510     cpu->ctr = 0xd172172;
1511     cpu->reset_sctlr = 0x00000078;
1512 }
1513 
1514 static void pxa255_initfn(Object *obj)
1515 {
1516     ARMCPU *cpu = ARM_CPU(obj);
1517 
1518     cpu->dtb_compatible = "marvell,xscale";
1519     set_feature(&cpu->env, ARM_FEATURE_V5);
1520     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1521     cpu->midr = 0x69052d00;
1522     cpu->ctr = 0xd172172;
1523     cpu->reset_sctlr = 0x00000078;
1524 }
1525 
1526 static void pxa260_initfn(Object *obj)
1527 {
1528     ARMCPU *cpu = ARM_CPU(obj);
1529 
1530     cpu->dtb_compatible = "marvell,xscale";
1531     set_feature(&cpu->env, ARM_FEATURE_V5);
1532     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1533     cpu->midr = 0x69052903;
1534     cpu->ctr = 0xd172172;
1535     cpu->reset_sctlr = 0x00000078;
1536 }
1537 
1538 static void pxa261_initfn(Object *obj)
1539 {
1540     ARMCPU *cpu = ARM_CPU(obj);
1541 
1542     cpu->dtb_compatible = "marvell,xscale";
1543     set_feature(&cpu->env, ARM_FEATURE_V5);
1544     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1545     cpu->midr = 0x69052d05;
1546     cpu->ctr = 0xd172172;
1547     cpu->reset_sctlr = 0x00000078;
1548 }
1549 
1550 static void pxa262_initfn(Object *obj)
1551 {
1552     ARMCPU *cpu = ARM_CPU(obj);
1553 
1554     cpu->dtb_compatible = "marvell,xscale";
1555     set_feature(&cpu->env, ARM_FEATURE_V5);
1556     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1557     cpu->midr = 0x69052d06;
1558     cpu->ctr = 0xd172172;
1559     cpu->reset_sctlr = 0x00000078;
1560 }
1561 
1562 static void pxa270a0_initfn(Object *obj)
1563 {
1564     ARMCPU *cpu = ARM_CPU(obj);
1565 
1566     cpu->dtb_compatible = "marvell,xscale";
1567     set_feature(&cpu->env, ARM_FEATURE_V5);
1568     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1569     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1570     cpu->midr = 0x69054110;
1571     cpu->ctr = 0xd172172;
1572     cpu->reset_sctlr = 0x00000078;
1573 }
1574 
1575 static void pxa270a1_initfn(Object *obj)
1576 {
1577     ARMCPU *cpu = ARM_CPU(obj);
1578 
1579     cpu->dtb_compatible = "marvell,xscale";
1580     set_feature(&cpu->env, ARM_FEATURE_V5);
1581     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1582     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1583     cpu->midr = 0x69054111;
1584     cpu->ctr = 0xd172172;
1585     cpu->reset_sctlr = 0x00000078;
1586 }
1587 
1588 static void pxa270b0_initfn(Object *obj)
1589 {
1590     ARMCPU *cpu = ARM_CPU(obj);
1591 
1592     cpu->dtb_compatible = "marvell,xscale";
1593     set_feature(&cpu->env, ARM_FEATURE_V5);
1594     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1595     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1596     cpu->midr = 0x69054112;
1597     cpu->ctr = 0xd172172;
1598     cpu->reset_sctlr = 0x00000078;
1599 }
1600 
1601 static void pxa270b1_initfn(Object *obj)
1602 {
1603     ARMCPU *cpu = ARM_CPU(obj);
1604 
1605     cpu->dtb_compatible = "marvell,xscale";
1606     set_feature(&cpu->env, ARM_FEATURE_V5);
1607     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1608     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1609     cpu->midr = 0x69054113;
1610     cpu->ctr = 0xd172172;
1611     cpu->reset_sctlr = 0x00000078;
1612 }
1613 
1614 static void pxa270c0_initfn(Object *obj)
1615 {
1616     ARMCPU *cpu = ARM_CPU(obj);
1617 
1618     cpu->dtb_compatible = "marvell,xscale";
1619     set_feature(&cpu->env, ARM_FEATURE_V5);
1620     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1621     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1622     cpu->midr = 0x69054114;
1623     cpu->ctr = 0xd172172;
1624     cpu->reset_sctlr = 0x00000078;
1625 }
1626 
1627 static void pxa270c5_initfn(Object *obj)
1628 {
1629     ARMCPU *cpu = ARM_CPU(obj);
1630 
1631     cpu->dtb_compatible = "marvell,xscale";
1632     set_feature(&cpu->env, ARM_FEATURE_V5);
1633     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1634     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1635     cpu->midr = 0x69054117;
1636     cpu->ctr = 0xd172172;
1637     cpu->reset_sctlr = 0x00000078;
1638 }
1639 
1640 #ifdef CONFIG_USER_ONLY
1641 static void arm_any_initfn(Object *obj)
1642 {
1643     ARMCPU *cpu = ARM_CPU(obj);
1644     set_feature(&cpu->env, ARM_FEATURE_V8);
1645     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1646     set_feature(&cpu->env, ARM_FEATURE_NEON);
1647     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1648     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1649     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1650     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1651     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1652     set_feature(&cpu->env, ARM_FEATURE_CRC);
1653     cpu->midr = 0xffffffff;
1654 }
1655 #endif
1656 
1657 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1658 
1659 typedef struct ARMCPUInfo {
1660     const char *name;
1661     void (*initfn)(Object *obj);
1662     void (*class_init)(ObjectClass *oc, void *data);
1663 } ARMCPUInfo;
1664 
1665 static const ARMCPUInfo arm_cpus[] = {
1666 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1667     { .name = "arm926",      .initfn = arm926_initfn },
1668     { .name = "arm946",      .initfn = arm946_initfn },
1669     { .name = "arm1026",     .initfn = arm1026_initfn },
1670     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1671      * older core than plain "arm1136". In particular this does not
1672      * have the v6K features.
1673      */
1674     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1675     { .name = "arm1136",     .initfn = arm1136_initfn },
1676     { .name = "arm1176",     .initfn = arm1176_initfn },
1677     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1678     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1679                              .class_init = arm_v7m_class_init },
1680     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1681                              .class_init = arm_v7m_class_init },
1682     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1683     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1684     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1685     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1686     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1687     { .name = "ti925t",      .initfn = ti925t_initfn },
1688     { .name = "sa1100",      .initfn = sa1100_initfn },
1689     { .name = "sa1110",      .initfn = sa1110_initfn },
1690     { .name = "pxa250",      .initfn = pxa250_initfn },
1691     { .name = "pxa255",      .initfn = pxa255_initfn },
1692     { .name = "pxa260",      .initfn = pxa260_initfn },
1693     { .name = "pxa261",      .initfn = pxa261_initfn },
1694     { .name = "pxa262",      .initfn = pxa262_initfn },
1695     /* "pxa270" is an alias for "pxa270-a0" */
1696     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1697     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1698     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1699     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1700     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1701     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1702     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1703 #ifdef CONFIG_USER_ONLY
1704     { .name = "any",         .initfn = arm_any_initfn },
1705 #endif
1706 #endif
1707     { .name = NULL }
1708 };
1709 
1710 static Property arm_cpu_properties[] = {
1711     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1712     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1713     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1714     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1715                         mp_affinity, ARM64_AFFINITY_INVALID),
1716     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1717     DEFINE_PROP_END_OF_LIST()
1718 };
1719 
1720 #ifdef CONFIG_USER_ONLY
1721 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1722                                     int rw, int mmu_idx)
1723 {
1724     ARMCPU *cpu = ARM_CPU(cs);
1725     CPUARMState *env = &cpu->env;
1726 
1727     env->exception.vaddress = address;
1728     if (rw == 2) {
1729         cs->exception_index = EXCP_PREFETCH_ABORT;
1730     } else {
1731         cs->exception_index = EXCP_DATA_ABORT;
1732     }
1733     return 1;
1734 }
1735 #endif
1736 
1737 static gchar *arm_gdb_arch_name(CPUState *cs)
1738 {
1739     ARMCPU *cpu = ARM_CPU(cs);
1740     CPUARMState *env = &cpu->env;
1741 
1742     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1743         return g_strdup("iwmmxt");
1744     }
1745     return g_strdup("arm");
1746 }
1747 
1748 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1749 {
1750     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1751     CPUClass *cc = CPU_CLASS(acc);
1752     DeviceClass *dc = DEVICE_CLASS(oc);
1753 
1754     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1755                                     &acc->parent_realize);
1756     dc->props = arm_cpu_properties;
1757 
1758     acc->parent_reset = cc->reset;
1759     cc->reset = arm_cpu_reset;
1760 
1761     cc->class_by_name = arm_cpu_class_by_name;
1762     cc->has_work = arm_cpu_has_work;
1763     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1764     cc->dump_state = arm_cpu_dump_state;
1765     cc->set_pc = arm_cpu_set_pc;
1766     cc->gdb_read_register = arm_cpu_gdb_read_register;
1767     cc->gdb_write_register = arm_cpu_gdb_write_register;
1768 #ifdef CONFIG_USER_ONLY
1769     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1770 #else
1771     cc->do_interrupt = arm_cpu_do_interrupt;
1772     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1773     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1774     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1775     cc->asidx_from_attrs = arm_asidx_from_attrs;
1776     cc->vmsd = &vmstate_arm_cpu;
1777     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1778     cc->write_elf64_note = arm_cpu_write_elf64_note;
1779     cc->write_elf32_note = arm_cpu_write_elf32_note;
1780 #endif
1781     cc->gdb_num_core_regs = 26;
1782     cc->gdb_core_xml_file = "arm-core.xml";
1783     cc->gdb_arch_name = arm_gdb_arch_name;
1784     cc->gdb_stop_before_watchpoint = true;
1785     cc->debug_excp_handler = arm_debug_excp_handler;
1786     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1787 #if !defined(CONFIG_USER_ONLY)
1788     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1789 #endif
1790 
1791     cc->disas_set_info = arm_disas_set_info;
1792 #ifdef CONFIG_TCG
1793     cc->tcg_initialize = arm_translate_init;
1794 #endif
1795 }
1796 
1797 static void cpu_register(const ARMCPUInfo *info)
1798 {
1799     TypeInfo type_info = {
1800         .parent = TYPE_ARM_CPU,
1801         .instance_size = sizeof(ARMCPU),
1802         .instance_init = info->initfn,
1803         .class_size = sizeof(ARMCPUClass),
1804         .class_init = info->class_init,
1805     };
1806 
1807     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1808     type_register(&type_info);
1809     g_free((void *)type_info.name);
1810 }
1811 
1812 static const TypeInfo arm_cpu_type_info = {
1813     .name = TYPE_ARM_CPU,
1814     .parent = TYPE_CPU,
1815     .instance_size = sizeof(ARMCPU),
1816     .instance_init = arm_cpu_initfn,
1817     .instance_post_init = arm_cpu_post_init,
1818     .instance_finalize = arm_cpu_finalizefn,
1819     .abstract = true,
1820     .class_size = sizeof(ARMCPUClass),
1821     .class_init = arm_cpu_class_init,
1822 };
1823 
1824 static void arm_cpu_register_types(void)
1825 {
1826     const ARMCPUInfo *info = arm_cpus;
1827 
1828     type_register_static(&arm_cpu_type_info);
1829 
1830     while (info->name) {
1831         cpu_register(info);
1832         info++;
1833     }
1834 }
1835 
1836 type_init(arm_cpu_register_types)
1837