xref: /openbmc/qemu/target/arm/arm-powerctl.c (revision 39164c13)
1 /*
2  * QEMU support -- ARM Power Control specific functions.
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 #include "exec/exec-all.h"
19 
20 #ifndef DEBUG_ARM_POWERCTL
21 #define DEBUG_ARM_POWERCTL 0
22 #endif
23 
24 #define DPRINTF(fmt, args...) \
25     do { \
26         if (DEBUG_ARM_POWERCTL) { \
27             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
28         } \
29     } while (0)
30 
31 CPUState *arm_get_cpu_by_id(uint64_t id)
32 {
33     CPUState *cpu;
34 
35     DPRINTF("cpu %" PRId64 "\n", id);
36 
37     CPU_FOREACH(cpu) {
38         ARMCPU *armcpu = ARM_CPU(cpu);
39 
40         if (armcpu->mp_affinity == id) {
41             return cpu;
42         }
43     }
44 
45     qemu_log_mask(LOG_GUEST_ERROR,
46                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
47                   __func__, id);
48 
49     return NULL;
50 }
51 
52 struct CpuOnInfo {
53     uint64_t entry;
54     uint64_t context_id;
55     uint32_t target_el;
56     bool target_aa64;
57 };
58 
59 
60 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
61                                       run_on_cpu_data data)
62 {
63     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
64     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
65 
66     /* Initialize the cpu we are turning on */
67     cpu_reset(target_cpu_state);
68     target_cpu_state->halted = 0;
69 
70     if (info->target_aa64) {
71         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
72                                                  ARM_FEATURE_EL3)) {
73             /*
74              * As target mode is AArch64, we need to set lower
75              * exception level (the requested level 2) to AArch64
76              */
77             target_cpu->env.cp15.scr_el3 |= SCR_RW;
78         }
79 
80         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
81                                                  ARM_FEATURE_EL2)) {
82             /*
83              * As target mode is AArch64, we need to set lower
84              * exception level (the requested level 1) to AArch64
85              */
86             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
87         }
88 
89         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
90     } else {
91         /* We are requested to boot in AArch32 mode */
92         static const uint32_t mode_for_el[] = { 0,
93                                                 ARM_CPU_MODE_SVC,
94                                                 ARM_CPU_MODE_HYP,
95                                                 ARM_CPU_MODE_SVC };
96 
97         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
98                    CPSRWriteRaw);
99     }
100 
101     if (info->target_el == 3) {
102         /* Processor is in secure mode */
103         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
104     } else {
105         /* Processor is not in secure mode */
106         target_cpu->env.cp15.scr_el3 |= SCR_NS;
107     }
108 
109     /* We check if the started CPU is now at the correct level */
110     assert(info->target_el == arm_current_el(&target_cpu->env));
111 
112     if (info->target_aa64) {
113         target_cpu->env.xregs[0] = info->context_id;
114         target_cpu->env.thumb = false;
115     } else {
116         target_cpu->env.regs[0] = info->context_id;
117         target_cpu->env.thumb = info->entry & 1;
118         info->entry &= 0xfffffffe;
119     }
120 
121     /* Start the new CPU at the requested address */
122     cpu_set_pc(target_cpu_state, info->entry);
123 
124     g_free(info);
125 
126     /* Finally set the power status */
127     assert(qemu_mutex_iothread_locked());
128     target_cpu->power_state = PSCI_ON;
129 }
130 
131 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
132                    uint32_t target_el, bool target_aa64)
133 {
134     CPUState *target_cpu_state;
135     ARMCPU *target_cpu;
136     struct CpuOnInfo *info;
137 
138     assert(qemu_mutex_iothread_locked());
139 
140     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
141             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
142             context_id);
143 
144     /* requested EL level need to be in the 1 to 3 range */
145     assert((target_el > 0) && (target_el < 4));
146 
147     if (target_aa64 && (entry & 3)) {
148         /*
149          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
150          * aligned.
151          */
152         return QEMU_ARM_POWERCTL_INVALID_PARAM;
153     }
154 
155     /* Retrieve the cpu we are powering up */
156     target_cpu_state = arm_get_cpu_by_id(cpuid);
157     if (!target_cpu_state) {
158         /* The cpu was not found */
159         return QEMU_ARM_POWERCTL_INVALID_PARAM;
160     }
161 
162     target_cpu = ARM_CPU(target_cpu_state);
163     if (target_cpu->power_state == PSCI_ON) {
164         qemu_log_mask(LOG_GUEST_ERROR,
165                       "[ARM]%s: CPU %" PRId64 " is already on\n",
166                       __func__, cpuid);
167         return QEMU_ARM_POWERCTL_ALREADY_ON;
168     }
169 
170     /*
171      * The newly brought CPU is requested to enter the exception level
172      * "target_el" and be in the requested mode (AArch64 or AArch32).
173      */
174 
175     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
176         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
177         /*
178          * The CPU does not support requested level
179          */
180         return QEMU_ARM_POWERCTL_INVALID_PARAM;
181     }
182 
183     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
184         /*
185          * For now we don't support booting an AArch64 CPU in AArch32 mode
186          * TODO: We should add this support later
187          */
188         qemu_log_mask(LOG_UNIMP,
189                       "[ARM]%s: Starting AArch64 CPU %" PRId64
190                       " in AArch32 mode is not supported yet\n",
191                       __func__, cpuid);
192         return QEMU_ARM_POWERCTL_INVALID_PARAM;
193     }
194 
195     /*
196      * If another CPU has powered the target on we are in the state
197      * ON_PENDING and additional attempts to power on the CPU should
198      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
199      * spec)
200      */
201     if (target_cpu->power_state == PSCI_ON_PENDING) {
202         qemu_log_mask(LOG_GUEST_ERROR,
203                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
204                       __func__, cpuid);
205         return QEMU_ARM_POWERCTL_ON_PENDING;
206     }
207 
208     /* To avoid racing with a CPU we are just kicking off we do the
209      * final bit of preparation for the work in the target CPUs
210      * context.
211      */
212     info = g_new(struct CpuOnInfo, 1);
213     info->entry = entry;
214     info->context_id = context_id;
215     info->target_el = target_el;
216     info->target_aa64 = target_aa64;
217 
218     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
219                      RUN_ON_CPU_HOST_PTR(info));
220 
221     /* We are good to go */
222     return QEMU_ARM_POWERCTL_RET_SUCCESS;
223 }
224 
225 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
226                                        run_on_cpu_data data)
227 {
228     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
229 
230     assert(qemu_mutex_iothread_locked());
231     target_cpu->power_state = PSCI_OFF;
232     target_cpu_state->halted = 1;
233     target_cpu_state->exception_index = EXCP_HLT;
234 }
235 
236 int arm_set_cpu_off(uint64_t cpuid)
237 {
238     CPUState *target_cpu_state;
239     ARMCPU *target_cpu;
240 
241     assert(qemu_mutex_iothread_locked());
242 
243     DPRINTF("cpu %" PRId64 "\n", cpuid);
244 
245     /* change to the cpu we are powering up */
246     target_cpu_state = arm_get_cpu_by_id(cpuid);
247     if (!target_cpu_state) {
248         return QEMU_ARM_POWERCTL_INVALID_PARAM;
249     }
250     target_cpu = ARM_CPU(target_cpu_state);
251     if (target_cpu->power_state == PSCI_OFF) {
252         qemu_log_mask(LOG_GUEST_ERROR,
253                       "[ARM]%s: CPU %" PRId64 " is already off\n",
254                       __func__, cpuid);
255         return QEMU_ARM_POWERCTL_IS_OFF;
256     }
257 
258     /* Queue work to run under the target vCPUs context */
259     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
260                      RUN_ON_CPU_NULL);
261 
262     return QEMU_ARM_POWERCTL_RET_SUCCESS;
263 }
264 
265 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
266                                      run_on_cpu_data data)
267 {
268     /* Reset the cpu */
269     cpu_reset(target_cpu_state);
270 }
271 
272 int arm_reset_cpu(uint64_t cpuid)
273 {
274     CPUState *target_cpu_state;
275     ARMCPU *target_cpu;
276 
277     assert(qemu_mutex_iothread_locked());
278 
279     DPRINTF("cpu %" PRId64 "\n", cpuid);
280 
281     /* change to the cpu we are resetting */
282     target_cpu_state = arm_get_cpu_by_id(cpuid);
283     if (!target_cpu_state) {
284         return QEMU_ARM_POWERCTL_INVALID_PARAM;
285     }
286     target_cpu = ARM_CPU(target_cpu_state);
287 
288     if (target_cpu->power_state == PSCI_OFF) {
289         qemu_log_mask(LOG_GUEST_ERROR,
290                       "[ARM]%s: CPU %" PRId64 " is off\n",
291                       __func__, cpuid);
292         return QEMU_ARM_POWERCTL_IS_OFF;
293     }
294 
295     /* Queue work to run under the target vCPUs context */
296     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
297                      RUN_ON_CPU_NULL);
298 
299     return QEMU_ARM_POWERCTL_RET_SUCCESS;
300 }
301