xref: /openbmc/qemu/target/arm/arm-powerctl.c (revision 9dea2df8)
1 /*
2  * QEMU support -- ARM Power Control specific functions.
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_ARM_POWERCTL) { \
26             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
27         } \
28     } while (0)
29 
30 CPUState *arm_get_cpu_by_id(uint64_t id)
31 {
32     CPUState *cpu;
33 
34     DPRINTF("cpu %" PRId64 "\n", id);
35 
36     CPU_FOREACH(cpu) {
37         ARMCPU *armcpu = ARM_CPU(cpu);
38 
39         if (armcpu->mp_affinity == id) {
40             return cpu;
41         }
42     }
43 
44     qemu_log_mask(LOG_GUEST_ERROR,
45                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
46                   __func__, id);
47 
48     return NULL;
49 }
50 
51 struct CpuOnInfo {
52     uint64_t entry;
53     uint64_t context_id;
54     uint32_t target_el;
55     bool target_aa64;
56 };
57 
58 
59 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
60                                       run_on_cpu_data data)
61 {
62     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
63     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
64 
65     /* Initialize the cpu we are turning on */
66     cpu_reset(target_cpu_state);
67     target_cpu_state->halted = 0;
68 
69     if (info->target_aa64) {
70         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
71                                                  ARM_FEATURE_EL3)) {
72             /*
73              * As target mode is AArch64, we need to set lower
74              * exception level (the requested level 2) to AArch64
75              */
76             target_cpu->env.cp15.scr_el3 |= SCR_RW;
77         }
78 
79         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
80                                                  ARM_FEATURE_EL2)) {
81             /*
82              * As target mode is AArch64, we need to set lower
83              * exception level (the requested level 1) to AArch64
84              */
85             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
86         }
87 
88         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
89     } else {
90         /* We are requested to boot in AArch32 mode */
91         static const uint32_t mode_for_el[] = { 0,
92                                                 ARM_CPU_MODE_SVC,
93                                                 ARM_CPU_MODE_HYP,
94                                                 ARM_CPU_MODE_SVC };
95 
96         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
97                    CPSRWriteRaw);
98     }
99 
100     if (info->target_el == 3) {
101         /* Processor is in secure mode */
102         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
103     } else {
104         /* Processor is not in secure mode */
105         target_cpu->env.cp15.scr_el3 |= SCR_NS;
106 
107         /*
108          * If QEMU is providing the equivalent of EL3 firmware, then we need
109          * to make sure a CPU targeting EL2 comes out of reset with a
110          * functional HVC insn.
111          */
112         if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
113             && info->target_el == 2) {
114             target_cpu->env.cp15.scr_el3 |= SCR_HCE;
115         }
116     }
117 
118     /* We check if the started CPU is now at the correct level */
119     assert(info->target_el == arm_current_el(&target_cpu->env));
120 
121     if (info->target_aa64) {
122         target_cpu->env.xregs[0] = info->context_id;
123     } else {
124         target_cpu->env.regs[0] = info->context_id;
125     }
126 
127     /* Start the new CPU at the requested address */
128     cpu_set_pc(target_cpu_state, info->entry);
129 
130     g_free(info);
131 
132     /* Finally set the power status */
133     assert(qemu_mutex_iothread_locked());
134     target_cpu->power_state = PSCI_ON;
135 }
136 
137 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
138                    uint32_t target_el, bool target_aa64)
139 {
140     CPUState *target_cpu_state;
141     ARMCPU *target_cpu;
142     struct CpuOnInfo *info;
143 
144     assert(qemu_mutex_iothread_locked());
145 
146     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
147             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
148             context_id);
149 
150     /* requested EL level need to be in the 1 to 3 range */
151     assert((target_el > 0) && (target_el < 4));
152 
153     if (target_aa64 && (entry & 3)) {
154         /*
155          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
156          * aligned.
157          */
158         return QEMU_ARM_POWERCTL_INVALID_PARAM;
159     }
160 
161     /* Retrieve the cpu we are powering up */
162     target_cpu_state = arm_get_cpu_by_id(cpuid);
163     if (!target_cpu_state) {
164         /* The cpu was not found */
165         return QEMU_ARM_POWERCTL_INVALID_PARAM;
166     }
167 
168     target_cpu = ARM_CPU(target_cpu_state);
169     if (target_cpu->power_state == PSCI_ON) {
170         qemu_log_mask(LOG_GUEST_ERROR,
171                       "[ARM]%s: CPU %" PRId64 " is already on\n",
172                       __func__, cpuid);
173         return QEMU_ARM_POWERCTL_ALREADY_ON;
174     }
175 
176     /*
177      * The newly brought CPU is requested to enter the exception level
178      * "target_el" and be in the requested mode (AArch64 or AArch32).
179      */
180 
181     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
182         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
183         /*
184          * The CPU does not support requested level
185          */
186         return QEMU_ARM_POWERCTL_INVALID_PARAM;
187     }
188 
189     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
190         /*
191          * For now we don't support booting an AArch64 CPU in AArch32 mode
192          * TODO: We should add this support later
193          */
194         qemu_log_mask(LOG_UNIMP,
195                       "[ARM]%s: Starting AArch64 CPU %" PRId64
196                       " in AArch32 mode is not supported yet\n",
197                       __func__, cpuid);
198         return QEMU_ARM_POWERCTL_INVALID_PARAM;
199     }
200 
201     /*
202      * If another CPU has powered the target on we are in the state
203      * ON_PENDING and additional attempts to power on the CPU should
204      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
205      * spec)
206      */
207     if (target_cpu->power_state == PSCI_ON_PENDING) {
208         qemu_log_mask(LOG_GUEST_ERROR,
209                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
210                       __func__, cpuid);
211         return QEMU_ARM_POWERCTL_ON_PENDING;
212     }
213 
214     /* To avoid racing with a CPU we are just kicking off we do the
215      * final bit of preparation for the work in the target CPUs
216      * context.
217      */
218     info = g_new(struct CpuOnInfo, 1);
219     info->entry = entry;
220     info->context_id = context_id;
221     info->target_el = target_el;
222     info->target_aa64 = target_aa64;
223 
224     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
225                      RUN_ON_CPU_HOST_PTR(info));
226 
227     /* We are good to go */
228     return QEMU_ARM_POWERCTL_RET_SUCCESS;
229 }
230 
231 static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
232                                                 run_on_cpu_data data)
233 {
234     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
235 
236     /* Initialize the cpu we are turning on */
237     cpu_reset(target_cpu_state);
238     target_cpu_state->halted = 0;
239 
240     /* Finally set the power status */
241     assert(qemu_mutex_iothread_locked());
242     target_cpu->power_state = PSCI_ON;
243 }
244 
245 int arm_set_cpu_on_and_reset(uint64_t cpuid)
246 {
247     CPUState *target_cpu_state;
248     ARMCPU *target_cpu;
249 
250     assert(qemu_mutex_iothread_locked());
251 
252     /* Retrieve the cpu we are powering up */
253     target_cpu_state = arm_get_cpu_by_id(cpuid);
254     if (!target_cpu_state) {
255         /* The cpu was not found */
256         return QEMU_ARM_POWERCTL_INVALID_PARAM;
257     }
258 
259     target_cpu = ARM_CPU(target_cpu_state);
260     if (target_cpu->power_state == PSCI_ON) {
261         qemu_log_mask(LOG_GUEST_ERROR,
262                       "[ARM]%s: CPU %" PRId64 " is already on\n",
263                       __func__, cpuid);
264         return QEMU_ARM_POWERCTL_ALREADY_ON;
265     }
266 
267     /*
268      * If another CPU has powered the target on we are in the state
269      * ON_PENDING and additional attempts to power on the CPU should
270      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
271      * spec)
272      */
273     if (target_cpu->power_state == PSCI_ON_PENDING) {
274         qemu_log_mask(LOG_GUEST_ERROR,
275                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
276                       __func__, cpuid);
277         return QEMU_ARM_POWERCTL_ON_PENDING;
278     }
279 
280     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
281                      RUN_ON_CPU_NULL);
282 
283     /* We are good to go */
284     return QEMU_ARM_POWERCTL_RET_SUCCESS;
285 }
286 
287 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
288                                        run_on_cpu_data data)
289 {
290     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
291 
292     assert(qemu_mutex_iothread_locked());
293     target_cpu->power_state = PSCI_OFF;
294     target_cpu_state->halted = 1;
295     target_cpu_state->exception_index = EXCP_HLT;
296 }
297 
298 int arm_set_cpu_off(uint64_t cpuid)
299 {
300     CPUState *target_cpu_state;
301     ARMCPU *target_cpu;
302 
303     assert(qemu_mutex_iothread_locked());
304 
305     DPRINTF("cpu %" PRId64 "\n", cpuid);
306 
307     /* change to the cpu we are powering up */
308     target_cpu_state = arm_get_cpu_by_id(cpuid);
309     if (!target_cpu_state) {
310         return QEMU_ARM_POWERCTL_INVALID_PARAM;
311     }
312     target_cpu = ARM_CPU(target_cpu_state);
313     if (target_cpu->power_state == PSCI_OFF) {
314         qemu_log_mask(LOG_GUEST_ERROR,
315                       "[ARM]%s: CPU %" PRId64 " is already off\n",
316                       __func__, cpuid);
317         return QEMU_ARM_POWERCTL_IS_OFF;
318     }
319 
320     /* Queue work to run under the target vCPUs context */
321     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
322                      RUN_ON_CPU_NULL);
323 
324     return QEMU_ARM_POWERCTL_RET_SUCCESS;
325 }
326 
327 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
328                                      run_on_cpu_data data)
329 {
330     /* Reset the cpu */
331     cpu_reset(target_cpu_state);
332 }
333 
334 int arm_reset_cpu(uint64_t cpuid)
335 {
336     CPUState *target_cpu_state;
337     ARMCPU *target_cpu;
338 
339     assert(qemu_mutex_iothread_locked());
340 
341     DPRINTF("cpu %" PRId64 "\n", cpuid);
342 
343     /* change to the cpu we are resetting */
344     target_cpu_state = arm_get_cpu_by_id(cpuid);
345     if (!target_cpu_state) {
346         return QEMU_ARM_POWERCTL_INVALID_PARAM;
347     }
348     target_cpu = ARM_CPU(target_cpu_state);
349 
350     if (target_cpu->power_state == PSCI_OFF) {
351         qemu_log_mask(LOG_GUEST_ERROR,
352                       "[ARM]%s: CPU %" PRId64 " is off\n",
353                       __func__, cpuid);
354         return QEMU_ARM_POWERCTL_IS_OFF;
355     }
356 
357     /* Queue work to run under the target vCPUs context */
358     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
359                      RUN_ON_CPU_NULL);
360 
361     return QEMU_ARM_POWERCTL_RET_SUCCESS;
362 }
363