xref: /openbmc/qemu/target/arm/arm-powerctl.c (revision 9b3a31c7)
1 /*
2  * QEMU support -- ARM Power Control specific functions.
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_ARM_POWERCTL) { \
26             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
27         } \
28     } while (0)
29 
30 CPUState *arm_get_cpu_by_id(uint64_t id)
31 {
32     CPUState *cpu;
33 
34     DPRINTF("cpu %" PRId64 "\n", id);
35 
36     CPU_FOREACH(cpu) {
37         ARMCPU *armcpu = ARM_CPU(cpu);
38 
39         if (armcpu->mp_affinity == id) {
40             return cpu;
41         }
42     }
43 
44     qemu_log_mask(LOG_GUEST_ERROR,
45                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
46                   __func__, id);
47 
48     return NULL;
49 }
50 
51 struct CpuOnInfo {
52     uint64_t entry;
53     uint64_t context_id;
54     uint32_t target_el;
55     bool target_aa64;
56 };
57 
58 
59 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
60                                       run_on_cpu_data data)
61 {
62     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
63     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
64 
65     /* Initialize the cpu we are turning on */
66     cpu_reset(target_cpu_state);
67     target_cpu_state->halted = 0;
68 
69     if (info->target_aa64) {
70         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
71                                                  ARM_FEATURE_EL3)) {
72             /*
73              * As target mode is AArch64, we need to set lower
74              * exception level (the requested level 2) to AArch64
75              */
76             target_cpu->env.cp15.scr_el3 |= SCR_RW;
77         }
78 
79         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
80                                                  ARM_FEATURE_EL2)) {
81             /*
82              * As target mode is AArch64, we need to set lower
83              * exception level (the requested level 1) to AArch64
84              */
85             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
86         }
87 
88         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
89     } else {
90         /* We are requested to boot in AArch32 mode */
91         static const uint32_t mode_for_el[] = { 0,
92                                                 ARM_CPU_MODE_SVC,
93                                                 ARM_CPU_MODE_HYP,
94                                                 ARM_CPU_MODE_SVC };
95 
96         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
97                    CPSRWriteRaw);
98     }
99 
100     if (info->target_el == 3) {
101         /* Processor is in secure mode */
102         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
103     } else {
104         /* Processor is not in secure mode */
105         target_cpu->env.cp15.scr_el3 |= SCR_NS;
106 
107         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
108         target_cpu->env.cp15.nsacr |= 3 << 10;
109 
110         /*
111          * If QEMU is providing the equivalent of EL3 firmware, then we need
112          * to make sure a CPU targeting EL2 comes out of reset with a
113          * functional HVC insn.
114          */
115         if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
116             && info->target_el == 2) {
117             target_cpu->env.cp15.scr_el3 |= SCR_HCE;
118         }
119     }
120 
121     /* We check if the started CPU is now at the correct level */
122     assert(info->target_el == arm_current_el(&target_cpu->env));
123 
124     if (info->target_aa64) {
125         target_cpu->env.xregs[0] = info->context_id;
126     } else {
127         target_cpu->env.regs[0] = info->context_id;
128     }
129 
130     /* Start the new CPU at the requested address */
131     cpu_set_pc(target_cpu_state, info->entry);
132 
133     g_free(info);
134 
135     /* Finally set the power status */
136     assert(qemu_mutex_iothread_locked());
137     target_cpu->power_state = PSCI_ON;
138 }
139 
140 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
141                    uint32_t target_el, bool target_aa64)
142 {
143     CPUState *target_cpu_state;
144     ARMCPU *target_cpu;
145     struct CpuOnInfo *info;
146 
147     assert(qemu_mutex_iothread_locked());
148 
149     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
150             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
151             context_id);
152 
153     /* requested EL level need to be in the 1 to 3 range */
154     assert((target_el > 0) && (target_el < 4));
155 
156     if (target_aa64 && (entry & 3)) {
157         /*
158          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
159          * aligned.
160          */
161         return QEMU_ARM_POWERCTL_INVALID_PARAM;
162     }
163 
164     /* Retrieve the cpu we are powering up */
165     target_cpu_state = arm_get_cpu_by_id(cpuid);
166     if (!target_cpu_state) {
167         /* The cpu was not found */
168         return QEMU_ARM_POWERCTL_INVALID_PARAM;
169     }
170 
171     target_cpu = ARM_CPU(target_cpu_state);
172     if (target_cpu->power_state == PSCI_ON) {
173         qemu_log_mask(LOG_GUEST_ERROR,
174                       "[ARM]%s: CPU %" PRId64 " is already on\n",
175                       __func__, cpuid);
176         return QEMU_ARM_POWERCTL_ALREADY_ON;
177     }
178 
179     /*
180      * The newly brought CPU is requested to enter the exception level
181      * "target_el" and be in the requested mode (AArch64 or AArch32).
182      */
183 
184     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
185         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
186         /*
187          * The CPU does not support requested level
188          */
189         return QEMU_ARM_POWERCTL_INVALID_PARAM;
190     }
191 
192     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
193         /*
194          * For now we don't support booting an AArch64 CPU in AArch32 mode
195          * TODO: We should add this support later
196          */
197         qemu_log_mask(LOG_UNIMP,
198                       "[ARM]%s: Starting AArch64 CPU %" PRId64
199                       " in AArch32 mode is not supported yet\n",
200                       __func__, cpuid);
201         return QEMU_ARM_POWERCTL_INVALID_PARAM;
202     }
203 
204     /*
205      * If another CPU has powered the target on we are in the state
206      * ON_PENDING and additional attempts to power on the CPU should
207      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
208      * spec)
209      */
210     if (target_cpu->power_state == PSCI_ON_PENDING) {
211         qemu_log_mask(LOG_GUEST_ERROR,
212                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
213                       __func__, cpuid);
214         return QEMU_ARM_POWERCTL_ON_PENDING;
215     }
216 
217     /* To avoid racing with a CPU we are just kicking off we do the
218      * final bit of preparation for the work in the target CPUs
219      * context.
220      */
221     info = g_new(struct CpuOnInfo, 1);
222     info->entry = entry;
223     info->context_id = context_id;
224     info->target_el = target_el;
225     info->target_aa64 = target_aa64;
226 
227     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
228                      RUN_ON_CPU_HOST_PTR(info));
229 
230     /* We are good to go */
231     return QEMU_ARM_POWERCTL_RET_SUCCESS;
232 }
233 
234 static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
235                                                 run_on_cpu_data data)
236 {
237     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
238 
239     /* Initialize the cpu we are turning on */
240     cpu_reset(target_cpu_state);
241     target_cpu_state->halted = 0;
242 
243     /* Finally set the power status */
244     assert(qemu_mutex_iothread_locked());
245     target_cpu->power_state = PSCI_ON;
246 }
247 
248 int arm_set_cpu_on_and_reset(uint64_t cpuid)
249 {
250     CPUState *target_cpu_state;
251     ARMCPU *target_cpu;
252 
253     assert(qemu_mutex_iothread_locked());
254 
255     /* Retrieve the cpu we are powering up */
256     target_cpu_state = arm_get_cpu_by_id(cpuid);
257     if (!target_cpu_state) {
258         /* The cpu was not found */
259         return QEMU_ARM_POWERCTL_INVALID_PARAM;
260     }
261 
262     target_cpu = ARM_CPU(target_cpu_state);
263     if (target_cpu->power_state == PSCI_ON) {
264         qemu_log_mask(LOG_GUEST_ERROR,
265                       "[ARM]%s: CPU %" PRId64 " is already on\n",
266                       __func__, cpuid);
267         return QEMU_ARM_POWERCTL_ALREADY_ON;
268     }
269 
270     /*
271      * If another CPU has powered the target on we are in the state
272      * ON_PENDING and additional attempts to power on the CPU should
273      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
274      * spec)
275      */
276     if (target_cpu->power_state == PSCI_ON_PENDING) {
277         qemu_log_mask(LOG_GUEST_ERROR,
278                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
279                       __func__, cpuid);
280         return QEMU_ARM_POWERCTL_ON_PENDING;
281     }
282 
283     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
284                      RUN_ON_CPU_NULL);
285 
286     /* We are good to go */
287     return QEMU_ARM_POWERCTL_RET_SUCCESS;
288 }
289 
290 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
291                                        run_on_cpu_data data)
292 {
293     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
294 
295     assert(qemu_mutex_iothread_locked());
296     target_cpu->power_state = PSCI_OFF;
297     target_cpu_state->halted = 1;
298     target_cpu_state->exception_index = EXCP_HLT;
299 }
300 
301 int arm_set_cpu_off(uint64_t cpuid)
302 {
303     CPUState *target_cpu_state;
304     ARMCPU *target_cpu;
305 
306     assert(qemu_mutex_iothread_locked());
307 
308     DPRINTF("cpu %" PRId64 "\n", cpuid);
309 
310     /* change to the cpu we are powering up */
311     target_cpu_state = arm_get_cpu_by_id(cpuid);
312     if (!target_cpu_state) {
313         return QEMU_ARM_POWERCTL_INVALID_PARAM;
314     }
315     target_cpu = ARM_CPU(target_cpu_state);
316     if (target_cpu->power_state == PSCI_OFF) {
317         qemu_log_mask(LOG_GUEST_ERROR,
318                       "[ARM]%s: CPU %" PRId64 " is already off\n",
319                       __func__, cpuid);
320         return QEMU_ARM_POWERCTL_IS_OFF;
321     }
322 
323     /* Queue work to run under the target vCPUs context */
324     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
325                      RUN_ON_CPU_NULL);
326 
327     return QEMU_ARM_POWERCTL_RET_SUCCESS;
328 }
329 
330 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
331                                      run_on_cpu_data data)
332 {
333     /* Reset the cpu */
334     cpu_reset(target_cpu_state);
335 }
336 
337 int arm_reset_cpu(uint64_t cpuid)
338 {
339     CPUState *target_cpu_state;
340     ARMCPU *target_cpu;
341 
342     assert(qemu_mutex_iothread_locked());
343 
344     DPRINTF("cpu %" PRId64 "\n", cpuid);
345 
346     /* change to the cpu we are resetting */
347     target_cpu_state = arm_get_cpu_by_id(cpuid);
348     if (!target_cpu_state) {
349         return QEMU_ARM_POWERCTL_INVALID_PARAM;
350     }
351     target_cpu = ARM_CPU(target_cpu_state);
352 
353     if (target_cpu->power_state == PSCI_OFF) {
354         qemu_log_mask(LOG_GUEST_ERROR,
355                       "[ARM]%s: CPU %" PRId64 " is off\n",
356                       __func__, cpuid);
357         return QEMU_ARM_POWERCTL_IS_OFF;
358     }
359 
360     /* Queue work to run under the target vCPUs context */
361     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
362                      RUN_ON_CPU_NULL);
363 
364     return QEMU_ARM_POWERCTL_RET_SUCCESS;
365 }
366