xref: /openbmc/qemu/target/arm/cpregs.h (revision da3c22c7)
1 /*
2  * QEMU ARM CP Register access and descriptions
3  *
4  * Copyright (c) 2022 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #ifndef TARGET_ARM_CPREGS_H
22 #define TARGET_ARM_CPREGS_H
23 
24 /*
25  * ARMCPRegInfo type field bits:
26  */
27 enum {
28     /*
29      * Register must be handled specially during translation.
30      * The method is one of the values below:
31      */
32     ARM_CP_SPECIAL_MASK          = 0x000f,
33     /* Special: no change to PE state: writes ignored, reads ignored. */
34     ARM_CP_NOP                   = 0x0001,
35     /* Special: sysreg is WFI, for v5 and v6. */
36     ARM_CP_WFI                   = 0x0002,
37     /* Special: sysreg is NZCV. */
38     ARM_CP_NZCV                  = 0x0003,
39     /* Special: sysreg is CURRENTEL. */
40     ARM_CP_CURRENTEL             = 0x0004,
41     /* Special: sysreg is DC ZVA or similar. */
42     ARM_CP_DC_ZVA                = 0x0005,
43     ARM_CP_DC_GVA                = 0x0006,
44     ARM_CP_DC_GZVA               = 0x0007,
45 
46     /* Flag: reads produce resetvalue; writes ignored. */
47     ARM_CP_CONST                 = 1 << 4,
48     /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
49     ARM_CP_64BIT                 = 1 << 5,
50     /*
51      * Flag: TB should not be ended after a write to this register
52      * (the default is that the TB ends after cp writes).
53      */
54     ARM_CP_SUPPRESS_TB_END       = 1 << 6,
55     /*
56      * Flag: Permit a register definition to override a previous definition
57      * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
58      * or the old must have the ARM_CP_OVERRIDE bit set.
59      */
60     ARM_CP_OVERRIDE              = 1 << 7,
61     /*
62      * Flag: Register is an alias view of some underlying state which is also
63      * visible via another register, and that the other register is handling
64      * migration and reset; registers marked ARM_CP_ALIAS will not be migrated
65      * but may have their state set by syncing of register state from KVM.
66      */
67     ARM_CP_ALIAS                 = 1 << 8,
68     /*
69      * Flag: Register does I/O and therefore its accesses need to be marked
70      * with translator_io_start() and also end the TB. In particular,
71      * registers which implement clocks or timers require this.
72      */
73     ARM_CP_IO                    = 1 << 9,
74     /*
75      * Flag: Register has no underlying state and does not support raw access
76      * for state saving/loading; it will not be used for either migration or
77      * KVM state synchronization. Typically this is for "registers" which are
78      * actually used as instructions for cache maintenance and so on.
79      */
80     ARM_CP_NO_RAW                = 1 << 10,
81     /*
82      * Flag: The read or write hook might raise an exception; the generated
83      * code will synchronize the CPU state before calling the hook so that it
84      * is safe for the hook to call raise_exception().
85      */
86     ARM_CP_RAISES_EXC            = 1 << 11,
87     /*
88      * Flag: Writes to the sysreg might change the exception level - typically
89      * on older ARM chips. For those cases we need to re-read the new el when
90      * recomputing the translation flags.
91      */
92     ARM_CP_NEWEL                 = 1 << 12,
93     /*
94      * Flag: Access check for this sysreg is identical to accessing FPU state
95      * from an instruction: use translation fp_access_check().
96      */
97     ARM_CP_FPU                   = 1 << 13,
98     /*
99      * Flag: Access check for this sysreg is identical to accessing SVE state
100      * from an instruction: use translation sve_access_check().
101      */
102     ARM_CP_SVE                   = 1 << 14,
103     /* Flag: Do not expose in gdb sysreg xml. */
104     ARM_CP_NO_GDB                = 1 << 15,
105     /*
106      * Flags: If EL3 but not EL2...
107      *   - UNDEF: discard the cpreg,
108      *   -  KEEP: retain the cpreg as is,
109      *   -  C_NZ: set const on the cpreg, but retain resetvalue,
110      *   -  else: set const on the cpreg, zero resetvalue, aka RES0.
111      * See rule RJFFP in section D1.1.3 of DDI0487H.a.
112      */
113     ARM_CP_EL3_NO_EL2_UNDEF      = 1 << 16,
114     ARM_CP_EL3_NO_EL2_KEEP       = 1 << 17,
115     ARM_CP_EL3_NO_EL2_C_NZ       = 1 << 18,
116     /*
117      * Flag: Access check for this sysreg is constrained by the
118      * ARM pseudocode function CheckSMEAccess().
119      */
120     ARM_CP_SME                   = 1 << 19,
121 };
122 
123 /*
124  * Interface for defining coprocessor registers.
125  * Registers are defined in tables of arm_cp_reginfo structs
126  * which are passed to define_arm_cp_regs().
127  */
128 
129 /*
130  * When looking up a coprocessor register we look for it
131  * via an integer which encodes all of:
132  *  coprocessor number
133  *  Crn, Crm, opc1, opc2 fields
134  *  32 or 64 bit register (ie is it accessed via MRC/MCR
135  *    or via MRRC/MCRR?)
136  *  non-secure/secure bank (AArch32 only)
137  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
138  * (In this case crn and opc2 should be zero.)
139  * For AArch64, there is no 32/64 bit size distinction;
140  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
141  * and 4 bit CRn and CRm. The encoding patterns are chosen
142  * to be easy to convert to and from the KVM encodings, and also
143  * so that the hashtable can contain both AArch32 and AArch64
144  * registers (to allow for interprocessing where we might run
145  * 32 bit code on a 64 bit core).
146  */
147 /*
148  * This bit is private to our hashtable cpreg; in KVM register
149  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
150  * in the upper bits of the 64 bit ID.
151  */
152 #define CP_REG_AA64_SHIFT 28
153 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
154 
155 /*
156  * To enable banking of coprocessor registers depending on ns-bit we
157  * add a bit to distinguish between secure and non-secure cpregs in the
158  * hashtable.
159  */
160 #define CP_REG_NS_SHIFT 29
161 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
162 
163 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
164     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
165      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
166 
167 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
168     (CP_REG_AA64_MASK |                                 \
169      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
170      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
171      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
172      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
173      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
174      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
175 
176 /*
177  * Convert a full 64 bit KVM register ID to the truncated 32 bit
178  * version used as a key for the coprocessor register hashtable
179  */
180 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
181 {
182     uint32_t cpregid = kvmid;
183     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
184         cpregid |= CP_REG_AA64_MASK;
185     } else {
186         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
187             cpregid |= (1 << 15);
188         }
189 
190         /*
191          * KVM is always non-secure so add the NS flag on AArch32 register
192          * entries.
193          */
194          cpregid |= 1 << CP_REG_NS_SHIFT;
195     }
196     return cpregid;
197 }
198 
199 /*
200  * Convert a truncated 32 bit hashtable key into the full
201  * 64 bit KVM register ID.
202  */
203 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
204 {
205     uint64_t kvmid;
206 
207     if (cpregid & CP_REG_AA64_MASK) {
208         kvmid = cpregid & ~CP_REG_AA64_MASK;
209         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
210     } else {
211         kvmid = cpregid & ~(1 << 15);
212         if (cpregid & (1 << 15)) {
213             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
214         } else {
215             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
216         }
217     }
218     return kvmid;
219 }
220 
221 /*
222  * Valid values for ARMCPRegInfo state field, indicating which of
223  * the AArch32 and AArch64 execution states this register is visible in.
224  * If the reginfo doesn't explicitly specify then it is AArch32 only.
225  * If the reginfo is declared to be visible in both states then a second
226  * reginfo is synthesised for the AArch32 view of the AArch64 register,
227  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
228  * Note that we rely on the values of these enums as we iterate through
229  * the various states in some places.
230  */
231 typedef enum {
232     ARM_CP_STATE_AA32 = 0,
233     ARM_CP_STATE_AA64 = 1,
234     ARM_CP_STATE_BOTH = 2,
235 } CPState;
236 
237 /*
238  * ARM CP register secure state flags.  These flags identify security state
239  * attributes for a given CP register entry.
240  * The existence of both or neither secure and non-secure flags indicates that
241  * the register has both a secure and non-secure hash entry.  A single one of
242  * these flags causes the register to only be hashed for the specified
243  * security state.
244  * Although definitions may have any combination of the S/NS bits, each
245  * registered entry will only have one to identify whether the entry is secure
246  * or non-secure.
247  */
248 typedef enum {
249     ARM_CP_SECSTATE_BOTH = 0,       /* define one cpreg for each secstate */
250     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
251     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
252 } CPSecureState;
253 
254 /*
255  * Access rights:
256  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
257  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
258  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
259  * (ie any of the privileged modes in Secure state, or Monitor mode).
260  * If a register is accessible in one privilege level it's always accessible
261  * in higher privilege levels too. Since "Secure PL1" also follows this rule
262  * (ie anything visible in PL2 is visible in S-PL1, some things are only
263  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
264  * terminology a little and call this PL3.
265  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
266  * with the ELx exception levels.
267  *
268  * If access permissions for a register are more complex than can be
269  * described with these bits, then use a laxer set of restrictions, and
270  * do the more restrictive/complex check inside a helper function.
271  */
272 typedef enum {
273     PL3_R = 0x80,
274     PL3_W = 0x40,
275     PL2_R = 0x20 | PL3_R,
276     PL2_W = 0x10 | PL3_W,
277     PL1_R = 0x08 | PL2_R,
278     PL1_W = 0x04 | PL2_W,
279     PL0_R = 0x02 | PL1_R,
280     PL0_W = 0x01 | PL1_W,
281 
282     /*
283      * For user-mode some registers are accessible to EL0 via a kernel
284      * trap-and-emulate ABI. In this case we define the read permissions
285      * as actually being PL0_R. However some bits of any given register
286      * may still be masked.
287      */
288 #ifdef CONFIG_USER_ONLY
289     PL0U_R = PL0_R,
290 #else
291     PL0U_R = PL1_R,
292 #endif
293 
294     PL3_RW = PL3_R | PL3_W,
295     PL2_RW = PL2_R | PL2_W,
296     PL1_RW = PL1_R | PL1_W,
297     PL0_RW = PL0_R | PL0_W,
298 } CPAccessRights;
299 
300 typedef enum CPAccessResult {
301     /* Access is permitted */
302     CP_ACCESS_OK = 0,
303 
304     /*
305      * Combined with one of the following, the low 2 bits indicate the
306      * target exception level.  If 0, the exception is taken to the usual
307      * target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
308      */
309     CP_ACCESS_EL_MASK = 3,
310 
311     /*
312      * Access fails due to a configurable trap or enable which would
313      * result in a categorized exception syndrome giving information about
314      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
315      * 0xc or 0x18).
316      */
317     CP_ACCESS_TRAP = (1 << 2),
318     CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
319     CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
320 
321     /*
322      * Access fails and results in an exception syndrome 0x0 ("uncategorized").
323      * Note that this is not a catch-all case -- the set of cases which may
324      * result in this failure is specifically defined by the architecture.
325      * This trap is always to the usual target EL, never directly to a
326      * specified target EL.
327      */
328     CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
329 } CPAccessResult;
330 
331 /* Indexes into fgt_read[] */
332 #define FGTREG_HFGRTR 0
333 #define FGTREG_HDFGRTR 1
334 /* Indexes into fgt_write[] */
335 #define FGTREG_HFGWTR 0
336 #define FGTREG_HDFGWTR 1
337 /* Indexes into fgt_exec[] */
338 #define FGTREG_HFGITR 0
339 
340 FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1)
341 FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1)
342 FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1)
343 FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1)
344 FIELD(HFGRTR_EL2, APDAKEY, 4, 1)
345 FIELD(HFGRTR_EL2, APDBKEY, 5, 1)
346 FIELD(HFGRTR_EL2, APGAKEY, 6, 1)
347 FIELD(HFGRTR_EL2, APIAKEY, 7, 1)
348 FIELD(HFGRTR_EL2, APIBKEY, 8, 1)
349 FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1)
350 FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1)
351 FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1)
352 FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1)
353 FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1)
354 FIELD(HFGRTR_EL2, CTR_EL0, 14, 1)
355 FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1)
356 FIELD(HFGRTR_EL2, ESR_EL1, 16, 1)
357 FIELD(HFGRTR_EL2, FAR_EL1, 17, 1)
358 FIELD(HFGRTR_EL2, ISR_EL1, 18, 1)
359 FIELD(HFGRTR_EL2, LORC_EL1, 19, 1)
360 FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1)
361 FIELD(HFGRTR_EL2, LORID_EL1, 21, 1)
362 FIELD(HFGRTR_EL2, LORN_EL1, 22, 1)
363 FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1)
364 FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1)
365 FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1)
366 FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1)
367 FIELD(HFGRTR_EL2, PAR_EL1, 27, 1)
368 FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1)
369 FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1)
370 FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1)
371 FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1)
372 FIELD(HFGRTR_EL2, TCR_EL1, 32, 1)
373 FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1)
374 FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1)
375 FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1)
376 FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1)
377 FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1)
378 FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1)
379 FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1)
380 FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1)
381 FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1)
382 FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1)
383 FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1)
384 FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1)
385 FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1)
386 FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1)
387 FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1)
388 FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1)
389 FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1)
390 FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1)
391 /* 51-53: RES0 */
392 FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1)
393 FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1)
394 /* 56-63: RES0 */
395 
396 /* These match HFGRTR but bits for RO registers are RES0 */
397 FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1)
398 FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1)
399 FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1)
400 FIELD(HFGWTR_EL2, APDAKEY, 4, 1)
401 FIELD(HFGWTR_EL2, APDBKEY, 5, 1)
402 FIELD(HFGWTR_EL2, APGAKEY, 6, 1)
403 FIELD(HFGWTR_EL2, APIAKEY, 7, 1)
404 FIELD(HFGWTR_EL2, APIBKEY, 8, 1)
405 FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1)
406 FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1)
407 FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1)
408 FIELD(HFGWTR_EL2, ESR_EL1, 16, 1)
409 FIELD(HFGWTR_EL2, FAR_EL1, 17, 1)
410 FIELD(HFGWTR_EL2, LORC_EL1, 19, 1)
411 FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1)
412 FIELD(HFGWTR_EL2, LORN_EL1, 22, 1)
413 FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1)
414 FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1)
415 FIELD(HFGWTR_EL2, PAR_EL1, 27, 1)
416 FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1)
417 FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1)
418 FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1)
419 FIELD(HFGWTR_EL2, TCR_EL1, 32, 1)
420 FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1)
421 FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1)
422 FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1)
423 FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1)
424 FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1)
425 FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1)
426 FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1)
427 FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1)
428 FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1)
429 FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1)
430 FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1)
431 FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1)
432 FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1)
433 FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1)
434 FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1)
435 FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1)
436 FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1)
437 
438 FIELD(HFGITR_EL2, ICIALLUIS, 0, 1)
439 FIELD(HFGITR_EL2, ICIALLU, 1, 1)
440 FIELD(HFGITR_EL2, ICIVAU, 2, 1)
441 FIELD(HFGITR_EL2, DCIVAC, 3, 1)
442 FIELD(HFGITR_EL2, DCISW, 4, 1)
443 FIELD(HFGITR_EL2, DCCSW, 5, 1)
444 FIELD(HFGITR_EL2, DCCISW, 6, 1)
445 FIELD(HFGITR_EL2, DCCVAU, 7, 1)
446 FIELD(HFGITR_EL2, DCCVAP, 8, 1)
447 FIELD(HFGITR_EL2, DCCVADP, 9, 1)
448 FIELD(HFGITR_EL2, DCCIVAC, 10, 1)
449 FIELD(HFGITR_EL2, DCZVA, 11, 1)
450 FIELD(HFGITR_EL2, ATS1E1R, 12, 1)
451 FIELD(HFGITR_EL2, ATS1E1W, 13, 1)
452 FIELD(HFGITR_EL2, ATS1E0R, 14, 1)
453 FIELD(HFGITR_EL2, ATS1E0W, 15, 1)
454 FIELD(HFGITR_EL2, ATS1E1RP, 16, 1)
455 FIELD(HFGITR_EL2, ATS1E1WP, 17, 1)
456 FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1)
457 FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1)
458 FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1)
459 FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1)
460 FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1)
461 FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1)
462 FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1)
463 FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1)
464 FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1)
465 FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1)
466 FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1)
467 FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1)
468 FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1)
469 FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1)
470 FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1)
471 FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1)
472 FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1)
473 FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1)
474 FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1)
475 FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1)
476 FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1)
477 FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1)
478 FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1)
479 FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1)
480 FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1)
481 FIELD(HFGITR_EL2, TLBIVAE1, 43, 1)
482 FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1)
483 FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1)
484 FIELD(HFGITR_EL2, TLBIVALE1, 46, 1)
485 FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1)
486 FIELD(HFGITR_EL2, CFPRCTX, 48, 1)
487 FIELD(HFGITR_EL2, DVPRCTX, 49, 1)
488 FIELD(HFGITR_EL2, CPPRCTX, 50, 1)
489 FIELD(HFGITR_EL2, ERET, 51, 1)
490 FIELD(HFGITR_EL2, SVC_EL0, 52, 1)
491 FIELD(HFGITR_EL2, SVC_EL1, 53, 1)
492 FIELD(HFGITR_EL2, DCCVAC, 54, 1)
493 FIELD(HFGITR_EL2, NBRBINJ, 55, 1)
494 FIELD(HFGITR_EL2, NBRBIALL, 56, 1)
495 
496 FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1)
497 FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1)
498 FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1)
499 FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1)
500 FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1)
501 FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1)
502 FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1)
503 FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1)
504 /* 8: RES0: OSLAR_EL1 is WO */
505 FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1)
506 FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1)
507 FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1)
508 FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1)
509 FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1)
510 FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1)
511 FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1)
512 FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1)
513 FIELD(HDFGRTR_EL2, PMINTEN, 17, 1)
514 FIELD(HDFGRTR_EL2, PMOVS, 18, 1)
515 FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1)
516 /* 20: RES0: PMSWINC_EL0 is WO */
517 /* 21: RES0: PMCR_EL0 is WO */
518 FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1)
519 FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1)
520 FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1)
521 FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1)
522 FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1)
523 FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1)
524 FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1)
525 FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1)
526 FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1)
527 FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1)
528 FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1)
529 FIELD(HDFGRTR_EL2, TRC, 33, 1)
530 FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1)
531 FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1)
532 FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1)
533 FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1)
534 /* 38, 39: RES0 */
535 FIELD(HDFGRTR_EL2, TRCID, 40, 1)
536 FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1)
537 /* 42: RES0: TRCOSLAR is WO */
538 FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1)
539 FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1)
540 FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1)
541 FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1)
542 FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1)
543 FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1)
544 /* 49: RES0: TRFCR_EL1 is WO */
545 FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1)
546 FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1)
547 FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1)
548 FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1)
549 FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1)
550 FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1)
551 FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1)
552 FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1)
553 FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1)
554 FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1)
555 FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1)
556 FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1)
557 FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1)
558 FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1)
559 
560 /*
561  * These match HDFGRTR_EL2, but bits for RO registers are RES0.
562  * A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0.
563  */
564 FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1)
565 FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1)
566 FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1)
567 FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1)
568 FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1)
569 FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1)
570 FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1)
571 FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1)
572 FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1)
573 FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1)
574 FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1)
575 FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1)
576 FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1)
577 FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1)
578 FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1)
579 FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1)
580 FIELD(HDFGWTR_EL2, PMINTEN, 17, 1)
581 FIELD(HDFGWTR_EL2, PMOVS, 18, 1)
582 FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1)
583 FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1)
584 FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1)
585 FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1)
586 FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1)
587 FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1)
588 FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1)
589 FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1)
590 FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1)
591 FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1)
592 FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1)
593 FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1)
594 FIELD(HDFGWTR_EL2, TRC, 33, 1)
595 FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1)
596 FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1)
597 FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1)
598 FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1)
599 FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1)
600 FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1)
601 FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1)
602 FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1)
603 FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1)
604 FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1)
605 FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1)
606 FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1)
607 FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1)
608 FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1)
609 FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1)
610 FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1)
611 FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1)
612 FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1)
613 FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1)
614 FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1)
615 
616 /* Which fine-grained trap bit register to check, if any */
617 FIELD(FGT, TYPE, 10, 3)
618 FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */
619 FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */
620 FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */
621 
622 /*
623  * Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt
624  * fields. We assume for brevity's sake that there are no duplicated
625  * bit names across the various FGT registers.
626  */
627 #define DO_BIT(REG, BITNAME)                                    \
628     FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT
629 
630 /* Some bits have reversed sense, so 0 means trap and 1 means not */
631 #define DO_REV_BIT(REG, BITNAME)                                        \
632     FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT
633 
634 typedef enum FGTBit {
635     /*
636      * These bits tell us which register arrays to use:
637      * if FGT_R is set then reads are checked against fgt_read[];
638      * if FGT_W is set then writes are checked against fgt_write[];
639      * if FGT_EXEC is set then all accesses are checked against fgt_exec[].
640      *
641      * For almost all bits in the R/W register pairs, the bit exists in
642      * both registers for a RW register, in HFGRTR/HDFGRTR for a RO register
643      * with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa
644      * for a WO register. There are unfortunately a couple of exceptions
645      * (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but
646      * the FGT system only allows trapping of writes, not reads.
647      *
648      * Note that we arrange these bits so that a 0 FGTBit means "no trap".
649      */
650     FGT_R = 1 << R_FGT_TYPE_SHIFT,
651     FGT_W = 2 << R_FGT_TYPE_SHIFT,
652     FGT_EXEC = 4 << R_FGT_TYPE_SHIFT,
653     FGT_RW = FGT_R | FGT_W,
654     /* Bit to identify whether trap bit is reversed sense */
655     FGT_REV = R_FGT_REV_MASK,
656 
657     /*
658      * If a bit exists in HFGRTR/HDFGRTR then either the register being
659      * trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either
660      * want to trap for both reads and writes or else it's harmless to mark
661      * it as trap-on-writes.
662      * If a bit exists only in HFGWTR/HDFGWTR then either the register being
663      * trapped is WO, or else it is one of the two oddball special cases
664      * which are RW but have only a write trap. We mark these as only
665      * FGT_W so we get the right behaviour for those special cases.
666      * (If a bit was added in future that provided only a read trap for an
667      * RW register we'd need to do something special to get the FGT_R bit
668      * only. But this seems unlikely to happen.)
669      *
670      * So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if
671      * the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR.
672      */
673     FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT),
674     FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT),
675     FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT),
676     FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT),
677     FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT),
678 
679     /* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */
680     DO_BIT(HFGRTR, AFSR0_EL1),
681     DO_BIT(HFGRTR, AFSR1_EL1),
682     DO_BIT(HFGRTR, AIDR_EL1),
683     DO_BIT(HFGRTR, AMAIR_EL1),
684     DO_BIT(HFGRTR, APDAKEY),
685     DO_BIT(HFGRTR, APDBKEY),
686     DO_BIT(HFGRTR, APGAKEY),
687     DO_BIT(HFGRTR, APIAKEY),
688     DO_BIT(HFGRTR, APIBKEY),
689     DO_BIT(HFGRTR, CCSIDR_EL1),
690     DO_BIT(HFGRTR, CLIDR_EL1),
691     DO_BIT(HFGRTR, CONTEXTIDR_EL1),
692     DO_BIT(HFGRTR, CPACR_EL1),
693     DO_BIT(HFGRTR, CSSELR_EL1),
694     DO_BIT(HFGRTR, CTR_EL0),
695     DO_BIT(HFGRTR, DCZID_EL0),
696     DO_BIT(HFGRTR, ESR_EL1),
697     DO_BIT(HFGRTR, FAR_EL1),
698     DO_BIT(HFGRTR, ISR_EL1),
699     DO_BIT(HFGRTR, LORC_EL1),
700     DO_BIT(HFGRTR, LOREA_EL1),
701     DO_BIT(HFGRTR, LORID_EL1),
702     DO_BIT(HFGRTR, LORN_EL1),
703     DO_BIT(HFGRTR, LORSA_EL1),
704     DO_BIT(HFGRTR, MAIR_EL1),
705     DO_BIT(HFGRTR, MIDR_EL1),
706     DO_BIT(HFGRTR, MPIDR_EL1),
707     DO_BIT(HFGRTR, PAR_EL1),
708     DO_BIT(HFGRTR, REVIDR_EL1),
709     DO_BIT(HFGRTR, SCTLR_EL1),
710     DO_BIT(HFGRTR, SCXTNUM_EL1),
711     DO_BIT(HFGRTR, SCXTNUM_EL0),
712     DO_BIT(HFGRTR, TCR_EL1),
713     DO_BIT(HFGRTR, TPIDR_EL1),
714     DO_BIT(HFGRTR, TPIDRRO_EL0),
715     DO_BIT(HFGRTR, TPIDR_EL0),
716     DO_BIT(HFGRTR, TTBR0_EL1),
717     DO_BIT(HFGRTR, TTBR1_EL1),
718     DO_BIT(HFGRTR, VBAR_EL1),
719     DO_BIT(HFGRTR, ICC_IGRPENN_EL1),
720     DO_BIT(HFGRTR, ERRIDR_EL1),
721     DO_REV_BIT(HFGRTR, NSMPRI_EL1),
722     DO_REV_BIT(HFGRTR, NTPIDR2_EL0),
723 
724     /* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */
725     DO_BIT(HDFGRTR, DBGBCRN_EL1),
726     DO_BIT(HDFGRTR, DBGBVRN_EL1),
727     DO_BIT(HDFGRTR, DBGWCRN_EL1),
728     DO_BIT(HDFGRTR, DBGWVRN_EL1),
729     DO_BIT(HDFGRTR, MDSCR_EL1),
730     DO_BIT(HDFGRTR, DBGCLAIM),
731     DO_BIT(HDFGWTR, OSLAR_EL1),
732     DO_BIT(HDFGRTR, OSLSR_EL1),
733     DO_BIT(HDFGRTR, OSECCR_EL1),
734     DO_BIT(HDFGRTR, OSDLR_EL1),
735     DO_BIT(HDFGRTR, PMEVCNTRN_EL0),
736     DO_BIT(HDFGRTR, PMEVTYPERN_EL0),
737     DO_BIT(HDFGRTR, PMCCFILTR_EL0),
738     DO_BIT(HDFGRTR, PMCCNTR_EL0),
739     DO_BIT(HDFGRTR, PMCNTEN),
740     DO_BIT(HDFGRTR, PMINTEN),
741     DO_BIT(HDFGRTR, PMOVS),
742     DO_BIT(HDFGRTR, PMSELR_EL0),
743     DO_BIT(HDFGWTR, PMSWINC_EL0),
744     DO_BIT(HDFGWTR, PMCR_EL0),
745     DO_BIT(HDFGRTR, PMMIR_EL1),
746     DO_BIT(HDFGRTR, PMCEIDN_EL0),
747 
748     /* Trap bits in HFGITR_EL2, starting from bit 0 */
749     DO_BIT(HFGITR, ICIALLUIS),
750     DO_BIT(HFGITR, ICIALLU),
751     DO_BIT(HFGITR, ICIVAU),
752     DO_BIT(HFGITR, DCIVAC),
753     DO_BIT(HFGITR, DCISW),
754     DO_BIT(HFGITR, DCCSW),
755     DO_BIT(HFGITR, DCCISW),
756     DO_BIT(HFGITR, DCCVAU),
757     DO_BIT(HFGITR, DCCVAP),
758     DO_BIT(HFGITR, DCCVADP),
759     DO_BIT(HFGITR, DCCIVAC),
760     DO_BIT(HFGITR, DCZVA),
761     DO_BIT(HFGITR, ATS1E1R),
762     DO_BIT(HFGITR, ATS1E1W),
763     DO_BIT(HFGITR, ATS1E0R),
764     DO_BIT(HFGITR, ATS1E0W),
765     DO_BIT(HFGITR, ATS1E1RP),
766     DO_BIT(HFGITR, ATS1E1WP),
767     DO_BIT(HFGITR, TLBIVMALLE1OS),
768     DO_BIT(HFGITR, TLBIVAE1OS),
769     DO_BIT(HFGITR, TLBIASIDE1OS),
770     DO_BIT(HFGITR, TLBIVAAE1OS),
771     DO_BIT(HFGITR, TLBIVALE1OS),
772     DO_BIT(HFGITR, TLBIVAALE1OS),
773     DO_BIT(HFGITR, TLBIRVAE1OS),
774     DO_BIT(HFGITR, TLBIRVAAE1OS),
775     DO_BIT(HFGITR, TLBIRVALE1OS),
776     DO_BIT(HFGITR, TLBIRVAALE1OS),
777     DO_BIT(HFGITR, TLBIVMALLE1IS),
778     DO_BIT(HFGITR, TLBIVAE1IS),
779     DO_BIT(HFGITR, TLBIASIDE1IS),
780     DO_BIT(HFGITR, TLBIVAAE1IS),
781     DO_BIT(HFGITR, TLBIVALE1IS),
782     DO_BIT(HFGITR, TLBIVAALE1IS),
783     DO_BIT(HFGITR, TLBIRVAE1IS),
784     DO_BIT(HFGITR, TLBIRVAAE1IS),
785     DO_BIT(HFGITR, TLBIRVALE1IS),
786     DO_BIT(HFGITR, TLBIRVAALE1IS),
787     DO_BIT(HFGITR, TLBIRVAE1),
788     DO_BIT(HFGITR, TLBIRVAAE1),
789     DO_BIT(HFGITR, TLBIRVALE1),
790     DO_BIT(HFGITR, TLBIRVAALE1),
791     DO_BIT(HFGITR, TLBIVMALLE1),
792     DO_BIT(HFGITR, TLBIVAE1),
793     DO_BIT(HFGITR, TLBIASIDE1),
794     DO_BIT(HFGITR, TLBIVAAE1),
795     DO_BIT(HFGITR, TLBIVALE1),
796     DO_BIT(HFGITR, TLBIVAALE1),
797     DO_BIT(HFGITR, CFPRCTX),
798     DO_BIT(HFGITR, DVPRCTX),
799     DO_BIT(HFGITR, CPPRCTX),
800     DO_BIT(HFGITR, DCCVAC),
801 } FGTBit;
802 
803 #undef DO_BIT
804 #undef DO_REV_BIT
805 
806 typedef struct ARMCPRegInfo ARMCPRegInfo;
807 
808 /*
809  * Access functions for coprocessor registers. These cannot fail and
810  * may not raise exceptions.
811  */
812 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
813 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
814                        uint64_t value);
815 /* Access permission check functions for coprocessor registers. */
816 typedef CPAccessResult CPAccessFn(CPUARMState *env,
817                                   const ARMCPRegInfo *opaque,
818                                   bool isread);
819 /* Hook function for register reset */
820 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
821 
822 #define CP_ANY 0xff
823 
824 /* Definition of an ARM coprocessor register */
825 struct ARMCPRegInfo {
826     /* Name of register (useful mainly for debugging, need not be unique) */
827     const char *name;
828     /*
829      * Location of register: coprocessor number and (crn,crm,opc1,opc2)
830      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
831      * 'wildcard' field -- any value of that field in the MRC/MCR insn
832      * will be decoded to this register. The register read and write
833      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
834      * used by the program, so it is possible to register a wildcard and
835      * then behave differently on read/write if necessary.
836      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
837      * must both be zero.
838      * For AArch64-visible registers, opc0 is also used.
839      * Since there are no "coprocessors" in AArch64, cp is purely used as a
840      * way to distinguish (for KVM's benefit) guest-visible system registers
841      * from demuxed ones provided to preserve the "no side effects on
842      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
843      * visible (to match KVM's encoding); cp==0 will be converted to
844      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
845      */
846     uint8_t cp;
847     uint8_t crn;
848     uint8_t crm;
849     uint8_t opc0;
850     uint8_t opc1;
851     uint8_t opc2;
852     /* Execution state in which this register is visible: ARM_CP_STATE_* */
853     CPState state;
854     /* Register type: ARM_CP_* bits/values */
855     int type;
856     /* Access rights: PL*_[RW] */
857     CPAccessRights access;
858     /* Security state: ARM_CP_SECSTATE_* bits/values */
859     CPSecureState secure;
860     /*
861      * Which fine-grained trap register bit to check, if any. This
862      * value encodes both the trap register and bit within it.
863      */
864     FGTBit fgt;
865     /*
866      * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
867      * this register was defined: can be used to hand data through to the
868      * register read/write functions, since they are passed the ARMCPRegInfo*.
869      */
870     void *opaque;
871     /*
872      * Value of this register, if it is ARM_CP_CONST. Otherwise, if
873      * fieldoffset is non-zero, the reset value of the register.
874      */
875     uint64_t resetvalue;
876     /*
877      * Offset of the field in CPUARMState for this register.
878      * This is not needed if either:
879      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
880      *  2. both readfn and writefn are specified
881      */
882     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
883 
884     /*
885      * Offsets of the secure and non-secure fields in CPUARMState for the
886      * register if it is banked.  These fields are only used during the static
887      * registration of a register.  During hashing the bank associated
888      * with a given security state is copied to fieldoffset which is used from
889      * there on out.
890      *
891      * It is expected that register definitions use either fieldoffset or
892      * bank_fieldoffsets in the definition but not both.  It is also expected
893      * that both bank offsets are set when defining a banked register.  This
894      * use indicates that a register is banked.
895      */
896     ptrdiff_t bank_fieldoffsets[2];
897 
898     /*
899      * Function for making any access checks for this register in addition to
900      * those specified by the 'access' permissions bits. If NULL, no extra
901      * checks required. The access check is performed at runtime, not at
902      * translate time.
903      */
904     CPAccessFn *accessfn;
905     /*
906      * Function for handling reads of this register. If NULL, then reads
907      * will be done by loading from the offset into CPUARMState specified
908      * by fieldoffset.
909      */
910     CPReadFn *readfn;
911     /*
912      * Function for handling writes of this register. If NULL, then writes
913      * will be done by writing to the offset into CPUARMState specified
914      * by fieldoffset.
915      */
916     CPWriteFn *writefn;
917     /*
918      * Function for doing a "raw" read; used when we need to copy
919      * coprocessor state to the kernel for KVM or out for
920      * migration. This only needs to be provided if there is also a
921      * readfn and it has side effects (for instance clear-on-read bits).
922      */
923     CPReadFn *raw_readfn;
924     /*
925      * Function for doing a "raw" write; used when we need to copy KVM
926      * kernel coprocessor state into userspace, or for inbound
927      * migration. This only needs to be provided if there is also a
928      * writefn and it masks out "unwritable" bits or has write-one-to-clear
929      * or similar behaviour.
930      */
931     CPWriteFn *raw_writefn;
932     /*
933      * Function for resetting the register. If NULL, then reset will be done
934      * by writing resetvalue to the field specified in fieldoffset. If
935      * fieldoffset is 0 then no reset will be done.
936      */
937     CPResetFn *resetfn;
938 
939     /*
940      * "Original" writefn and readfn.
941      * For ARMv8.1-VHE register aliases, we overwrite the read/write
942      * accessor functions of various EL1/EL0 to perform the runtime
943      * check for which sysreg should actually be modified, and then
944      * forwards the operation.  Before overwriting the accessors,
945      * the original function is copied here, so that accesses that
946      * really do go to the EL1/EL0 version proceed normally.
947      * (The corresponding EL2 register is linked via opaque.)
948      */
949     CPReadFn *orig_readfn;
950     CPWriteFn *orig_writefn;
951 };
952 
953 /*
954  * Macros which are lvalues for the field in CPUARMState for the
955  * ARMCPRegInfo *ri.
956  */
957 #define CPREG_FIELD32(env, ri) \
958     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
959 #define CPREG_FIELD64(env, ri) \
960     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
961 
962 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
963                                        void *opaque);
964 
965 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
966 {
967     define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
968 }
969 
970 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
971                                         void *opaque, size_t len);
972 
973 #define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE)               \
974     do {                                                                \
975         QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
976         define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE,           \
977                                            ARRAY_SIZE(REGS));           \
978     } while (0)
979 
980 #define define_arm_cp_regs(CPU, REGS) \
981     define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
982 
983 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
984 
985 /*
986  * Definition of an ARM co-processor register as viewed from
987  * userspace. This is used for presenting sanitised versions of
988  * registers to userspace when emulating the Linux AArch64 CPU
989  * ID/feature ABI (advertised as HWCAP_CPUID).
990  */
991 typedef struct ARMCPRegUserSpaceInfo {
992     /* Name of register */
993     const char *name;
994 
995     /* Is the name actually a glob pattern */
996     bool is_glob;
997 
998     /* Only some bits are exported to user space */
999     uint64_t exported_bits;
1000 
1001     /* Fixed bits are applied after the mask */
1002     uint64_t fixed_bits;
1003 } ARMCPRegUserSpaceInfo;
1004 
1005 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
1006                                  const ARMCPRegUserSpaceInfo *mods,
1007                                  size_t mods_len);
1008 
1009 #define modify_arm_cp_regs(REGS, MODS)                                  \
1010     do {                                                                \
1011         QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
1012         QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0);                       \
1013         modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS),             \
1014                                     MODS, ARRAY_SIZE(MODS));            \
1015     } while (0)
1016 
1017 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1018 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1019                          uint64_t value);
1020 /* CPReadFn that can be used for read-as-zero behaviour */
1021 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1022 
1023 /* CPWriteFn that just writes the value to ri->fieldoffset */
1024 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value);
1025 
1026 /*
1027  * CPResetFn that does nothing, for use if no reset is required even
1028  * if fieldoffset is non zero.
1029  */
1030 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1031 
1032 /*
1033  * Return true if this reginfo struct's field in the cpu state struct
1034  * is 64 bits wide.
1035  */
1036 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1037 {
1038     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1039 }
1040 
1041 static inline bool cp_access_ok(int current_el,
1042                                 const ARMCPRegInfo *ri, int isread)
1043 {
1044     return (ri->access >> ((current_el * 2) + isread)) & 1;
1045 }
1046 
1047 /* Raw read of a coprocessor register (as needed for migration, etc) */
1048 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1049 
1050 /*
1051  * Return true if the cp register encoding is in the "feature ID space" as
1052  * defined by FEAT_IDST (and thus should be reported with ER_ELx.EC
1053  * as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED).
1054  */
1055 static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1,
1056                                                  uint8_t opc2,
1057                                                  uint8_t crn, uint8_t crm)
1058 {
1059     return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) &&
1060         crn == 0 && crm < 8;
1061 }
1062 
1063 /*
1064  * As arm_cpreg_encoding_in_idspace(), but take the encoding from an
1065  * ARMCPRegInfo.
1066  */
1067 static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri)
1068 {
1069     return ri->state == ARM_CP_STATE_AA64 &&
1070         arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2,
1071                                       ri->crn, ri->crm);
1072 }
1073 
1074 #ifdef CONFIG_USER_ONLY
1075 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1076 #else
1077 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1078 #endif
1079 
1080 CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool);
1081 
1082 #endif /* TARGET_ARM_CPREGS_H */
1083