xref: /openbmc/qemu/target/arm/arm-powerctl.c (revision d27532e4)
1 /*
2  * QEMU support -- ARM Power Control specific functions.
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 #include "sysemu/tcg.h"
19 
20 #ifndef DEBUG_ARM_POWERCTL
21 #define DEBUG_ARM_POWERCTL 0
22 #endif
23 
24 #define DPRINTF(fmt, args...) \
25     do { \
26         if (DEBUG_ARM_POWERCTL) { \
27             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
28         } \
29     } while (0)
30 
31 CPUState *arm_get_cpu_by_id(uint64_t id)
32 {
33     CPUState *cpu;
34 
35     DPRINTF("cpu %" PRId64 "\n", id);
36 
37     CPU_FOREACH(cpu) {
38         ARMCPU *armcpu = ARM_CPU(cpu);
39 
40         if (armcpu->mp_affinity == id) {
41             return cpu;
42         }
43     }
44 
45     qemu_log_mask(LOG_GUEST_ERROR,
46                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
47                   __func__, id);
48 
49     return NULL;
50 }
51 
52 struct CpuOnInfo {
53     uint64_t entry;
54     uint64_t context_id;
55     uint32_t target_el;
56     bool target_aa64;
57 };
58 
59 
60 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
61                                       run_on_cpu_data data)
62 {
63     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
64     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
65 
66     /* Initialize the cpu we are turning on */
67     cpu_reset(target_cpu_state);
68     target_cpu_state->halted = 0;
69 
70     if (info->target_aa64) {
71         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
72                                                  ARM_FEATURE_EL3)) {
73             /*
74              * As target mode is AArch64, we need to set lower
75              * exception level (the requested level 2) to AArch64
76              */
77             target_cpu->env.cp15.scr_el3 |= SCR_RW;
78         }
79 
80         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
81                                                  ARM_FEATURE_EL2)) {
82             /*
83              * As target mode is AArch64, we need to set lower
84              * exception level (the requested level 1) to AArch64
85              */
86             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
87         }
88 
89         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
90     } else {
91         /* We are requested to boot in AArch32 mode */
92         static const uint32_t mode_for_el[] = { 0,
93                                                 ARM_CPU_MODE_SVC,
94                                                 ARM_CPU_MODE_HYP,
95                                                 ARM_CPU_MODE_SVC };
96 
97         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
98                    CPSRWriteRaw);
99     }
100 
101     if (info->target_el == 3) {
102         /* Processor is in secure mode */
103         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
104     } else {
105         /* Processor is not in secure mode */
106         target_cpu->env.cp15.scr_el3 |= SCR_NS;
107 
108         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
109         target_cpu->env.cp15.nsacr |= 3 << 10;
110 
111         /*
112          * If QEMU is providing the equivalent of EL3 firmware, then we need
113          * to make sure a CPU targeting EL2 comes out of reset with a
114          * functional HVC insn.
115          */
116         if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
117             && info->target_el == 2) {
118             target_cpu->env.cp15.scr_el3 |= SCR_HCE;
119         }
120     }
121 
122     /* We check if the started CPU is now at the correct level */
123     assert(info->target_el == arm_current_el(&target_cpu->env));
124 
125     if (info->target_aa64) {
126         target_cpu->env.xregs[0] = info->context_id;
127     } else {
128         target_cpu->env.regs[0] = info->context_id;
129     }
130 
131     if (tcg_enabled()) {
132         /* CP15 update requires rebuilding hflags */
133         arm_rebuild_hflags(&target_cpu->env);
134     }
135 
136     /* Start the new CPU at the requested address */
137     cpu_set_pc(target_cpu_state, info->entry);
138 
139     g_free(info);
140 
141     /* Finally set the power status */
142     assert(qemu_mutex_iothread_locked());
143     target_cpu->power_state = PSCI_ON;
144 }
145 
146 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
147                    uint32_t target_el, bool target_aa64)
148 {
149     CPUState *target_cpu_state;
150     ARMCPU *target_cpu;
151     struct CpuOnInfo *info;
152 
153     assert(qemu_mutex_iothread_locked());
154 
155     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
156             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
157             context_id);
158 
159     /* requested EL level need to be in the 1 to 3 range */
160     assert((target_el > 0) && (target_el < 4));
161 
162     if (target_aa64 && (entry & 3)) {
163         /*
164          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
165          * aligned.
166          */
167         return QEMU_ARM_POWERCTL_INVALID_PARAM;
168     }
169 
170     /* Retrieve the cpu we are powering up */
171     target_cpu_state = arm_get_cpu_by_id(cpuid);
172     if (!target_cpu_state) {
173         /* The cpu was not found */
174         return QEMU_ARM_POWERCTL_INVALID_PARAM;
175     }
176 
177     target_cpu = ARM_CPU(target_cpu_state);
178     if (target_cpu->power_state == PSCI_ON) {
179         qemu_log_mask(LOG_GUEST_ERROR,
180                       "[ARM]%s: CPU %" PRId64 " is already on\n",
181                       __func__, cpuid);
182         return QEMU_ARM_POWERCTL_ALREADY_ON;
183     }
184 
185     /*
186      * The newly brought CPU is requested to enter the exception level
187      * "target_el" and be in the requested mode (AArch64 or AArch32).
188      */
189 
190     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
191         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
192         /*
193          * The CPU does not support requested level
194          */
195         return QEMU_ARM_POWERCTL_INVALID_PARAM;
196     }
197 
198     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
199         /*
200          * For now we don't support booting an AArch64 CPU in AArch32 mode
201          * TODO: We should add this support later
202          */
203         qemu_log_mask(LOG_UNIMP,
204                       "[ARM]%s: Starting AArch64 CPU %" PRId64
205                       " in AArch32 mode is not supported yet\n",
206                       __func__, cpuid);
207         return QEMU_ARM_POWERCTL_INVALID_PARAM;
208     }
209 
210     /*
211      * If another CPU has powered the target on we are in the state
212      * ON_PENDING and additional attempts to power on the CPU should
213      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
214      * spec)
215      */
216     if (target_cpu->power_state == PSCI_ON_PENDING) {
217         qemu_log_mask(LOG_GUEST_ERROR,
218                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
219                       __func__, cpuid);
220         return QEMU_ARM_POWERCTL_ON_PENDING;
221     }
222 
223     /* To avoid racing with a CPU we are just kicking off we do the
224      * final bit of preparation for the work in the target CPUs
225      * context.
226      */
227     info = g_new(struct CpuOnInfo, 1);
228     info->entry = entry;
229     info->context_id = context_id;
230     info->target_el = target_el;
231     info->target_aa64 = target_aa64;
232 
233     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
234                      RUN_ON_CPU_HOST_PTR(info));
235 
236     /* We are good to go */
237     return QEMU_ARM_POWERCTL_RET_SUCCESS;
238 }
239 
240 static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
241                                                 run_on_cpu_data data)
242 {
243     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
244 
245     /* Initialize the cpu we are turning on */
246     cpu_reset(target_cpu_state);
247     target_cpu_state->halted = 0;
248 
249     /* Finally set the power status */
250     assert(qemu_mutex_iothread_locked());
251     target_cpu->power_state = PSCI_ON;
252 }
253 
254 int arm_set_cpu_on_and_reset(uint64_t cpuid)
255 {
256     CPUState *target_cpu_state;
257     ARMCPU *target_cpu;
258 
259     assert(qemu_mutex_iothread_locked());
260 
261     /* Retrieve the cpu we are powering up */
262     target_cpu_state = arm_get_cpu_by_id(cpuid);
263     if (!target_cpu_state) {
264         /* The cpu was not found */
265         return QEMU_ARM_POWERCTL_INVALID_PARAM;
266     }
267 
268     target_cpu = ARM_CPU(target_cpu_state);
269     if (target_cpu->power_state == PSCI_ON) {
270         qemu_log_mask(LOG_GUEST_ERROR,
271                       "[ARM]%s: CPU %" PRId64 " is already on\n",
272                       __func__, cpuid);
273         return QEMU_ARM_POWERCTL_ALREADY_ON;
274     }
275 
276     /*
277      * If another CPU has powered the target on we are in the state
278      * ON_PENDING and additional attempts to power on the CPU should
279      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
280      * spec)
281      */
282     if (target_cpu->power_state == PSCI_ON_PENDING) {
283         qemu_log_mask(LOG_GUEST_ERROR,
284                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
285                       __func__, cpuid);
286         return QEMU_ARM_POWERCTL_ON_PENDING;
287     }
288 
289     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
290                      RUN_ON_CPU_NULL);
291 
292     /* We are good to go */
293     return QEMU_ARM_POWERCTL_RET_SUCCESS;
294 }
295 
296 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
297                                        run_on_cpu_data data)
298 {
299     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
300 
301     assert(qemu_mutex_iothread_locked());
302     target_cpu->power_state = PSCI_OFF;
303     target_cpu_state->halted = 1;
304     target_cpu_state->exception_index = EXCP_HLT;
305 }
306 
307 int arm_set_cpu_off(uint64_t cpuid)
308 {
309     CPUState *target_cpu_state;
310     ARMCPU *target_cpu;
311 
312     assert(qemu_mutex_iothread_locked());
313 
314     DPRINTF("cpu %" PRId64 "\n", cpuid);
315 
316     /* change to the cpu we are powering up */
317     target_cpu_state = arm_get_cpu_by_id(cpuid);
318     if (!target_cpu_state) {
319         return QEMU_ARM_POWERCTL_INVALID_PARAM;
320     }
321     target_cpu = ARM_CPU(target_cpu_state);
322     if (target_cpu->power_state == PSCI_OFF) {
323         qemu_log_mask(LOG_GUEST_ERROR,
324                       "[ARM]%s: CPU %" PRId64 " is already off\n",
325                       __func__, cpuid);
326         return QEMU_ARM_POWERCTL_IS_OFF;
327     }
328 
329     /* Queue work to run under the target vCPUs context */
330     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
331                      RUN_ON_CPU_NULL);
332 
333     return QEMU_ARM_POWERCTL_RET_SUCCESS;
334 }
335 
336 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
337                                      run_on_cpu_data data)
338 {
339     /* Reset the cpu */
340     cpu_reset(target_cpu_state);
341 }
342 
343 int arm_reset_cpu(uint64_t cpuid)
344 {
345     CPUState *target_cpu_state;
346     ARMCPU *target_cpu;
347 
348     assert(qemu_mutex_iothread_locked());
349 
350     DPRINTF("cpu %" PRId64 "\n", cpuid);
351 
352     /* change to the cpu we are resetting */
353     target_cpu_state = arm_get_cpu_by_id(cpuid);
354     if (!target_cpu_state) {
355         return QEMU_ARM_POWERCTL_INVALID_PARAM;
356     }
357     target_cpu = ARM_CPU(target_cpu_state);
358 
359     if (target_cpu->power_state == PSCI_OFF) {
360         qemu_log_mask(LOG_GUEST_ERROR,
361                       "[ARM]%s: CPU %" PRId64 " is off\n",
362                       __func__, cpuid);
363         return QEMU_ARM_POWERCTL_IS_OFF;
364     }
365 
366     /* Queue work to run under the target vCPUs context */
367     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
368                      RUN_ON_CPU_NULL);
369 
370     return QEMU_ARM_POWERCTL_RET_SUCCESS;
371 }
372