1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/error-report.h" 23 #include "qapi/error.h" 24 #include "cpu.h" 25 #include "internals.h" 26 #include "qemu-common.h" 27 #include "exec/exec-all.h" 28 #include "hw/qdev-properties.h" 29 #if !defined(CONFIG_USER_ONLY) 30 #include "hw/loader.h" 31 #endif 32 #include "hw/arm/arm.h" 33 #include "sysemu/sysemu.h" 34 #include "sysemu/hw_accel.h" 35 #include "kvm_arm.h" 36 37 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 38 { 39 ARMCPU *cpu = ARM_CPU(cs); 40 41 cpu->env.regs[15] = value; 42 } 43 44 static bool arm_cpu_has_work(CPUState *cs) 45 { 46 ARMCPU *cpu = ARM_CPU(cs); 47 48 return (cpu->power_state != PSCI_OFF) 49 && cs->interrupt_request & 50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 52 | CPU_INTERRUPT_EXITTB); 53 } 54 55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 56 void *opaque) 57 { 58 /* We currently only support registering a single hook function */ 59 assert(!cpu->el_change_hook); 60 cpu->el_change_hook = hook; 61 cpu->el_change_hook_opaque = opaque; 62 } 63 64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 65 { 66 /* Reset a single ARMCPRegInfo register */ 67 ARMCPRegInfo *ri = value; 68 ARMCPU *cpu = opaque; 69 70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 71 return; 72 } 73 74 if (ri->resetfn) { 75 ri->resetfn(&cpu->env, ri); 76 return; 77 } 78 79 /* A zero offset is never possible as it would be regs[0] 80 * so we use it to indicate that reset is being handled elsewhere. 81 * This is basically only used for fields in non-core coprocessors 82 * (like the pxa2xx ones). 83 */ 84 if (!ri->fieldoffset) { 85 return; 86 } 87 88 if (cpreg_field_is_64bit(ri)) { 89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 90 } else { 91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 92 } 93 } 94 95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 96 { 97 /* Purely an assertion check: we've already done reset once, 98 * so now check that running the reset for the cpreg doesn't 99 * change its value. This traps bugs where two different cpregs 100 * both try to reset the same state field but to different values. 101 */ 102 ARMCPRegInfo *ri = value; 103 ARMCPU *cpu = opaque; 104 uint64_t oldvalue, newvalue; 105 106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 107 return; 108 } 109 110 oldvalue = read_raw_cp_reg(&cpu->env, ri); 111 cp_reg_reset(key, value, opaque); 112 newvalue = read_raw_cp_reg(&cpu->env, ri); 113 assert(oldvalue == newvalue); 114 } 115 116 /* CPUClass::reset() */ 117 static void arm_cpu_reset(CPUState *s) 118 { 119 ARMCPU *cpu = ARM_CPU(s); 120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 121 CPUARMState *env = &cpu->env; 122 123 acc->parent_reset(s); 124 125 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 126 127 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 128 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 129 130 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 131 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0; 132 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1; 133 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2; 134 135 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 136 s->halted = cpu->start_powered_off; 137 138 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 139 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 140 } 141 142 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 143 /* 64 bit CPUs always start in 64 bit mode */ 144 env->aarch64 = 1; 145 #if defined(CONFIG_USER_ONLY) 146 env->pstate = PSTATE_MODE_EL0t; 147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 148 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 149 /* and to the FP/Neon instructions */ 150 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 151 #else 152 /* Reset into the highest available EL */ 153 if (arm_feature(env, ARM_FEATURE_EL3)) { 154 env->pstate = PSTATE_MODE_EL3h; 155 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 156 env->pstate = PSTATE_MODE_EL2h; 157 } else { 158 env->pstate = PSTATE_MODE_EL1h; 159 } 160 env->pc = cpu->rvbar; 161 #endif 162 } else { 163 #if defined(CONFIG_USER_ONLY) 164 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 165 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 166 #endif 167 } 168 169 #if defined(CONFIG_USER_ONLY) 170 env->uncached_cpsr = ARM_CPU_MODE_USR; 171 /* For user mode we must enable access to coprocessors */ 172 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 174 env->cp15.c15_cpar = 3; 175 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 176 env->cp15.c15_cpar = 1; 177 } 178 #else 179 /* SVC mode with interrupts disabled. */ 180 env->uncached_cpsr = ARM_CPU_MODE_SVC; 181 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 182 183 if (arm_feature(env, ARM_FEATURE_M)) { 184 uint32_t initial_msp; /* Loaded from 0x0 */ 185 uint32_t initial_pc; /* Loaded from 0x4 */ 186 uint8_t *rom; 187 188 /* For M profile we store FAULTMASK and PRIMASK in the 189 * PSTATE F and I bits; these are both clear at reset. 190 */ 191 env->daif &= ~(PSTATE_I | PSTATE_F); 192 193 /* The reset value of this bit is IMPDEF, but ARM recommends 194 * that it resets to 1, so QEMU always does that rather than making 195 * it dependent on CPU model. 196 */ 197 env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK; 198 199 /* Unlike A/R profile, M profile defines the reset LR value */ 200 env->regs[14] = 0xffffffff; 201 202 /* Load the initial SP and PC from the vector table at address 0 */ 203 rom = rom_ptr(0); 204 if (rom) { 205 /* Address zero is covered by ROM which hasn't yet been 206 * copied into physical memory. 207 */ 208 initial_msp = ldl_p(rom); 209 initial_pc = ldl_p(rom + 4); 210 } else { 211 /* Address zero not covered by a ROM blob, or the ROM blob 212 * is in non-modifiable memory and this is a second reset after 213 * it got copied into memory. In the latter case, rom_ptr 214 * will return a NULL pointer and we should use ldl_phys instead. 215 */ 216 initial_msp = ldl_phys(s->as, 0); 217 initial_pc = ldl_phys(s->as, 4); 218 } 219 220 env->regs[13] = initial_msp & 0xFFFFFFFC; 221 env->regs[15] = initial_pc & ~1; 222 env->thumb = initial_pc & 1; 223 } 224 225 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 226 * executing as AArch32 then check if highvecs are enabled and 227 * adjust the PC accordingly. 228 */ 229 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 230 env->regs[15] = 0xFFFF0000; 231 } 232 233 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 234 #endif 235 set_flush_to_zero(1, &env->vfp.standard_fp_status); 236 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 237 set_default_nan_mode(1, &env->vfp.standard_fp_status); 238 set_float_detect_tininess(float_tininess_before_rounding, 239 &env->vfp.fp_status); 240 set_float_detect_tininess(float_tininess_before_rounding, 241 &env->vfp.standard_fp_status); 242 #ifndef CONFIG_USER_ONLY 243 if (kvm_enabled()) { 244 kvm_arm_reset_vcpu(cpu); 245 } 246 #endif 247 248 hw_breakpoint_update_all(cpu); 249 hw_watchpoint_update_all(cpu); 250 } 251 252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 253 { 254 CPUClass *cc = CPU_GET_CLASS(cs); 255 CPUARMState *env = cs->env_ptr; 256 uint32_t cur_el = arm_current_el(env); 257 bool secure = arm_is_secure(env); 258 uint32_t target_el; 259 uint32_t excp_idx; 260 bool ret = false; 261 262 if (interrupt_request & CPU_INTERRUPT_FIQ) { 263 excp_idx = EXCP_FIQ; 264 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 265 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 266 cs->exception_index = excp_idx; 267 env->exception.target_el = target_el; 268 cc->do_interrupt(cs); 269 ret = true; 270 } 271 } 272 if (interrupt_request & CPU_INTERRUPT_HARD) { 273 excp_idx = EXCP_IRQ; 274 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 275 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 276 cs->exception_index = excp_idx; 277 env->exception.target_el = target_el; 278 cc->do_interrupt(cs); 279 ret = true; 280 } 281 } 282 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 283 excp_idx = EXCP_VIRQ; 284 target_el = 1; 285 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 286 cs->exception_index = excp_idx; 287 env->exception.target_el = target_el; 288 cc->do_interrupt(cs); 289 ret = true; 290 } 291 } 292 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 293 excp_idx = EXCP_VFIQ; 294 target_el = 1; 295 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 296 cs->exception_index = excp_idx; 297 env->exception.target_el = target_el; 298 cc->do_interrupt(cs); 299 ret = true; 300 } 301 } 302 303 return ret; 304 } 305 306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 307 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 308 { 309 CPUClass *cc = CPU_GET_CLASS(cs); 310 ARMCPU *cpu = ARM_CPU(cs); 311 CPUARMState *env = &cpu->env; 312 bool ret = false; 313 314 /* ARMv7-M interrupt masking works differently than -A or -R. 315 * There is no FIQ/IRQ distinction. Instead of I and F bits 316 * masking FIQ and IRQ interrupts, an exception is taken only 317 * if it is higher priority than the current execution priority 318 * (which depends on state like BASEPRI, FAULTMASK and the 319 * currently active exception). 320 */ 321 if (interrupt_request & CPU_INTERRUPT_HARD 322 && (armv7m_nvic_can_take_pending_exception(env->nvic))) { 323 cs->exception_index = EXCP_IRQ; 324 cc->do_interrupt(cs); 325 ret = true; 326 } 327 return ret; 328 } 329 #endif 330 331 #ifndef CONFIG_USER_ONLY 332 static void arm_cpu_set_irq(void *opaque, int irq, int level) 333 { 334 ARMCPU *cpu = opaque; 335 CPUARMState *env = &cpu->env; 336 CPUState *cs = CPU(cpu); 337 static const int mask[] = { 338 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 339 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 340 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 341 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 342 }; 343 344 switch (irq) { 345 case ARM_CPU_VIRQ: 346 case ARM_CPU_VFIQ: 347 assert(arm_feature(env, ARM_FEATURE_EL2)); 348 /* fall through */ 349 case ARM_CPU_IRQ: 350 case ARM_CPU_FIQ: 351 if (level) { 352 cpu_interrupt(cs, mask[irq]); 353 } else { 354 cpu_reset_interrupt(cs, mask[irq]); 355 } 356 break; 357 default: 358 g_assert_not_reached(); 359 } 360 } 361 362 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 363 { 364 #ifdef CONFIG_KVM 365 ARMCPU *cpu = opaque; 366 CPUState *cs = CPU(cpu); 367 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 368 369 switch (irq) { 370 case ARM_CPU_IRQ: 371 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 372 break; 373 case ARM_CPU_FIQ: 374 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 375 break; 376 default: 377 g_assert_not_reached(); 378 } 379 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 380 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 381 #endif 382 } 383 384 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 385 { 386 ARMCPU *cpu = ARM_CPU(cs); 387 CPUARMState *env = &cpu->env; 388 389 cpu_synchronize_state(cs); 390 return arm_cpu_data_is_big_endian(env); 391 } 392 393 #endif 394 395 static inline void set_feature(CPUARMState *env, int feature) 396 { 397 env->features |= 1ULL << feature; 398 } 399 400 static inline void unset_feature(CPUARMState *env, int feature) 401 { 402 env->features &= ~(1ULL << feature); 403 } 404 405 static int 406 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 407 { 408 return print_insn_arm(pc | 1, info); 409 } 410 411 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b, 412 int length, struct disassemble_info *info) 413 { 414 assert(info->read_memory_inner_func); 415 assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4); 416 417 if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) { 418 assert(info->endian == BFD_ENDIAN_LITTLE); 419 return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2, 420 info); 421 } else { 422 return info->read_memory_inner_func(memaddr, b, length, info); 423 } 424 } 425 426 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 427 { 428 ARMCPU *ac = ARM_CPU(cpu); 429 CPUARMState *env = &ac->env; 430 431 if (is_a64(env)) { 432 /* We might not be compiled with the A64 disassembler 433 * because it needs a C++ compiler. Leave print_insn 434 * unset in this case to use the caller default behaviour. 435 */ 436 #if defined(CONFIG_ARM_A64_DIS) 437 info->print_insn = print_insn_arm_a64; 438 #endif 439 } else if (env->thumb) { 440 info->print_insn = print_insn_thumb1; 441 } else { 442 info->print_insn = print_insn_arm; 443 } 444 if (bswap_code(arm_sctlr_b(env))) { 445 #ifdef TARGET_WORDS_BIGENDIAN 446 info->endian = BFD_ENDIAN_LITTLE; 447 #else 448 info->endian = BFD_ENDIAN_BIG; 449 #endif 450 } 451 if (info->read_memory_inner_func == NULL) { 452 info->read_memory_inner_func = info->read_memory_func; 453 info->read_memory_func = arm_read_memory_func; 454 } 455 info->flags &= ~INSN_ARM_BE32; 456 if (arm_sctlr_b(env)) { 457 info->flags |= INSN_ARM_BE32; 458 } 459 } 460 461 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 462 { 463 uint32_t Aff1 = idx / clustersz; 464 uint32_t Aff0 = idx % clustersz; 465 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 466 } 467 468 static void arm_cpu_initfn(Object *obj) 469 { 470 CPUState *cs = CPU(obj); 471 ARMCPU *cpu = ARM_CPU(obj); 472 static bool inited; 473 474 cs->env_ptr = &cpu->env; 475 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 476 g_free, g_free); 477 478 #ifndef CONFIG_USER_ONLY 479 /* Our inbound IRQ and FIQ lines */ 480 if (kvm_enabled()) { 481 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 482 * the same interface as non-KVM CPUs. 483 */ 484 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 485 } else { 486 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 487 } 488 489 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 490 arm_gt_ptimer_cb, cpu); 491 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 492 arm_gt_vtimer_cb, cpu); 493 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 494 arm_gt_htimer_cb, cpu); 495 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 496 arm_gt_stimer_cb, cpu); 497 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 498 ARRAY_SIZE(cpu->gt_timer_outputs)); 499 500 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 501 "gicv3-maintenance-interrupt", 1); 502 #endif 503 504 /* DTB consumers generally don't in fact care what the 'compatible' 505 * string is, so always provide some string and trust that a hypothetical 506 * picky DTB consumer will also provide a helpful error message. 507 */ 508 cpu->dtb_compatible = "qemu,unknown"; 509 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 510 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 511 512 if (tcg_enabled()) { 513 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 514 if (!inited) { 515 inited = true; 516 arm_translate_init(); 517 } 518 } 519 } 520 521 static Property arm_cpu_reset_cbar_property = 522 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 523 524 static Property arm_cpu_reset_hivecs_property = 525 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 526 527 static Property arm_cpu_rvbar_property = 528 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 529 530 static Property arm_cpu_has_el2_property = 531 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 532 533 static Property arm_cpu_has_el3_property = 534 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 535 536 static Property arm_cpu_cfgend_property = 537 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 538 539 /* use property name "pmu" to match other archs and virt tools */ 540 static Property arm_cpu_has_pmu_property = 541 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 542 543 static Property arm_cpu_has_mpu_property = 544 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 545 546 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 547 * because the CPU initfn will have already set cpu->pmsav7_dregion to 548 * the right value for that particular CPU type, and we don't want 549 * to override that with an incorrect constant value. 550 */ 551 static Property arm_cpu_pmsav7_dregion_property = 552 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 553 pmsav7_dregion, 554 qdev_prop_uint32, uint32_t); 555 556 static void arm_cpu_post_init(Object *obj) 557 { 558 ARMCPU *cpu = ARM_CPU(obj); 559 560 /* M profile implies PMSA. We have to do this here rather than 561 * in realize with the other feature-implication checks because 562 * we look at the PMSA bit to see if we should add some properties. 563 */ 564 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 565 set_feature(&cpu->env, ARM_FEATURE_PMSA); 566 } 567 568 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 569 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 570 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 571 &error_abort); 572 } 573 574 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 575 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 576 &error_abort); 577 } 578 579 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 580 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 581 &error_abort); 582 } 583 584 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 585 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 586 * prevent "has_el3" from existing on CPUs which cannot support EL3. 587 */ 588 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 589 &error_abort); 590 591 #ifndef CONFIG_USER_ONLY 592 object_property_add_link(obj, "secure-memory", 593 TYPE_MEMORY_REGION, 594 (Object **)&cpu->secure_memory, 595 qdev_prop_allow_set_link_before_realize, 596 OBJ_PROP_LINK_UNREF_ON_RELEASE, 597 &error_abort); 598 #endif 599 } 600 601 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 602 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, 603 &error_abort); 604 } 605 606 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 607 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 608 &error_abort); 609 } 610 611 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 612 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 613 &error_abort); 614 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 615 qdev_property_add_static(DEVICE(obj), 616 &arm_cpu_pmsav7_dregion_property, 617 &error_abort); 618 } 619 } 620 621 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, 622 &error_abort); 623 } 624 625 static void arm_cpu_finalizefn(Object *obj) 626 { 627 ARMCPU *cpu = ARM_CPU(obj); 628 g_hash_table_destroy(cpu->cp_regs); 629 } 630 631 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 632 { 633 CPUState *cs = CPU(dev); 634 ARMCPU *cpu = ARM_CPU(dev); 635 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 636 CPUARMState *env = &cpu->env; 637 int pagebits; 638 Error *local_err = NULL; 639 640 cpu_exec_realizefn(cs, &local_err); 641 if (local_err != NULL) { 642 error_propagate(errp, local_err); 643 return; 644 } 645 646 /* Some features automatically imply others: */ 647 if (arm_feature(env, ARM_FEATURE_V8)) { 648 set_feature(env, ARM_FEATURE_V7); 649 set_feature(env, ARM_FEATURE_ARM_DIV); 650 set_feature(env, ARM_FEATURE_LPAE); 651 } 652 if (arm_feature(env, ARM_FEATURE_V7)) { 653 set_feature(env, ARM_FEATURE_VAPA); 654 set_feature(env, ARM_FEATURE_THUMB2); 655 set_feature(env, ARM_FEATURE_MPIDR); 656 if (!arm_feature(env, ARM_FEATURE_M)) { 657 set_feature(env, ARM_FEATURE_V6K); 658 } else { 659 set_feature(env, ARM_FEATURE_V6); 660 } 661 662 /* Always define VBAR for V7 CPUs even if it doesn't exist in 663 * non-EL3 configs. This is needed by some legacy boards. 664 */ 665 set_feature(env, ARM_FEATURE_VBAR); 666 } 667 if (arm_feature(env, ARM_FEATURE_V6K)) { 668 set_feature(env, ARM_FEATURE_V6); 669 set_feature(env, ARM_FEATURE_MVFR); 670 } 671 if (arm_feature(env, ARM_FEATURE_V6)) { 672 set_feature(env, ARM_FEATURE_V5); 673 if (!arm_feature(env, ARM_FEATURE_M)) { 674 set_feature(env, ARM_FEATURE_AUXCR); 675 } 676 } 677 if (arm_feature(env, ARM_FEATURE_V5)) { 678 set_feature(env, ARM_FEATURE_V4T); 679 } 680 if (arm_feature(env, ARM_FEATURE_M)) { 681 set_feature(env, ARM_FEATURE_THUMB_DIV); 682 } 683 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { 684 set_feature(env, ARM_FEATURE_THUMB_DIV); 685 } 686 if (arm_feature(env, ARM_FEATURE_VFP4)) { 687 set_feature(env, ARM_FEATURE_VFP3); 688 set_feature(env, ARM_FEATURE_VFP_FP16); 689 } 690 if (arm_feature(env, ARM_FEATURE_VFP3)) { 691 set_feature(env, ARM_FEATURE_VFP); 692 } 693 if (arm_feature(env, ARM_FEATURE_LPAE)) { 694 set_feature(env, ARM_FEATURE_V7MP); 695 set_feature(env, ARM_FEATURE_PXN); 696 } 697 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 698 set_feature(env, ARM_FEATURE_CBAR); 699 } 700 if (arm_feature(env, ARM_FEATURE_THUMB2) && 701 !arm_feature(env, ARM_FEATURE_M)) { 702 set_feature(env, ARM_FEATURE_THUMB_DSP); 703 } 704 705 if (arm_feature(env, ARM_FEATURE_V7) && 706 !arm_feature(env, ARM_FEATURE_M) && 707 !arm_feature(env, ARM_FEATURE_PMSA)) { 708 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 709 * can use 4K pages. 710 */ 711 pagebits = 12; 712 } else { 713 /* For CPUs which might have tiny 1K pages, or which have an 714 * MPU and might have small region sizes, stick with 1K pages. 715 */ 716 pagebits = 10; 717 } 718 if (!set_preferred_target_page_bits(pagebits)) { 719 /* This can only ever happen for hotplugging a CPU, or if 720 * the board code incorrectly creates a CPU which it has 721 * promised via minimum_page_size that it will not. 722 */ 723 error_setg(errp, "This CPU requires a smaller page size than the " 724 "system is using"); 725 return; 726 } 727 728 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 729 * We don't support setting cluster ID ([16..23]) (known as Aff2 730 * in later ARM ARM versions), or any of the higher affinity level fields, 731 * so these bits always RAZ. 732 */ 733 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 734 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 735 ARM_DEFAULT_CPUS_PER_CLUSTER); 736 } 737 738 if (cpu->reset_hivecs) { 739 cpu->reset_sctlr |= (1 << 13); 740 } 741 742 if (cpu->cfgend) { 743 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 744 cpu->reset_sctlr |= SCTLR_EE; 745 } else { 746 cpu->reset_sctlr |= SCTLR_B; 747 } 748 } 749 750 if (!cpu->has_el3) { 751 /* If the has_el3 CPU property is disabled then we need to disable the 752 * feature. 753 */ 754 unset_feature(env, ARM_FEATURE_EL3); 755 756 /* Disable the security extension feature bits in the processor feature 757 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 758 */ 759 cpu->id_pfr1 &= ~0xf0; 760 cpu->id_aa64pfr0 &= ~0xf000; 761 } 762 763 if (!cpu->has_el2) { 764 unset_feature(env, ARM_FEATURE_EL2); 765 } 766 767 if (!cpu->has_pmu) { 768 unset_feature(env, ARM_FEATURE_PMU); 769 cpu->id_aa64dfr0 &= ~0xf00; 770 } 771 772 if (!arm_feature(env, ARM_FEATURE_EL2)) { 773 /* Disable the hypervisor feature bits in the processor feature 774 * registers if we don't have EL2. These are id_pfr1[15:12] and 775 * id_aa64pfr0_el1[11:8]. 776 */ 777 cpu->id_aa64pfr0 &= ~0xf00; 778 cpu->id_pfr1 &= ~0xf000; 779 } 780 781 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 782 * to false or by setting pmsav7-dregion to 0. 783 */ 784 if (!cpu->has_mpu) { 785 cpu->pmsav7_dregion = 0; 786 } 787 if (cpu->pmsav7_dregion == 0) { 788 cpu->has_mpu = false; 789 } 790 791 if (arm_feature(env, ARM_FEATURE_PMSA) && 792 arm_feature(env, ARM_FEATURE_V7)) { 793 uint32_t nr = cpu->pmsav7_dregion; 794 795 if (nr > 0xff) { 796 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 797 return; 798 } 799 800 if (nr) { 801 env->pmsav7.drbar = g_new0(uint32_t, nr); 802 env->pmsav7.drsr = g_new0(uint32_t, nr); 803 env->pmsav7.dracr = g_new0(uint32_t, nr); 804 } 805 } 806 807 if (arm_feature(env, ARM_FEATURE_EL3)) { 808 set_feature(env, ARM_FEATURE_VBAR); 809 } 810 811 register_cp_regs_for_features(cpu); 812 arm_cpu_register_gdb_regs_for_features(cpu); 813 814 init_cpreg_list(cpu); 815 816 #ifndef CONFIG_USER_ONLY 817 if (cpu->has_el3) { 818 cs->num_ases = 2; 819 } else { 820 cs->num_ases = 1; 821 } 822 823 if (cpu->has_el3) { 824 AddressSpace *as; 825 826 if (!cpu->secure_memory) { 827 cpu->secure_memory = cs->memory; 828 } 829 as = address_space_init_shareable(cpu->secure_memory, 830 "cpu-secure-memory"); 831 cpu_address_space_init(cs, as, ARMASIdx_S); 832 } 833 cpu_address_space_init(cs, 834 address_space_init_shareable(cs->memory, 835 "cpu-memory"), 836 ARMASIdx_NS); 837 #endif 838 839 qemu_init_vcpu(cs); 840 cpu_reset(cs); 841 842 acc->parent_realize(dev, errp); 843 } 844 845 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 846 { 847 ObjectClass *oc; 848 char *typename; 849 char **cpuname; 850 851 if (!cpu_model) { 852 return NULL; 853 } 854 855 cpuname = g_strsplit(cpu_model, ",", 1); 856 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]); 857 oc = object_class_by_name(typename); 858 g_strfreev(cpuname); 859 g_free(typename); 860 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 861 object_class_is_abstract(oc)) { 862 return NULL; 863 } 864 return oc; 865 } 866 867 /* CPU models. These are not needed for the AArch64 linux-user build. */ 868 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 869 870 static void arm926_initfn(Object *obj) 871 { 872 ARMCPU *cpu = ARM_CPU(obj); 873 874 cpu->dtb_compatible = "arm,arm926"; 875 set_feature(&cpu->env, ARM_FEATURE_V5); 876 set_feature(&cpu->env, ARM_FEATURE_VFP); 877 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 878 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 879 cpu->midr = 0x41069265; 880 cpu->reset_fpsid = 0x41011090; 881 cpu->ctr = 0x1dd20d2; 882 cpu->reset_sctlr = 0x00090078; 883 } 884 885 static void arm946_initfn(Object *obj) 886 { 887 ARMCPU *cpu = ARM_CPU(obj); 888 889 cpu->dtb_compatible = "arm,arm946"; 890 set_feature(&cpu->env, ARM_FEATURE_V5); 891 set_feature(&cpu->env, ARM_FEATURE_PMSA); 892 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 893 cpu->midr = 0x41059461; 894 cpu->ctr = 0x0f004006; 895 cpu->reset_sctlr = 0x00000078; 896 } 897 898 static void arm1026_initfn(Object *obj) 899 { 900 ARMCPU *cpu = ARM_CPU(obj); 901 902 cpu->dtb_compatible = "arm,arm1026"; 903 set_feature(&cpu->env, ARM_FEATURE_V5); 904 set_feature(&cpu->env, ARM_FEATURE_VFP); 905 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 906 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 907 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 908 cpu->midr = 0x4106a262; 909 cpu->reset_fpsid = 0x410110a0; 910 cpu->ctr = 0x1dd20d2; 911 cpu->reset_sctlr = 0x00090078; 912 cpu->reset_auxcr = 1; 913 { 914 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 915 ARMCPRegInfo ifar = { 916 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 917 .access = PL1_RW, 918 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 919 .resetvalue = 0 920 }; 921 define_one_arm_cp_reg(cpu, &ifar); 922 } 923 } 924 925 static void arm1136_r2_initfn(Object *obj) 926 { 927 ARMCPU *cpu = ARM_CPU(obj); 928 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 929 * older core than plain "arm1136". In particular this does not 930 * have the v6K features. 931 * These ID register values are correct for 1136 but may be wrong 932 * for 1136_r2 (in particular r0p2 does not actually implement most 933 * of the ID registers). 934 */ 935 936 cpu->dtb_compatible = "arm,arm1136"; 937 set_feature(&cpu->env, ARM_FEATURE_V6); 938 set_feature(&cpu->env, ARM_FEATURE_VFP); 939 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 940 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 941 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 942 cpu->midr = 0x4107b362; 943 cpu->reset_fpsid = 0x410120b4; 944 cpu->mvfr0 = 0x11111111; 945 cpu->mvfr1 = 0x00000000; 946 cpu->ctr = 0x1dd20d2; 947 cpu->reset_sctlr = 0x00050078; 948 cpu->id_pfr0 = 0x111; 949 cpu->id_pfr1 = 0x1; 950 cpu->id_dfr0 = 0x2; 951 cpu->id_afr0 = 0x3; 952 cpu->id_mmfr0 = 0x01130003; 953 cpu->id_mmfr1 = 0x10030302; 954 cpu->id_mmfr2 = 0x01222110; 955 cpu->id_isar0 = 0x00140011; 956 cpu->id_isar1 = 0x12002111; 957 cpu->id_isar2 = 0x11231111; 958 cpu->id_isar3 = 0x01102131; 959 cpu->id_isar4 = 0x141; 960 cpu->reset_auxcr = 7; 961 } 962 963 static void arm1136_initfn(Object *obj) 964 { 965 ARMCPU *cpu = ARM_CPU(obj); 966 967 cpu->dtb_compatible = "arm,arm1136"; 968 set_feature(&cpu->env, ARM_FEATURE_V6K); 969 set_feature(&cpu->env, ARM_FEATURE_V6); 970 set_feature(&cpu->env, ARM_FEATURE_VFP); 971 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 972 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 973 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 974 cpu->midr = 0x4117b363; 975 cpu->reset_fpsid = 0x410120b4; 976 cpu->mvfr0 = 0x11111111; 977 cpu->mvfr1 = 0x00000000; 978 cpu->ctr = 0x1dd20d2; 979 cpu->reset_sctlr = 0x00050078; 980 cpu->id_pfr0 = 0x111; 981 cpu->id_pfr1 = 0x1; 982 cpu->id_dfr0 = 0x2; 983 cpu->id_afr0 = 0x3; 984 cpu->id_mmfr0 = 0x01130003; 985 cpu->id_mmfr1 = 0x10030302; 986 cpu->id_mmfr2 = 0x01222110; 987 cpu->id_isar0 = 0x00140011; 988 cpu->id_isar1 = 0x12002111; 989 cpu->id_isar2 = 0x11231111; 990 cpu->id_isar3 = 0x01102131; 991 cpu->id_isar4 = 0x141; 992 cpu->reset_auxcr = 7; 993 } 994 995 static void arm1176_initfn(Object *obj) 996 { 997 ARMCPU *cpu = ARM_CPU(obj); 998 999 cpu->dtb_compatible = "arm,arm1176"; 1000 set_feature(&cpu->env, ARM_FEATURE_V6K); 1001 set_feature(&cpu->env, ARM_FEATURE_VFP); 1002 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1003 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1004 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1005 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1006 set_feature(&cpu->env, ARM_FEATURE_EL3); 1007 cpu->midr = 0x410fb767; 1008 cpu->reset_fpsid = 0x410120b5; 1009 cpu->mvfr0 = 0x11111111; 1010 cpu->mvfr1 = 0x00000000; 1011 cpu->ctr = 0x1dd20d2; 1012 cpu->reset_sctlr = 0x00050078; 1013 cpu->id_pfr0 = 0x111; 1014 cpu->id_pfr1 = 0x11; 1015 cpu->id_dfr0 = 0x33; 1016 cpu->id_afr0 = 0; 1017 cpu->id_mmfr0 = 0x01130003; 1018 cpu->id_mmfr1 = 0x10030302; 1019 cpu->id_mmfr2 = 0x01222100; 1020 cpu->id_isar0 = 0x0140011; 1021 cpu->id_isar1 = 0x12002111; 1022 cpu->id_isar2 = 0x11231121; 1023 cpu->id_isar3 = 0x01102131; 1024 cpu->id_isar4 = 0x01141; 1025 cpu->reset_auxcr = 7; 1026 } 1027 1028 static void arm11mpcore_initfn(Object *obj) 1029 { 1030 ARMCPU *cpu = ARM_CPU(obj); 1031 1032 cpu->dtb_compatible = "arm,arm11mpcore"; 1033 set_feature(&cpu->env, ARM_FEATURE_V6K); 1034 set_feature(&cpu->env, ARM_FEATURE_VFP); 1035 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1036 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 1037 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1038 cpu->midr = 0x410fb022; 1039 cpu->reset_fpsid = 0x410120b4; 1040 cpu->mvfr0 = 0x11111111; 1041 cpu->mvfr1 = 0x00000000; 1042 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 1043 cpu->id_pfr0 = 0x111; 1044 cpu->id_pfr1 = 0x1; 1045 cpu->id_dfr0 = 0; 1046 cpu->id_afr0 = 0x2; 1047 cpu->id_mmfr0 = 0x01100103; 1048 cpu->id_mmfr1 = 0x10020302; 1049 cpu->id_mmfr2 = 0x01222000; 1050 cpu->id_isar0 = 0x00100011; 1051 cpu->id_isar1 = 0x12002111; 1052 cpu->id_isar2 = 0x11221011; 1053 cpu->id_isar3 = 0x01102131; 1054 cpu->id_isar4 = 0x141; 1055 cpu->reset_auxcr = 1; 1056 } 1057 1058 static void cortex_m3_initfn(Object *obj) 1059 { 1060 ARMCPU *cpu = ARM_CPU(obj); 1061 set_feature(&cpu->env, ARM_FEATURE_V7); 1062 set_feature(&cpu->env, ARM_FEATURE_M); 1063 cpu->midr = 0x410fc231; 1064 cpu->pmsav7_dregion = 8; 1065 } 1066 1067 static void cortex_m4_initfn(Object *obj) 1068 { 1069 ARMCPU *cpu = ARM_CPU(obj); 1070 1071 set_feature(&cpu->env, ARM_FEATURE_V7); 1072 set_feature(&cpu->env, ARM_FEATURE_M); 1073 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1074 cpu->midr = 0x410fc240; /* r0p0 */ 1075 cpu->pmsav7_dregion = 8; 1076 } 1077 static void arm_v7m_class_init(ObjectClass *oc, void *data) 1078 { 1079 CPUClass *cc = CPU_CLASS(oc); 1080 1081 #ifndef CONFIG_USER_ONLY 1082 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1083 #endif 1084 1085 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1086 } 1087 1088 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1089 /* Dummy the TCM region regs for the moment */ 1090 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1091 .access = PL1_RW, .type = ARM_CP_CONST }, 1092 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1093 .access = PL1_RW, .type = ARM_CP_CONST }, 1094 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, 1095 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, 1096 REGINFO_SENTINEL 1097 }; 1098 1099 static void cortex_r5_initfn(Object *obj) 1100 { 1101 ARMCPU *cpu = ARM_CPU(obj); 1102 1103 set_feature(&cpu->env, ARM_FEATURE_V7); 1104 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV); 1105 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1106 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1107 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1108 cpu->midr = 0x411fc153; /* r1p3 */ 1109 cpu->id_pfr0 = 0x0131; 1110 cpu->id_pfr1 = 0x001; 1111 cpu->id_dfr0 = 0x010400; 1112 cpu->id_afr0 = 0x0; 1113 cpu->id_mmfr0 = 0x0210030; 1114 cpu->id_mmfr1 = 0x00000000; 1115 cpu->id_mmfr2 = 0x01200000; 1116 cpu->id_mmfr3 = 0x0211; 1117 cpu->id_isar0 = 0x2101111; 1118 cpu->id_isar1 = 0x13112111; 1119 cpu->id_isar2 = 0x21232141; 1120 cpu->id_isar3 = 0x01112131; 1121 cpu->id_isar4 = 0x0010142; 1122 cpu->id_isar5 = 0x0; 1123 cpu->mp_is_up = true; 1124 cpu->pmsav7_dregion = 16; 1125 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 1126 } 1127 1128 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1129 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1131 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1132 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1133 REGINFO_SENTINEL 1134 }; 1135 1136 static void cortex_a8_initfn(Object *obj) 1137 { 1138 ARMCPU *cpu = ARM_CPU(obj); 1139 1140 cpu->dtb_compatible = "arm,cortex-a8"; 1141 set_feature(&cpu->env, ARM_FEATURE_V7); 1142 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1143 set_feature(&cpu->env, ARM_FEATURE_NEON); 1144 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1145 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1146 set_feature(&cpu->env, ARM_FEATURE_EL3); 1147 cpu->midr = 0x410fc080; 1148 cpu->reset_fpsid = 0x410330c0; 1149 cpu->mvfr0 = 0x11110222; 1150 cpu->mvfr1 = 0x00011111; 1151 cpu->ctr = 0x82048004; 1152 cpu->reset_sctlr = 0x00c50078; 1153 cpu->id_pfr0 = 0x1031; 1154 cpu->id_pfr1 = 0x11; 1155 cpu->id_dfr0 = 0x400; 1156 cpu->id_afr0 = 0; 1157 cpu->id_mmfr0 = 0x31100003; 1158 cpu->id_mmfr1 = 0x20000000; 1159 cpu->id_mmfr2 = 0x01202000; 1160 cpu->id_mmfr3 = 0x11; 1161 cpu->id_isar0 = 0x00101111; 1162 cpu->id_isar1 = 0x12112111; 1163 cpu->id_isar2 = 0x21232031; 1164 cpu->id_isar3 = 0x11112131; 1165 cpu->id_isar4 = 0x00111142; 1166 cpu->dbgdidr = 0x15141000; 1167 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1168 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1169 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1170 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1171 cpu->reset_auxcr = 2; 1172 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1173 } 1174 1175 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1176 /* power_control should be set to maximum latency. Again, 1177 * default to 0 and set by private hook 1178 */ 1179 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1180 .access = PL1_RW, .resetvalue = 0, 1181 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1182 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1183 .access = PL1_RW, .resetvalue = 0, 1184 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1185 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1186 .access = PL1_RW, .resetvalue = 0, 1187 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1188 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1189 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1190 /* TLB lockdown control */ 1191 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1192 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1193 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1194 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1195 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1196 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1197 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1198 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1199 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1200 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1201 REGINFO_SENTINEL 1202 }; 1203 1204 static void cortex_a9_initfn(Object *obj) 1205 { 1206 ARMCPU *cpu = ARM_CPU(obj); 1207 1208 cpu->dtb_compatible = "arm,cortex-a9"; 1209 set_feature(&cpu->env, ARM_FEATURE_V7); 1210 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1211 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16); 1212 set_feature(&cpu->env, ARM_FEATURE_NEON); 1213 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1214 set_feature(&cpu->env, ARM_FEATURE_EL3); 1215 /* Note that A9 supports the MP extensions even for 1216 * A9UP and single-core A9MP (which are both different 1217 * and valid configurations; we don't model A9UP). 1218 */ 1219 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1220 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1221 cpu->midr = 0x410fc090; 1222 cpu->reset_fpsid = 0x41033090; 1223 cpu->mvfr0 = 0x11110222; 1224 cpu->mvfr1 = 0x01111111; 1225 cpu->ctr = 0x80038003; 1226 cpu->reset_sctlr = 0x00c50078; 1227 cpu->id_pfr0 = 0x1031; 1228 cpu->id_pfr1 = 0x11; 1229 cpu->id_dfr0 = 0x000; 1230 cpu->id_afr0 = 0; 1231 cpu->id_mmfr0 = 0x00100103; 1232 cpu->id_mmfr1 = 0x20000000; 1233 cpu->id_mmfr2 = 0x01230000; 1234 cpu->id_mmfr3 = 0x00002111; 1235 cpu->id_isar0 = 0x00101111; 1236 cpu->id_isar1 = 0x13112111; 1237 cpu->id_isar2 = 0x21232041; 1238 cpu->id_isar3 = 0x11112131; 1239 cpu->id_isar4 = 0x00111142; 1240 cpu->dbgdidr = 0x35141000; 1241 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1242 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1243 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1244 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1245 } 1246 1247 #ifndef CONFIG_USER_ONLY 1248 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1249 { 1250 /* Linux wants the number of processors from here. 1251 * Might as well set the interrupt-controller bit too. 1252 */ 1253 return ((smp_cpus - 1) << 24) | (1 << 23); 1254 } 1255 #endif 1256 1257 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 1258 #ifndef CONFIG_USER_ONLY 1259 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1260 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 1261 .writefn = arm_cp_write_ignore, }, 1262 #endif 1263 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 1264 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1265 REGINFO_SENTINEL 1266 }; 1267 1268 static void cortex_a7_initfn(Object *obj) 1269 { 1270 ARMCPU *cpu = ARM_CPU(obj); 1271 1272 cpu->dtb_compatible = "arm,cortex-a7"; 1273 set_feature(&cpu->env, ARM_FEATURE_V7); 1274 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1275 set_feature(&cpu->env, ARM_FEATURE_NEON); 1276 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1277 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1278 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1279 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1280 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1281 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1282 set_feature(&cpu->env, ARM_FEATURE_EL3); 1283 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 1284 cpu->midr = 0x410fc075; 1285 cpu->reset_fpsid = 0x41023075; 1286 cpu->mvfr0 = 0x10110222; 1287 cpu->mvfr1 = 0x11111111; 1288 cpu->ctr = 0x84448003; 1289 cpu->reset_sctlr = 0x00c50078; 1290 cpu->id_pfr0 = 0x00001131; 1291 cpu->id_pfr1 = 0x00011011; 1292 cpu->id_dfr0 = 0x02010555; 1293 cpu->pmceid0 = 0x00000000; 1294 cpu->pmceid1 = 0x00000000; 1295 cpu->id_afr0 = 0x00000000; 1296 cpu->id_mmfr0 = 0x10101105; 1297 cpu->id_mmfr1 = 0x40000000; 1298 cpu->id_mmfr2 = 0x01240000; 1299 cpu->id_mmfr3 = 0x02102211; 1300 cpu->id_isar0 = 0x01101110; 1301 cpu->id_isar1 = 0x13112111; 1302 cpu->id_isar2 = 0x21232041; 1303 cpu->id_isar3 = 0x11112131; 1304 cpu->id_isar4 = 0x10011142; 1305 cpu->dbgdidr = 0x3515f005; 1306 cpu->clidr = 0x0a200023; 1307 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1308 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1309 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1310 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 1311 } 1312 1313 static void cortex_a15_initfn(Object *obj) 1314 { 1315 ARMCPU *cpu = ARM_CPU(obj); 1316 1317 cpu->dtb_compatible = "arm,cortex-a15"; 1318 set_feature(&cpu->env, ARM_FEATURE_V7); 1319 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1320 set_feature(&cpu->env, ARM_FEATURE_NEON); 1321 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1322 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1323 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1324 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1325 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1326 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1327 set_feature(&cpu->env, ARM_FEATURE_EL3); 1328 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 1329 cpu->midr = 0x412fc0f1; 1330 cpu->reset_fpsid = 0x410430f0; 1331 cpu->mvfr0 = 0x10110222; 1332 cpu->mvfr1 = 0x11111111; 1333 cpu->ctr = 0x8444c004; 1334 cpu->reset_sctlr = 0x00c50078; 1335 cpu->id_pfr0 = 0x00001131; 1336 cpu->id_pfr1 = 0x00011011; 1337 cpu->id_dfr0 = 0x02010555; 1338 cpu->pmceid0 = 0x0000000; 1339 cpu->pmceid1 = 0x00000000; 1340 cpu->id_afr0 = 0x00000000; 1341 cpu->id_mmfr0 = 0x10201105; 1342 cpu->id_mmfr1 = 0x20000000; 1343 cpu->id_mmfr2 = 0x01240000; 1344 cpu->id_mmfr3 = 0x02102211; 1345 cpu->id_isar0 = 0x02101110; 1346 cpu->id_isar1 = 0x13112111; 1347 cpu->id_isar2 = 0x21232041; 1348 cpu->id_isar3 = 0x11112131; 1349 cpu->id_isar4 = 0x10011142; 1350 cpu->dbgdidr = 0x3515f021; 1351 cpu->clidr = 0x0a200023; 1352 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1353 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1354 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1355 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 1356 } 1357 1358 static void ti925t_initfn(Object *obj) 1359 { 1360 ARMCPU *cpu = ARM_CPU(obj); 1361 set_feature(&cpu->env, ARM_FEATURE_V4T); 1362 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 1363 cpu->midr = ARM_CPUID_TI925T; 1364 cpu->ctr = 0x5109149; 1365 cpu->reset_sctlr = 0x00000070; 1366 } 1367 1368 static void sa1100_initfn(Object *obj) 1369 { 1370 ARMCPU *cpu = ARM_CPU(obj); 1371 1372 cpu->dtb_compatible = "intel,sa1100"; 1373 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1374 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1375 cpu->midr = 0x4401A11B; 1376 cpu->reset_sctlr = 0x00000070; 1377 } 1378 1379 static void sa1110_initfn(Object *obj) 1380 { 1381 ARMCPU *cpu = ARM_CPU(obj); 1382 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1383 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1384 cpu->midr = 0x6901B119; 1385 cpu->reset_sctlr = 0x00000070; 1386 } 1387 1388 static void pxa250_initfn(Object *obj) 1389 { 1390 ARMCPU *cpu = ARM_CPU(obj); 1391 1392 cpu->dtb_compatible = "marvell,xscale"; 1393 set_feature(&cpu->env, ARM_FEATURE_V5); 1394 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1395 cpu->midr = 0x69052100; 1396 cpu->ctr = 0xd172172; 1397 cpu->reset_sctlr = 0x00000078; 1398 } 1399 1400 static void pxa255_initfn(Object *obj) 1401 { 1402 ARMCPU *cpu = ARM_CPU(obj); 1403 1404 cpu->dtb_compatible = "marvell,xscale"; 1405 set_feature(&cpu->env, ARM_FEATURE_V5); 1406 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1407 cpu->midr = 0x69052d00; 1408 cpu->ctr = 0xd172172; 1409 cpu->reset_sctlr = 0x00000078; 1410 } 1411 1412 static void pxa260_initfn(Object *obj) 1413 { 1414 ARMCPU *cpu = ARM_CPU(obj); 1415 1416 cpu->dtb_compatible = "marvell,xscale"; 1417 set_feature(&cpu->env, ARM_FEATURE_V5); 1418 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1419 cpu->midr = 0x69052903; 1420 cpu->ctr = 0xd172172; 1421 cpu->reset_sctlr = 0x00000078; 1422 } 1423 1424 static void pxa261_initfn(Object *obj) 1425 { 1426 ARMCPU *cpu = ARM_CPU(obj); 1427 1428 cpu->dtb_compatible = "marvell,xscale"; 1429 set_feature(&cpu->env, ARM_FEATURE_V5); 1430 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1431 cpu->midr = 0x69052d05; 1432 cpu->ctr = 0xd172172; 1433 cpu->reset_sctlr = 0x00000078; 1434 } 1435 1436 static void pxa262_initfn(Object *obj) 1437 { 1438 ARMCPU *cpu = ARM_CPU(obj); 1439 1440 cpu->dtb_compatible = "marvell,xscale"; 1441 set_feature(&cpu->env, ARM_FEATURE_V5); 1442 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1443 cpu->midr = 0x69052d06; 1444 cpu->ctr = 0xd172172; 1445 cpu->reset_sctlr = 0x00000078; 1446 } 1447 1448 static void pxa270a0_initfn(Object *obj) 1449 { 1450 ARMCPU *cpu = ARM_CPU(obj); 1451 1452 cpu->dtb_compatible = "marvell,xscale"; 1453 set_feature(&cpu->env, ARM_FEATURE_V5); 1454 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1455 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1456 cpu->midr = 0x69054110; 1457 cpu->ctr = 0xd172172; 1458 cpu->reset_sctlr = 0x00000078; 1459 } 1460 1461 static void pxa270a1_initfn(Object *obj) 1462 { 1463 ARMCPU *cpu = ARM_CPU(obj); 1464 1465 cpu->dtb_compatible = "marvell,xscale"; 1466 set_feature(&cpu->env, ARM_FEATURE_V5); 1467 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1468 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1469 cpu->midr = 0x69054111; 1470 cpu->ctr = 0xd172172; 1471 cpu->reset_sctlr = 0x00000078; 1472 } 1473 1474 static void pxa270b0_initfn(Object *obj) 1475 { 1476 ARMCPU *cpu = ARM_CPU(obj); 1477 1478 cpu->dtb_compatible = "marvell,xscale"; 1479 set_feature(&cpu->env, ARM_FEATURE_V5); 1480 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1481 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1482 cpu->midr = 0x69054112; 1483 cpu->ctr = 0xd172172; 1484 cpu->reset_sctlr = 0x00000078; 1485 } 1486 1487 static void pxa270b1_initfn(Object *obj) 1488 { 1489 ARMCPU *cpu = ARM_CPU(obj); 1490 1491 cpu->dtb_compatible = "marvell,xscale"; 1492 set_feature(&cpu->env, ARM_FEATURE_V5); 1493 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1494 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1495 cpu->midr = 0x69054113; 1496 cpu->ctr = 0xd172172; 1497 cpu->reset_sctlr = 0x00000078; 1498 } 1499 1500 static void pxa270c0_initfn(Object *obj) 1501 { 1502 ARMCPU *cpu = ARM_CPU(obj); 1503 1504 cpu->dtb_compatible = "marvell,xscale"; 1505 set_feature(&cpu->env, ARM_FEATURE_V5); 1506 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1507 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1508 cpu->midr = 0x69054114; 1509 cpu->ctr = 0xd172172; 1510 cpu->reset_sctlr = 0x00000078; 1511 } 1512 1513 static void pxa270c5_initfn(Object *obj) 1514 { 1515 ARMCPU *cpu = ARM_CPU(obj); 1516 1517 cpu->dtb_compatible = "marvell,xscale"; 1518 set_feature(&cpu->env, ARM_FEATURE_V5); 1519 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1520 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1521 cpu->midr = 0x69054117; 1522 cpu->ctr = 0xd172172; 1523 cpu->reset_sctlr = 0x00000078; 1524 } 1525 1526 #ifdef CONFIG_USER_ONLY 1527 static void arm_any_initfn(Object *obj) 1528 { 1529 ARMCPU *cpu = ARM_CPU(obj); 1530 set_feature(&cpu->env, ARM_FEATURE_V8); 1531 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1532 set_feature(&cpu->env, ARM_FEATURE_NEON); 1533 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1534 set_feature(&cpu->env, ARM_FEATURE_V8_AES); 1535 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); 1536 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); 1537 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); 1538 set_feature(&cpu->env, ARM_FEATURE_CRC); 1539 cpu->midr = 0xffffffff; 1540 } 1541 #endif 1542 1543 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 1544 1545 typedef struct ARMCPUInfo { 1546 const char *name; 1547 void (*initfn)(Object *obj); 1548 void (*class_init)(ObjectClass *oc, void *data); 1549 } ARMCPUInfo; 1550 1551 static const ARMCPUInfo arm_cpus[] = { 1552 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1553 { .name = "arm926", .initfn = arm926_initfn }, 1554 { .name = "arm946", .initfn = arm946_initfn }, 1555 { .name = "arm1026", .initfn = arm1026_initfn }, 1556 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 1557 * older core than plain "arm1136". In particular this does not 1558 * have the v6K features. 1559 */ 1560 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 1561 { .name = "arm1136", .initfn = arm1136_initfn }, 1562 { .name = "arm1176", .initfn = arm1176_initfn }, 1563 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 1564 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 1565 .class_init = arm_v7m_class_init }, 1566 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 1567 .class_init = arm_v7m_class_init }, 1568 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 1569 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 1570 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 1571 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 1572 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 1573 { .name = "ti925t", .initfn = ti925t_initfn }, 1574 { .name = "sa1100", .initfn = sa1100_initfn }, 1575 { .name = "sa1110", .initfn = sa1110_initfn }, 1576 { .name = "pxa250", .initfn = pxa250_initfn }, 1577 { .name = "pxa255", .initfn = pxa255_initfn }, 1578 { .name = "pxa260", .initfn = pxa260_initfn }, 1579 { .name = "pxa261", .initfn = pxa261_initfn }, 1580 { .name = "pxa262", .initfn = pxa262_initfn }, 1581 /* "pxa270" is an alias for "pxa270-a0" */ 1582 { .name = "pxa270", .initfn = pxa270a0_initfn }, 1583 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 1584 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 1585 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 1586 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 1587 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 1588 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 1589 #ifdef CONFIG_USER_ONLY 1590 { .name = "any", .initfn = arm_any_initfn }, 1591 #endif 1592 #endif 1593 { .name = NULL } 1594 }; 1595 1596 static Property arm_cpu_properties[] = { 1597 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 1598 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 1599 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 1600 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 1601 mp_affinity, ARM64_AFFINITY_INVALID), 1602 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 1603 DEFINE_PROP_END_OF_LIST() 1604 }; 1605 1606 #ifdef CONFIG_USER_ONLY 1607 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, 1608 int mmu_idx) 1609 { 1610 ARMCPU *cpu = ARM_CPU(cs); 1611 CPUARMState *env = &cpu->env; 1612 1613 env->exception.vaddress = address; 1614 if (rw == 2) { 1615 cs->exception_index = EXCP_PREFETCH_ABORT; 1616 } else { 1617 cs->exception_index = EXCP_DATA_ABORT; 1618 } 1619 return 1; 1620 } 1621 #endif 1622 1623 static gchar *arm_gdb_arch_name(CPUState *cs) 1624 { 1625 ARMCPU *cpu = ARM_CPU(cs); 1626 CPUARMState *env = &cpu->env; 1627 1628 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 1629 return g_strdup("iwmmxt"); 1630 } 1631 return g_strdup("arm"); 1632 } 1633 1634 static void arm_cpu_class_init(ObjectClass *oc, void *data) 1635 { 1636 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1637 CPUClass *cc = CPU_CLASS(acc); 1638 DeviceClass *dc = DEVICE_CLASS(oc); 1639 1640 acc->parent_realize = dc->realize; 1641 dc->realize = arm_cpu_realizefn; 1642 dc->props = arm_cpu_properties; 1643 1644 acc->parent_reset = cc->reset; 1645 cc->reset = arm_cpu_reset; 1646 1647 cc->class_by_name = arm_cpu_class_by_name; 1648 cc->has_work = arm_cpu_has_work; 1649 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 1650 cc->dump_state = arm_cpu_dump_state; 1651 cc->set_pc = arm_cpu_set_pc; 1652 cc->gdb_read_register = arm_cpu_gdb_read_register; 1653 cc->gdb_write_register = arm_cpu_gdb_write_register; 1654 #ifdef CONFIG_USER_ONLY 1655 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; 1656 #else 1657 cc->do_interrupt = arm_cpu_do_interrupt; 1658 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 1659 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 1660 cc->asidx_from_attrs = arm_asidx_from_attrs; 1661 cc->vmsd = &vmstate_arm_cpu; 1662 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 1663 cc->write_elf64_note = arm_cpu_write_elf64_note; 1664 cc->write_elf32_note = arm_cpu_write_elf32_note; 1665 #endif 1666 cc->gdb_num_core_regs = 26; 1667 cc->gdb_core_xml_file = "arm-core.xml"; 1668 cc->gdb_arch_name = arm_gdb_arch_name; 1669 cc->gdb_stop_before_watchpoint = true; 1670 cc->debug_excp_handler = arm_debug_excp_handler; 1671 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 1672 #if !defined(CONFIG_USER_ONLY) 1673 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 1674 #endif 1675 1676 cc->disas_set_info = arm_disas_set_info; 1677 } 1678 1679 static void cpu_register(const ARMCPUInfo *info) 1680 { 1681 TypeInfo type_info = { 1682 .parent = TYPE_ARM_CPU, 1683 .instance_size = sizeof(ARMCPU), 1684 .instance_init = info->initfn, 1685 .class_size = sizeof(ARMCPUClass), 1686 .class_init = info->class_init, 1687 }; 1688 1689 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 1690 type_register(&type_info); 1691 g_free((void *)type_info.name); 1692 } 1693 1694 static const TypeInfo arm_cpu_type_info = { 1695 .name = TYPE_ARM_CPU, 1696 .parent = TYPE_CPU, 1697 .instance_size = sizeof(ARMCPU), 1698 .instance_init = arm_cpu_initfn, 1699 .instance_post_init = arm_cpu_post_init, 1700 .instance_finalize = arm_cpu_finalizefn, 1701 .abstract = true, 1702 .class_size = sizeof(ARMCPUClass), 1703 .class_init = arm_cpu_class_init, 1704 }; 1705 1706 static void arm_cpu_register_types(void) 1707 { 1708 const ARMCPUInfo *info = arm_cpus; 1709 1710 type_register_static(&arm_cpu_type_info); 1711 1712 while (info->name) { 1713 cpu_register(info); 1714 info++; 1715 } 1716 } 1717 1718 type_init(arm_cpu_register_types) 1719