xref: /openbmc/qemu/target/alpha/helper.c (revision a158c63b)
1 /*
2  *  Alpha emulation cpu helpers for qemu.
3  *
4  *  Copyright (c) 2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "fpu/softfloat-types.h"
25 #include "exec/helper-proto.h"
26 #include "qemu/qemu-print.h"
27 
28 
29 #define CONVERT_BIT(X, SRC, DST) \
30     (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
31 
32 uint64_t cpu_alpha_load_fpcr(CPUAlphaState *env)
33 {
34     return (uint64_t)env->fpcr << 32;
35 }
36 
37 void cpu_alpha_store_fpcr(CPUAlphaState *env, uint64_t val)
38 {
39     static const uint8_t rm_map[] = {
40         [FPCR_DYN_NORMAL >> FPCR_DYN_SHIFT] = float_round_nearest_even,
41         [FPCR_DYN_CHOPPED >> FPCR_DYN_SHIFT] = float_round_to_zero,
42         [FPCR_DYN_MINUS >> FPCR_DYN_SHIFT] = float_round_down,
43         [FPCR_DYN_PLUS >> FPCR_DYN_SHIFT] = float_round_up,
44     };
45 
46     uint32_t fpcr = val >> 32;
47     uint32_t t = 0;
48 
49     /* Record the raw value before adjusting for linux-user.  */
50     env->fpcr = fpcr;
51 
52 #ifdef CONFIG_USER_ONLY
53     /*
54      * Override some of these bits with the contents of ENV->SWCR.
55      * In system mode, some of these would trap to the kernel, at
56      * which point the kernel's handler would emulate and apply
57      * the software exception mask.
58      */
59     uint32_t soft_fpcr = alpha_ieee_swcr_to_fpcr(env->swcr) >> 32;
60     fpcr |= soft_fpcr & (FPCR_STATUS_MASK | FPCR_DNZ);
61 
62     /*
63      * The IOV exception is disabled by the kernel with SWCR_TRAP_ENABLE_INV,
64      * which got mapped by alpha_ieee_swcr_to_fpcr to FPCR_INVD.
65      * Add FPCR_IOV to fpcr_exc_enable so that it is handled identically.
66      */
67     t |= CONVERT_BIT(soft_fpcr, FPCR_INVD, FPCR_IOV);
68 #endif
69 
70     t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE);
71     t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF);
72     t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF);
73     t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE);
74     t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV);
75 
76     env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK;
77 
78     env->fpcr_dyn_round = rm_map[(fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT];
79     env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0;
80 
81     t = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ);
82 #ifdef CONFIG_USER_ONLY
83     t |= (env->swcr & SWCR_MAP_UMZ) != 0;
84 #endif
85     env->fpcr_flush_to_zero = t;
86 }
87 
88 uint64_t helper_load_fpcr(CPUAlphaState *env)
89 {
90     return cpu_alpha_load_fpcr(env);
91 }
92 
93 void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
94 {
95     cpu_alpha_store_fpcr(env, val);
96 }
97 
98 static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg)
99 {
100 #ifndef CONFIG_USER_ONLY
101     if (env->flags & ENV_FLAG_PAL_MODE) {
102         if (reg >= 8 && reg <= 14) {
103             return &env->shadow[reg - 8];
104         } else if (reg == 25) {
105             return &env->shadow[7];
106         }
107     }
108 #endif
109     return &env->ir[reg];
110 }
111 
112 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg)
113 {
114     return *cpu_alpha_addr_gr(env, reg);
115 }
116 
117 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val)
118 {
119     *cpu_alpha_addr_gr(env, reg) = val;
120 }
121 
122 #if defined(CONFIG_USER_ONLY)
123 void alpha_cpu_record_sigsegv(CPUState *cs, vaddr address,
124                               MMUAccessType access_type,
125                               bool maperr, uintptr_t retaddr)
126 {
127     AlphaCPU *cpu = ALPHA_CPU(cs);
128     target_ulong mmcsr, cause;
129 
130     /* Assuming !maperr, infer the missing protection. */
131     switch (access_type) {
132     case MMU_DATA_LOAD:
133         mmcsr = MM_K_FOR;
134         cause = 0;
135         break;
136     case MMU_DATA_STORE:
137         mmcsr = MM_K_FOW;
138         cause = 1;
139         break;
140     case MMU_INST_FETCH:
141         mmcsr = MM_K_FOE;
142         cause = -1;
143         break;
144     default:
145         g_assert_not_reached();
146     }
147     if (maperr) {
148         if (address < BIT_ULL(TARGET_VIRT_ADDR_SPACE_BITS - 1)) {
149             /* Userspace address, therefore page not mapped. */
150             mmcsr = MM_K_TNV;
151         } else {
152             /* Kernel or invalid address. */
153             mmcsr = MM_K_ACV;
154         }
155     }
156 
157     /* Record the arguments that PALcode would give to the kernel. */
158     cpu->env.trap_arg0 = address;
159     cpu->env.trap_arg1 = mmcsr;
160     cpu->env.trap_arg2 = cause;
161 }
162 #else
163 /* Returns the OSF/1 entMM failure indication, or -1 on success.  */
164 static int get_physical_address(CPUAlphaState *env, target_ulong addr,
165                                 int prot_need, int mmu_idx,
166                                 target_ulong *pphys, int *pprot)
167 {
168     CPUState *cs = env_cpu(env);
169     target_long saddr = addr;
170     target_ulong phys = 0;
171     target_ulong L1pte, L2pte, L3pte;
172     target_ulong pt, index;
173     int prot = 0;
174     int ret = MM_K_ACV;
175 
176     /* Handle physical accesses.  */
177     if (mmu_idx == MMU_PHYS_IDX) {
178         phys = addr;
179         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
180         ret = -1;
181         goto exit;
182     }
183 
184     /* Ensure that the virtual address is properly sign-extended from
185        the last implemented virtual address bit.  */
186     if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
187         goto exit;
188     }
189 
190     /* Translate the superpage.  */
191     /* ??? When we do more than emulate Unix PALcode, we'll need to
192        determine which KSEG is actually active.  */
193     if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
194         /* User-space cannot access KSEG addresses.  */
195         if (mmu_idx != MMU_KERNEL_IDX) {
196             goto exit;
197         }
198 
199         /* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
200            We would not do this if the 48-bit KSEG is enabled.  */
201         phys = saddr & ((1ull << 40) - 1);
202         phys |= (saddr & (1ull << 40)) << 3;
203 
204         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
205         ret = -1;
206         goto exit;
207     }
208 
209     /* Interpret the page table exactly like PALcode does.  */
210 
211     pt = env->ptbr;
212 
213     /* TODO: rather than using ldq_phys() to read the page table we should
214      * use address_space_ldq() so that we can handle the case when
215      * the page table read gives a bus fault, rather than ignoring it.
216      * For the existing code the zero data that ldq_phys will return for
217      * an access to invalid memory will result in our treating the page
218      * table as invalid, which may even be the right behaviour.
219      */
220 
221     /* L1 page table read.  */
222     index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
223     L1pte = ldq_phys(cs->as, pt + index*8);
224 
225     if (unlikely((L1pte & PTE_VALID) == 0)) {
226         ret = MM_K_TNV;
227         goto exit;
228     }
229     if (unlikely((L1pte & PTE_KRE) == 0)) {
230         goto exit;
231     }
232     pt = L1pte >> 32 << TARGET_PAGE_BITS;
233 
234     /* L2 page table read.  */
235     index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
236     L2pte = ldq_phys(cs->as, pt + index*8);
237 
238     if (unlikely((L2pte & PTE_VALID) == 0)) {
239         ret = MM_K_TNV;
240         goto exit;
241     }
242     if (unlikely((L2pte & PTE_KRE) == 0)) {
243         goto exit;
244     }
245     pt = L2pte >> 32 << TARGET_PAGE_BITS;
246 
247     /* L3 page table read.  */
248     index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
249     L3pte = ldq_phys(cs->as, pt + index*8);
250 
251     phys = L3pte >> 32 << TARGET_PAGE_BITS;
252     if (unlikely((L3pte & PTE_VALID) == 0)) {
253         ret = MM_K_TNV;
254         goto exit;
255     }
256 
257 #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
258 # error page bits out of date
259 #endif
260 
261     /* Check access violations.  */
262     if (L3pte & (PTE_KRE << mmu_idx)) {
263         prot |= PAGE_READ | PAGE_EXEC;
264     }
265     if (L3pte & (PTE_KWE << mmu_idx)) {
266         prot |= PAGE_WRITE;
267     }
268     if (unlikely((prot & prot_need) == 0 && prot_need)) {
269         goto exit;
270     }
271 
272     /* Check fault-on-operation violations.  */
273     prot &= ~(L3pte >> 1);
274     ret = -1;
275     if (unlikely((prot & prot_need) == 0)) {
276         ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
277                prot_need & PAGE_WRITE ? MM_K_FOW :
278                prot_need & PAGE_READ ? MM_K_FOR : -1);
279     }
280 
281  exit:
282     *pphys = phys;
283     *pprot = prot;
284     return ret;
285 }
286 
287 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
288 {
289     target_ulong phys;
290     int prot, fail;
291 
292     fail = get_physical_address(cpu_env(cs), addr, 0, 0, &phys, &prot);
293     return (fail >= 0 ? -1 : phys);
294 }
295 
296 bool alpha_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
297                         MMUAccessType access_type, int mmu_idx,
298                         bool probe, uintptr_t retaddr)
299 {
300     CPUAlphaState *env = cpu_env(cs);
301     target_ulong phys;
302     int prot, fail;
303 
304     fail = get_physical_address(env, addr, 1 << access_type,
305                                 mmu_idx, &phys, &prot);
306     if (unlikely(fail >= 0)) {
307         if (probe) {
308             return false;
309         }
310         cs->exception_index = EXCP_MMFAULT;
311         env->trap_arg0 = addr;
312         env->trap_arg1 = fail;
313         env->trap_arg2 = (access_type == MMU_DATA_LOAD ? 0ull :
314                           access_type == MMU_DATA_STORE ? 1ull :
315                           /* access_type == MMU_INST_FETCH */ -1ull);
316         cpu_loop_exit_restore(cs, retaddr);
317     }
318 
319     tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
320                  prot, mmu_idx, TARGET_PAGE_SIZE);
321     return true;
322 }
323 
324 void alpha_cpu_do_interrupt(CPUState *cs)
325 {
326     CPUAlphaState *env = cpu_env(cs);
327     int i = cs->exception_index;
328 
329     if (qemu_loglevel_mask(CPU_LOG_INT)) {
330         static int count;
331         const char *name = "<unknown>";
332 
333         switch (i) {
334         case EXCP_RESET:
335             name = "reset";
336             break;
337         case EXCP_MCHK:
338             name = "mchk";
339             break;
340         case EXCP_SMP_INTERRUPT:
341             name = "smp_interrupt";
342             break;
343         case EXCP_CLK_INTERRUPT:
344             name = "clk_interrupt";
345             break;
346         case EXCP_DEV_INTERRUPT:
347             name = "dev_interrupt";
348             break;
349         case EXCP_MMFAULT:
350             name = "mmfault";
351             break;
352         case EXCP_UNALIGN:
353             name = "unalign";
354             break;
355         case EXCP_OPCDEC:
356             name = "opcdec";
357             break;
358         case EXCP_ARITH:
359             name = "arith";
360             break;
361         case EXCP_FEN:
362             name = "fen";
363             break;
364         case EXCP_CALL_PAL:
365             name = "call_pal";
366             break;
367         }
368         qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016"
369                  PRIx64 " sp=%016" PRIx64 "\n",
370                  ++count, name, env->error_code, cs->cpu_index,
371                  env->pc, env->ir[IR_SP]);
372     }
373 
374     cs->exception_index = -1;
375 
376     switch (i) {
377     case EXCP_RESET:
378         i = 0x0000;
379         break;
380     case EXCP_MCHK:
381         i = 0x0080;
382         break;
383     case EXCP_SMP_INTERRUPT:
384         i = 0x0100;
385         break;
386     case EXCP_CLK_INTERRUPT:
387         i = 0x0180;
388         break;
389     case EXCP_DEV_INTERRUPT:
390         i = 0x0200;
391         break;
392     case EXCP_MMFAULT:
393         i = 0x0280;
394         break;
395     case EXCP_UNALIGN:
396         i = 0x0300;
397         break;
398     case EXCP_OPCDEC:
399         i = 0x0380;
400         break;
401     case EXCP_ARITH:
402         i = 0x0400;
403         break;
404     case EXCP_FEN:
405         i = 0x0480;
406         break;
407     case EXCP_CALL_PAL:
408         i = env->error_code;
409         /* There are 64 entry points for both privileged and unprivileged,
410            with bit 0x80 indicating unprivileged.  Each entry point gets
411            64 bytes to do its job.  */
412         if (i & 0x80) {
413             i = 0x2000 + (i - 0x80) * 64;
414         } else {
415             i = 0x1000 + i * 64;
416         }
417         break;
418     default:
419         cpu_abort(cs, "Unhandled CPU exception");
420     }
421 
422     /* Remember where the exception happened.  Emulate real hardware in
423        that the low bit of the PC indicates PALmode.  */
424     env->exc_addr = env->pc | (env->flags & ENV_FLAG_PAL_MODE);
425 
426     /* Continue execution at the PALcode entry point.  */
427     env->pc = env->palbr + i;
428 
429     /* Switch to PALmode.  */
430     env->flags |= ENV_FLAG_PAL_MODE;
431 }
432 
433 bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
434 {
435     CPUAlphaState *env = cpu_env(cs);
436     int idx = -1;
437 
438     /* We never take interrupts while in PALmode.  */
439     if (env->flags & ENV_FLAG_PAL_MODE) {
440         return false;
441     }
442 
443     /* Fall through the switch, collecting the highest priority
444        interrupt that isn't masked by the processor status IPL.  */
445     /* ??? This hard-codes the OSF/1 interrupt levels.  */
446     switch ((env->flags >> ENV_FLAG_PS_SHIFT) & PS_INT_MASK) {
447     case 0 ... 3:
448         if (interrupt_request & CPU_INTERRUPT_HARD) {
449             idx = EXCP_DEV_INTERRUPT;
450         }
451         /* FALLTHRU */
452     case 4:
453         if (interrupt_request & CPU_INTERRUPT_TIMER) {
454             idx = EXCP_CLK_INTERRUPT;
455         }
456         /* FALLTHRU */
457     case 5:
458         if (interrupt_request & CPU_INTERRUPT_SMP) {
459             idx = EXCP_SMP_INTERRUPT;
460         }
461         /* FALLTHRU */
462     case 6:
463         if (interrupt_request & CPU_INTERRUPT_MCHK) {
464             idx = EXCP_MCHK;
465         }
466     }
467     if (idx >= 0) {
468         cs->exception_index = idx;
469         env->error_code = 0;
470         alpha_cpu_do_interrupt(cs);
471         return true;
472     }
473     return false;
474 }
475 
476 #endif /* !CONFIG_USER_ONLY */
477 
478 void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags)
479 {
480     static const char linux_reg_names[31][4] = {
481         "v0",  "t0",  "t1", "t2",  "t3", "t4", "t5", "t6",
482         "t7",  "s0",  "s1", "s2",  "s3", "s4", "s5", "fp",
483         "a0",  "a1",  "a2", "a3",  "a4", "a5", "t8", "t9",
484         "t10", "t11", "ra", "t12", "at", "gp", "sp"
485     };
486     CPUAlphaState *env = cpu_env(cs);
487     int i;
488 
489     qemu_fprintf(f, "PC      " TARGET_FMT_lx " PS      %02x\n",
490                  env->pc, extract32(env->flags, ENV_FLAG_PS_SHIFT, 8));
491     for (i = 0; i < 31; i++) {
492         qemu_fprintf(f, "%-8s" TARGET_FMT_lx "%c",
493                      linux_reg_names[i], cpu_alpha_load_gr(env, i),
494                      (i % 3) == 2 ? '\n' : ' ');
495     }
496 
497     qemu_fprintf(f, "lock_a  " TARGET_FMT_lx " lock_v  " TARGET_FMT_lx "\n",
498                  env->lock_addr, env->lock_value);
499 
500     if (flags & CPU_DUMP_FPU) {
501         for (i = 0; i < 31; i++) {
502             qemu_fprintf(f, "f%-7d%016" PRIx64 "%c", i, env->fir[i],
503                          (i % 3) == 2 ? '\n' : ' ');
504         }
505         qemu_fprintf(f, "fpcr    %016" PRIx64 "\n", cpu_alpha_load_fpcr(env));
506     }
507     qemu_fprintf(f, "\n");
508 }
509 
510 /* This should only be called from translate, via gen_excp.
511    We expect that ENV->PC has already been updated.  */
512 G_NORETURN void helper_excp(CPUAlphaState *env, int excp, int error)
513 {
514     CPUState *cs = env_cpu(env);
515 
516     cs->exception_index = excp;
517     env->error_code = error;
518     cpu_loop_exit(cs);
519 }
520 
521 /* This may be called from any of the helpers to set up EXCEPTION_INDEX.  */
522 G_NORETURN void dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
523                              int excp, int error)
524 {
525     CPUState *cs = env_cpu(env);
526 
527     cs->exception_index = excp;
528     env->error_code = error;
529     if (retaddr) {
530         cpu_restore_state(cs, retaddr);
531         /* Floating-point exceptions (our only users) point to the next PC.  */
532         env->pc += 4;
533     }
534     cpu_loop_exit(cs);
535 }
536 
537 G_NORETURN void arith_excp(CPUAlphaState *env, uintptr_t retaddr,
538                            int exc, uint64_t mask)
539 {
540     env->trap_arg0 = exc;
541     env->trap_arg1 = mask;
542     dynamic_excp(env, retaddr, EXCP_ARITH, 0);
543 }
544