1 /* Support for writing ELF notes for ARM architectures 2 * 3 * Copyright (C) 2015 Red Hat Inc. 4 * 5 * Author: Andrew Jones <drjones@redhat.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "elf.h" 24 #include "sysemu/dump.h" 25 #include "cpu-features.h" 26 27 /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */ 28 struct aarch64_user_regs { 29 uint64_t regs[31]; 30 uint64_t sp; 31 uint64_t pc; 32 uint64_t pstate; 33 } QEMU_PACKED; 34 35 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272); 36 37 /* struct elf_prstatus from include/uapi/linux/elfcore.h */ 38 struct aarch64_elf_prstatus { 39 char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */ 40 uint32_t pr_pid; 41 char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) - 42 offsetof(struct elf_prstatus, pr_ppid) */ 43 struct aarch64_user_regs pr_reg; 44 uint32_t pr_fpvalid; 45 char pad3[4]; 46 } QEMU_PACKED; 47 48 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392); 49 50 /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h 51 * 52 * While the vregs member of user_fpsimd_state is of type __uint128_t, 53 * QEMU uses an array of uint64_t, where the high half of the 128-bit 54 * value is always in the 2n+1'th index. Thus we also break the 128- 55 * bit values into two halves in this reproduction of user_fpsimd_state. 56 */ 57 struct aarch64_user_vfp_state { 58 uint64_t vregs[64]; 59 uint32_t fpsr; 60 uint32_t fpcr; 61 char pad[8]; 62 } QEMU_PACKED; 63 64 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528); 65 66 /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */ 67 struct aarch64_user_sve_header { 68 uint32_t size; 69 uint32_t max_size; 70 uint16_t vl; 71 uint16_t max_vl; 72 uint16_t flags; 73 uint16_t reserved; 74 } QEMU_PACKED; 75 76 struct aarch64_note { 77 Elf64_Nhdr hdr; 78 char name[8]; /* align_up(sizeof("CORE"), 4) */ 79 union { 80 struct aarch64_elf_prstatus prstatus; 81 struct aarch64_user_vfp_state vfp; 82 struct aarch64_user_sve_header sve; 83 }; 84 } QEMU_PACKED; 85 86 #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus) 87 #define AARCH64_PRSTATUS_NOTE_SIZE \ 88 (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus)) 89 #define AARCH64_PRFPREG_NOTE_SIZE \ 90 (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state)) 91 #define AARCH64_SVE_NOTE_SIZE(env) \ 92 (AARCH64_NOTE_HEADER_SIZE + sve_size(env)) 93 94 static void aarch64_note_init(struct aarch64_note *note, DumpState *s, 95 const char *name, Elf64_Word namesz, 96 Elf64_Word type, Elf64_Word descsz) 97 { 98 memset(note, 0, sizeof(*note)); 99 100 note->hdr.n_namesz = cpu_to_dump32(s, namesz); 101 note->hdr.n_descsz = cpu_to_dump32(s, descsz); 102 note->hdr.n_type = cpu_to_dump32(s, type); 103 104 memcpy(note->name, name, namesz); 105 } 106 107 static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f, 108 CPUARMState *env, int cpuid, 109 DumpState *s) 110 { 111 struct aarch64_note note; 112 int ret, i; 113 114 aarch64_note_init(¬e, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp)); 115 116 for (i = 0; i < 32; ++i) { 117 uint64_t *q = aa64_vfp_qreg(env, i); 118 note.vfp.vregs[2 * i + 0] = cpu_to_dump64(s, q[0]); 119 note.vfp.vregs[2 * i + 1] = cpu_to_dump64(s, q[1]); 120 } 121 122 if (s->dump_info.d_endian == ELFDATA2MSB) { 123 /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1 124 * entries when generating BE notes, because even big endian 125 * hosts use 2n+1 for the high half. 126 */ 127 for (i = 0; i < 32; ++i) { 128 uint64_t tmp = note.vfp.vregs[2*i]; 129 note.vfp.vregs[2 * i] = note.vfp.vregs[2 * i + 1]; 130 note.vfp.vregs[2 * i + 1] = tmp; 131 } 132 } 133 134 note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env)); 135 note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env)); 136 137 ret = f(¬e, AARCH64_PRFPREG_NOTE_SIZE, s); 138 if (ret < 0) { 139 return -1; 140 } 141 142 return 0; 143 } 144 145 #ifdef TARGET_AARCH64 146 static off_t sve_zreg_offset(uint32_t vq, int n) 147 { 148 off_t off = sizeof(struct aarch64_user_sve_header); 149 return ROUND_UP(off, 16) + vq * 16 * n; 150 } 151 152 static off_t sve_preg_offset(uint32_t vq, int n) 153 { 154 return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n; 155 } 156 157 static off_t sve_fpsr_offset(uint32_t vq) 158 { 159 off_t off = sve_preg_offset(vq, 17); 160 return ROUND_UP(off, 16); 161 } 162 163 static off_t sve_fpcr_offset(uint32_t vq) 164 { 165 return sve_fpsr_offset(vq) + sizeof(uint32_t); 166 } 167 168 static uint32_t sve_current_vq(CPUARMState *env) 169 { 170 return sve_vqm1_for_el(env, arm_current_el(env)) + 1; 171 } 172 173 static size_t sve_size_vq(uint32_t vq) 174 { 175 off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t); 176 return ROUND_UP(off, 16); 177 } 178 179 static size_t sve_size(CPUARMState *env) 180 { 181 return sve_size_vq(sve_current_vq(env)); 182 } 183 184 static int aarch64_write_elf64_sve(WriteCoreDumpFunction f, 185 CPUARMState *env, int cpuid, 186 DumpState *s) 187 { 188 struct aarch64_note *note; 189 ARMCPU *cpu = env_archcpu(env); 190 uint32_t vq = sve_current_vq(env); 191 uint64_t tmp[ARM_MAX_VQ * 2], *r; 192 uint32_t fpr; 193 uint8_t *buf; 194 int ret, i; 195 196 note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env)); 197 buf = (uint8_t *)¬e->sve; 198 199 aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq)); 200 201 note->sve.size = cpu_to_dump32(s, sve_size_vq(vq)); 202 note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq)); 203 note->sve.vl = cpu_to_dump16(s, vq * 16); 204 note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16); 205 note->sve.flags = cpu_to_dump16(s, 1); 206 207 for (i = 0; i < 32; ++i) { 208 r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2); 209 memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16); 210 } 211 212 for (i = 0; i < 17; ++i) { 213 r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0], 214 DIV_ROUND_UP(vq * 2, 8)); 215 memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8); 216 } 217 218 fpr = cpu_to_dump32(s, vfp_get_fpsr(env)); 219 memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t)); 220 221 fpr = cpu_to_dump32(s, vfp_get_fpcr(env)); 222 memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t)); 223 224 ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s); 225 g_free(note); 226 227 if (ret < 0) { 228 return -1; 229 } 230 231 return 0; 232 } 233 #endif 234 235 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 236 int cpuid, DumpState *s) 237 { 238 struct aarch64_note note; 239 ARMCPU *cpu = ARM_CPU(cs); 240 CPUARMState *env = &cpu->env; 241 uint64_t pstate, sp; 242 int ret, i; 243 244 aarch64_note_init(¬e, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus)); 245 246 note.prstatus.pr_pid = cpu_to_dump32(s, cpuid); 247 note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1); 248 249 if (!is_a64(env)) { 250 aarch64_sync_32_to_64(env); 251 pstate = cpsr_read(env); 252 sp = 0; 253 } else { 254 pstate = pstate_read(env); 255 sp = env->xregs[31]; 256 } 257 258 for (i = 0; i < 31; ++i) { 259 note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]); 260 } 261 note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp); 262 note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc); 263 note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate); 264 265 ret = f(¬e, AARCH64_PRSTATUS_NOTE_SIZE, s); 266 if (ret < 0) { 267 return -1; 268 } 269 270 ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s); 271 if (ret) { 272 return ret; 273 } 274 275 #ifdef TARGET_AARCH64 276 if (cpu_isar_feature(aa64_sve, cpu)) { 277 ret = aarch64_write_elf64_sve(f, env, cpuid, s); 278 } 279 #endif 280 281 return ret; 282 } 283 284 /* struct pt_regs from arch/arm/include/asm/ptrace.h */ 285 struct arm_user_regs { 286 uint32_t regs[17]; 287 char pad[4]; 288 } QEMU_PACKED; 289 290 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72); 291 292 /* struct elf_prstatus from include/uapi/linux/elfcore.h */ 293 struct arm_elf_prstatus { 294 char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */ 295 uint32_t pr_pid; 296 char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) - 297 offsetof(struct elf_prstatus, pr_ppid) */ 298 struct arm_user_regs pr_reg; 299 uint32_t pr_fpvalid; 300 } QEMU_PACKED arm_elf_prstatus; 301 302 QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148); 303 304 /* struct user_vfp from arch/arm/include/asm/user.h */ 305 struct arm_user_vfp_state { 306 uint64_t vregs[32]; 307 uint32_t fpscr; 308 } QEMU_PACKED; 309 310 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260); 311 312 struct arm_note { 313 Elf32_Nhdr hdr; 314 char name[8]; /* align_up(sizeof("LINUX"), 4) */ 315 union { 316 struct arm_elf_prstatus prstatus; 317 struct arm_user_vfp_state vfp; 318 }; 319 } QEMU_PACKED; 320 321 #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus) 322 #define ARM_PRSTATUS_NOTE_SIZE \ 323 (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus)) 324 #define ARM_VFP_NOTE_SIZE \ 325 (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state)) 326 327 static void arm_note_init(struct arm_note *note, DumpState *s, 328 const char *name, Elf32_Word namesz, 329 Elf32_Word type, Elf32_Word descsz) 330 { 331 memset(note, 0, sizeof(*note)); 332 333 note->hdr.n_namesz = cpu_to_dump32(s, namesz); 334 note->hdr.n_descsz = cpu_to_dump32(s, descsz); 335 note->hdr.n_type = cpu_to_dump32(s, type); 336 337 memcpy(note->name, name, namesz); 338 } 339 340 static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env, 341 int cpuid, DumpState *s) 342 { 343 struct arm_note note; 344 int ret, i; 345 346 arm_note_init(¬e, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp)); 347 348 for (i = 0; i < 32; ++i) { 349 note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i)); 350 } 351 352 note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env)); 353 354 ret = f(¬e, ARM_VFP_NOTE_SIZE, s); 355 if (ret < 0) { 356 return -1; 357 } 358 359 return 0; 360 } 361 362 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 363 int cpuid, DumpState *s) 364 { 365 struct arm_note note; 366 ARMCPU *cpu = ARM_CPU(cs); 367 CPUARMState *env = &cpu->env; 368 int ret, i; 369 bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu); 370 371 arm_note_init(¬e, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus)); 372 373 note.prstatus.pr_pid = cpu_to_dump32(s, cpuid); 374 note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid); 375 376 for (i = 0; i < 16; ++i) { 377 note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]); 378 } 379 note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env)); 380 381 ret = f(¬e, ARM_PRSTATUS_NOTE_SIZE, s); 382 if (ret < 0) { 383 return -1; 384 } else if (fpvalid) { 385 return arm_write_elf32_vfp(f, env, cpuid, s); 386 } 387 388 return 0; 389 } 390 391 int cpu_get_dump_info(ArchDumpInfo *info, 392 const GuestPhysBlockList *guest_phys_blocks) 393 { 394 ARMCPU *cpu; 395 CPUARMState *env; 396 GuestPhysBlock *block; 397 hwaddr lowest_addr = ULLONG_MAX; 398 399 if (first_cpu == NULL) { 400 return -1; 401 } 402 403 cpu = ARM_CPU(first_cpu); 404 env = &cpu->env; 405 406 /* Take a best guess at the phys_base. If we get it wrong then crash 407 * will need '--machdep phys_offset=<phys-offset>' added to its command 408 * line, which isn't any worse than assuming we can use zero, but being 409 * wrong. This is the same algorithm the crash utility uses when 410 * attempting to guess as it loads non-dumpfile formatted files. 411 */ 412 QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) { 413 if (block->target_start < lowest_addr) { 414 lowest_addr = block->target_start; 415 } 416 } 417 418 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 419 info->d_machine = EM_AARCH64; 420 info->d_class = ELFCLASS64; 421 info->page_size = (1 << 16); /* aarch64 max pagesize */ 422 if (lowest_addr != ULLONG_MAX) { 423 info->phys_base = lowest_addr; 424 } 425 } else { 426 info->d_machine = EM_ARM; 427 info->d_class = ELFCLASS32; 428 info->page_size = (1 << 12); 429 if (lowest_addr < UINT_MAX) { 430 info->phys_base = lowest_addr; 431 } 432 } 433 434 /* We assume the relevant endianness is that of EL1; this is right 435 * for kernels, but might give the wrong answer if you're trying to 436 * dump a hypervisor that happens to be running an opposite-endian 437 * kernel. 438 */ 439 info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0 440 ? ELFDATA2MSB : ELFDATA2LSB; 441 442 return 0; 443 } 444 445 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus) 446 { 447 ARMCPU *cpu = ARM_CPU(first_cpu); 448 size_t note_size; 449 450 if (class == ELFCLASS64) { 451 note_size = AARCH64_PRSTATUS_NOTE_SIZE; 452 note_size += AARCH64_PRFPREG_NOTE_SIZE; 453 #ifdef TARGET_AARCH64 454 if (cpu_isar_feature(aa64_sve, cpu)) { 455 note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env); 456 } 457 #endif 458 } else { 459 note_size = ARM_PRSTATUS_NOTE_SIZE; 460 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 461 note_size += ARM_VFP_NOTE_SIZE; 462 } 463 } 464 465 return note_size * nr_cpus; 466 } 467