xref: /openbmc/qemu/target/arm/arch_dump.c (revision f7160f32)
1 /* Support for writing ELF notes for ARM architectures
2  *
3  * Copyright (C) 2015 Red Hat Inc.
4  *
5  * Author: Andrew Jones <drjones@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "elf.h"
24 #include "sysemu/dump.h"
25 
26 /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */
27 struct aarch64_user_regs {
28     uint64_t regs[31];
29     uint64_t sp;
30     uint64_t pc;
31     uint64_t pstate;
32 } QEMU_PACKED;
33 
34 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272);
35 
36 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
37 struct aarch64_elf_prstatus {
38     char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */
39     uint32_t pr_pid;
40     char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) -
41                             offsetof(struct elf_prstatus, pr_ppid) */
42     struct aarch64_user_regs pr_reg;
43     uint32_t pr_fpvalid;
44     char pad3[4];
45 } QEMU_PACKED;
46 
47 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392);
48 
49 /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h
50  *
51  * While the vregs member of user_fpsimd_state is of type __uint128_t,
52  * QEMU uses an array of uint64_t, where the high half of the 128-bit
53  * value is always in the 2n+1'th index. Thus we also break the 128-
54  * bit values into two halves in this reproduction of user_fpsimd_state.
55  */
56 struct aarch64_user_vfp_state {
57     uint64_t vregs[64];
58     uint32_t fpsr;
59     uint32_t fpcr;
60     char pad[8];
61 } QEMU_PACKED;
62 
63 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
64 
65 /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
66 struct aarch64_user_sve_header {
67     uint32_t size;
68     uint32_t max_size;
69     uint16_t vl;
70     uint16_t max_vl;
71     uint16_t flags;
72     uint16_t reserved;
73 } QEMU_PACKED;
74 
75 struct aarch64_note {
76     Elf64_Nhdr hdr;
77     char name[8]; /* align_up(sizeof("CORE"), 4) */
78     union {
79         struct aarch64_elf_prstatus prstatus;
80         struct aarch64_user_vfp_state vfp;
81         struct aarch64_user_sve_header sve;
82     };
83 } QEMU_PACKED;
84 
85 #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus)
86 #define AARCH64_PRSTATUS_NOTE_SIZE \
87             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
88 #define AARCH64_PRFPREG_NOTE_SIZE \
89             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
90 #define AARCH64_SVE_NOTE_SIZE(env) \
91             (AARCH64_NOTE_HEADER_SIZE + sve_size(env))
92 
93 static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
94                               const char *name, Elf64_Word namesz,
95                               Elf64_Word type, Elf64_Word descsz)
96 {
97     memset(note, 0, sizeof(*note));
98 
99     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
100     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
101     note->hdr.n_type = cpu_to_dump32(s, type);
102 
103     memcpy(note->name, name, namesz);
104 }
105 
106 static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
107                                        CPUARMState *env, int cpuid,
108                                        DumpState *s)
109 {
110     struct aarch64_note note;
111     int ret, i;
112 
113     aarch64_note_init(&note, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp));
114 
115     for (i = 0; i < 32; ++i) {
116         uint64_t *q = aa64_vfp_qreg(env, i);
117         note.vfp.vregs[2*i + 0] = cpu_to_dump64(s, q[0]);
118         note.vfp.vregs[2*i + 1] = cpu_to_dump64(s, q[1]);
119     }
120 
121     if (s->dump_info.d_endian == ELFDATA2MSB) {
122         /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1
123          * entries when generating BE notes, because even big endian
124          * hosts use 2n+1 for the high half.
125          */
126         for (i = 0; i < 32; ++i) {
127             uint64_t tmp = note.vfp.vregs[2*i];
128             note.vfp.vregs[2*i] = note.vfp.vregs[2*i+1];
129             note.vfp.vregs[2*i+1] = tmp;
130         }
131     }
132 
133     note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env));
134     note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env));
135 
136     ret = f(&note, AARCH64_PRFPREG_NOTE_SIZE, s);
137     if (ret < 0) {
138         return -1;
139     }
140 
141     return 0;
142 }
143 
144 #ifdef TARGET_AARCH64
145 static off_t sve_zreg_offset(uint32_t vq, int n)
146 {
147     off_t off = sizeof(struct aarch64_user_sve_header);
148     return ROUND_UP(off, 16) + vq * 16 * n;
149 }
150 
151 static off_t sve_preg_offset(uint32_t vq, int n)
152 {
153     return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
154 }
155 
156 static off_t sve_fpsr_offset(uint32_t vq)
157 {
158     off_t off = sve_preg_offset(vq, 17);
159     return ROUND_UP(off, 16);
160 }
161 
162 static off_t sve_fpcr_offset(uint32_t vq)
163 {
164     return sve_fpsr_offset(vq) + sizeof(uint32_t);
165 }
166 
167 static uint32_t sve_current_vq(CPUARMState *env)
168 {
169     return sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
170 }
171 
172 static size_t sve_size_vq(uint32_t vq)
173 {
174     off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
175     return ROUND_UP(off, 16);
176 }
177 
178 static size_t sve_size(CPUARMState *env)
179 {
180     return sve_size_vq(sve_current_vq(env));
181 }
182 
183 static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
184                                    CPUARMState *env, int cpuid,
185                                    DumpState *s)
186 {
187     struct aarch64_note *note;
188     ARMCPU *cpu = env_archcpu(env);
189     uint32_t vq = sve_current_vq(env);
190     uint64_t tmp[ARM_MAX_VQ * 2], *r;
191     uint32_t fpr;
192     uint8_t *buf;
193     int ret, i;
194 
195     note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
196     buf = (uint8_t *)&note->sve;
197 
198     aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
199 
200     note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
201     note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
202     note->sve.vl = cpu_to_dump16(s, vq * 16);
203     note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
204     note->sve.flags = cpu_to_dump16(s, 1);
205 
206     for (i = 0; i < 32; ++i) {
207         r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
208         memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
209     }
210 
211     for (i = 0; i < 17; ++i) {
212         r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
213                         DIV_ROUND_UP(vq * 2, 8));
214         memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
215     }
216 
217     fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
218     memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
219 
220     fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
221     memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
222 
223     ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
224     g_free(note);
225 
226     if (ret < 0) {
227         return -1;
228     }
229 
230     return 0;
231 }
232 #endif
233 
234 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
235                              int cpuid, void *opaque)
236 {
237     struct aarch64_note note;
238     ARMCPU *cpu = ARM_CPU(cs);
239     CPUARMState *env = &cpu->env;
240     DumpState *s = opaque;
241     uint64_t pstate, sp;
242     int ret, i;
243 
244     aarch64_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
245 
246     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
247     note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1);
248 
249     if (!is_a64(env)) {
250         aarch64_sync_32_to_64(env);
251         pstate = cpsr_read(env);
252         sp = 0;
253     } else {
254         pstate = pstate_read(env);
255         sp = env->xregs[31];
256     }
257 
258     for (i = 0; i < 31; ++i) {
259         note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]);
260     }
261     note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp);
262     note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc);
263     note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate);
264 
265     ret = f(&note, AARCH64_PRSTATUS_NOTE_SIZE, s);
266     if (ret < 0) {
267         return -1;
268     }
269 
270     ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
271     if (ret) {
272         return ret;
273     }
274 
275 #ifdef TARGET_AARCH64
276     if (cpu_isar_feature(aa64_sve, cpu)) {
277         ret = aarch64_write_elf64_sve(f, env, cpuid, s);
278     }
279 #endif
280 
281     return ret;
282 }
283 
284 /* struct pt_regs from arch/arm/include/asm/ptrace.h */
285 struct arm_user_regs {
286     uint32_t regs[17];
287     char pad[4];
288 } QEMU_PACKED;
289 
290 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72);
291 
292 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
293 struct arm_elf_prstatus {
294     char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */
295     uint32_t pr_pid;
296     char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) -
297                             offsetof(struct elf_prstatus, pr_ppid) */
298     struct arm_user_regs pr_reg;
299     uint32_t pr_fpvalid;
300 } QEMU_PACKED arm_elf_prstatus;
301 
302 QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148);
303 
304 /* struct user_vfp from arch/arm/include/asm/user.h */
305 struct arm_user_vfp_state {
306     uint64_t vregs[32];
307     uint32_t fpscr;
308 } QEMU_PACKED;
309 
310 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260);
311 
312 struct arm_note {
313     Elf32_Nhdr hdr;
314     char name[8]; /* align_up(sizeof("LINUX"), 4) */
315     union {
316         struct arm_elf_prstatus prstatus;
317         struct arm_user_vfp_state vfp;
318     };
319 } QEMU_PACKED;
320 
321 #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus)
322 #define ARM_PRSTATUS_NOTE_SIZE \
323             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus))
324 #define ARM_VFP_NOTE_SIZE \
325             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state))
326 
327 static void arm_note_init(struct arm_note *note, DumpState *s,
328                           const char *name, Elf32_Word namesz,
329                           Elf32_Word type, Elf32_Word descsz)
330 {
331     memset(note, 0, sizeof(*note));
332 
333     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
334     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
335     note->hdr.n_type = cpu_to_dump32(s, type);
336 
337     memcpy(note->name, name, namesz);
338 }
339 
340 static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env,
341                                int cpuid, DumpState *s)
342 {
343     struct arm_note note;
344     int ret, i;
345 
346     arm_note_init(&note, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp));
347 
348     for (i = 0; i < 32; ++i) {
349         note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i));
350     }
351 
352     note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env));
353 
354     ret = f(&note, ARM_VFP_NOTE_SIZE, s);
355     if (ret < 0) {
356         return -1;
357     }
358 
359     return 0;
360 }
361 
362 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
363                              int cpuid, void *opaque)
364 {
365     struct arm_note note;
366     ARMCPU *cpu = ARM_CPU(cs);
367     CPUARMState *env = &cpu->env;
368     DumpState *s = opaque;
369     int ret, i;
370     bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu);
371 
372     arm_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
373 
374     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
375     note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid);
376 
377     for (i = 0; i < 16; ++i) {
378         note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]);
379     }
380     note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env));
381 
382     ret = f(&note, ARM_PRSTATUS_NOTE_SIZE, s);
383     if (ret < 0) {
384         return -1;
385     } else if (fpvalid) {
386         return arm_write_elf32_vfp(f, env, cpuid, s);
387     }
388 
389     return 0;
390 }
391 
392 int cpu_get_dump_info(ArchDumpInfo *info,
393                       const GuestPhysBlockList *guest_phys_blocks)
394 {
395     ARMCPU *cpu;
396     CPUARMState *env;
397     GuestPhysBlock *block;
398     hwaddr lowest_addr = ULLONG_MAX;
399 
400     if (first_cpu == NULL) {
401         return -1;
402     }
403 
404     cpu = ARM_CPU(first_cpu);
405     env = &cpu->env;
406 
407     /* Take a best guess at the phys_base. If we get it wrong then crash
408      * will need '--machdep phys_offset=<phys-offset>' added to its command
409      * line, which isn't any worse than assuming we can use zero, but being
410      * wrong. This is the same algorithm the crash utility uses when
411      * attempting to guess as it loads non-dumpfile formatted files.
412      */
413     QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
414         if (block->target_start < lowest_addr) {
415             lowest_addr = block->target_start;
416         }
417     }
418 
419     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
420         info->d_machine = EM_AARCH64;
421         info->d_class = ELFCLASS64;
422         info->page_size = (1 << 16); /* aarch64 max pagesize */
423         if (lowest_addr != ULLONG_MAX) {
424             info->phys_base = lowest_addr;
425         }
426     } else {
427         info->d_machine = EM_ARM;
428         info->d_class = ELFCLASS32;
429         info->page_size = (1 << 12);
430         if (lowest_addr < UINT_MAX) {
431             info->phys_base = lowest_addr;
432         }
433     }
434 
435     /* We assume the relevant endianness is that of EL1; this is right
436      * for kernels, but might give the wrong answer if you're trying to
437      * dump a hypervisor that happens to be running an opposite-endian
438      * kernel.
439      */
440     info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0
441                      ? ELFDATA2MSB : ELFDATA2LSB;
442 
443     return 0;
444 }
445 
446 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
447 {
448     ARMCPU *cpu = ARM_CPU(first_cpu);
449     size_t note_size;
450 
451     if (class == ELFCLASS64) {
452         note_size = AARCH64_PRSTATUS_NOTE_SIZE;
453         note_size += AARCH64_PRFPREG_NOTE_SIZE;
454 #ifdef TARGET_AARCH64
455         if (cpu_isar_feature(aa64_sve, cpu)) {
456             note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env);
457         }
458 #endif
459     } else {
460         note_size = ARM_PRSTATUS_NOTE_SIZE;
461         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
462             note_size += ARM_VFP_NOTE_SIZE;
463         }
464     }
465 
466     return note_size * nr_cpus;
467 }
468