1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu-common.h" 24 #include "target/arm/idau.h" 25 #include "qemu/module.h" 26 #include "qapi/error.h" 27 #include "qapi/visitor.h" 28 #include "cpu.h" 29 #include "internals.h" 30 #include "exec/exec-all.h" 31 #include "hw/qdev-properties.h" 32 #if !defined(CONFIG_USER_ONLY) 33 #include "hw/loader.h" 34 #include "hw/boards.h" 35 #endif 36 #include "sysemu/sysemu.h" 37 #include "sysemu/tcg.h" 38 #include "sysemu/hw_accel.h" 39 #include "kvm_arm.h" 40 #include "disas/capstone.h" 41 #include "fpu/softfloat.h" 42 43 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 CPUARMState *env = &cpu->env; 47 48 if (is_a64(env)) { 49 env->pc = value; 50 env->thumb = 0; 51 } else { 52 env->regs[15] = value & ~1; 53 env->thumb = value & 1; 54 } 55 } 56 57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) 58 { 59 ARMCPU *cpu = ARM_CPU(cs); 60 CPUARMState *env = &cpu->env; 61 62 /* 63 * It's OK to look at env for the current mode here, because it's 64 * never possible for an AArch64 TB to chain to an AArch32 TB. 65 */ 66 if (is_a64(env)) { 67 env->pc = tb->pc; 68 } else { 69 env->regs[15] = tb->pc; 70 } 71 } 72 73 static bool arm_cpu_has_work(CPUState *cs) 74 { 75 ARMCPU *cpu = ARM_CPU(cs); 76 77 return (cpu->power_state != PSCI_OFF) 78 && cs->interrupt_request & 79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 81 | CPU_INTERRUPT_EXITTB); 82 } 83 84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 85 void *opaque) 86 { 87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 88 89 entry->hook = hook; 90 entry->opaque = opaque; 91 92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 93 } 94 95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 96 void *opaque) 97 { 98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 99 100 entry->hook = hook; 101 entry->opaque = opaque; 102 103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 104 } 105 106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 107 { 108 /* Reset a single ARMCPRegInfo register */ 109 ARMCPRegInfo *ri = value; 110 ARMCPU *cpu = opaque; 111 112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 113 return; 114 } 115 116 if (ri->resetfn) { 117 ri->resetfn(&cpu->env, ri); 118 return; 119 } 120 121 /* A zero offset is never possible as it would be regs[0] 122 * so we use it to indicate that reset is being handled elsewhere. 123 * This is basically only used for fields in non-core coprocessors 124 * (like the pxa2xx ones). 125 */ 126 if (!ri->fieldoffset) { 127 return; 128 } 129 130 if (cpreg_field_is_64bit(ri)) { 131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 132 } else { 133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 134 } 135 } 136 137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 138 { 139 /* Purely an assertion check: we've already done reset once, 140 * so now check that running the reset for the cpreg doesn't 141 * change its value. This traps bugs where two different cpregs 142 * both try to reset the same state field but to different values. 143 */ 144 ARMCPRegInfo *ri = value; 145 ARMCPU *cpu = opaque; 146 uint64_t oldvalue, newvalue; 147 148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 149 return; 150 } 151 152 oldvalue = read_raw_cp_reg(&cpu->env, ri); 153 cp_reg_reset(key, value, opaque); 154 newvalue = read_raw_cp_reg(&cpu->env, ri); 155 assert(oldvalue == newvalue); 156 } 157 158 /* CPUClass::reset() */ 159 static void arm_cpu_reset(CPUState *s) 160 { 161 ARMCPU *cpu = ARM_CPU(s); 162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 163 CPUARMState *env = &cpu->env; 164 165 acc->parent_reset(s); 166 167 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 168 169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 171 172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 176 177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 178 s->halted = cpu->start_powered_off; 179 180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 182 } 183 184 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 185 /* 64 bit CPUs always start in 64 bit mode */ 186 env->aarch64 = 1; 187 #if defined(CONFIG_USER_ONLY) 188 env->pstate = PSTATE_MODE_EL0t; 189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 191 /* Enable all PAC keys. */ 192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 193 SCTLR_EnDA | SCTLR_EnDB); 194 /* Enable all PAC instructions */ 195 env->cp15.hcr_el2 |= HCR_API; 196 env->cp15.scr_el3 |= SCR_API; 197 /* and to the FP/Neon instructions */ 198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 199 /* and to the SVE instructions */ 200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 201 env->cp15.cptr_el[3] |= CPTR_EZ; 202 /* with maximum vector length */ 203 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1; 204 env->vfp.zcr_el[2] = env->vfp.zcr_el[1]; 205 env->vfp.zcr_el[3] = env->vfp.zcr_el[1]; 206 /* 207 * Enable TBI0 and TBI1. While the real kernel only enables TBI0, 208 * turning on both here will produce smaller code and otherwise 209 * make no difference to the user-level emulation. 210 */ 211 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); 212 #else 213 /* Reset into the highest available EL */ 214 if (arm_feature(env, ARM_FEATURE_EL3)) { 215 env->pstate = PSTATE_MODE_EL3h; 216 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 217 env->pstate = PSTATE_MODE_EL2h; 218 } else { 219 env->pstate = PSTATE_MODE_EL1h; 220 } 221 env->pc = cpu->rvbar; 222 #endif 223 } else { 224 #if defined(CONFIG_USER_ONLY) 225 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 226 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 227 #endif 228 } 229 230 #if defined(CONFIG_USER_ONLY) 231 env->uncached_cpsr = ARM_CPU_MODE_USR; 232 /* For user mode we must enable access to coprocessors */ 233 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 234 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 235 env->cp15.c15_cpar = 3; 236 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 237 env->cp15.c15_cpar = 1; 238 } 239 #else 240 241 /* 242 * If the highest available EL is EL2, AArch32 will start in Hyp 243 * mode; otherwise it starts in SVC. Note that if we start in 244 * AArch64 then these values in the uncached_cpsr will be ignored. 245 */ 246 if (arm_feature(env, ARM_FEATURE_EL2) && 247 !arm_feature(env, ARM_FEATURE_EL3)) { 248 env->uncached_cpsr = ARM_CPU_MODE_HYP; 249 } else { 250 env->uncached_cpsr = ARM_CPU_MODE_SVC; 251 } 252 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 253 254 if (arm_feature(env, ARM_FEATURE_M)) { 255 uint32_t initial_msp; /* Loaded from 0x0 */ 256 uint32_t initial_pc; /* Loaded from 0x4 */ 257 uint8_t *rom; 258 uint32_t vecbase; 259 260 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 261 env->v7m.secure = true; 262 } else { 263 /* This bit resets to 0 if security is supported, but 1 if 264 * it is not. The bit is not present in v7M, but we set it 265 * here so we can avoid having to make checks on it conditional 266 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 267 */ 268 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 269 } 270 271 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 272 * that it resets to 1, so QEMU always does that rather than making 273 * it dependent on CPU model. In v8M it is RES1. 274 */ 275 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 276 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 277 if (arm_feature(env, ARM_FEATURE_V8)) { 278 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 279 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 280 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 281 } 282 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 283 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 284 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 285 } 286 287 if (arm_feature(env, ARM_FEATURE_VFP)) { 288 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 289 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 290 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 291 } 292 /* Unlike A/R profile, M profile defines the reset LR value */ 293 env->regs[14] = 0xffffffff; 294 295 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 296 297 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 298 vecbase = env->v7m.vecbase[env->v7m.secure]; 299 rom = rom_ptr(vecbase, 8); 300 if (rom) { 301 /* Address zero is covered by ROM which hasn't yet been 302 * copied into physical memory. 303 */ 304 initial_msp = ldl_p(rom); 305 initial_pc = ldl_p(rom + 4); 306 } else { 307 /* Address zero not covered by a ROM blob, or the ROM blob 308 * is in non-modifiable memory and this is a second reset after 309 * it got copied into memory. In the latter case, rom_ptr 310 * will return a NULL pointer and we should use ldl_phys instead. 311 */ 312 initial_msp = ldl_phys(s->as, vecbase); 313 initial_pc = ldl_phys(s->as, vecbase + 4); 314 } 315 316 env->regs[13] = initial_msp & 0xFFFFFFFC; 317 env->regs[15] = initial_pc & ~1; 318 env->thumb = initial_pc & 1; 319 } 320 321 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 322 * executing as AArch32 then check if highvecs are enabled and 323 * adjust the PC accordingly. 324 */ 325 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 326 env->regs[15] = 0xFFFF0000; 327 } 328 329 /* M profile requires that reset clears the exclusive monitor; 330 * A profile does not, but clearing it makes more sense than having it 331 * set with an exclusive access on address zero. 332 */ 333 arm_clear_exclusive(env); 334 335 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 336 #endif 337 338 if (arm_feature(env, ARM_FEATURE_PMSA)) { 339 if (cpu->pmsav7_dregion > 0) { 340 if (arm_feature(env, ARM_FEATURE_V8)) { 341 memset(env->pmsav8.rbar[M_REG_NS], 0, 342 sizeof(*env->pmsav8.rbar[M_REG_NS]) 343 * cpu->pmsav7_dregion); 344 memset(env->pmsav8.rlar[M_REG_NS], 0, 345 sizeof(*env->pmsav8.rlar[M_REG_NS]) 346 * cpu->pmsav7_dregion); 347 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 348 memset(env->pmsav8.rbar[M_REG_S], 0, 349 sizeof(*env->pmsav8.rbar[M_REG_S]) 350 * cpu->pmsav7_dregion); 351 memset(env->pmsav8.rlar[M_REG_S], 0, 352 sizeof(*env->pmsav8.rlar[M_REG_S]) 353 * cpu->pmsav7_dregion); 354 } 355 } else if (arm_feature(env, ARM_FEATURE_V7)) { 356 memset(env->pmsav7.drbar, 0, 357 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 358 memset(env->pmsav7.drsr, 0, 359 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 360 memset(env->pmsav7.dracr, 0, 361 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 362 } 363 } 364 env->pmsav7.rnr[M_REG_NS] = 0; 365 env->pmsav7.rnr[M_REG_S] = 0; 366 env->pmsav8.mair0[M_REG_NS] = 0; 367 env->pmsav8.mair0[M_REG_S] = 0; 368 env->pmsav8.mair1[M_REG_NS] = 0; 369 env->pmsav8.mair1[M_REG_S] = 0; 370 } 371 372 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 373 if (cpu->sau_sregion > 0) { 374 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 375 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 376 } 377 env->sau.rnr = 0; 378 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 379 * the Cortex-M33 does. 380 */ 381 env->sau.ctrl = 0; 382 } 383 384 set_flush_to_zero(1, &env->vfp.standard_fp_status); 385 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 386 set_default_nan_mode(1, &env->vfp.standard_fp_status); 387 set_float_detect_tininess(float_tininess_before_rounding, 388 &env->vfp.fp_status); 389 set_float_detect_tininess(float_tininess_before_rounding, 390 &env->vfp.standard_fp_status); 391 set_float_detect_tininess(float_tininess_before_rounding, 392 &env->vfp.fp_status_f16); 393 #ifndef CONFIG_USER_ONLY 394 if (kvm_enabled()) { 395 kvm_arm_reset_vcpu(cpu); 396 } 397 #endif 398 399 hw_breakpoint_update_all(cpu); 400 hw_watchpoint_update_all(cpu); 401 } 402 403 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 404 { 405 CPUClass *cc = CPU_GET_CLASS(cs); 406 CPUARMState *env = cs->env_ptr; 407 uint32_t cur_el = arm_current_el(env); 408 bool secure = arm_is_secure(env); 409 uint32_t target_el; 410 uint32_t excp_idx; 411 bool ret = false; 412 413 if (interrupt_request & CPU_INTERRUPT_FIQ) { 414 excp_idx = EXCP_FIQ; 415 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 416 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 417 cs->exception_index = excp_idx; 418 env->exception.target_el = target_el; 419 cc->do_interrupt(cs); 420 ret = true; 421 } 422 } 423 if (interrupt_request & CPU_INTERRUPT_HARD) { 424 excp_idx = EXCP_IRQ; 425 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 426 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 427 cs->exception_index = excp_idx; 428 env->exception.target_el = target_el; 429 cc->do_interrupt(cs); 430 ret = true; 431 } 432 } 433 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 434 excp_idx = EXCP_VIRQ; 435 target_el = 1; 436 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 437 cs->exception_index = excp_idx; 438 env->exception.target_el = target_el; 439 cc->do_interrupt(cs); 440 ret = true; 441 } 442 } 443 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 444 excp_idx = EXCP_VFIQ; 445 target_el = 1; 446 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 447 cs->exception_index = excp_idx; 448 env->exception.target_el = target_el; 449 cc->do_interrupt(cs); 450 ret = true; 451 } 452 } 453 454 return ret; 455 } 456 457 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 458 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 459 { 460 CPUClass *cc = CPU_GET_CLASS(cs); 461 ARMCPU *cpu = ARM_CPU(cs); 462 CPUARMState *env = &cpu->env; 463 bool ret = false; 464 465 /* ARMv7-M interrupt masking works differently than -A or -R. 466 * There is no FIQ/IRQ distinction. Instead of I and F bits 467 * masking FIQ and IRQ interrupts, an exception is taken only 468 * if it is higher priority than the current execution priority 469 * (which depends on state like BASEPRI, FAULTMASK and the 470 * currently active exception). 471 */ 472 if (interrupt_request & CPU_INTERRUPT_HARD 473 && (armv7m_nvic_can_take_pending_exception(env->nvic))) { 474 cs->exception_index = EXCP_IRQ; 475 cc->do_interrupt(cs); 476 ret = true; 477 } 478 return ret; 479 } 480 #endif 481 482 void arm_cpu_update_virq(ARMCPU *cpu) 483 { 484 /* 485 * Update the interrupt level for VIRQ, which is the logical OR of 486 * the HCR_EL2.VI bit and the input line level from the GIC. 487 */ 488 CPUARMState *env = &cpu->env; 489 CPUState *cs = CPU(cpu); 490 491 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 492 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 493 494 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 495 if (new_state) { 496 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 497 } else { 498 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 499 } 500 } 501 } 502 503 void arm_cpu_update_vfiq(ARMCPU *cpu) 504 { 505 /* 506 * Update the interrupt level for VFIQ, which is the logical OR of 507 * the HCR_EL2.VF bit and the input line level from the GIC. 508 */ 509 CPUARMState *env = &cpu->env; 510 CPUState *cs = CPU(cpu); 511 512 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 513 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 514 515 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 516 if (new_state) { 517 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 518 } else { 519 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 520 } 521 } 522 } 523 524 #ifndef CONFIG_USER_ONLY 525 static void arm_cpu_set_irq(void *opaque, int irq, int level) 526 { 527 ARMCPU *cpu = opaque; 528 CPUARMState *env = &cpu->env; 529 CPUState *cs = CPU(cpu); 530 static const int mask[] = { 531 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 532 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 533 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 534 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 535 }; 536 537 if (level) { 538 env->irq_line_state |= mask[irq]; 539 } else { 540 env->irq_line_state &= ~mask[irq]; 541 } 542 543 switch (irq) { 544 case ARM_CPU_VIRQ: 545 assert(arm_feature(env, ARM_FEATURE_EL2)); 546 arm_cpu_update_virq(cpu); 547 break; 548 case ARM_CPU_VFIQ: 549 assert(arm_feature(env, ARM_FEATURE_EL2)); 550 arm_cpu_update_vfiq(cpu); 551 break; 552 case ARM_CPU_IRQ: 553 case ARM_CPU_FIQ: 554 if (level) { 555 cpu_interrupt(cs, mask[irq]); 556 } else { 557 cpu_reset_interrupt(cs, mask[irq]); 558 } 559 break; 560 default: 561 g_assert_not_reached(); 562 } 563 } 564 565 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 566 { 567 #ifdef CONFIG_KVM 568 ARMCPU *cpu = opaque; 569 CPUARMState *env = &cpu->env; 570 CPUState *cs = CPU(cpu); 571 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 572 uint32_t linestate_bit; 573 574 switch (irq) { 575 case ARM_CPU_IRQ: 576 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 577 linestate_bit = CPU_INTERRUPT_HARD; 578 break; 579 case ARM_CPU_FIQ: 580 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 581 linestate_bit = CPU_INTERRUPT_FIQ; 582 break; 583 default: 584 g_assert_not_reached(); 585 } 586 587 if (level) { 588 env->irq_line_state |= linestate_bit; 589 } else { 590 env->irq_line_state &= ~linestate_bit; 591 } 592 593 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 594 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 595 #endif 596 } 597 598 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 599 { 600 ARMCPU *cpu = ARM_CPU(cs); 601 CPUARMState *env = &cpu->env; 602 603 cpu_synchronize_state(cs); 604 return arm_cpu_data_is_big_endian(env); 605 } 606 607 #endif 608 609 static inline void set_feature(CPUARMState *env, int feature) 610 { 611 env->features |= 1ULL << feature; 612 } 613 614 static inline void unset_feature(CPUARMState *env, int feature) 615 { 616 env->features &= ~(1ULL << feature); 617 } 618 619 static int 620 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 621 { 622 return print_insn_arm(pc | 1, info); 623 } 624 625 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 626 { 627 ARMCPU *ac = ARM_CPU(cpu); 628 CPUARMState *env = &ac->env; 629 bool sctlr_b; 630 631 if (is_a64(env)) { 632 /* We might not be compiled with the A64 disassembler 633 * because it needs a C++ compiler. Leave print_insn 634 * unset in this case to use the caller default behaviour. 635 */ 636 #if defined(CONFIG_ARM_A64_DIS) 637 info->print_insn = print_insn_arm_a64; 638 #endif 639 info->cap_arch = CS_ARCH_ARM64; 640 info->cap_insn_unit = 4; 641 info->cap_insn_split = 4; 642 } else { 643 int cap_mode; 644 if (env->thumb) { 645 info->print_insn = print_insn_thumb1; 646 info->cap_insn_unit = 2; 647 info->cap_insn_split = 4; 648 cap_mode = CS_MODE_THUMB; 649 } else { 650 info->print_insn = print_insn_arm; 651 info->cap_insn_unit = 4; 652 info->cap_insn_split = 4; 653 cap_mode = CS_MODE_ARM; 654 } 655 if (arm_feature(env, ARM_FEATURE_V8)) { 656 cap_mode |= CS_MODE_V8; 657 } 658 if (arm_feature(env, ARM_FEATURE_M)) { 659 cap_mode |= CS_MODE_MCLASS; 660 } 661 info->cap_arch = CS_ARCH_ARM; 662 info->cap_mode = cap_mode; 663 } 664 665 sctlr_b = arm_sctlr_b(env); 666 if (bswap_code(sctlr_b)) { 667 #ifdef TARGET_WORDS_BIGENDIAN 668 info->endian = BFD_ENDIAN_LITTLE; 669 #else 670 info->endian = BFD_ENDIAN_BIG; 671 #endif 672 } 673 info->flags &= ~INSN_ARM_BE32; 674 #ifndef CONFIG_USER_ONLY 675 if (sctlr_b) { 676 info->flags |= INSN_ARM_BE32; 677 } 678 #endif 679 } 680 681 #ifdef TARGET_AARCH64 682 683 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 684 { 685 ARMCPU *cpu = ARM_CPU(cs); 686 CPUARMState *env = &cpu->env; 687 uint32_t psr = pstate_read(env); 688 int i; 689 int el = arm_current_el(env); 690 const char *ns_status; 691 692 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 693 for (i = 0; i < 32; i++) { 694 if (i == 31) { 695 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 696 } else { 697 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 698 (i + 2) % 3 ? " " : "\n"); 699 } 700 } 701 702 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 703 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 704 } else { 705 ns_status = ""; 706 } 707 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 708 psr, 709 psr & PSTATE_N ? 'N' : '-', 710 psr & PSTATE_Z ? 'Z' : '-', 711 psr & PSTATE_C ? 'C' : '-', 712 psr & PSTATE_V ? 'V' : '-', 713 ns_status, 714 el, 715 psr & PSTATE_SP ? 'h' : 't'); 716 717 if (cpu_isar_feature(aa64_bti, cpu)) { 718 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 719 } 720 if (!(flags & CPU_DUMP_FPU)) { 721 qemu_fprintf(f, "\n"); 722 return; 723 } 724 if (fp_exception_el(env, el) != 0) { 725 qemu_fprintf(f, " FPU disabled\n"); 726 return; 727 } 728 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 729 vfp_get_fpcr(env), vfp_get_fpsr(env)); 730 731 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { 732 int j, zcr_len = sve_zcr_len_for_el(env, el); 733 734 for (i = 0; i <= FFR_PRED_NUM; i++) { 735 bool eol; 736 if (i == FFR_PRED_NUM) { 737 qemu_fprintf(f, "FFR="); 738 /* It's last, so end the line. */ 739 eol = true; 740 } else { 741 qemu_fprintf(f, "P%02d=", i); 742 switch (zcr_len) { 743 case 0: 744 eol = i % 8 == 7; 745 break; 746 case 1: 747 eol = i % 6 == 5; 748 break; 749 case 2: 750 case 3: 751 eol = i % 3 == 2; 752 break; 753 default: 754 /* More than one quadword per predicate. */ 755 eol = true; 756 break; 757 } 758 } 759 for (j = zcr_len / 4; j >= 0; j--) { 760 int digits; 761 if (j * 4 + 4 <= zcr_len + 1) { 762 digits = 16; 763 } else { 764 digits = (zcr_len % 4 + 1) * 4; 765 } 766 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 767 env->vfp.pregs[i].p[j], 768 j ? ":" : eol ? "\n" : " "); 769 } 770 } 771 772 for (i = 0; i < 32; i++) { 773 if (zcr_len == 0) { 774 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 775 i, env->vfp.zregs[i].d[1], 776 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 777 } else if (zcr_len == 1) { 778 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 779 ":%016" PRIx64 ":%016" PRIx64 "\n", 780 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 781 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 782 } else { 783 for (j = zcr_len; j >= 0; j--) { 784 bool odd = (zcr_len - j) % 2 != 0; 785 if (j == zcr_len) { 786 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 787 } else if (!odd) { 788 if (j > 0) { 789 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 790 } else { 791 qemu_fprintf(f, " [%x]=", j); 792 } 793 } 794 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 795 env->vfp.zregs[i].d[j * 2 + 1], 796 env->vfp.zregs[i].d[j * 2], 797 odd || j == 0 ? "\n" : ":"); 798 } 799 } 800 } 801 } else { 802 for (i = 0; i < 32; i++) { 803 uint64_t *q = aa64_vfp_qreg(env, i); 804 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 805 i, q[1], q[0], (i & 1 ? "\n" : " ")); 806 } 807 } 808 } 809 810 #else 811 812 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 813 { 814 g_assert_not_reached(); 815 } 816 817 #endif 818 819 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 820 { 821 ARMCPU *cpu = ARM_CPU(cs); 822 CPUARMState *env = &cpu->env; 823 int i; 824 825 if (is_a64(env)) { 826 aarch64_cpu_dump_state(cs, f, flags); 827 return; 828 } 829 830 for (i = 0; i < 16; i++) { 831 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 832 if ((i % 4) == 3) { 833 qemu_fprintf(f, "\n"); 834 } else { 835 qemu_fprintf(f, " "); 836 } 837 } 838 839 if (arm_feature(env, ARM_FEATURE_M)) { 840 uint32_t xpsr = xpsr_read(env); 841 const char *mode; 842 const char *ns_status = ""; 843 844 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 845 ns_status = env->v7m.secure ? "S " : "NS "; 846 } 847 848 if (xpsr & XPSR_EXCP) { 849 mode = "handler"; 850 } else { 851 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 852 mode = "unpriv-thread"; 853 } else { 854 mode = "priv-thread"; 855 } 856 } 857 858 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 859 xpsr, 860 xpsr & XPSR_N ? 'N' : '-', 861 xpsr & XPSR_Z ? 'Z' : '-', 862 xpsr & XPSR_C ? 'C' : '-', 863 xpsr & XPSR_V ? 'V' : '-', 864 xpsr & XPSR_T ? 'T' : 'A', 865 ns_status, 866 mode); 867 } else { 868 uint32_t psr = cpsr_read(env); 869 const char *ns_status = ""; 870 871 if (arm_feature(env, ARM_FEATURE_EL3) && 872 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 873 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 874 } 875 876 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 877 psr, 878 psr & CPSR_N ? 'N' : '-', 879 psr & CPSR_Z ? 'Z' : '-', 880 psr & CPSR_C ? 'C' : '-', 881 psr & CPSR_V ? 'V' : '-', 882 psr & CPSR_T ? 'T' : 'A', 883 ns_status, 884 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 885 } 886 887 if (flags & CPU_DUMP_FPU) { 888 int numvfpregs = 0; 889 if (arm_feature(env, ARM_FEATURE_VFP)) { 890 numvfpregs += 16; 891 } 892 if (arm_feature(env, ARM_FEATURE_VFP3)) { 893 numvfpregs += 16; 894 } 895 for (i = 0; i < numvfpregs; i++) { 896 uint64_t v = *aa32_vfp_dreg(env, i); 897 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 898 i * 2, (uint32_t)v, 899 i * 2 + 1, (uint32_t)(v >> 32), 900 i, v); 901 } 902 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 903 } 904 } 905 906 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 907 { 908 uint32_t Aff1 = idx / clustersz; 909 uint32_t Aff0 = idx % clustersz; 910 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 911 } 912 913 static void cpreg_hashtable_data_destroy(gpointer data) 914 { 915 /* 916 * Destroy function for cpu->cp_regs hashtable data entries. 917 * We must free the name string because it was g_strdup()ed in 918 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 919 * from r->name because we know we definitely allocated it. 920 */ 921 ARMCPRegInfo *r = data; 922 923 g_free((void *)r->name); 924 g_free(r); 925 } 926 927 static void arm_cpu_initfn(Object *obj) 928 { 929 ARMCPU *cpu = ARM_CPU(obj); 930 931 cpu_set_cpustate_pointers(cpu); 932 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 933 g_free, cpreg_hashtable_data_destroy); 934 935 QLIST_INIT(&cpu->pre_el_change_hooks); 936 QLIST_INIT(&cpu->el_change_hooks); 937 938 #ifndef CONFIG_USER_ONLY 939 /* Our inbound IRQ and FIQ lines */ 940 if (kvm_enabled()) { 941 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 942 * the same interface as non-KVM CPUs. 943 */ 944 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 945 } else { 946 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 947 } 948 949 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 950 ARRAY_SIZE(cpu->gt_timer_outputs)); 951 952 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 953 "gicv3-maintenance-interrupt", 1); 954 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 955 "pmu-interrupt", 1); 956 #endif 957 958 /* DTB consumers generally don't in fact care what the 'compatible' 959 * string is, so always provide some string and trust that a hypothetical 960 * picky DTB consumer will also provide a helpful error message. 961 */ 962 cpu->dtb_compatible = "qemu,unknown"; 963 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 964 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 965 966 if (tcg_enabled()) { 967 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 968 } 969 } 970 971 static Property arm_cpu_reset_cbar_property = 972 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 973 974 static Property arm_cpu_reset_hivecs_property = 975 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 976 977 static Property arm_cpu_rvbar_property = 978 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 979 980 static Property arm_cpu_has_el2_property = 981 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 982 983 static Property arm_cpu_has_el3_property = 984 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 985 986 static Property arm_cpu_cfgend_property = 987 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 988 989 /* use property name "pmu" to match other archs and virt tools */ 990 static Property arm_cpu_has_pmu_property = 991 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 992 993 static Property arm_cpu_has_vfp_property = 994 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 995 996 static Property arm_cpu_has_neon_property = 997 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 998 999 static Property arm_cpu_has_dsp_property = 1000 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1001 1002 static Property arm_cpu_has_mpu_property = 1003 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1004 1005 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1006 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1007 * the right value for that particular CPU type, and we don't want 1008 * to override that with an incorrect constant value. 1009 */ 1010 static Property arm_cpu_pmsav7_dregion_property = 1011 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1012 pmsav7_dregion, 1013 qdev_prop_uint32, uint32_t); 1014 1015 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name, 1016 void *opaque, Error **errp) 1017 { 1018 ARMCPU *cpu = ARM_CPU(obj); 1019 1020 visit_type_uint32(v, name, &cpu->init_svtor, errp); 1021 } 1022 1023 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name, 1024 void *opaque, Error **errp) 1025 { 1026 ARMCPU *cpu = ARM_CPU(obj); 1027 1028 visit_type_uint32(v, name, &cpu->init_svtor, errp); 1029 } 1030 1031 void arm_cpu_post_init(Object *obj) 1032 { 1033 ARMCPU *cpu = ARM_CPU(obj); 1034 1035 /* M profile implies PMSA. We have to do this here rather than 1036 * in realize with the other feature-implication checks because 1037 * we look at the PMSA bit to see if we should add some properties. 1038 */ 1039 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1040 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1041 } 1042 /* Similarly for the VFP feature bits */ 1043 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) { 1044 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1045 } 1046 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) { 1047 set_feature(&cpu->env, ARM_FEATURE_VFP); 1048 } 1049 1050 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1051 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1052 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 1053 &error_abort); 1054 } 1055 1056 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1057 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 1058 &error_abort); 1059 } 1060 1061 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1062 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 1063 &error_abort); 1064 } 1065 1066 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1067 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1068 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1069 */ 1070 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 1071 &error_abort); 1072 1073 #ifndef CONFIG_USER_ONLY 1074 object_property_add_link(obj, "secure-memory", 1075 TYPE_MEMORY_REGION, 1076 (Object **)&cpu->secure_memory, 1077 qdev_prop_allow_set_link_before_realize, 1078 OBJ_PROP_LINK_STRONG, 1079 &error_abort); 1080 #endif 1081 } 1082 1083 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1084 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, 1085 &error_abort); 1086 } 1087 1088 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1089 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 1090 &error_abort); 1091 } 1092 1093 /* 1094 * Allow user to turn off VFP and Neon support, but only for TCG -- 1095 * KVM does not currently allow us to lie to the guest about its 1096 * ID/feature registers, so the guest always sees what the host has. 1097 */ 1098 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1099 cpu->has_vfp = true; 1100 if (!kvm_enabled()) { 1101 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property, 1102 &error_abort); 1103 } 1104 } 1105 1106 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1107 cpu->has_neon = true; 1108 if (!kvm_enabled()) { 1109 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property, 1110 &error_abort); 1111 } 1112 } 1113 1114 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1115 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1116 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property, 1117 &error_abort); 1118 } 1119 1120 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1121 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 1122 &error_abort); 1123 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1124 qdev_property_add_static(DEVICE(obj), 1125 &arm_cpu_pmsav7_dregion_property, 1126 &error_abort); 1127 } 1128 } 1129 1130 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1131 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1132 qdev_prop_allow_set_link_before_realize, 1133 OBJ_PROP_LINK_STRONG, 1134 &error_abort); 1135 /* 1136 * M profile: initial value of the Secure VTOR. We can't just use 1137 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1138 * the property to be set after realize. 1139 */ 1140 object_property_add(obj, "init-svtor", "uint32", 1141 arm_get_init_svtor, arm_set_init_svtor, 1142 NULL, NULL, &error_abort); 1143 } 1144 1145 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, 1146 &error_abort); 1147 } 1148 1149 static void arm_cpu_finalizefn(Object *obj) 1150 { 1151 ARMCPU *cpu = ARM_CPU(obj); 1152 ARMELChangeHook *hook, *next; 1153 1154 g_hash_table_destroy(cpu->cp_regs); 1155 1156 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1157 QLIST_REMOVE(hook, node); 1158 g_free(hook); 1159 } 1160 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1161 QLIST_REMOVE(hook, node); 1162 g_free(hook); 1163 } 1164 #ifndef CONFIG_USER_ONLY 1165 if (cpu->pmu_timer) { 1166 timer_del(cpu->pmu_timer); 1167 timer_deinit(cpu->pmu_timer); 1168 timer_free(cpu->pmu_timer); 1169 } 1170 #endif 1171 } 1172 1173 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1174 { 1175 CPUState *cs = CPU(dev); 1176 ARMCPU *cpu = ARM_CPU(dev); 1177 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1178 CPUARMState *env = &cpu->env; 1179 int pagebits; 1180 Error *local_err = NULL; 1181 bool no_aa32 = false; 1182 1183 /* If we needed to query the host kernel for the CPU features 1184 * then it's possible that might have failed in the initfn, but 1185 * this is the first point where we can report it. 1186 */ 1187 if (cpu->host_cpu_probe_failed) { 1188 if (!kvm_enabled()) { 1189 error_setg(errp, "The 'host' CPU type can only be used with KVM"); 1190 } else { 1191 error_setg(errp, "Failed to retrieve host CPU features"); 1192 } 1193 return; 1194 } 1195 1196 #ifndef CONFIG_USER_ONLY 1197 /* The NVIC and M-profile CPU are two halves of a single piece of 1198 * hardware; trying to use one without the other is a command line 1199 * error and will result in segfaults if not caught here. 1200 */ 1201 if (arm_feature(env, ARM_FEATURE_M)) { 1202 if (!env->nvic) { 1203 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1204 return; 1205 } 1206 } else { 1207 if (env->nvic) { 1208 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1209 return; 1210 } 1211 } 1212 1213 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 1214 arm_gt_ptimer_cb, cpu); 1215 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 1216 arm_gt_vtimer_cb, cpu); 1217 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 1218 arm_gt_htimer_cb, cpu); 1219 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 1220 arm_gt_stimer_cb, cpu); 1221 #endif 1222 1223 cpu_exec_realizefn(cs, &local_err); 1224 if (local_err != NULL) { 1225 error_propagate(errp, local_err); 1226 return; 1227 } 1228 1229 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1230 cpu->has_vfp != cpu->has_neon) { 1231 /* 1232 * This is an architectural requirement for AArch64; AArch32 is 1233 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1234 */ 1235 error_setg(errp, 1236 "AArch64 CPUs must have both VFP and Neon or neither"); 1237 return; 1238 } 1239 1240 if (!cpu->has_vfp) { 1241 uint64_t t; 1242 uint32_t u; 1243 1244 unset_feature(env, ARM_FEATURE_VFP); 1245 unset_feature(env, ARM_FEATURE_VFP3); 1246 unset_feature(env, ARM_FEATURE_VFP4); 1247 1248 t = cpu->isar.id_aa64isar1; 1249 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1250 cpu->isar.id_aa64isar1 = t; 1251 1252 t = cpu->isar.id_aa64pfr0; 1253 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1254 cpu->isar.id_aa64pfr0 = t; 1255 1256 u = cpu->isar.id_isar6; 1257 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1258 cpu->isar.id_isar6 = u; 1259 1260 u = cpu->isar.mvfr0; 1261 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1262 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1263 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1264 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1265 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1266 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1267 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1268 cpu->isar.mvfr0 = u; 1269 1270 u = cpu->isar.mvfr1; 1271 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1272 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1273 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1274 cpu->isar.mvfr1 = u; 1275 1276 u = cpu->isar.mvfr2; 1277 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1278 cpu->isar.mvfr2 = u; 1279 } 1280 1281 if (!cpu->has_neon) { 1282 uint64_t t; 1283 uint32_t u; 1284 1285 unset_feature(env, ARM_FEATURE_NEON); 1286 1287 t = cpu->isar.id_aa64isar0; 1288 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1289 cpu->isar.id_aa64isar0 = t; 1290 1291 t = cpu->isar.id_aa64isar1; 1292 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1293 cpu->isar.id_aa64isar1 = t; 1294 1295 t = cpu->isar.id_aa64pfr0; 1296 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1297 cpu->isar.id_aa64pfr0 = t; 1298 1299 u = cpu->isar.id_isar5; 1300 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1301 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1302 cpu->isar.id_isar5 = u; 1303 1304 u = cpu->isar.id_isar6; 1305 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1306 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1307 cpu->isar.id_isar6 = u; 1308 1309 u = cpu->isar.mvfr1; 1310 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1311 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1312 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1313 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1314 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1315 cpu->isar.mvfr1 = u; 1316 1317 u = cpu->isar.mvfr2; 1318 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1319 cpu->isar.mvfr2 = u; 1320 } 1321 1322 if (!cpu->has_neon && !cpu->has_vfp) { 1323 uint64_t t; 1324 uint32_t u; 1325 1326 t = cpu->isar.id_aa64isar0; 1327 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1328 cpu->isar.id_aa64isar0 = t; 1329 1330 t = cpu->isar.id_aa64isar1; 1331 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1332 cpu->isar.id_aa64isar1 = t; 1333 1334 u = cpu->isar.mvfr0; 1335 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1336 cpu->isar.mvfr0 = u; 1337 } 1338 1339 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1340 uint32_t u; 1341 1342 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1343 1344 u = cpu->isar.id_isar1; 1345 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1346 cpu->isar.id_isar1 = u; 1347 1348 u = cpu->isar.id_isar2; 1349 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1350 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1351 cpu->isar.id_isar2 = u; 1352 1353 u = cpu->isar.id_isar3; 1354 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1355 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1356 cpu->isar.id_isar3 = u; 1357 } 1358 1359 /* Some features automatically imply others: */ 1360 if (arm_feature(env, ARM_FEATURE_V8)) { 1361 if (arm_feature(env, ARM_FEATURE_M)) { 1362 set_feature(env, ARM_FEATURE_V7); 1363 } else { 1364 set_feature(env, ARM_FEATURE_V7VE); 1365 } 1366 } 1367 1368 /* 1369 * There exist AArch64 cpus without AArch32 support. When KVM 1370 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1371 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1372 */ 1373 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1374 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1375 } 1376 1377 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1378 /* v7 Virtualization Extensions. In real hardware this implies 1379 * EL2 and also the presence of the Security Extensions. 1380 * For QEMU, for backwards-compatibility we implement some 1381 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1382 * include the various other features that V7VE implies. 1383 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1384 * Security Extensions is ARM_FEATURE_EL3. 1385 */ 1386 assert(no_aa32 || cpu_isar_feature(arm_div, cpu)); 1387 set_feature(env, ARM_FEATURE_LPAE); 1388 set_feature(env, ARM_FEATURE_V7); 1389 } 1390 if (arm_feature(env, ARM_FEATURE_V7)) { 1391 set_feature(env, ARM_FEATURE_VAPA); 1392 set_feature(env, ARM_FEATURE_THUMB2); 1393 set_feature(env, ARM_FEATURE_MPIDR); 1394 if (!arm_feature(env, ARM_FEATURE_M)) { 1395 set_feature(env, ARM_FEATURE_V6K); 1396 } else { 1397 set_feature(env, ARM_FEATURE_V6); 1398 } 1399 1400 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1401 * non-EL3 configs. This is needed by some legacy boards. 1402 */ 1403 set_feature(env, ARM_FEATURE_VBAR); 1404 } 1405 if (arm_feature(env, ARM_FEATURE_V6K)) { 1406 set_feature(env, ARM_FEATURE_V6); 1407 set_feature(env, ARM_FEATURE_MVFR); 1408 } 1409 if (arm_feature(env, ARM_FEATURE_V6)) { 1410 set_feature(env, ARM_FEATURE_V5); 1411 if (!arm_feature(env, ARM_FEATURE_M)) { 1412 assert(no_aa32 || cpu_isar_feature(jazelle, cpu)); 1413 set_feature(env, ARM_FEATURE_AUXCR); 1414 } 1415 } 1416 if (arm_feature(env, ARM_FEATURE_V5)) { 1417 set_feature(env, ARM_FEATURE_V4T); 1418 } 1419 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1420 set_feature(env, ARM_FEATURE_V7MP); 1421 set_feature(env, ARM_FEATURE_PXN); 1422 } 1423 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1424 set_feature(env, ARM_FEATURE_CBAR); 1425 } 1426 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1427 !arm_feature(env, ARM_FEATURE_M)) { 1428 set_feature(env, ARM_FEATURE_THUMB_DSP); 1429 } 1430 1431 /* 1432 * We rely on no XScale CPU having VFP so we can use the same bits in the 1433 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1434 */ 1435 assert(!(arm_feature(env, ARM_FEATURE_VFP) && 1436 arm_feature(env, ARM_FEATURE_XSCALE))); 1437 1438 if (arm_feature(env, ARM_FEATURE_V7) && 1439 !arm_feature(env, ARM_FEATURE_M) && 1440 !arm_feature(env, ARM_FEATURE_PMSA)) { 1441 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1442 * can use 4K pages. 1443 */ 1444 pagebits = 12; 1445 } else { 1446 /* For CPUs which might have tiny 1K pages, or which have an 1447 * MPU and might have small region sizes, stick with 1K pages. 1448 */ 1449 pagebits = 10; 1450 } 1451 if (!set_preferred_target_page_bits(pagebits)) { 1452 /* This can only ever happen for hotplugging a CPU, or if 1453 * the board code incorrectly creates a CPU which it has 1454 * promised via minimum_page_size that it will not. 1455 */ 1456 error_setg(errp, "This CPU requires a smaller page size than the " 1457 "system is using"); 1458 return; 1459 } 1460 1461 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1462 * We don't support setting cluster ID ([16..23]) (known as Aff2 1463 * in later ARM ARM versions), or any of the higher affinity level fields, 1464 * so these bits always RAZ. 1465 */ 1466 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1467 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1468 ARM_DEFAULT_CPUS_PER_CLUSTER); 1469 } 1470 1471 if (cpu->reset_hivecs) { 1472 cpu->reset_sctlr |= (1 << 13); 1473 } 1474 1475 if (cpu->cfgend) { 1476 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1477 cpu->reset_sctlr |= SCTLR_EE; 1478 } else { 1479 cpu->reset_sctlr |= SCTLR_B; 1480 } 1481 } 1482 1483 if (!cpu->has_el3) { 1484 /* If the has_el3 CPU property is disabled then we need to disable the 1485 * feature. 1486 */ 1487 unset_feature(env, ARM_FEATURE_EL3); 1488 1489 /* Disable the security extension feature bits in the processor feature 1490 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1491 */ 1492 cpu->id_pfr1 &= ~0xf0; 1493 cpu->isar.id_aa64pfr0 &= ~0xf000; 1494 } 1495 1496 if (!cpu->has_el2) { 1497 unset_feature(env, ARM_FEATURE_EL2); 1498 } 1499 1500 if (!cpu->has_pmu) { 1501 unset_feature(env, ARM_FEATURE_PMU); 1502 } 1503 if (arm_feature(env, ARM_FEATURE_PMU)) { 1504 pmu_init(cpu); 1505 1506 if (!kvm_enabled()) { 1507 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1508 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1509 } 1510 1511 #ifndef CONFIG_USER_ONLY 1512 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1513 cpu); 1514 #endif 1515 } else { 1516 cpu->id_aa64dfr0 &= ~0xf00; 1517 cpu->id_dfr0 &= ~(0xf << 24); 1518 cpu->pmceid0 = 0; 1519 cpu->pmceid1 = 0; 1520 } 1521 1522 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1523 /* Disable the hypervisor feature bits in the processor feature 1524 * registers if we don't have EL2. These are id_pfr1[15:12] and 1525 * id_aa64pfr0_el1[11:8]. 1526 */ 1527 cpu->isar.id_aa64pfr0 &= ~0xf00; 1528 cpu->id_pfr1 &= ~0xf000; 1529 } 1530 1531 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1532 * to false or by setting pmsav7-dregion to 0. 1533 */ 1534 if (!cpu->has_mpu) { 1535 cpu->pmsav7_dregion = 0; 1536 } 1537 if (cpu->pmsav7_dregion == 0) { 1538 cpu->has_mpu = false; 1539 } 1540 1541 if (arm_feature(env, ARM_FEATURE_PMSA) && 1542 arm_feature(env, ARM_FEATURE_V7)) { 1543 uint32_t nr = cpu->pmsav7_dregion; 1544 1545 if (nr > 0xff) { 1546 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1547 return; 1548 } 1549 1550 if (nr) { 1551 if (arm_feature(env, ARM_FEATURE_V8)) { 1552 /* PMSAv8 */ 1553 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1554 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1555 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1556 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1557 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1558 } 1559 } else { 1560 env->pmsav7.drbar = g_new0(uint32_t, nr); 1561 env->pmsav7.drsr = g_new0(uint32_t, nr); 1562 env->pmsav7.dracr = g_new0(uint32_t, nr); 1563 } 1564 } 1565 } 1566 1567 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1568 uint32_t nr = cpu->sau_sregion; 1569 1570 if (nr > 0xff) { 1571 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1572 return; 1573 } 1574 1575 if (nr) { 1576 env->sau.rbar = g_new0(uint32_t, nr); 1577 env->sau.rlar = g_new0(uint32_t, nr); 1578 } 1579 } 1580 1581 if (arm_feature(env, ARM_FEATURE_EL3)) { 1582 set_feature(env, ARM_FEATURE_VBAR); 1583 } 1584 1585 register_cp_regs_for_features(cpu); 1586 arm_cpu_register_gdb_regs_for_features(cpu); 1587 1588 init_cpreg_list(cpu); 1589 1590 #ifndef CONFIG_USER_ONLY 1591 MachineState *ms = MACHINE(qdev_get_machine()); 1592 unsigned int smp_cpus = ms->smp.cpus; 1593 1594 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1595 cs->num_ases = 2; 1596 1597 if (!cpu->secure_memory) { 1598 cpu->secure_memory = cs->memory; 1599 } 1600 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1601 cpu->secure_memory); 1602 } else { 1603 cs->num_ases = 1; 1604 } 1605 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1606 1607 /* No core_count specified, default to smp_cpus. */ 1608 if (cpu->core_count == -1) { 1609 cpu->core_count = smp_cpus; 1610 } 1611 #endif 1612 1613 qemu_init_vcpu(cs); 1614 cpu_reset(cs); 1615 1616 acc->parent_realize(dev, errp); 1617 } 1618 1619 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1620 { 1621 ObjectClass *oc; 1622 char *typename; 1623 char **cpuname; 1624 const char *cpunamestr; 1625 1626 cpuname = g_strsplit(cpu_model, ",", 1); 1627 cpunamestr = cpuname[0]; 1628 #ifdef CONFIG_USER_ONLY 1629 /* For backwards compatibility usermode emulation allows "-cpu any", 1630 * which has the same semantics as "-cpu max". 1631 */ 1632 if (!strcmp(cpunamestr, "any")) { 1633 cpunamestr = "max"; 1634 } 1635 #endif 1636 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1637 oc = object_class_by_name(typename); 1638 g_strfreev(cpuname); 1639 g_free(typename); 1640 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1641 object_class_is_abstract(oc)) { 1642 return NULL; 1643 } 1644 return oc; 1645 } 1646 1647 /* CPU models. These are not needed for the AArch64 linux-user build. */ 1648 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1649 1650 static void arm926_initfn(Object *obj) 1651 { 1652 ARMCPU *cpu = ARM_CPU(obj); 1653 1654 cpu->dtb_compatible = "arm,arm926"; 1655 set_feature(&cpu->env, ARM_FEATURE_V5); 1656 set_feature(&cpu->env, ARM_FEATURE_VFP); 1657 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1658 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1659 cpu->midr = 0x41069265; 1660 cpu->reset_fpsid = 0x41011090; 1661 cpu->ctr = 0x1dd20d2; 1662 cpu->reset_sctlr = 0x00090078; 1663 1664 /* 1665 * ARMv5 does not have the ID_ISAR registers, but we can still 1666 * set the field to indicate Jazelle support within QEMU. 1667 */ 1668 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1669 } 1670 1671 static void arm946_initfn(Object *obj) 1672 { 1673 ARMCPU *cpu = ARM_CPU(obj); 1674 1675 cpu->dtb_compatible = "arm,arm946"; 1676 set_feature(&cpu->env, ARM_FEATURE_V5); 1677 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1678 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1679 cpu->midr = 0x41059461; 1680 cpu->ctr = 0x0f004006; 1681 cpu->reset_sctlr = 0x00000078; 1682 } 1683 1684 static void arm1026_initfn(Object *obj) 1685 { 1686 ARMCPU *cpu = ARM_CPU(obj); 1687 1688 cpu->dtb_compatible = "arm,arm1026"; 1689 set_feature(&cpu->env, ARM_FEATURE_V5); 1690 set_feature(&cpu->env, ARM_FEATURE_VFP); 1691 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 1692 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1693 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1694 cpu->midr = 0x4106a262; 1695 cpu->reset_fpsid = 0x410110a0; 1696 cpu->ctr = 0x1dd20d2; 1697 cpu->reset_sctlr = 0x00090078; 1698 cpu->reset_auxcr = 1; 1699 1700 /* 1701 * ARMv5 does not have the ID_ISAR registers, but we can still 1702 * set the field to indicate Jazelle support within QEMU. 1703 */ 1704 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1705 1706 { 1707 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 1708 ARMCPRegInfo ifar = { 1709 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1710 .access = PL1_RW, 1711 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 1712 .resetvalue = 0 1713 }; 1714 define_one_arm_cp_reg(cpu, &ifar); 1715 } 1716 } 1717 1718 static void arm1136_r2_initfn(Object *obj) 1719 { 1720 ARMCPU *cpu = ARM_CPU(obj); 1721 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 1722 * older core than plain "arm1136". In particular this does not 1723 * have the v6K features. 1724 * These ID register values are correct for 1136 but may be wrong 1725 * for 1136_r2 (in particular r0p2 does not actually implement most 1726 * of the ID registers). 1727 */ 1728 1729 cpu->dtb_compatible = "arm,arm1136"; 1730 set_feature(&cpu->env, ARM_FEATURE_V6); 1731 set_feature(&cpu->env, ARM_FEATURE_VFP); 1732 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1733 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1734 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1735 cpu->midr = 0x4107b362; 1736 cpu->reset_fpsid = 0x410120b4; 1737 cpu->isar.mvfr0 = 0x11111111; 1738 cpu->isar.mvfr1 = 0x00000000; 1739 cpu->ctr = 0x1dd20d2; 1740 cpu->reset_sctlr = 0x00050078; 1741 cpu->id_pfr0 = 0x111; 1742 cpu->id_pfr1 = 0x1; 1743 cpu->id_dfr0 = 0x2; 1744 cpu->id_afr0 = 0x3; 1745 cpu->id_mmfr0 = 0x01130003; 1746 cpu->id_mmfr1 = 0x10030302; 1747 cpu->id_mmfr2 = 0x01222110; 1748 cpu->isar.id_isar0 = 0x00140011; 1749 cpu->isar.id_isar1 = 0x12002111; 1750 cpu->isar.id_isar2 = 0x11231111; 1751 cpu->isar.id_isar3 = 0x01102131; 1752 cpu->isar.id_isar4 = 0x141; 1753 cpu->reset_auxcr = 7; 1754 } 1755 1756 static void arm1136_initfn(Object *obj) 1757 { 1758 ARMCPU *cpu = ARM_CPU(obj); 1759 1760 cpu->dtb_compatible = "arm,arm1136"; 1761 set_feature(&cpu->env, ARM_FEATURE_V6K); 1762 set_feature(&cpu->env, ARM_FEATURE_V6); 1763 set_feature(&cpu->env, ARM_FEATURE_VFP); 1764 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1765 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1766 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1767 cpu->midr = 0x4117b363; 1768 cpu->reset_fpsid = 0x410120b4; 1769 cpu->isar.mvfr0 = 0x11111111; 1770 cpu->isar.mvfr1 = 0x00000000; 1771 cpu->ctr = 0x1dd20d2; 1772 cpu->reset_sctlr = 0x00050078; 1773 cpu->id_pfr0 = 0x111; 1774 cpu->id_pfr1 = 0x1; 1775 cpu->id_dfr0 = 0x2; 1776 cpu->id_afr0 = 0x3; 1777 cpu->id_mmfr0 = 0x01130003; 1778 cpu->id_mmfr1 = 0x10030302; 1779 cpu->id_mmfr2 = 0x01222110; 1780 cpu->isar.id_isar0 = 0x00140011; 1781 cpu->isar.id_isar1 = 0x12002111; 1782 cpu->isar.id_isar2 = 0x11231111; 1783 cpu->isar.id_isar3 = 0x01102131; 1784 cpu->isar.id_isar4 = 0x141; 1785 cpu->reset_auxcr = 7; 1786 } 1787 1788 static void arm1176_initfn(Object *obj) 1789 { 1790 ARMCPU *cpu = ARM_CPU(obj); 1791 1792 cpu->dtb_compatible = "arm,arm1176"; 1793 set_feature(&cpu->env, ARM_FEATURE_V6K); 1794 set_feature(&cpu->env, ARM_FEATURE_VFP); 1795 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1796 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1797 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1798 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1799 set_feature(&cpu->env, ARM_FEATURE_EL3); 1800 cpu->midr = 0x410fb767; 1801 cpu->reset_fpsid = 0x410120b5; 1802 cpu->isar.mvfr0 = 0x11111111; 1803 cpu->isar.mvfr1 = 0x00000000; 1804 cpu->ctr = 0x1dd20d2; 1805 cpu->reset_sctlr = 0x00050078; 1806 cpu->id_pfr0 = 0x111; 1807 cpu->id_pfr1 = 0x11; 1808 cpu->id_dfr0 = 0x33; 1809 cpu->id_afr0 = 0; 1810 cpu->id_mmfr0 = 0x01130003; 1811 cpu->id_mmfr1 = 0x10030302; 1812 cpu->id_mmfr2 = 0x01222100; 1813 cpu->isar.id_isar0 = 0x0140011; 1814 cpu->isar.id_isar1 = 0x12002111; 1815 cpu->isar.id_isar2 = 0x11231121; 1816 cpu->isar.id_isar3 = 0x01102131; 1817 cpu->isar.id_isar4 = 0x01141; 1818 cpu->reset_auxcr = 7; 1819 } 1820 1821 static void arm11mpcore_initfn(Object *obj) 1822 { 1823 ARMCPU *cpu = ARM_CPU(obj); 1824 1825 cpu->dtb_compatible = "arm,arm11mpcore"; 1826 set_feature(&cpu->env, ARM_FEATURE_V6K); 1827 set_feature(&cpu->env, ARM_FEATURE_VFP); 1828 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1829 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 1830 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1831 cpu->midr = 0x410fb022; 1832 cpu->reset_fpsid = 0x410120b4; 1833 cpu->isar.mvfr0 = 0x11111111; 1834 cpu->isar.mvfr1 = 0x00000000; 1835 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 1836 cpu->id_pfr0 = 0x111; 1837 cpu->id_pfr1 = 0x1; 1838 cpu->id_dfr0 = 0; 1839 cpu->id_afr0 = 0x2; 1840 cpu->id_mmfr0 = 0x01100103; 1841 cpu->id_mmfr1 = 0x10020302; 1842 cpu->id_mmfr2 = 0x01222000; 1843 cpu->isar.id_isar0 = 0x00100011; 1844 cpu->isar.id_isar1 = 0x12002111; 1845 cpu->isar.id_isar2 = 0x11221011; 1846 cpu->isar.id_isar3 = 0x01102131; 1847 cpu->isar.id_isar4 = 0x141; 1848 cpu->reset_auxcr = 1; 1849 } 1850 1851 static void cortex_m0_initfn(Object *obj) 1852 { 1853 ARMCPU *cpu = ARM_CPU(obj); 1854 set_feature(&cpu->env, ARM_FEATURE_V6); 1855 set_feature(&cpu->env, ARM_FEATURE_M); 1856 1857 cpu->midr = 0x410cc200; 1858 } 1859 1860 static void cortex_m3_initfn(Object *obj) 1861 { 1862 ARMCPU *cpu = ARM_CPU(obj); 1863 set_feature(&cpu->env, ARM_FEATURE_V7); 1864 set_feature(&cpu->env, ARM_FEATURE_M); 1865 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1866 cpu->midr = 0x410fc231; 1867 cpu->pmsav7_dregion = 8; 1868 cpu->id_pfr0 = 0x00000030; 1869 cpu->id_pfr1 = 0x00000200; 1870 cpu->id_dfr0 = 0x00100000; 1871 cpu->id_afr0 = 0x00000000; 1872 cpu->id_mmfr0 = 0x00000030; 1873 cpu->id_mmfr1 = 0x00000000; 1874 cpu->id_mmfr2 = 0x00000000; 1875 cpu->id_mmfr3 = 0x00000000; 1876 cpu->isar.id_isar0 = 0x01141110; 1877 cpu->isar.id_isar1 = 0x02111000; 1878 cpu->isar.id_isar2 = 0x21112231; 1879 cpu->isar.id_isar3 = 0x01111110; 1880 cpu->isar.id_isar4 = 0x01310102; 1881 cpu->isar.id_isar5 = 0x00000000; 1882 cpu->isar.id_isar6 = 0x00000000; 1883 } 1884 1885 static void cortex_m4_initfn(Object *obj) 1886 { 1887 ARMCPU *cpu = ARM_CPU(obj); 1888 1889 set_feature(&cpu->env, ARM_FEATURE_V7); 1890 set_feature(&cpu->env, ARM_FEATURE_M); 1891 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1892 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1893 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1894 cpu->midr = 0x410fc240; /* r0p0 */ 1895 cpu->pmsav7_dregion = 8; 1896 cpu->isar.mvfr0 = 0x10110021; 1897 cpu->isar.mvfr1 = 0x11000011; 1898 cpu->isar.mvfr2 = 0x00000000; 1899 cpu->id_pfr0 = 0x00000030; 1900 cpu->id_pfr1 = 0x00000200; 1901 cpu->id_dfr0 = 0x00100000; 1902 cpu->id_afr0 = 0x00000000; 1903 cpu->id_mmfr0 = 0x00000030; 1904 cpu->id_mmfr1 = 0x00000000; 1905 cpu->id_mmfr2 = 0x00000000; 1906 cpu->id_mmfr3 = 0x00000000; 1907 cpu->isar.id_isar0 = 0x01141110; 1908 cpu->isar.id_isar1 = 0x02111000; 1909 cpu->isar.id_isar2 = 0x21112231; 1910 cpu->isar.id_isar3 = 0x01111110; 1911 cpu->isar.id_isar4 = 0x01310102; 1912 cpu->isar.id_isar5 = 0x00000000; 1913 cpu->isar.id_isar6 = 0x00000000; 1914 } 1915 1916 static void cortex_m33_initfn(Object *obj) 1917 { 1918 ARMCPU *cpu = ARM_CPU(obj); 1919 1920 set_feature(&cpu->env, ARM_FEATURE_V8); 1921 set_feature(&cpu->env, ARM_FEATURE_M); 1922 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1923 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY); 1924 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1925 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1926 cpu->midr = 0x410fd213; /* r0p3 */ 1927 cpu->pmsav7_dregion = 16; 1928 cpu->sau_sregion = 8; 1929 cpu->isar.mvfr0 = 0x10110021; 1930 cpu->isar.mvfr1 = 0x11000011; 1931 cpu->isar.mvfr2 = 0x00000040; 1932 cpu->id_pfr0 = 0x00000030; 1933 cpu->id_pfr1 = 0x00000210; 1934 cpu->id_dfr0 = 0x00200000; 1935 cpu->id_afr0 = 0x00000000; 1936 cpu->id_mmfr0 = 0x00101F40; 1937 cpu->id_mmfr1 = 0x00000000; 1938 cpu->id_mmfr2 = 0x01000000; 1939 cpu->id_mmfr3 = 0x00000000; 1940 cpu->isar.id_isar0 = 0x01101110; 1941 cpu->isar.id_isar1 = 0x02212000; 1942 cpu->isar.id_isar2 = 0x20232232; 1943 cpu->isar.id_isar3 = 0x01111131; 1944 cpu->isar.id_isar4 = 0x01310132; 1945 cpu->isar.id_isar5 = 0x00000000; 1946 cpu->isar.id_isar6 = 0x00000000; 1947 cpu->clidr = 0x00000000; 1948 cpu->ctr = 0x8000c000; 1949 } 1950 1951 static void arm_v7m_class_init(ObjectClass *oc, void *data) 1952 { 1953 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1954 CPUClass *cc = CPU_CLASS(oc); 1955 1956 acc->info = data; 1957 #ifndef CONFIG_USER_ONLY 1958 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1959 #endif 1960 1961 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1962 } 1963 1964 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1965 /* Dummy the TCM region regs for the moment */ 1966 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1967 .access = PL1_RW, .type = ARM_CP_CONST }, 1968 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1969 .access = PL1_RW, .type = ARM_CP_CONST }, 1970 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, 1971 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, 1972 REGINFO_SENTINEL 1973 }; 1974 1975 static void cortex_r5_initfn(Object *obj) 1976 { 1977 ARMCPU *cpu = ARM_CPU(obj); 1978 1979 set_feature(&cpu->env, ARM_FEATURE_V7); 1980 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1981 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1982 cpu->midr = 0x411fc153; /* r1p3 */ 1983 cpu->id_pfr0 = 0x0131; 1984 cpu->id_pfr1 = 0x001; 1985 cpu->id_dfr0 = 0x010400; 1986 cpu->id_afr0 = 0x0; 1987 cpu->id_mmfr0 = 0x0210030; 1988 cpu->id_mmfr1 = 0x00000000; 1989 cpu->id_mmfr2 = 0x01200000; 1990 cpu->id_mmfr3 = 0x0211; 1991 cpu->isar.id_isar0 = 0x02101111; 1992 cpu->isar.id_isar1 = 0x13112111; 1993 cpu->isar.id_isar2 = 0x21232141; 1994 cpu->isar.id_isar3 = 0x01112131; 1995 cpu->isar.id_isar4 = 0x0010142; 1996 cpu->isar.id_isar5 = 0x0; 1997 cpu->isar.id_isar6 = 0x0; 1998 cpu->mp_is_up = true; 1999 cpu->pmsav7_dregion = 16; 2000 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 2001 } 2002 2003 static void cortex_r5f_initfn(Object *obj) 2004 { 2005 ARMCPU *cpu = ARM_CPU(obj); 2006 2007 cortex_r5_initfn(obj); 2008 set_feature(&cpu->env, ARM_FEATURE_VFP3); 2009 cpu->isar.mvfr0 = 0x10110221; 2010 cpu->isar.mvfr1 = 0x00000011; 2011 } 2012 2013 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 2014 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 2015 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2016 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 2017 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2018 REGINFO_SENTINEL 2019 }; 2020 2021 static void cortex_a8_initfn(Object *obj) 2022 { 2023 ARMCPU *cpu = ARM_CPU(obj); 2024 2025 cpu->dtb_compatible = "arm,cortex-a8"; 2026 set_feature(&cpu->env, ARM_FEATURE_V7); 2027 set_feature(&cpu->env, ARM_FEATURE_VFP3); 2028 set_feature(&cpu->env, ARM_FEATURE_NEON); 2029 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2030 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2031 set_feature(&cpu->env, ARM_FEATURE_EL3); 2032 cpu->midr = 0x410fc080; 2033 cpu->reset_fpsid = 0x410330c0; 2034 cpu->isar.mvfr0 = 0x11110222; 2035 cpu->isar.mvfr1 = 0x00011111; 2036 cpu->ctr = 0x82048004; 2037 cpu->reset_sctlr = 0x00c50078; 2038 cpu->id_pfr0 = 0x1031; 2039 cpu->id_pfr1 = 0x11; 2040 cpu->id_dfr0 = 0x400; 2041 cpu->id_afr0 = 0; 2042 cpu->id_mmfr0 = 0x31100003; 2043 cpu->id_mmfr1 = 0x20000000; 2044 cpu->id_mmfr2 = 0x01202000; 2045 cpu->id_mmfr3 = 0x11; 2046 cpu->isar.id_isar0 = 0x00101111; 2047 cpu->isar.id_isar1 = 0x12112111; 2048 cpu->isar.id_isar2 = 0x21232031; 2049 cpu->isar.id_isar3 = 0x11112131; 2050 cpu->isar.id_isar4 = 0x00111142; 2051 cpu->dbgdidr = 0x15141000; 2052 cpu->clidr = (1 << 27) | (2 << 24) | 3; 2053 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 2054 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 2055 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 2056 cpu->reset_auxcr = 2; 2057 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 2058 } 2059 2060 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 2061 /* power_control should be set to maximum latency. Again, 2062 * default to 0 and set by private hook 2063 */ 2064 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2065 .access = PL1_RW, .resetvalue = 0, 2066 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 2067 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 2068 .access = PL1_RW, .resetvalue = 0, 2069 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 2070 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 2071 .access = PL1_RW, .resetvalue = 0, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 2073 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2074 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2075 /* TLB lockdown control */ 2076 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 2077 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 2078 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 2079 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 2080 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 2081 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2082 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 2083 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2084 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 2085 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2086 REGINFO_SENTINEL 2087 }; 2088 2089 static void cortex_a9_initfn(Object *obj) 2090 { 2091 ARMCPU *cpu = ARM_CPU(obj); 2092 2093 cpu->dtb_compatible = "arm,cortex-a9"; 2094 set_feature(&cpu->env, ARM_FEATURE_V7); 2095 set_feature(&cpu->env, ARM_FEATURE_VFP3); 2096 set_feature(&cpu->env, ARM_FEATURE_NEON); 2097 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2098 set_feature(&cpu->env, ARM_FEATURE_EL3); 2099 /* Note that A9 supports the MP extensions even for 2100 * A9UP and single-core A9MP (which are both different 2101 * and valid configurations; we don't model A9UP). 2102 */ 2103 set_feature(&cpu->env, ARM_FEATURE_V7MP); 2104 set_feature(&cpu->env, ARM_FEATURE_CBAR); 2105 cpu->midr = 0x410fc090; 2106 cpu->reset_fpsid = 0x41033090; 2107 cpu->isar.mvfr0 = 0x11110222; 2108 cpu->isar.mvfr1 = 0x01111111; 2109 cpu->ctr = 0x80038003; 2110 cpu->reset_sctlr = 0x00c50078; 2111 cpu->id_pfr0 = 0x1031; 2112 cpu->id_pfr1 = 0x11; 2113 cpu->id_dfr0 = 0x000; 2114 cpu->id_afr0 = 0; 2115 cpu->id_mmfr0 = 0x00100103; 2116 cpu->id_mmfr1 = 0x20000000; 2117 cpu->id_mmfr2 = 0x01230000; 2118 cpu->id_mmfr3 = 0x00002111; 2119 cpu->isar.id_isar0 = 0x00101111; 2120 cpu->isar.id_isar1 = 0x13112111; 2121 cpu->isar.id_isar2 = 0x21232041; 2122 cpu->isar.id_isar3 = 0x11112131; 2123 cpu->isar.id_isar4 = 0x00111142; 2124 cpu->dbgdidr = 0x35141000; 2125 cpu->clidr = (1 << 27) | (1 << 24) | 3; 2126 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 2127 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 2128 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 2129 } 2130 2131 #ifndef CONFIG_USER_ONLY 2132 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2133 { 2134 MachineState *ms = MACHINE(qdev_get_machine()); 2135 2136 /* Linux wants the number of processors from here. 2137 * Might as well set the interrupt-controller bit too. 2138 */ 2139 return ((ms->smp.cpus - 1) << 24) | (1 << 23); 2140 } 2141 #endif 2142 2143 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 2144 #ifndef CONFIG_USER_ONLY 2145 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 2146 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 2147 .writefn = arm_cp_write_ignore, }, 2148 #endif 2149 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 2150 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2151 REGINFO_SENTINEL 2152 }; 2153 2154 static void cortex_a7_initfn(Object *obj) 2155 { 2156 ARMCPU *cpu = ARM_CPU(obj); 2157 2158 cpu->dtb_compatible = "arm,cortex-a7"; 2159 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2160 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2161 set_feature(&cpu->env, ARM_FEATURE_NEON); 2162 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2163 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2164 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2165 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2166 set_feature(&cpu->env, ARM_FEATURE_EL2); 2167 set_feature(&cpu->env, ARM_FEATURE_EL3); 2168 set_feature(&cpu->env, ARM_FEATURE_PMU); 2169 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 2170 cpu->midr = 0x410fc075; 2171 cpu->reset_fpsid = 0x41023075; 2172 cpu->isar.mvfr0 = 0x10110222; 2173 cpu->isar.mvfr1 = 0x11111111; 2174 cpu->ctr = 0x84448003; 2175 cpu->reset_sctlr = 0x00c50078; 2176 cpu->id_pfr0 = 0x00001131; 2177 cpu->id_pfr1 = 0x00011011; 2178 cpu->id_dfr0 = 0x02010555; 2179 cpu->id_afr0 = 0x00000000; 2180 cpu->id_mmfr0 = 0x10101105; 2181 cpu->id_mmfr1 = 0x40000000; 2182 cpu->id_mmfr2 = 0x01240000; 2183 cpu->id_mmfr3 = 0x02102211; 2184 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but 2185 * table 4-41 gives 0x02101110, which includes the arm div insns. 2186 */ 2187 cpu->isar.id_isar0 = 0x02101110; 2188 cpu->isar.id_isar1 = 0x13112111; 2189 cpu->isar.id_isar2 = 0x21232041; 2190 cpu->isar.id_isar3 = 0x11112131; 2191 cpu->isar.id_isar4 = 0x10011142; 2192 cpu->dbgdidr = 0x3515f005; 2193 cpu->clidr = 0x0a200023; 2194 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2195 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2196 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2197 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 2198 } 2199 2200 static void cortex_a15_initfn(Object *obj) 2201 { 2202 ARMCPU *cpu = ARM_CPU(obj); 2203 2204 cpu->dtb_compatible = "arm,cortex-a15"; 2205 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2206 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2207 set_feature(&cpu->env, ARM_FEATURE_NEON); 2208 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2209 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2210 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2211 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2212 set_feature(&cpu->env, ARM_FEATURE_EL2); 2213 set_feature(&cpu->env, ARM_FEATURE_EL3); 2214 set_feature(&cpu->env, ARM_FEATURE_PMU); 2215 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 2216 cpu->midr = 0x412fc0f1; 2217 cpu->reset_fpsid = 0x410430f0; 2218 cpu->isar.mvfr0 = 0x10110222; 2219 cpu->isar.mvfr1 = 0x11111111; 2220 cpu->ctr = 0x8444c004; 2221 cpu->reset_sctlr = 0x00c50078; 2222 cpu->id_pfr0 = 0x00001131; 2223 cpu->id_pfr1 = 0x00011011; 2224 cpu->id_dfr0 = 0x02010555; 2225 cpu->id_afr0 = 0x00000000; 2226 cpu->id_mmfr0 = 0x10201105; 2227 cpu->id_mmfr1 = 0x20000000; 2228 cpu->id_mmfr2 = 0x01240000; 2229 cpu->id_mmfr3 = 0x02102211; 2230 cpu->isar.id_isar0 = 0x02101110; 2231 cpu->isar.id_isar1 = 0x13112111; 2232 cpu->isar.id_isar2 = 0x21232041; 2233 cpu->isar.id_isar3 = 0x11112131; 2234 cpu->isar.id_isar4 = 0x10011142; 2235 cpu->dbgdidr = 0x3515f021; 2236 cpu->clidr = 0x0a200023; 2237 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2238 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2239 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2240 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 2241 } 2242 2243 static void ti925t_initfn(Object *obj) 2244 { 2245 ARMCPU *cpu = ARM_CPU(obj); 2246 set_feature(&cpu->env, ARM_FEATURE_V4T); 2247 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 2248 cpu->midr = ARM_CPUID_TI925T; 2249 cpu->ctr = 0x5109149; 2250 cpu->reset_sctlr = 0x00000070; 2251 } 2252 2253 static void sa1100_initfn(Object *obj) 2254 { 2255 ARMCPU *cpu = ARM_CPU(obj); 2256 2257 cpu->dtb_compatible = "intel,sa1100"; 2258 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 2259 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2260 cpu->midr = 0x4401A11B; 2261 cpu->reset_sctlr = 0x00000070; 2262 } 2263 2264 static void sa1110_initfn(Object *obj) 2265 { 2266 ARMCPU *cpu = ARM_CPU(obj); 2267 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 2268 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2269 cpu->midr = 0x6901B119; 2270 cpu->reset_sctlr = 0x00000070; 2271 } 2272 2273 static void pxa250_initfn(Object *obj) 2274 { 2275 ARMCPU *cpu = ARM_CPU(obj); 2276 2277 cpu->dtb_compatible = "marvell,xscale"; 2278 set_feature(&cpu->env, ARM_FEATURE_V5); 2279 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2280 cpu->midr = 0x69052100; 2281 cpu->ctr = 0xd172172; 2282 cpu->reset_sctlr = 0x00000078; 2283 } 2284 2285 static void pxa255_initfn(Object *obj) 2286 { 2287 ARMCPU *cpu = ARM_CPU(obj); 2288 2289 cpu->dtb_compatible = "marvell,xscale"; 2290 set_feature(&cpu->env, ARM_FEATURE_V5); 2291 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2292 cpu->midr = 0x69052d00; 2293 cpu->ctr = 0xd172172; 2294 cpu->reset_sctlr = 0x00000078; 2295 } 2296 2297 static void pxa260_initfn(Object *obj) 2298 { 2299 ARMCPU *cpu = ARM_CPU(obj); 2300 2301 cpu->dtb_compatible = "marvell,xscale"; 2302 set_feature(&cpu->env, ARM_FEATURE_V5); 2303 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2304 cpu->midr = 0x69052903; 2305 cpu->ctr = 0xd172172; 2306 cpu->reset_sctlr = 0x00000078; 2307 } 2308 2309 static void pxa261_initfn(Object *obj) 2310 { 2311 ARMCPU *cpu = ARM_CPU(obj); 2312 2313 cpu->dtb_compatible = "marvell,xscale"; 2314 set_feature(&cpu->env, ARM_FEATURE_V5); 2315 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2316 cpu->midr = 0x69052d05; 2317 cpu->ctr = 0xd172172; 2318 cpu->reset_sctlr = 0x00000078; 2319 } 2320 2321 static void pxa262_initfn(Object *obj) 2322 { 2323 ARMCPU *cpu = ARM_CPU(obj); 2324 2325 cpu->dtb_compatible = "marvell,xscale"; 2326 set_feature(&cpu->env, ARM_FEATURE_V5); 2327 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2328 cpu->midr = 0x69052d06; 2329 cpu->ctr = 0xd172172; 2330 cpu->reset_sctlr = 0x00000078; 2331 } 2332 2333 static void pxa270a0_initfn(Object *obj) 2334 { 2335 ARMCPU *cpu = ARM_CPU(obj); 2336 2337 cpu->dtb_compatible = "marvell,xscale"; 2338 set_feature(&cpu->env, ARM_FEATURE_V5); 2339 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2340 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2341 cpu->midr = 0x69054110; 2342 cpu->ctr = 0xd172172; 2343 cpu->reset_sctlr = 0x00000078; 2344 } 2345 2346 static void pxa270a1_initfn(Object *obj) 2347 { 2348 ARMCPU *cpu = ARM_CPU(obj); 2349 2350 cpu->dtb_compatible = "marvell,xscale"; 2351 set_feature(&cpu->env, ARM_FEATURE_V5); 2352 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2353 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2354 cpu->midr = 0x69054111; 2355 cpu->ctr = 0xd172172; 2356 cpu->reset_sctlr = 0x00000078; 2357 } 2358 2359 static void pxa270b0_initfn(Object *obj) 2360 { 2361 ARMCPU *cpu = ARM_CPU(obj); 2362 2363 cpu->dtb_compatible = "marvell,xscale"; 2364 set_feature(&cpu->env, ARM_FEATURE_V5); 2365 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2366 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2367 cpu->midr = 0x69054112; 2368 cpu->ctr = 0xd172172; 2369 cpu->reset_sctlr = 0x00000078; 2370 } 2371 2372 static void pxa270b1_initfn(Object *obj) 2373 { 2374 ARMCPU *cpu = ARM_CPU(obj); 2375 2376 cpu->dtb_compatible = "marvell,xscale"; 2377 set_feature(&cpu->env, ARM_FEATURE_V5); 2378 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2379 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2380 cpu->midr = 0x69054113; 2381 cpu->ctr = 0xd172172; 2382 cpu->reset_sctlr = 0x00000078; 2383 } 2384 2385 static void pxa270c0_initfn(Object *obj) 2386 { 2387 ARMCPU *cpu = ARM_CPU(obj); 2388 2389 cpu->dtb_compatible = "marvell,xscale"; 2390 set_feature(&cpu->env, ARM_FEATURE_V5); 2391 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2392 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2393 cpu->midr = 0x69054114; 2394 cpu->ctr = 0xd172172; 2395 cpu->reset_sctlr = 0x00000078; 2396 } 2397 2398 static void pxa270c5_initfn(Object *obj) 2399 { 2400 ARMCPU *cpu = ARM_CPU(obj); 2401 2402 cpu->dtb_compatible = "marvell,xscale"; 2403 set_feature(&cpu->env, ARM_FEATURE_V5); 2404 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2405 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2406 cpu->midr = 0x69054117; 2407 cpu->ctr = 0xd172172; 2408 cpu->reset_sctlr = 0x00000078; 2409 } 2410 2411 #ifndef TARGET_AARCH64 2412 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 2413 * otherwise, a CPU with as many features enabled as our emulation supports. 2414 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; 2415 * this only needs to handle 32 bits. 2416 */ 2417 static void arm_max_initfn(Object *obj) 2418 { 2419 ARMCPU *cpu = ARM_CPU(obj); 2420 2421 if (kvm_enabled()) { 2422 kvm_arm_set_cpu_features_from_host(cpu); 2423 } else { 2424 cortex_a15_initfn(obj); 2425 2426 /* old-style VFP short-vector support */ 2427 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1); 2428 2429 #ifdef CONFIG_USER_ONLY 2430 /* We don't set these in system emulation mode for the moment, 2431 * since we don't correctly set (all of) the ID registers to 2432 * advertise them. 2433 */ 2434 set_feature(&cpu->env, ARM_FEATURE_V8); 2435 { 2436 uint32_t t; 2437 2438 t = cpu->isar.id_isar5; 2439 t = FIELD_DP32(t, ID_ISAR5, AES, 2); 2440 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); 2441 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); 2442 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); 2443 t = FIELD_DP32(t, ID_ISAR5, RDM, 1); 2444 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); 2445 cpu->isar.id_isar5 = t; 2446 2447 t = cpu->isar.id_isar6; 2448 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); 2449 t = FIELD_DP32(t, ID_ISAR6, DP, 1); 2450 t = FIELD_DP32(t, ID_ISAR6, FHM, 1); 2451 t = FIELD_DP32(t, ID_ISAR6, SB, 1); 2452 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1); 2453 cpu->isar.id_isar6 = t; 2454 2455 t = cpu->isar.mvfr2; 2456 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */ 2457 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */ 2458 cpu->isar.mvfr2 = t; 2459 2460 t = cpu->id_mmfr4; 2461 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ 2462 cpu->id_mmfr4 = t; 2463 } 2464 #endif 2465 } 2466 } 2467 #endif 2468 2469 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 2470 2471 struct ARMCPUInfo { 2472 const char *name; 2473 void (*initfn)(Object *obj); 2474 void (*class_init)(ObjectClass *oc, void *data); 2475 }; 2476 2477 static const ARMCPUInfo arm_cpus[] = { 2478 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 2479 { .name = "arm926", .initfn = arm926_initfn }, 2480 { .name = "arm946", .initfn = arm946_initfn }, 2481 { .name = "arm1026", .initfn = arm1026_initfn }, 2482 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 2483 * older core than plain "arm1136". In particular this does not 2484 * have the v6K features. 2485 */ 2486 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 2487 { .name = "arm1136", .initfn = arm1136_initfn }, 2488 { .name = "arm1176", .initfn = arm1176_initfn }, 2489 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 2490 { .name = "cortex-m0", .initfn = cortex_m0_initfn, 2491 .class_init = arm_v7m_class_init }, 2492 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 2493 .class_init = arm_v7m_class_init }, 2494 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 2495 .class_init = arm_v7m_class_init }, 2496 { .name = "cortex-m33", .initfn = cortex_m33_initfn, 2497 .class_init = arm_v7m_class_init }, 2498 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 2499 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn }, 2500 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 2501 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 2502 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 2503 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 2504 { .name = "ti925t", .initfn = ti925t_initfn }, 2505 { .name = "sa1100", .initfn = sa1100_initfn }, 2506 { .name = "sa1110", .initfn = sa1110_initfn }, 2507 { .name = "pxa250", .initfn = pxa250_initfn }, 2508 { .name = "pxa255", .initfn = pxa255_initfn }, 2509 { .name = "pxa260", .initfn = pxa260_initfn }, 2510 { .name = "pxa261", .initfn = pxa261_initfn }, 2511 { .name = "pxa262", .initfn = pxa262_initfn }, 2512 /* "pxa270" is an alias for "pxa270-a0" */ 2513 { .name = "pxa270", .initfn = pxa270a0_initfn }, 2514 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 2515 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 2516 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 2517 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 2518 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 2519 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 2520 #ifndef TARGET_AARCH64 2521 { .name = "max", .initfn = arm_max_initfn }, 2522 #endif 2523 #ifdef CONFIG_USER_ONLY 2524 { .name = "any", .initfn = arm_max_initfn }, 2525 #endif 2526 #endif 2527 { .name = NULL } 2528 }; 2529 2530 static Property arm_cpu_properties[] = { 2531 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 2532 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 2533 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 2534 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2535 mp_affinity, ARM64_AFFINITY_INVALID), 2536 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2537 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2538 DEFINE_PROP_END_OF_LIST() 2539 }; 2540 2541 static gchar *arm_gdb_arch_name(CPUState *cs) 2542 { 2543 ARMCPU *cpu = ARM_CPU(cs); 2544 CPUARMState *env = &cpu->env; 2545 2546 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2547 return g_strdup("iwmmxt"); 2548 } 2549 return g_strdup("arm"); 2550 } 2551 2552 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2553 { 2554 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2555 CPUClass *cc = CPU_CLASS(acc); 2556 DeviceClass *dc = DEVICE_CLASS(oc); 2557 2558 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2559 &acc->parent_realize); 2560 dc->props = arm_cpu_properties; 2561 2562 acc->parent_reset = cc->reset; 2563 cc->reset = arm_cpu_reset; 2564 2565 cc->class_by_name = arm_cpu_class_by_name; 2566 cc->has_work = arm_cpu_has_work; 2567 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 2568 cc->dump_state = arm_cpu_dump_state; 2569 cc->set_pc = arm_cpu_set_pc; 2570 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb; 2571 cc->gdb_read_register = arm_cpu_gdb_read_register; 2572 cc->gdb_write_register = arm_cpu_gdb_write_register; 2573 #ifndef CONFIG_USER_ONLY 2574 cc->do_interrupt = arm_cpu_do_interrupt; 2575 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 2576 cc->asidx_from_attrs = arm_asidx_from_attrs; 2577 cc->vmsd = &vmstate_arm_cpu; 2578 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 2579 cc->write_elf64_note = arm_cpu_write_elf64_note; 2580 cc->write_elf32_note = arm_cpu_write_elf32_note; 2581 #endif 2582 cc->gdb_num_core_regs = 26; 2583 cc->gdb_core_xml_file = "arm-core.xml"; 2584 cc->gdb_arch_name = arm_gdb_arch_name; 2585 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2586 cc->gdb_stop_before_watchpoint = true; 2587 cc->disas_set_info = arm_disas_set_info; 2588 #ifdef CONFIG_TCG 2589 cc->tcg_initialize = arm_translate_init; 2590 cc->tlb_fill = arm_cpu_tlb_fill; 2591 cc->debug_excp_handler = arm_debug_excp_handler; 2592 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 2593 #if !defined(CONFIG_USER_ONLY) 2594 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 2595 cc->do_transaction_failed = arm_cpu_do_transaction_failed; 2596 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 2597 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 2598 #endif 2599 } 2600 2601 #ifdef CONFIG_KVM 2602 static void arm_host_initfn(Object *obj) 2603 { 2604 ARMCPU *cpu = ARM_CPU(obj); 2605 2606 kvm_arm_set_cpu_features_from_host(cpu); 2607 arm_cpu_post_init(obj); 2608 } 2609 2610 static const TypeInfo host_arm_cpu_type_info = { 2611 .name = TYPE_ARM_HOST_CPU, 2612 #ifdef TARGET_AARCH64 2613 .parent = TYPE_AARCH64_CPU, 2614 #else 2615 .parent = TYPE_ARM_CPU, 2616 #endif 2617 .instance_init = arm_host_initfn, 2618 }; 2619 2620 #endif 2621 2622 static void arm_cpu_instance_init(Object *obj) 2623 { 2624 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2625 2626 acc->info->initfn(obj); 2627 arm_cpu_post_init(obj); 2628 } 2629 2630 static void cpu_register_class_init(ObjectClass *oc, void *data) 2631 { 2632 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2633 2634 acc->info = data; 2635 } 2636 2637 static void cpu_register(const ARMCPUInfo *info) 2638 { 2639 TypeInfo type_info = { 2640 .parent = TYPE_ARM_CPU, 2641 .instance_size = sizeof(ARMCPU), 2642 .instance_init = arm_cpu_instance_init, 2643 .class_size = sizeof(ARMCPUClass), 2644 .class_init = info->class_init ?: cpu_register_class_init, 2645 .class_data = (void *)info, 2646 }; 2647 2648 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2649 type_register(&type_info); 2650 g_free((void *)type_info.name); 2651 } 2652 2653 static const TypeInfo arm_cpu_type_info = { 2654 .name = TYPE_ARM_CPU, 2655 .parent = TYPE_CPU, 2656 .instance_size = sizeof(ARMCPU), 2657 .instance_init = arm_cpu_initfn, 2658 .instance_finalize = arm_cpu_finalizefn, 2659 .abstract = true, 2660 .class_size = sizeof(ARMCPUClass), 2661 .class_init = arm_cpu_class_init, 2662 }; 2663 2664 static const TypeInfo idau_interface_type_info = { 2665 .name = TYPE_IDAU_INTERFACE, 2666 .parent = TYPE_INTERFACE, 2667 .class_size = sizeof(IDAUInterfaceClass), 2668 }; 2669 2670 static void arm_cpu_register_types(void) 2671 { 2672 const ARMCPUInfo *info = arm_cpus; 2673 2674 type_register_static(&arm_cpu_type_info); 2675 type_register_static(&idau_interface_type_info); 2676 2677 while (info->name) { 2678 cpu_register(info); 2679 info++; 2680 } 2681 2682 #ifdef CONFIG_KVM 2683 type_register_static(&host_arm_cpu_type_info); 2684 #endif 2685 } 2686 2687 type_init(arm_cpu_register_types) 2688