xref: /openbmc/qemu/target/arm/arm-powerctl.c (revision 7025114b1cd7683cb7fbef0810577c67aa3cbbd8)
1 /*
2  * QEMU support -- ARM Power Control specific functions.
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_ARM_POWERCTL) { \
26             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
27         } \
28     } while (0)
29 
30 CPUState *arm_get_cpu_by_id(uint64_t id)
31 {
32     CPUState *cpu;
33 
34     DPRINTF("cpu %" PRId64 "\n", id);
35 
36     CPU_FOREACH(cpu) {
37         ARMCPU *armcpu = ARM_CPU(cpu);
38 
39         if (armcpu->mp_affinity == id) {
40             return cpu;
41         }
42     }
43 
44     qemu_log_mask(LOG_GUEST_ERROR,
45                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
46                   __func__, id);
47 
48     return NULL;
49 }
50 
51 struct CpuOnInfo {
52     uint64_t entry;
53     uint64_t context_id;
54     uint32_t target_el;
55     bool target_aa64;
56 };
57 
58 
59 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
60                                       run_on_cpu_data data)
61 {
62     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
63     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
64 
65     /* Initialize the cpu we are turning on */
66     cpu_reset(target_cpu_state);
67     target_cpu_state->halted = 0;
68 
69     if (info->target_aa64) {
70         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
71                                                  ARM_FEATURE_EL3)) {
72             /*
73              * As target mode is AArch64, we need to set lower
74              * exception level (the requested level 2) to AArch64
75              */
76             target_cpu->env.cp15.scr_el3 |= SCR_RW;
77         }
78 
79         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
80                                                  ARM_FEATURE_EL2)) {
81             /*
82              * As target mode is AArch64, we need to set lower
83              * exception level (the requested level 1) to AArch64
84              */
85             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
86         }
87 
88         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
89     } else {
90         /* We are requested to boot in AArch32 mode */
91         static const uint32_t mode_for_el[] = { 0,
92                                                 ARM_CPU_MODE_SVC,
93                                                 ARM_CPU_MODE_HYP,
94                                                 ARM_CPU_MODE_SVC };
95 
96         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
97                    CPSRWriteRaw);
98     }
99 
100     if (info->target_el == 3) {
101         /* Processor is in secure mode */
102         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
103     } else {
104         /* Processor is not in secure mode */
105         target_cpu->env.cp15.scr_el3 |= SCR_NS;
106 
107         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
108         target_cpu->env.cp15.nsacr |= 3 << 10;
109 
110         /*
111          * If QEMU is providing the equivalent of EL3 firmware, then we need
112          * to make sure a CPU targeting EL2 comes out of reset with a
113          * functional HVC insn.
114          */
115         if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
116             && info->target_el == 2) {
117             target_cpu->env.cp15.scr_el3 |= SCR_HCE;
118         }
119     }
120 
121     /* We check if the started CPU is now at the correct level */
122     assert(info->target_el == arm_current_el(&target_cpu->env));
123 
124     if (info->target_aa64) {
125         target_cpu->env.xregs[0] = info->context_id;
126     } else {
127         target_cpu->env.regs[0] = info->context_id;
128     }
129 
130     /* CP15 update requires rebuilding hflags */
131     arm_rebuild_hflags(&target_cpu->env);
132 
133     /* Start the new CPU at the requested address */
134     cpu_set_pc(target_cpu_state, info->entry);
135 
136     g_free(info);
137 
138     /* Finally set the power status */
139     assert(qemu_mutex_iothread_locked());
140     target_cpu->power_state = PSCI_ON;
141 }
142 
143 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
144                    uint32_t target_el, bool target_aa64)
145 {
146     CPUState *target_cpu_state;
147     ARMCPU *target_cpu;
148     struct CpuOnInfo *info;
149 
150     assert(qemu_mutex_iothread_locked());
151 
152     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
153             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
154             context_id);
155 
156     /* requested EL level need to be in the 1 to 3 range */
157     assert((target_el > 0) && (target_el < 4));
158 
159     if (target_aa64 && (entry & 3)) {
160         /*
161          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
162          * aligned.
163          */
164         return QEMU_ARM_POWERCTL_INVALID_PARAM;
165     }
166 
167     /* Retrieve the cpu we are powering up */
168     target_cpu_state = arm_get_cpu_by_id(cpuid);
169     if (!target_cpu_state) {
170         /* The cpu was not found */
171         return QEMU_ARM_POWERCTL_INVALID_PARAM;
172     }
173 
174     target_cpu = ARM_CPU(target_cpu_state);
175     if (target_cpu->power_state == PSCI_ON) {
176         qemu_log_mask(LOG_GUEST_ERROR,
177                       "[ARM]%s: CPU %" PRId64 " is already on\n",
178                       __func__, cpuid);
179         return QEMU_ARM_POWERCTL_ALREADY_ON;
180     }
181 
182     /*
183      * The newly brought CPU is requested to enter the exception level
184      * "target_el" and be in the requested mode (AArch64 or AArch32).
185      */
186 
187     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
188         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
189         /*
190          * The CPU does not support requested level
191          */
192         return QEMU_ARM_POWERCTL_INVALID_PARAM;
193     }
194 
195     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
196         /*
197          * For now we don't support booting an AArch64 CPU in AArch32 mode
198          * TODO: We should add this support later
199          */
200         qemu_log_mask(LOG_UNIMP,
201                       "[ARM]%s: Starting AArch64 CPU %" PRId64
202                       " in AArch32 mode is not supported yet\n",
203                       __func__, cpuid);
204         return QEMU_ARM_POWERCTL_INVALID_PARAM;
205     }
206 
207     /*
208      * If another CPU has powered the target on we are in the state
209      * ON_PENDING and additional attempts to power on the CPU should
210      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
211      * spec)
212      */
213     if (target_cpu->power_state == PSCI_ON_PENDING) {
214         qemu_log_mask(LOG_GUEST_ERROR,
215                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
216                       __func__, cpuid);
217         return QEMU_ARM_POWERCTL_ON_PENDING;
218     }
219 
220     /* To avoid racing with a CPU we are just kicking off we do the
221      * final bit of preparation for the work in the target CPUs
222      * context.
223      */
224     info = g_new(struct CpuOnInfo, 1);
225     info->entry = entry;
226     info->context_id = context_id;
227     info->target_el = target_el;
228     info->target_aa64 = target_aa64;
229 
230     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
231                      RUN_ON_CPU_HOST_PTR(info));
232 
233     /* We are good to go */
234     return QEMU_ARM_POWERCTL_RET_SUCCESS;
235 }
236 
237 static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
238                                                 run_on_cpu_data data)
239 {
240     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
241 
242     /* Initialize the cpu we are turning on */
243     cpu_reset(target_cpu_state);
244     target_cpu_state->halted = 0;
245 
246     /* Finally set the power status */
247     assert(qemu_mutex_iothread_locked());
248     target_cpu->power_state = PSCI_ON;
249 }
250 
251 int arm_set_cpu_on_and_reset(uint64_t cpuid)
252 {
253     CPUState *target_cpu_state;
254     ARMCPU *target_cpu;
255 
256     assert(qemu_mutex_iothread_locked());
257 
258     /* Retrieve the cpu we are powering up */
259     target_cpu_state = arm_get_cpu_by_id(cpuid);
260     if (!target_cpu_state) {
261         /* The cpu was not found */
262         return QEMU_ARM_POWERCTL_INVALID_PARAM;
263     }
264 
265     target_cpu = ARM_CPU(target_cpu_state);
266     if (target_cpu->power_state == PSCI_ON) {
267         qemu_log_mask(LOG_GUEST_ERROR,
268                       "[ARM]%s: CPU %" PRId64 " is already on\n",
269                       __func__, cpuid);
270         return QEMU_ARM_POWERCTL_ALREADY_ON;
271     }
272 
273     /*
274      * If another CPU has powered the target on we are in the state
275      * ON_PENDING and additional attempts to power on the CPU should
276      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
277      * spec)
278      */
279     if (target_cpu->power_state == PSCI_ON_PENDING) {
280         qemu_log_mask(LOG_GUEST_ERROR,
281                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
282                       __func__, cpuid);
283         return QEMU_ARM_POWERCTL_ON_PENDING;
284     }
285 
286     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
287                      RUN_ON_CPU_NULL);
288 
289     /* We are good to go */
290     return QEMU_ARM_POWERCTL_RET_SUCCESS;
291 }
292 
293 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
294                                        run_on_cpu_data data)
295 {
296     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
297 
298     assert(qemu_mutex_iothread_locked());
299     target_cpu->power_state = PSCI_OFF;
300     target_cpu_state->halted = 1;
301     target_cpu_state->exception_index = EXCP_HLT;
302 }
303 
304 int arm_set_cpu_off(uint64_t cpuid)
305 {
306     CPUState *target_cpu_state;
307     ARMCPU *target_cpu;
308 
309     assert(qemu_mutex_iothread_locked());
310 
311     DPRINTF("cpu %" PRId64 "\n", cpuid);
312 
313     /* change to the cpu we are powering up */
314     target_cpu_state = arm_get_cpu_by_id(cpuid);
315     if (!target_cpu_state) {
316         return QEMU_ARM_POWERCTL_INVALID_PARAM;
317     }
318     target_cpu = ARM_CPU(target_cpu_state);
319     if (target_cpu->power_state == PSCI_OFF) {
320         qemu_log_mask(LOG_GUEST_ERROR,
321                       "[ARM]%s: CPU %" PRId64 " is already off\n",
322                       __func__, cpuid);
323         return QEMU_ARM_POWERCTL_IS_OFF;
324     }
325 
326     /* Queue work to run under the target vCPUs context */
327     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
328                      RUN_ON_CPU_NULL);
329 
330     return QEMU_ARM_POWERCTL_RET_SUCCESS;
331 }
332 
333 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
334                                      run_on_cpu_data data)
335 {
336     /* Reset the cpu */
337     cpu_reset(target_cpu_state);
338 }
339 
340 int arm_reset_cpu(uint64_t cpuid)
341 {
342     CPUState *target_cpu_state;
343     ARMCPU *target_cpu;
344 
345     assert(qemu_mutex_iothread_locked());
346 
347     DPRINTF("cpu %" PRId64 "\n", cpuid);
348 
349     /* change to the cpu we are resetting */
350     target_cpu_state = arm_get_cpu_by_id(cpuid);
351     if (!target_cpu_state) {
352         return QEMU_ARM_POWERCTL_INVALID_PARAM;
353     }
354     target_cpu = ARM_CPU(target_cpu_state);
355 
356     if (target_cpu->power_state == PSCI_OFF) {
357         qemu_log_mask(LOG_GUEST_ERROR,
358                       "[ARM]%s: CPU %" PRId64 " is off\n",
359                       __func__, cpuid);
360         return QEMU_ARM_POWERCTL_IS_OFF;
361     }
362 
363     /* Queue work to run under the target vCPUs context */
364     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
365                      RUN_ON_CPU_NULL);
366 
367     return QEMU_ARM_POWERCTL_RET_SUCCESS;
368 }
369