xref: /openbmc/qemu/target/arm/cpregs.h (revision b14df228)
1 /*
2  * QEMU ARM CP Register access and descriptions
3  *
4  * Copyright (c) 2022 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #ifndef TARGET_ARM_CPREGS_H
22 #define TARGET_ARM_CPREGS_H
23 
24 /*
25  * ARMCPRegInfo type field bits:
26  */
27 enum {
28     /*
29      * Register must be handled specially during translation.
30      * The method is one of the values below:
31      */
32     ARM_CP_SPECIAL_MASK          = 0x000f,
33     /* Special: no change to PE state: writes ignored, reads ignored. */
34     ARM_CP_NOP                   = 0x0001,
35     /* Special: sysreg is WFI, for v5 and v6. */
36     ARM_CP_WFI                   = 0x0002,
37     /* Special: sysreg is NZCV. */
38     ARM_CP_NZCV                  = 0x0003,
39     /* Special: sysreg is CURRENTEL. */
40     ARM_CP_CURRENTEL             = 0x0004,
41     /* Special: sysreg is DC ZVA or similar. */
42     ARM_CP_DC_ZVA                = 0x0005,
43     ARM_CP_DC_GVA                = 0x0006,
44     ARM_CP_DC_GZVA               = 0x0007,
45 
46     /* Flag: reads produce resetvalue; writes ignored. */
47     ARM_CP_CONST                 = 1 << 4,
48     /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
49     ARM_CP_64BIT                 = 1 << 5,
50     /*
51      * Flag: TB should not be ended after a write to this register
52      * (the default is that the TB ends after cp writes).
53      */
54     ARM_CP_SUPPRESS_TB_END       = 1 << 6,
55     /*
56      * Flag: Permit a register definition to override a previous definition
57      * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
58      * or the old must have the ARM_CP_OVERRIDE bit set.
59      */
60     ARM_CP_OVERRIDE              = 1 << 7,
61     /*
62      * Flag: Register is an alias view of some underlying state which is also
63      * visible via another register, and that the other register is handling
64      * migration and reset; registers marked ARM_CP_ALIAS will not be migrated
65      * but may have their state set by syncing of register state from KVM.
66      */
67     ARM_CP_ALIAS                 = 1 << 8,
68     /*
69      * Flag: Register does I/O and therefore its accesses need to be marked
70      * with gen_io_start() and also end the TB. In particular, registers which
71      * implement clocks or timers require this.
72      */
73     ARM_CP_IO                    = 1 << 9,
74     /*
75      * Flag: Register has no underlying state and does not support raw access
76      * for state saving/loading; it will not be used for either migration or
77      * KVM state synchronization. Typically this is for "registers" which are
78      * actually used as instructions for cache maintenance and so on.
79      */
80     ARM_CP_NO_RAW                = 1 << 10,
81     /*
82      * Flag: The read or write hook might raise an exception; the generated
83      * code will synchronize the CPU state before calling the hook so that it
84      * is safe for the hook to call raise_exception().
85      */
86     ARM_CP_RAISES_EXC            = 1 << 11,
87     /*
88      * Flag: Writes to the sysreg might change the exception level - typically
89      * on older ARM chips. For those cases we need to re-read the new el when
90      * recomputing the translation flags.
91      */
92     ARM_CP_NEWEL                 = 1 << 12,
93     /*
94      * Flag: Access check for this sysreg is identical to accessing FPU state
95      * from an instruction: use translation fp_access_check().
96      */
97     ARM_CP_FPU                   = 1 << 13,
98     /*
99      * Flag: Access check for this sysreg is identical to accessing SVE state
100      * from an instruction: use translation sve_access_check().
101      */
102     ARM_CP_SVE                   = 1 << 14,
103     /* Flag: Do not expose in gdb sysreg xml. */
104     ARM_CP_NO_GDB                = 1 << 15,
105     /*
106      * Flags: If EL3 but not EL2...
107      *   - UNDEF: discard the cpreg,
108      *   -  KEEP: retain the cpreg as is,
109      *   -  C_NZ: set const on the cpreg, but retain resetvalue,
110      *   -  else: set const on the cpreg, zero resetvalue, aka RES0.
111      * See rule RJFFP in section D1.1.3 of DDI0487H.a.
112      */
113     ARM_CP_EL3_NO_EL2_UNDEF      = 1 << 16,
114     ARM_CP_EL3_NO_EL2_KEEP       = 1 << 17,
115     ARM_CP_EL3_NO_EL2_C_NZ       = 1 << 18,
116     /*
117      * Flag: Access check for this sysreg is constrained by the
118      * ARM pseudocode function CheckSMEAccess().
119      */
120     ARM_CP_SME                   = 1 << 19,
121 };
122 
123 /*
124  * Valid values for ARMCPRegInfo state field, indicating which of
125  * the AArch32 and AArch64 execution states this register is visible in.
126  * If the reginfo doesn't explicitly specify then it is AArch32 only.
127  * If the reginfo is declared to be visible in both states then a second
128  * reginfo is synthesised for the AArch32 view of the AArch64 register,
129  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
130  * Note that we rely on the values of these enums as we iterate through
131  * the various states in some places.
132  */
133 typedef enum {
134     ARM_CP_STATE_AA32 = 0,
135     ARM_CP_STATE_AA64 = 1,
136     ARM_CP_STATE_BOTH = 2,
137 } CPState;
138 
139 /*
140  * ARM CP register secure state flags.  These flags identify security state
141  * attributes for a given CP register entry.
142  * The existence of both or neither secure and non-secure flags indicates that
143  * the register has both a secure and non-secure hash entry.  A single one of
144  * these flags causes the register to only be hashed for the specified
145  * security state.
146  * Although definitions may have any combination of the S/NS bits, each
147  * registered entry will only have one to identify whether the entry is secure
148  * or non-secure.
149  */
150 typedef enum {
151     ARM_CP_SECSTATE_BOTH = 0,       /* define one cpreg for each secstate */
152     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
153     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
154 } CPSecureState;
155 
156 /*
157  * Access rights:
158  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
159  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
160  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
161  * (ie any of the privileged modes in Secure state, or Monitor mode).
162  * If a register is accessible in one privilege level it's always accessible
163  * in higher privilege levels too. Since "Secure PL1" also follows this rule
164  * (ie anything visible in PL2 is visible in S-PL1, some things are only
165  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
166  * terminology a little and call this PL3.
167  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
168  * with the ELx exception levels.
169  *
170  * If access permissions for a register are more complex than can be
171  * described with these bits, then use a laxer set of restrictions, and
172  * do the more restrictive/complex check inside a helper function.
173  */
174 typedef enum {
175     PL3_R = 0x80,
176     PL3_W = 0x40,
177     PL2_R = 0x20 | PL3_R,
178     PL2_W = 0x10 | PL3_W,
179     PL1_R = 0x08 | PL2_R,
180     PL1_W = 0x04 | PL2_W,
181     PL0_R = 0x02 | PL1_R,
182     PL0_W = 0x01 | PL1_W,
183 
184     /*
185      * For user-mode some registers are accessible to EL0 via a kernel
186      * trap-and-emulate ABI. In this case we define the read permissions
187      * as actually being PL0_R. However some bits of any given register
188      * may still be masked.
189      */
190 #ifdef CONFIG_USER_ONLY
191     PL0U_R = PL0_R,
192 #else
193     PL0U_R = PL1_R,
194 #endif
195 
196     PL3_RW = PL3_R | PL3_W,
197     PL2_RW = PL2_R | PL2_W,
198     PL1_RW = PL1_R | PL1_W,
199     PL0_RW = PL0_R | PL0_W,
200 } CPAccessRights;
201 
202 typedef enum CPAccessResult {
203     /* Access is permitted */
204     CP_ACCESS_OK = 0,
205 
206     /*
207      * Combined with one of the following, the low 2 bits indicate the
208      * target exception level.  If 0, the exception is taken to the usual
209      * target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
210      */
211     CP_ACCESS_EL_MASK = 3,
212 
213     /*
214      * Access fails due to a configurable trap or enable which would
215      * result in a categorized exception syndrome giving information about
216      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
217      * 0xc or 0x18).
218      */
219     CP_ACCESS_TRAP = (1 << 2),
220     CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
221     CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
222 
223     /*
224      * Access fails and results in an exception syndrome 0x0 ("uncategorized").
225      * Note that this is not a catch-all case -- the set of cases which may
226      * result in this failure is specifically defined by the architecture.
227      */
228     CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
229     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = CP_ACCESS_TRAP_UNCATEGORIZED | 2,
230     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = CP_ACCESS_TRAP_UNCATEGORIZED | 3,
231 } CPAccessResult;
232 
233 typedef struct ARMCPRegInfo ARMCPRegInfo;
234 
235 /*
236  * Access functions for coprocessor registers. These cannot fail and
237  * may not raise exceptions.
238  */
239 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
240 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
241                        uint64_t value);
242 /* Access permission check functions for coprocessor registers. */
243 typedef CPAccessResult CPAccessFn(CPUARMState *env,
244                                   const ARMCPRegInfo *opaque,
245                                   bool isread);
246 /* Hook function for register reset */
247 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
248 
249 #define CP_ANY 0xff
250 
251 /* Definition of an ARM coprocessor register */
252 struct ARMCPRegInfo {
253     /* Name of register (useful mainly for debugging, need not be unique) */
254     const char *name;
255     /*
256      * Location of register: coprocessor number and (crn,crm,opc1,opc2)
257      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
258      * 'wildcard' field -- any value of that field in the MRC/MCR insn
259      * will be decoded to this register. The register read and write
260      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
261      * used by the program, so it is possible to register a wildcard and
262      * then behave differently on read/write if necessary.
263      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
264      * must both be zero.
265      * For AArch64-visible registers, opc0 is also used.
266      * Since there are no "coprocessors" in AArch64, cp is purely used as a
267      * way to distinguish (for KVM's benefit) guest-visible system registers
268      * from demuxed ones provided to preserve the "no side effects on
269      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
270      * visible (to match KVM's encoding); cp==0 will be converted to
271      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
272      */
273     uint8_t cp;
274     uint8_t crn;
275     uint8_t crm;
276     uint8_t opc0;
277     uint8_t opc1;
278     uint8_t opc2;
279     /* Execution state in which this register is visible: ARM_CP_STATE_* */
280     CPState state;
281     /* Register type: ARM_CP_* bits/values */
282     int type;
283     /* Access rights: PL*_[RW] */
284     CPAccessRights access;
285     /* Security state: ARM_CP_SECSTATE_* bits/values */
286     CPSecureState secure;
287     /*
288      * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
289      * this register was defined: can be used to hand data through to the
290      * register read/write functions, since they are passed the ARMCPRegInfo*.
291      */
292     void *opaque;
293     /*
294      * Value of this register, if it is ARM_CP_CONST. Otherwise, if
295      * fieldoffset is non-zero, the reset value of the register.
296      */
297     uint64_t resetvalue;
298     /*
299      * Offset of the field in CPUARMState for this register.
300      * This is not needed if either:
301      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
302      *  2. both readfn and writefn are specified
303      */
304     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
305 
306     /*
307      * Offsets of the secure and non-secure fields in CPUARMState for the
308      * register if it is banked.  These fields are only used during the static
309      * registration of a register.  During hashing the bank associated
310      * with a given security state is copied to fieldoffset which is used from
311      * there on out.
312      *
313      * It is expected that register definitions use either fieldoffset or
314      * bank_fieldoffsets in the definition but not both.  It is also expected
315      * that both bank offsets are set when defining a banked register.  This
316      * use indicates that a register is banked.
317      */
318     ptrdiff_t bank_fieldoffsets[2];
319 
320     /*
321      * Function for making any access checks for this register in addition to
322      * those specified by the 'access' permissions bits. If NULL, no extra
323      * checks required. The access check is performed at runtime, not at
324      * translate time.
325      */
326     CPAccessFn *accessfn;
327     /*
328      * Function for handling reads of this register. If NULL, then reads
329      * will be done by loading from the offset into CPUARMState specified
330      * by fieldoffset.
331      */
332     CPReadFn *readfn;
333     /*
334      * Function for handling writes of this register. If NULL, then writes
335      * will be done by writing to the offset into CPUARMState specified
336      * by fieldoffset.
337      */
338     CPWriteFn *writefn;
339     /*
340      * Function for doing a "raw" read; used when we need to copy
341      * coprocessor state to the kernel for KVM or out for
342      * migration. This only needs to be provided if there is also a
343      * readfn and it has side effects (for instance clear-on-read bits).
344      */
345     CPReadFn *raw_readfn;
346     /*
347      * Function for doing a "raw" write; used when we need to copy KVM
348      * kernel coprocessor state into userspace, or for inbound
349      * migration. This only needs to be provided if there is also a
350      * writefn and it masks out "unwritable" bits or has write-one-to-clear
351      * or similar behaviour.
352      */
353     CPWriteFn *raw_writefn;
354     /*
355      * Function for resetting the register. If NULL, then reset will be done
356      * by writing resetvalue to the field specified in fieldoffset. If
357      * fieldoffset is 0 then no reset will be done.
358      */
359     CPResetFn *resetfn;
360 
361     /*
362      * "Original" writefn and readfn.
363      * For ARMv8.1-VHE register aliases, we overwrite the read/write
364      * accessor functions of various EL1/EL0 to perform the runtime
365      * check for which sysreg should actually be modified, and then
366      * forwards the operation.  Before overwriting the accessors,
367      * the original function is copied here, so that accesses that
368      * really do go to the EL1/EL0 version proceed normally.
369      * (The corresponding EL2 register is linked via opaque.)
370      */
371     CPReadFn *orig_readfn;
372     CPWriteFn *orig_writefn;
373 };
374 
375 /*
376  * Macros which are lvalues for the field in CPUARMState for the
377  * ARMCPRegInfo *ri.
378  */
379 #define CPREG_FIELD32(env, ri) \
380     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
381 #define CPREG_FIELD64(env, ri) \
382     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
383 
384 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
385                                        void *opaque);
386 
387 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
388 {
389     define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
390 }
391 
392 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
393                                         void *opaque, size_t len);
394 
395 #define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE)               \
396     do {                                                                \
397         QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
398         define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE,           \
399                                            ARRAY_SIZE(REGS));           \
400     } while (0)
401 
402 #define define_arm_cp_regs(CPU, REGS) \
403     define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
404 
405 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
406 
407 /*
408  * Definition of an ARM co-processor register as viewed from
409  * userspace. This is used for presenting sanitised versions of
410  * registers to userspace when emulating the Linux AArch64 CPU
411  * ID/feature ABI (advertised as HWCAP_CPUID).
412  */
413 typedef struct ARMCPRegUserSpaceInfo {
414     /* Name of register */
415     const char *name;
416 
417     /* Is the name actually a glob pattern */
418     bool is_glob;
419 
420     /* Only some bits are exported to user space */
421     uint64_t exported_bits;
422 
423     /* Fixed bits are applied after the mask */
424     uint64_t fixed_bits;
425 } ARMCPRegUserSpaceInfo;
426 
427 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
428                                  const ARMCPRegUserSpaceInfo *mods,
429                                  size_t mods_len);
430 
431 #define modify_arm_cp_regs(REGS, MODS)                                  \
432     do {                                                                \
433         QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
434         QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0);                       \
435         modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS),             \
436                                     MODS, ARRAY_SIZE(MODS));            \
437     } while (0)
438 
439 /* CPWriteFn that can be used to implement writes-ignored behaviour */
440 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
441                          uint64_t value);
442 /* CPReadFn that can be used for read-as-zero behaviour */
443 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
444 
445 /* CPWriteFn that just writes the value to ri->fieldoffset */
446 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value);
447 
448 /*
449  * CPResetFn that does nothing, for use if no reset is required even
450  * if fieldoffset is non zero.
451  */
452 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
453 
454 /*
455  * Return true if this reginfo struct's field in the cpu state struct
456  * is 64 bits wide.
457  */
458 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
459 {
460     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
461 }
462 
463 static inline bool cp_access_ok(int current_el,
464                                 const ARMCPRegInfo *ri, int isread)
465 {
466     return (ri->access >> ((current_el * 2) + isread)) & 1;
467 }
468 
469 /* Raw read of a coprocessor register (as needed for migration, etc) */
470 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
471 
472 /*
473  * Return true if the cp register encoding is in the "feature ID space" as
474  * defined by FEAT_IDST (and thus should be reported with ER_ELx.EC
475  * as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED).
476  */
477 static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1,
478                                                  uint8_t opc2,
479                                                  uint8_t crn, uint8_t crm)
480 {
481     return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) &&
482         crn == 0 && crm < 8;
483 }
484 
485 /*
486  * As arm_cpreg_encoding_in_idspace(), but take the encoding from an
487  * ARMCPRegInfo.
488  */
489 static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri)
490 {
491     return ri->state == ARM_CP_STATE_AA64 &&
492         arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2,
493                                       ri->crn, ri->crm);
494 }
495 
496 #endif /* TARGET_ARM_CPREGS_H */
497