xref: /openbmc/qemu/target/arm/cpregs.h (revision 97ec4d21)
1 /*
2  * QEMU ARM CP Register access and descriptions
3  *
4  * Copyright (c) 2022 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #ifndef TARGET_ARM_CPREGS_H
22 #define TARGET_ARM_CPREGS_H
23 
24 /*
25  * ARMCPRegInfo type field bits:
26  */
27 enum {
28     /*
29      * Register must be handled specially during translation.
30      * The method is one of the values below:
31      */
32     ARM_CP_SPECIAL_MASK          = 0x000f,
33     /* Special: no change to PE state: writes ignored, reads ignored. */
34     ARM_CP_NOP                   = 0x0001,
35     /* Special: sysreg is WFI, for v5 and v6. */
36     ARM_CP_WFI                   = 0x0002,
37     /* Special: sysreg is NZCV. */
38     ARM_CP_NZCV                  = 0x0003,
39     /* Special: sysreg is CURRENTEL. */
40     ARM_CP_CURRENTEL             = 0x0004,
41     /* Special: sysreg is DC ZVA or similar. */
42     ARM_CP_DC_ZVA                = 0x0005,
43     ARM_CP_DC_GVA                = 0x0006,
44     ARM_CP_DC_GZVA               = 0x0007,
45 
46     /* Flag: reads produce resetvalue; writes ignored. */
47     ARM_CP_CONST                 = 1 << 4,
48     /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
49     ARM_CP_64BIT                 = 1 << 5,
50     /*
51      * Flag: TB should not be ended after a write to this register
52      * (the default is that the TB ends after cp writes).
53      */
54     ARM_CP_SUPPRESS_TB_END       = 1 << 6,
55     /*
56      * Flag: Permit a register definition to override a previous definition
57      * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
58      * or the old must have the ARM_CP_OVERRIDE bit set.
59      */
60     ARM_CP_OVERRIDE              = 1 << 7,
61     /*
62      * Flag: Register is an alias view of some underlying state which is also
63      * visible via another register, and that the other register is handling
64      * migration and reset; registers marked ARM_CP_ALIAS will not be migrated
65      * but may have their state set by syncing of register state from KVM.
66      */
67     ARM_CP_ALIAS                 = 1 << 8,
68     /*
69      * Flag: Register does I/O and therefore its accesses need to be marked
70      * with gen_io_start() and also end the TB. In particular, registers which
71      * implement clocks or timers require this.
72      */
73     ARM_CP_IO                    = 1 << 9,
74     /*
75      * Flag: Register has no underlying state and does not support raw access
76      * for state saving/loading; it will not be used for either migration or
77      * KVM state synchronization. Typically this is for "registers" which are
78      * actually used as instructions for cache maintenance and so on.
79      */
80     ARM_CP_NO_RAW                = 1 << 10,
81     /*
82      * Flag: The read or write hook might raise an exception; the generated
83      * code will synchronize the CPU state before calling the hook so that it
84      * is safe for the hook to call raise_exception().
85      */
86     ARM_CP_RAISES_EXC            = 1 << 11,
87     /*
88      * Flag: Writes to the sysreg might change the exception level - typically
89      * on older ARM chips. For those cases we need to re-read the new el when
90      * recomputing the translation flags.
91      */
92     ARM_CP_NEWEL                 = 1 << 12,
93     /*
94      * Flag: Access check for this sysreg is identical to accessing FPU state
95      * from an instruction: use translation fp_access_check().
96      */
97     ARM_CP_FPU                   = 1 << 13,
98     /*
99      * Flag: Access check for this sysreg is identical to accessing SVE state
100      * from an instruction: use translation sve_access_check().
101      */
102     ARM_CP_SVE                   = 1 << 14,
103     /* Flag: Do not expose in gdb sysreg xml. */
104     ARM_CP_NO_GDB                = 1 << 15,
105     /*
106      * Flags: If EL3 but not EL2...
107      *   - UNDEF: discard the cpreg,
108      *   -  KEEP: retain the cpreg as is,
109      *   -  C_NZ: set const on the cpreg, but retain resetvalue,
110      *   -  else: set const on the cpreg, zero resetvalue, aka RES0.
111      * See rule RJFFP in section D1.1.3 of DDI0487H.a.
112      */
113     ARM_CP_EL3_NO_EL2_UNDEF      = 1 << 16,
114     ARM_CP_EL3_NO_EL2_KEEP       = 1 << 17,
115     ARM_CP_EL3_NO_EL2_C_NZ       = 1 << 18,
116 };
117 
118 /*
119  * Valid values for ARMCPRegInfo state field, indicating which of
120  * the AArch32 and AArch64 execution states this register is visible in.
121  * If the reginfo doesn't explicitly specify then it is AArch32 only.
122  * If the reginfo is declared to be visible in both states then a second
123  * reginfo is synthesised for the AArch32 view of the AArch64 register,
124  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
125  * Note that we rely on the values of these enums as we iterate through
126  * the various states in some places.
127  */
128 typedef enum {
129     ARM_CP_STATE_AA32 = 0,
130     ARM_CP_STATE_AA64 = 1,
131     ARM_CP_STATE_BOTH = 2,
132 } CPState;
133 
134 /*
135  * ARM CP register secure state flags.  These flags identify security state
136  * attributes for a given CP register entry.
137  * The existence of both or neither secure and non-secure flags indicates that
138  * the register has both a secure and non-secure hash entry.  A single one of
139  * these flags causes the register to only be hashed for the specified
140  * security state.
141  * Although definitions may have any combination of the S/NS bits, each
142  * registered entry will only have one to identify whether the entry is secure
143  * or non-secure.
144  */
145 typedef enum {
146     ARM_CP_SECSTATE_BOTH = 0,       /* define one cpreg for each secstate */
147     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
148     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
149 } CPSecureState;
150 
151 /*
152  * Access rights:
153  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
154  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
155  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
156  * (ie any of the privileged modes in Secure state, or Monitor mode).
157  * If a register is accessible in one privilege level it's always accessible
158  * in higher privilege levels too. Since "Secure PL1" also follows this rule
159  * (ie anything visible in PL2 is visible in S-PL1, some things are only
160  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
161  * terminology a little and call this PL3.
162  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
163  * with the ELx exception levels.
164  *
165  * If access permissions for a register are more complex than can be
166  * described with these bits, then use a laxer set of restrictions, and
167  * do the more restrictive/complex check inside a helper function.
168  */
169 typedef enum {
170     PL3_R = 0x80,
171     PL3_W = 0x40,
172     PL2_R = 0x20 | PL3_R,
173     PL2_W = 0x10 | PL3_W,
174     PL1_R = 0x08 | PL2_R,
175     PL1_W = 0x04 | PL2_W,
176     PL0_R = 0x02 | PL1_R,
177     PL0_W = 0x01 | PL1_W,
178 
179     /*
180      * For user-mode some registers are accessible to EL0 via a kernel
181      * trap-and-emulate ABI. In this case we define the read permissions
182      * as actually being PL0_R. However some bits of any given register
183      * may still be masked.
184      */
185 #ifdef CONFIG_USER_ONLY
186     PL0U_R = PL0_R,
187 #else
188     PL0U_R = PL1_R,
189 #endif
190 
191     PL3_RW = PL3_R | PL3_W,
192     PL2_RW = PL2_R | PL2_W,
193     PL1_RW = PL1_R | PL1_W,
194     PL0_RW = PL0_R | PL0_W,
195 } CPAccessRights;
196 
197 typedef enum CPAccessResult {
198     /* Access is permitted */
199     CP_ACCESS_OK = 0,
200 
201     /*
202      * Combined with one of the following, the low 2 bits indicate the
203      * target exception level.  If 0, the exception is taken to the usual
204      * target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
205      */
206     CP_ACCESS_EL_MASK = 3,
207 
208     /*
209      * Access fails due to a configurable trap or enable which would
210      * result in a categorized exception syndrome giving information about
211      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
212      * 0xc or 0x18).
213      */
214     CP_ACCESS_TRAP = (1 << 2),
215     CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
216     CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
217 
218     /*
219      * Access fails and results in an exception syndrome 0x0 ("uncategorized").
220      * Note that this is not a catch-all case -- the set of cases which may
221      * result in this failure is specifically defined by the architecture.
222      */
223     CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
224     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = CP_ACCESS_TRAP_UNCATEGORIZED | 2,
225     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = CP_ACCESS_TRAP_UNCATEGORIZED | 3,
226 } CPAccessResult;
227 
228 typedef struct ARMCPRegInfo ARMCPRegInfo;
229 
230 /*
231  * Access functions for coprocessor registers. These cannot fail and
232  * may not raise exceptions.
233  */
234 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
235 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
236                        uint64_t value);
237 /* Access permission check functions for coprocessor registers. */
238 typedef CPAccessResult CPAccessFn(CPUARMState *env,
239                                   const ARMCPRegInfo *opaque,
240                                   bool isread);
241 /* Hook function for register reset */
242 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
243 
244 #define CP_ANY 0xff
245 
246 /* Definition of an ARM coprocessor register */
247 struct ARMCPRegInfo {
248     /* Name of register (useful mainly for debugging, need not be unique) */
249     const char *name;
250     /*
251      * Location of register: coprocessor number and (crn,crm,opc1,opc2)
252      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
253      * 'wildcard' field -- any value of that field in the MRC/MCR insn
254      * will be decoded to this register. The register read and write
255      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
256      * used by the program, so it is possible to register a wildcard and
257      * then behave differently on read/write if necessary.
258      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
259      * must both be zero.
260      * For AArch64-visible registers, opc0 is also used.
261      * Since there are no "coprocessors" in AArch64, cp is purely used as a
262      * way to distinguish (for KVM's benefit) guest-visible system registers
263      * from demuxed ones provided to preserve the "no side effects on
264      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
265      * visible (to match KVM's encoding); cp==0 will be converted to
266      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
267      */
268     uint8_t cp;
269     uint8_t crn;
270     uint8_t crm;
271     uint8_t opc0;
272     uint8_t opc1;
273     uint8_t opc2;
274     /* Execution state in which this register is visible: ARM_CP_STATE_* */
275     CPState state;
276     /* Register type: ARM_CP_* bits/values */
277     int type;
278     /* Access rights: PL*_[RW] */
279     CPAccessRights access;
280     /* Security state: ARM_CP_SECSTATE_* bits/values */
281     CPSecureState secure;
282     /*
283      * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
284      * this register was defined: can be used to hand data through to the
285      * register read/write functions, since they are passed the ARMCPRegInfo*.
286      */
287     void *opaque;
288     /*
289      * Value of this register, if it is ARM_CP_CONST. Otherwise, if
290      * fieldoffset is non-zero, the reset value of the register.
291      */
292     uint64_t resetvalue;
293     /*
294      * Offset of the field in CPUARMState for this register.
295      * This is not needed if either:
296      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
297      *  2. both readfn and writefn are specified
298      */
299     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
300 
301     /*
302      * Offsets of the secure and non-secure fields in CPUARMState for the
303      * register if it is banked.  These fields are only used during the static
304      * registration of a register.  During hashing the bank associated
305      * with a given security state is copied to fieldoffset which is used from
306      * there on out.
307      *
308      * It is expected that register definitions use either fieldoffset or
309      * bank_fieldoffsets in the definition but not both.  It is also expected
310      * that both bank offsets are set when defining a banked register.  This
311      * use indicates that a register is banked.
312      */
313     ptrdiff_t bank_fieldoffsets[2];
314 
315     /*
316      * Function for making any access checks for this register in addition to
317      * those specified by the 'access' permissions bits. If NULL, no extra
318      * checks required. The access check is performed at runtime, not at
319      * translate time.
320      */
321     CPAccessFn *accessfn;
322     /*
323      * Function for handling reads of this register. If NULL, then reads
324      * will be done by loading from the offset into CPUARMState specified
325      * by fieldoffset.
326      */
327     CPReadFn *readfn;
328     /*
329      * Function for handling writes of this register. If NULL, then writes
330      * will be done by writing to the offset into CPUARMState specified
331      * by fieldoffset.
332      */
333     CPWriteFn *writefn;
334     /*
335      * Function for doing a "raw" read; used when we need to copy
336      * coprocessor state to the kernel for KVM or out for
337      * migration. This only needs to be provided if there is also a
338      * readfn and it has side effects (for instance clear-on-read bits).
339      */
340     CPReadFn *raw_readfn;
341     /*
342      * Function for doing a "raw" write; used when we need to copy KVM
343      * kernel coprocessor state into userspace, or for inbound
344      * migration. This only needs to be provided if there is also a
345      * writefn and it masks out "unwritable" bits or has write-one-to-clear
346      * or similar behaviour.
347      */
348     CPWriteFn *raw_writefn;
349     /*
350      * Function for resetting the register. If NULL, then reset will be done
351      * by writing resetvalue to the field specified in fieldoffset. If
352      * fieldoffset is 0 then no reset will be done.
353      */
354     CPResetFn *resetfn;
355 
356     /*
357      * "Original" writefn and readfn.
358      * For ARMv8.1-VHE register aliases, we overwrite the read/write
359      * accessor functions of various EL1/EL0 to perform the runtime
360      * check for which sysreg should actually be modified, and then
361      * forwards the operation.  Before overwriting the accessors,
362      * the original function is copied here, so that accesses that
363      * really do go to the EL1/EL0 version proceed normally.
364      * (The corresponding EL2 register is linked via opaque.)
365      */
366     CPReadFn *orig_readfn;
367     CPWriteFn *orig_writefn;
368 };
369 
370 /*
371  * Macros which are lvalues for the field in CPUARMState for the
372  * ARMCPRegInfo *ri.
373  */
374 #define CPREG_FIELD32(env, ri) \
375     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
376 #define CPREG_FIELD64(env, ri) \
377     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
378 
379 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
380                                        void *opaque);
381 
382 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
383 {
384     define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
385 }
386 
387 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
388                                         void *opaque, size_t len);
389 
390 #define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE)               \
391     do {                                                                \
392         QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
393         define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE,           \
394                                            ARRAY_SIZE(REGS));           \
395     } while (0)
396 
397 #define define_arm_cp_regs(CPU, REGS) \
398     define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
399 
400 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
401 
402 /*
403  * Definition of an ARM co-processor register as viewed from
404  * userspace. This is used for presenting sanitised versions of
405  * registers to userspace when emulating the Linux AArch64 CPU
406  * ID/feature ABI (advertised as HWCAP_CPUID).
407  */
408 typedef struct ARMCPRegUserSpaceInfo {
409     /* Name of register */
410     const char *name;
411 
412     /* Is the name actually a glob pattern */
413     bool is_glob;
414 
415     /* Only some bits are exported to user space */
416     uint64_t exported_bits;
417 
418     /* Fixed bits are applied after the mask */
419     uint64_t fixed_bits;
420 } ARMCPRegUserSpaceInfo;
421 
422 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
423                                  const ARMCPRegUserSpaceInfo *mods,
424                                  size_t mods_len);
425 
426 #define modify_arm_cp_regs(REGS, MODS)                                  \
427     do {                                                                \
428         QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
429         QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0);                       \
430         modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS),             \
431                                     MODS, ARRAY_SIZE(MODS));            \
432     } while (0)
433 
434 /* CPWriteFn that can be used to implement writes-ignored behaviour */
435 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
436                          uint64_t value);
437 /* CPReadFn that can be used for read-as-zero behaviour */
438 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
439 
440 /*
441  * CPResetFn that does nothing, for use if no reset is required even
442  * if fieldoffset is non zero.
443  */
444 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
445 
446 /*
447  * Return true if this reginfo struct's field in the cpu state struct
448  * is 64 bits wide.
449  */
450 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
451 {
452     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
453 }
454 
455 static inline bool cp_access_ok(int current_el,
456                                 const ARMCPRegInfo *ri, int isread)
457 {
458     return (ri->access >> ((current_el * 2) + isread)) & 1;
459 }
460 
461 /* Raw read of a coprocessor register (as needed for migration, etc) */
462 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
463 
464 #endif /* TARGET_ARM_CPREGS_H */
465