xref: /openbmc/qemu/target/arm/arch_dump.c (revision 259ebed4)
1 /* Support for writing ELF notes for ARM architectures
2  *
3  * Copyright (C) 2015 Red Hat Inc.
4  *
5  * Author: Andrew Jones <drjones@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "elf.h"
24 #include "sysemu/dump.h"
25 #include "cpu-features.h"
26 
27 /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */
28 struct aarch64_user_regs {
29     uint64_t regs[31];
30     uint64_t sp;
31     uint64_t pc;
32     uint64_t pstate;
33 } QEMU_PACKED;
34 
35 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272);
36 
37 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
38 struct aarch64_elf_prstatus {
39     char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */
40     uint32_t pr_pid;
41     char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) -
42                             offsetof(struct elf_prstatus, pr_ppid) */
43     struct aarch64_user_regs pr_reg;
44     uint32_t pr_fpvalid;
45     char pad3[4];
46 } QEMU_PACKED;
47 
48 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392);
49 
50 /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h
51  *
52  * While the vregs member of user_fpsimd_state is of type __uint128_t,
53  * QEMU uses an array of uint64_t, where the high half of the 128-bit
54  * value is always in the 2n+1'th index. Thus we also break the 128-
55  * bit values into two halves in this reproduction of user_fpsimd_state.
56  */
57 struct aarch64_user_vfp_state {
58     uint64_t vregs[64];
59     uint32_t fpsr;
60     uint32_t fpcr;
61     char pad[8];
62 } QEMU_PACKED;
63 
64 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
65 
66 /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
67 struct aarch64_user_sve_header {
68     uint32_t size;
69     uint32_t max_size;
70     uint16_t vl;
71     uint16_t max_vl;
72     uint16_t flags;
73     uint16_t reserved;
74 } QEMU_PACKED;
75 
76 struct aarch64_note {
77     Elf64_Nhdr hdr;
78     char name[8]; /* align_up(sizeof("CORE"), 4) */
79     union {
80         struct aarch64_elf_prstatus prstatus;
81         struct aarch64_user_vfp_state vfp;
82         struct aarch64_user_sve_header sve;
83     };
84 } QEMU_PACKED;
85 
86 #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus)
87 #define AARCH64_PRSTATUS_NOTE_SIZE \
88             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
89 #define AARCH64_PRFPREG_NOTE_SIZE \
90             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
91 #define AARCH64_SVE_NOTE_SIZE(env) \
92             (AARCH64_NOTE_HEADER_SIZE + sve_size(env))
93 
94 static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
95                               const char *name, Elf64_Word namesz,
96                               Elf64_Word type, Elf64_Word descsz)
97 {
98     memset(note, 0, sizeof(*note));
99 
100     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
101     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
102     note->hdr.n_type = cpu_to_dump32(s, type);
103 
104     memcpy(note->name, name, namesz);
105 }
106 
107 static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
108                                        CPUARMState *env, int cpuid,
109                                        DumpState *s)
110 {
111     struct aarch64_note note;
112     int ret, i;
113 
114     aarch64_note_init(&note, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp));
115 
116     for (i = 0; i < 32; ++i) {
117         uint64_t *q = aa64_vfp_qreg(env, i);
118         note.vfp.vregs[2 * i + 0] = cpu_to_dump64(s, q[0]);
119         note.vfp.vregs[2 * i + 1] = cpu_to_dump64(s, q[1]);
120     }
121 
122     if (s->dump_info.d_endian == ELFDATA2MSB) {
123         /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1
124          * entries when generating BE notes, because even big endian
125          * hosts use 2n+1 for the high half.
126          */
127         for (i = 0; i < 32; ++i) {
128             uint64_t tmp = note.vfp.vregs[2*i];
129             note.vfp.vregs[2 * i] = note.vfp.vregs[2 * i + 1];
130             note.vfp.vregs[2 * i + 1] = tmp;
131         }
132     }
133 
134     note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env));
135     note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env));
136 
137     ret = f(&note, AARCH64_PRFPREG_NOTE_SIZE, s);
138     if (ret < 0) {
139         return -1;
140     }
141 
142     return 0;
143 }
144 
145 #ifdef TARGET_AARCH64
146 static off_t sve_zreg_offset(uint32_t vq, int n)
147 {
148     off_t off = sizeof(struct aarch64_user_sve_header);
149     return ROUND_UP(off, 16) + vq * 16 * n;
150 }
151 
152 static off_t sve_preg_offset(uint32_t vq, int n)
153 {
154     return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
155 }
156 
157 static off_t sve_fpsr_offset(uint32_t vq)
158 {
159     off_t off = sve_preg_offset(vq, 17);
160     return ROUND_UP(off, 16);
161 }
162 
163 static off_t sve_fpcr_offset(uint32_t vq)
164 {
165     return sve_fpsr_offset(vq) + sizeof(uint32_t);
166 }
167 
168 static uint32_t sve_current_vq(CPUARMState *env)
169 {
170     return sve_vqm1_for_el(env, arm_current_el(env)) + 1;
171 }
172 
173 static size_t sve_size_vq(uint32_t vq)
174 {
175     off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
176     return ROUND_UP(off, 16);
177 }
178 
179 static size_t sve_size(CPUARMState *env)
180 {
181     return sve_size_vq(sve_current_vq(env));
182 }
183 
184 static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
185                                    CPUARMState *env, int cpuid,
186                                    DumpState *s)
187 {
188     struct aarch64_note *note;
189     ARMCPU *cpu = env_archcpu(env);
190     uint32_t vq = sve_current_vq(env);
191     uint64_t tmp[ARM_MAX_VQ * 2], *r;
192     uint32_t fpr;
193     uint8_t *buf;
194     int ret, i;
195 
196     note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
197     buf = (uint8_t *)&note->sve;
198 
199     aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
200 
201     note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
202     note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
203     note->sve.vl = cpu_to_dump16(s, vq * 16);
204     note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
205     note->sve.flags = cpu_to_dump16(s, 1);
206 
207     for (i = 0; i < 32; ++i) {
208         r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
209         memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
210     }
211 
212     for (i = 0; i < 17; ++i) {
213         r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
214                         DIV_ROUND_UP(vq * 2, 8));
215         memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
216     }
217 
218     fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
219     memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
220 
221     fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
222     memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
223 
224     ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
225     g_free(note);
226 
227     if (ret < 0) {
228         return -1;
229     }
230 
231     return 0;
232 }
233 #endif
234 
235 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
236                              int cpuid, DumpState *s)
237 {
238     struct aarch64_note note;
239     ARMCPU *cpu = ARM_CPU(cs);
240     CPUARMState *env = &cpu->env;
241     uint64_t pstate, sp;
242     int ret, i;
243 
244     aarch64_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
245 
246     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
247     note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1);
248 
249     if (!is_a64(env)) {
250         aarch64_sync_32_to_64(env);
251         pstate = cpsr_read(env);
252         sp = 0;
253     } else {
254         pstate = pstate_read(env);
255         sp = env->xregs[31];
256     }
257 
258     for (i = 0; i < 31; ++i) {
259         note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]);
260     }
261     note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp);
262     note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc);
263     note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate);
264 
265     ret = f(&note, AARCH64_PRSTATUS_NOTE_SIZE, s);
266     if (ret < 0) {
267         return -1;
268     }
269 
270     ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
271     if (ret) {
272         return ret;
273     }
274 
275 #ifdef TARGET_AARCH64
276     if (cpu_isar_feature(aa64_sve, cpu)) {
277         ret = aarch64_write_elf64_sve(f, env, cpuid, s);
278     }
279 #endif
280 
281     return ret;
282 }
283 
284 /* struct pt_regs from arch/arm/include/asm/ptrace.h */
285 struct arm_user_regs {
286     uint32_t regs[17];
287     char pad[4];
288 } QEMU_PACKED;
289 
290 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72);
291 
292 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
293 struct arm_elf_prstatus {
294     char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */
295     uint32_t pr_pid;
296     char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) -
297                             offsetof(struct elf_prstatus, pr_ppid) */
298     struct arm_user_regs pr_reg;
299     uint32_t pr_fpvalid;
300 } QEMU_PACKED arm_elf_prstatus;
301 
302 QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148);
303 
304 /* struct user_vfp from arch/arm/include/asm/user.h */
305 struct arm_user_vfp_state {
306     uint64_t vregs[32];
307     uint32_t fpscr;
308 } QEMU_PACKED;
309 
310 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260);
311 
312 struct arm_note {
313     Elf32_Nhdr hdr;
314     char name[8]; /* align_up(sizeof("LINUX"), 4) */
315     union {
316         struct arm_elf_prstatus prstatus;
317         struct arm_user_vfp_state vfp;
318     };
319 } QEMU_PACKED;
320 
321 #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus)
322 #define ARM_PRSTATUS_NOTE_SIZE \
323             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus))
324 #define ARM_VFP_NOTE_SIZE \
325             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state))
326 
327 static void arm_note_init(struct arm_note *note, DumpState *s,
328                           const char *name, Elf32_Word namesz,
329                           Elf32_Word type, Elf32_Word descsz)
330 {
331     memset(note, 0, sizeof(*note));
332 
333     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
334     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
335     note->hdr.n_type = cpu_to_dump32(s, type);
336 
337     memcpy(note->name, name, namesz);
338 }
339 
340 static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env,
341                                int cpuid, DumpState *s)
342 {
343     struct arm_note note;
344     int ret, i;
345 
346     arm_note_init(&note, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp));
347 
348     for (i = 0; i < 32; ++i) {
349         note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i));
350     }
351 
352     note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env));
353 
354     ret = f(&note, ARM_VFP_NOTE_SIZE, s);
355     if (ret < 0) {
356         return -1;
357     }
358 
359     return 0;
360 }
361 
362 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
363                              int cpuid, DumpState *s)
364 {
365     struct arm_note note;
366     ARMCPU *cpu = ARM_CPU(cs);
367     CPUARMState *env = &cpu->env;
368     int ret, i;
369     bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu);
370 
371     arm_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
372 
373     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
374     note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid);
375 
376     for (i = 0; i < 16; ++i) {
377         note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]);
378     }
379     note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env));
380 
381     ret = f(&note, ARM_PRSTATUS_NOTE_SIZE, s);
382     if (ret < 0) {
383         return -1;
384     } else if (fpvalid) {
385         return arm_write_elf32_vfp(f, env, cpuid, s);
386     }
387 
388     return 0;
389 }
390 
391 int cpu_get_dump_info(ArchDumpInfo *info,
392                       const GuestPhysBlockList *guest_phys_blocks)
393 {
394     ARMCPU *cpu;
395     CPUARMState *env;
396     GuestPhysBlock *block;
397     hwaddr lowest_addr = ULLONG_MAX;
398 
399     if (first_cpu == NULL) {
400         return -1;
401     }
402 
403     cpu = ARM_CPU(first_cpu);
404     env = &cpu->env;
405 
406     /* Take a best guess at the phys_base. If we get it wrong then crash
407      * will need '--machdep phys_offset=<phys-offset>' added to its command
408      * line, which isn't any worse than assuming we can use zero, but being
409      * wrong. This is the same algorithm the crash utility uses when
410      * attempting to guess as it loads non-dumpfile formatted files.
411      */
412     QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
413         if (block->target_start < lowest_addr) {
414             lowest_addr = block->target_start;
415         }
416     }
417 
418     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
419         info->d_machine = EM_AARCH64;
420         info->d_class = ELFCLASS64;
421         info->page_size = (1 << 16); /* aarch64 max pagesize */
422         if (lowest_addr != ULLONG_MAX) {
423             info->phys_base = lowest_addr;
424         }
425     } else {
426         info->d_machine = EM_ARM;
427         info->d_class = ELFCLASS32;
428         info->page_size = (1 << 12);
429         if (lowest_addr < UINT_MAX) {
430             info->phys_base = lowest_addr;
431         }
432     }
433 
434     /* We assume the relevant endianness is that of EL1; this is right
435      * for kernels, but might give the wrong answer if you're trying to
436      * dump a hypervisor that happens to be running an opposite-endian
437      * kernel.
438      */
439     info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0
440                      ? ELFDATA2MSB : ELFDATA2LSB;
441 
442     return 0;
443 }
444 
445 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
446 {
447     ARMCPU *cpu = ARM_CPU(first_cpu);
448     size_t note_size;
449 
450     if (class == ELFCLASS64) {
451         note_size = AARCH64_PRSTATUS_NOTE_SIZE;
452         note_size += AARCH64_PRFPREG_NOTE_SIZE;
453 #ifdef TARGET_AARCH64
454         if (cpu_isar_feature(aa64_sve, cpu)) {
455             note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env);
456         }
457 #endif
458     } else {
459         note_size = ARM_PRSTATUS_NOTE_SIZE;
460         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
461             note_size += ARM_VFP_NOTE_SIZE;
462         }
463     }
464 
465     return note_size * nr_cpus;
466 }
467