xref: /openbmc/qemu/target/arm/arm-powerctl.c (revision 429d3ae2)
1 /*
2  * QEMU support -- ARM Power Control specific functions.
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_ARM_POWERCTL) { \
26             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
27         } \
28     } while (0)
29 
30 CPUState *arm_get_cpu_by_id(uint64_t id)
31 {
32     CPUState *cpu;
33 
34     DPRINTF("cpu %" PRId64 "\n", id);
35 
36     CPU_FOREACH(cpu) {
37         ARMCPU *armcpu = ARM_CPU(cpu);
38 
39         if (armcpu->mp_affinity == id) {
40             return cpu;
41         }
42     }
43 
44     qemu_log_mask(LOG_GUEST_ERROR,
45                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
46                   __func__, id);
47 
48     return NULL;
49 }
50 
51 struct CpuOnInfo {
52     uint64_t entry;
53     uint64_t context_id;
54     uint32_t target_el;
55     bool target_aa64;
56 };
57 
58 
59 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
60                                       run_on_cpu_data data)
61 {
62     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
63     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
64 
65     /* Initialize the cpu we are turning on */
66     cpu_reset(target_cpu_state);
67     target_cpu_state->halted = 0;
68 
69     if (info->target_aa64) {
70         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
71                                                  ARM_FEATURE_EL3)) {
72             /*
73              * As target mode is AArch64, we need to set lower
74              * exception level (the requested level 2) to AArch64
75              */
76             target_cpu->env.cp15.scr_el3 |= SCR_RW;
77         }
78 
79         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
80                                                  ARM_FEATURE_EL2)) {
81             /*
82              * As target mode is AArch64, we need to set lower
83              * exception level (the requested level 1) to AArch64
84              */
85             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
86         }
87 
88         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
89     } else {
90         /* We are requested to boot in AArch32 mode */
91         static const uint32_t mode_for_el[] = { 0,
92                                                 ARM_CPU_MODE_SVC,
93                                                 ARM_CPU_MODE_HYP,
94                                                 ARM_CPU_MODE_SVC };
95 
96         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
97                    CPSRWriteRaw);
98     }
99 
100     if (info->target_el == 3) {
101         /* Processor is in secure mode */
102         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
103     } else {
104         /* Processor is not in secure mode */
105         target_cpu->env.cp15.scr_el3 |= SCR_NS;
106     }
107 
108     /* We check if the started CPU is now at the correct level */
109     assert(info->target_el == arm_current_el(&target_cpu->env));
110 
111     if (info->target_aa64) {
112         target_cpu->env.xregs[0] = info->context_id;
113         target_cpu->env.thumb = false;
114     } else {
115         target_cpu->env.regs[0] = info->context_id;
116         target_cpu->env.thumb = info->entry & 1;
117         info->entry &= 0xfffffffe;
118     }
119 
120     /* Start the new CPU at the requested address */
121     cpu_set_pc(target_cpu_state, info->entry);
122 
123     g_free(info);
124 
125     /* Finally set the power status */
126     assert(qemu_mutex_iothread_locked());
127     target_cpu->power_state = PSCI_ON;
128 }
129 
130 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
131                    uint32_t target_el, bool target_aa64)
132 {
133     CPUState *target_cpu_state;
134     ARMCPU *target_cpu;
135     struct CpuOnInfo *info;
136 
137     assert(qemu_mutex_iothread_locked());
138 
139     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
140             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
141             context_id);
142 
143     /* requested EL level need to be in the 1 to 3 range */
144     assert((target_el > 0) && (target_el < 4));
145 
146     if (target_aa64 && (entry & 3)) {
147         /*
148          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
149          * aligned.
150          */
151         return QEMU_ARM_POWERCTL_INVALID_PARAM;
152     }
153 
154     /* Retrieve the cpu we are powering up */
155     target_cpu_state = arm_get_cpu_by_id(cpuid);
156     if (!target_cpu_state) {
157         /* The cpu was not found */
158         return QEMU_ARM_POWERCTL_INVALID_PARAM;
159     }
160 
161     target_cpu = ARM_CPU(target_cpu_state);
162     if (target_cpu->power_state == PSCI_ON) {
163         qemu_log_mask(LOG_GUEST_ERROR,
164                       "[ARM]%s: CPU %" PRId64 " is already on\n",
165                       __func__, cpuid);
166         return QEMU_ARM_POWERCTL_ALREADY_ON;
167     }
168 
169     /*
170      * The newly brought CPU is requested to enter the exception level
171      * "target_el" and be in the requested mode (AArch64 or AArch32).
172      */
173 
174     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
175         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
176         /*
177          * The CPU does not support requested level
178          */
179         return QEMU_ARM_POWERCTL_INVALID_PARAM;
180     }
181 
182     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
183         /*
184          * For now we don't support booting an AArch64 CPU in AArch32 mode
185          * TODO: We should add this support later
186          */
187         qemu_log_mask(LOG_UNIMP,
188                       "[ARM]%s: Starting AArch64 CPU %" PRId64
189                       " in AArch32 mode is not supported yet\n",
190                       __func__, cpuid);
191         return QEMU_ARM_POWERCTL_INVALID_PARAM;
192     }
193 
194     /*
195      * If another CPU has powered the target on we are in the state
196      * ON_PENDING and additional attempts to power on the CPU should
197      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
198      * spec)
199      */
200     if (target_cpu->power_state == PSCI_ON_PENDING) {
201         qemu_log_mask(LOG_GUEST_ERROR,
202                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
203                       __func__, cpuid);
204         return QEMU_ARM_POWERCTL_ON_PENDING;
205     }
206 
207     /* To avoid racing with a CPU we are just kicking off we do the
208      * final bit of preparation for the work in the target CPUs
209      * context.
210      */
211     info = g_new(struct CpuOnInfo, 1);
212     info->entry = entry;
213     info->context_id = context_id;
214     info->target_el = target_el;
215     info->target_aa64 = target_aa64;
216 
217     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
218                      RUN_ON_CPU_HOST_PTR(info));
219 
220     /* We are good to go */
221     return QEMU_ARM_POWERCTL_RET_SUCCESS;
222 }
223 
224 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
225                                        run_on_cpu_data data)
226 {
227     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
228 
229     assert(qemu_mutex_iothread_locked());
230     target_cpu->power_state = PSCI_OFF;
231     target_cpu_state->halted = 1;
232     target_cpu_state->exception_index = EXCP_HLT;
233 }
234 
235 int arm_set_cpu_off(uint64_t cpuid)
236 {
237     CPUState *target_cpu_state;
238     ARMCPU *target_cpu;
239 
240     assert(qemu_mutex_iothread_locked());
241 
242     DPRINTF("cpu %" PRId64 "\n", cpuid);
243 
244     /* change to the cpu we are powering up */
245     target_cpu_state = arm_get_cpu_by_id(cpuid);
246     if (!target_cpu_state) {
247         return QEMU_ARM_POWERCTL_INVALID_PARAM;
248     }
249     target_cpu = ARM_CPU(target_cpu_state);
250     if (target_cpu->power_state == PSCI_OFF) {
251         qemu_log_mask(LOG_GUEST_ERROR,
252                       "[ARM]%s: CPU %" PRId64 " is already off\n",
253                       __func__, cpuid);
254         return QEMU_ARM_POWERCTL_IS_OFF;
255     }
256 
257     /* Queue work to run under the target vCPUs context */
258     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
259                      RUN_ON_CPU_NULL);
260 
261     return QEMU_ARM_POWERCTL_RET_SUCCESS;
262 }
263 
264 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
265                                      run_on_cpu_data data)
266 {
267     /* Reset the cpu */
268     cpu_reset(target_cpu_state);
269 }
270 
271 int arm_reset_cpu(uint64_t cpuid)
272 {
273     CPUState *target_cpu_state;
274     ARMCPU *target_cpu;
275 
276     assert(qemu_mutex_iothread_locked());
277 
278     DPRINTF("cpu %" PRId64 "\n", cpuid);
279 
280     /* change to the cpu we are resetting */
281     target_cpu_state = arm_get_cpu_by_id(cpuid);
282     if (!target_cpu_state) {
283         return QEMU_ARM_POWERCTL_INVALID_PARAM;
284     }
285     target_cpu = ARM_CPU(target_cpu_state);
286 
287     if (target_cpu->power_state == PSCI_OFF) {
288         qemu_log_mask(LOG_GUEST_ERROR,
289                       "[ARM]%s: CPU %" PRId64 " is off\n",
290                       __func__, cpuid);
291         return QEMU_ARM_POWERCTL_IS_OFF;
292     }
293 
294     /* Queue work to run under the target vCPUs context */
295     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
296                      RUN_ON_CPU_NULL);
297 
298     return QEMU_ARM_POWERCTL_RET_SUCCESS;
299 }
300