xref: /openbmc/qemu/target/alpha/cpu.h (revision 58ea30f5)
1 /*
2  *  Alpha emulation cpu definitions for qemu.
3  *
4  *  Copyright (c) 2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ALPHA_CPU_H
21 #define ALPHA_CPU_H
22 
23 #include "qemu-common.h"
24 #include "cpu-qom.h"
25 
26 #define TARGET_LONG_BITS 64
27 #define ALIGNED_ONLY
28 
29 #define CPUArchState struct CPUAlphaState
30 
31 /* Alpha processors have a weak memory model */
32 #define TCG_GUEST_DEFAULT_MO      (0)
33 
34 #include "exec/cpu-defs.h"
35 
36 #define ICACHE_LINE_SIZE 32
37 #define DCACHE_LINE_SIZE 32
38 
39 #define TARGET_PAGE_BITS 13
40 
41 #ifdef CONFIG_USER_ONLY
42 /* ??? The kernel likes to give addresses in high memory.  If the host has
43    more virtual address space than the guest, this can lead to impossible
44    allocations.  Honor the long-standing assumption that only kernel addrs
45    are negative, but otherwise allow allocations anywhere.  This could lead
46    to tricky emulation problems for programs doing tagged addressing, but
47    that's far fewer than encounter the impossible allocation problem.  */
48 #define TARGET_PHYS_ADDR_SPACE_BITS  63
49 #define TARGET_VIRT_ADDR_SPACE_BITS  63
50 #else
51 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44.  */
52 #define TARGET_PHYS_ADDR_SPACE_BITS  44
53 #define TARGET_VIRT_ADDR_SPACE_BITS  (30 + TARGET_PAGE_BITS)
54 #endif
55 
56 /* Alpha major type */
57 enum {
58     ALPHA_EV3  = 1,
59     ALPHA_EV4  = 2,
60     ALPHA_SIM  = 3,
61     ALPHA_LCA  = 4,
62     ALPHA_EV5  = 5, /* 21164 */
63     ALPHA_EV45 = 6, /* 21064A */
64     ALPHA_EV56 = 7, /* 21164A */
65 };
66 
67 /* EV4 minor type */
68 enum {
69     ALPHA_EV4_2 = 0,
70     ALPHA_EV4_3 = 1,
71 };
72 
73 /* LCA minor type */
74 enum {
75     ALPHA_LCA_1 = 1, /* 21066 */
76     ALPHA_LCA_2 = 2, /* 20166 */
77     ALPHA_LCA_3 = 3, /* 21068 */
78     ALPHA_LCA_4 = 4, /* 21068 */
79     ALPHA_LCA_5 = 5, /* 21066A */
80     ALPHA_LCA_6 = 6, /* 21068A */
81 };
82 
83 /* EV5 minor type */
84 enum {
85     ALPHA_EV5_1 = 1, /* Rev BA, CA */
86     ALPHA_EV5_2 = 2, /* Rev DA, EA */
87     ALPHA_EV5_3 = 3, /* Pass 3 */
88     ALPHA_EV5_4 = 4, /* Pass 3.2 */
89     ALPHA_EV5_5 = 5, /* Pass 4 */
90 };
91 
92 /* EV45 minor type */
93 enum {
94     ALPHA_EV45_1 = 1, /* Pass 1 */
95     ALPHA_EV45_2 = 2, /* Pass 1.1 */
96     ALPHA_EV45_3 = 3, /* Pass 2 */
97 };
98 
99 /* EV56 minor type */
100 enum {
101     ALPHA_EV56_1 = 1, /* Pass 1 */
102     ALPHA_EV56_2 = 2, /* Pass 2 */
103 };
104 
105 enum {
106     IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
107     IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
108     IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
109     IMPLVER_21364 = 3, /* EV7 & EV79 */
110 };
111 
112 enum {
113     AMASK_BWX      = 0x00000001,
114     AMASK_FIX      = 0x00000002,
115     AMASK_CIX      = 0x00000004,
116     AMASK_MVI      = 0x00000100,
117     AMASK_TRAP     = 0x00000200,
118     AMASK_PREFETCH = 0x00001000,
119 };
120 
121 enum {
122     VAX_ROUND_NORMAL = 0,
123     VAX_ROUND_CHOPPED,
124 };
125 
126 enum {
127     IEEE_ROUND_NORMAL = 0,
128     IEEE_ROUND_DYNAMIC,
129     IEEE_ROUND_PLUS,
130     IEEE_ROUND_MINUS,
131     IEEE_ROUND_CHOPPED,
132 };
133 
134 /* IEEE floating-point operations encoding */
135 /* Trap mode */
136 enum {
137     FP_TRAP_I   = 0x0,
138     FP_TRAP_U   = 0x1,
139     FP_TRAP_S  = 0x4,
140     FP_TRAP_SU  = 0x5,
141     FP_TRAP_SUI = 0x7,
142 };
143 
144 /* Rounding mode */
145 enum {
146     FP_ROUND_CHOPPED = 0x0,
147     FP_ROUND_MINUS   = 0x1,
148     FP_ROUND_NORMAL  = 0x2,
149     FP_ROUND_DYNAMIC = 0x3,
150 };
151 
152 /* FPCR bits -- right-shifted 32 so we can use a uint32_t.  */
153 #define FPCR_SUM                (1U << (63 - 32))
154 #define FPCR_INED               (1U << (62 - 32))
155 #define FPCR_UNFD               (1U << (61 - 32))
156 #define FPCR_UNDZ               (1U << (60 - 32))
157 #define FPCR_DYN_SHIFT          (58 - 32)
158 #define FPCR_DYN_CHOPPED        (0U << FPCR_DYN_SHIFT)
159 #define FPCR_DYN_MINUS          (1U << FPCR_DYN_SHIFT)
160 #define FPCR_DYN_NORMAL         (2U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_PLUS           (3U << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_MASK           (3U << FPCR_DYN_SHIFT)
163 #define FPCR_IOV                (1U << (57 - 32))
164 #define FPCR_INE                (1U << (56 - 32))
165 #define FPCR_UNF                (1U << (55 - 32))
166 #define FPCR_OVF                (1U << (54 - 32))
167 #define FPCR_DZE                (1U << (53 - 32))
168 #define FPCR_INV                (1U << (52 - 32))
169 #define FPCR_OVFD               (1U << (51 - 32))
170 #define FPCR_DZED               (1U << (50 - 32))
171 #define FPCR_INVD               (1U << (49 - 32))
172 #define FPCR_DNZ                (1U << (48 - 32))
173 #define FPCR_DNOD               (1U << (47 - 32))
174 #define FPCR_STATUS_MASK        (FPCR_IOV | FPCR_INE | FPCR_UNF \
175                                  | FPCR_OVF | FPCR_DZE | FPCR_INV)
176 
177 /* The silly software trap enables implemented by the kernel emulation.
178    These are more or less architecturally required, since the real hardware
179    has read-as-zero bits in the FPCR when the features aren't implemented.
180    For the purposes of QEMU, we pretend the FPCR can hold everything.  */
181 #define SWCR_TRAP_ENABLE_INV    (1U << 1)
182 #define SWCR_TRAP_ENABLE_DZE    (1U << 2)
183 #define SWCR_TRAP_ENABLE_OVF    (1U << 3)
184 #define SWCR_TRAP_ENABLE_UNF    (1U << 4)
185 #define SWCR_TRAP_ENABLE_INE    (1U << 5)
186 #define SWCR_TRAP_ENABLE_DNO    (1U << 6)
187 #define SWCR_TRAP_ENABLE_MASK   ((1U << 7) - (1U << 1))
188 
189 #define SWCR_MAP_DMZ            (1U << 12)
190 #define SWCR_MAP_UMZ            (1U << 13)
191 #define SWCR_MAP_MASK           (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
192 
193 #define SWCR_STATUS_INV         (1U << 17)
194 #define SWCR_STATUS_DZE         (1U << 18)
195 #define SWCR_STATUS_OVF         (1U << 19)
196 #define SWCR_STATUS_UNF         (1U << 20)
197 #define SWCR_STATUS_INE         (1U << 21)
198 #define SWCR_STATUS_DNO         (1U << 22)
199 #define SWCR_STATUS_MASK        ((1U << 23) - (1U << 17))
200 
201 #define SWCR_MASK  (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
202 
203 /* MMU modes definitions */
204 
205 /* Alpha has 5 MMU modes: PALcode, Kernel, Executive, Supervisor, and User.
206    The Unix PALcode only exposes the kernel and user modes; presumably
207    executive and supervisor are used by VMS.
208 
209    PALcode itself uses physical mode for code and kernel mode for data;
210    there are PALmode instructions that can access data via physical mode
211    or via an os-installed "alternate mode", which is one of the 4 above.
212 
213    That said, we're only emulating Unix PALcode, and not attempting VMS,
214    so we don't need to implement Executive and Supervisor.  QEMU's own
215    PALcode cheats and usees the KSEG mapping for its code+data rather than
216    physical addresses.  */
217 
218 #define NB_MMU_MODES 3
219 
220 #define MMU_MODE0_SUFFIX _kernel
221 #define MMU_MODE1_SUFFIX _user
222 #define MMU_KERNEL_IDX   0
223 #define MMU_USER_IDX     1
224 #define MMU_PHYS_IDX     2
225 
226 typedef struct CPUAlphaState CPUAlphaState;
227 
228 struct CPUAlphaState {
229     uint64_t ir[31];
230     float64 fir[31];
231     uint64_t pc;
232     uint64_t unique;
233     uint64_t lock_addr;
234     uint64_t lock_value;
235 
236     /* The FPCR, and disassembled portions thereof.  */
237     uint32_t fpcr;
238     uint32_t fpcr_exc_enable;
239     float_status fp_status;
240     uint8_t fpcr_dyn_round;
241     uint8_t fpcr_flush_to_zero;
242 
243     /* Mask of PALmode, Processor State et al.  Most of this gets copied
244        into the TranslatorBlock flags and controls code generation.  */
245     uint32_t flags;
246 
247     /* The high 32-bits of the processor cycle counter.  */
248     uint32_t pcc_ofs;
249 
250     /* These pass data from the exception logic in the translator and
251        helpers to the OS entry point.  This is used for both system
252        emulation and user-mode.  */
253     uint64_t trap_arg0;
254     uint64_t trap_arg1;
255     uint64_t trap_arg2;
256 
257 #if !defined(CONFIG_USER_ONLY)
258     /* The internal data required by our emulation of the Unix PALcode.  */
259     uint64_t exc_addr;
260     uint64_t palbr;
261     uint64_t ptbr;
262     uint64_t vptptr;
263     uint64_t sysval;
264     uint64_t usp;
265     uint64_t shadow[8];
266     uint64_t scratch[24];
267 #endif
268 
269     /* This alarm doesn't exist in real hardware; we wish it did.  */
270     uint64_t alarm_expire;
271 
272     /* Those resources are used only in QEMU core */
273     CPU_COMMON
274 
275     int error_code;
276 
277     uint32_t features;
278     uint32_t amask;
279     int implver;
280 };
281 
282 /**
283  * AlphaCPU:
284  * @env: #CPUAlphaState
285  *
286  * An Alpha CPU.
287  */
288 struct AlphaCPU {
289     /*< private >*/
290     CPUState parent_obj;
291     /*< public >*/
292 
293     CPUAlphaState env;
294 
295     /* This alarm doesn't exist in real hardware; we wish it did.  */
296     QEMUTimer *alarm_timer;
297 };
298 
299 static inline AlphaCPU *alpha_env_get_cpu(CPUAlphaState *env)
300 {
301     return container_of(env, AlphaCPU, env);
302 }
303 
304 #define ENV_GET_CPU(e) CPU(alpha_env_get_cpu(e))
305 
306 #define ENV_OFFSET offsetof(AlphaCPU, env)
307 
308 #ifndef CONFIG_USER_ONLY
309 extern const struct VMStateDescription vmstate_alpha_cpu;
310 #endif
311 
312 void alpha_cpu_do_interrupt(CPUState *cpu);
313 bool alpha_cpu_exec_interrupt(CPUState *cpu, int int_req);
314 void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags);
315 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
316 int alpha_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
317 int alpha_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
318 void alpha_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
319                                    MMUAccessType access_type,
320                                    int mmu_idx, uintptr_t retaddr);
321 
322 #define cpu_list alpha_cpu_list
323 #define cpu_signal_handler cpu_alpha_signal_handler
324 
325 #include "exec/cpu-all.h"
326 
327 enum {
328     FEATURE_ASN    = 0x00000001,
329     FEATURE_SPS    = 0x00000002,
330     FEATURE_VIRBND = 0x00000004,
331     FEATURE_TBCHK  = 0x00000008,
332 };
333 
334 enum {
335     EXCP_RESET,
336     EXCP_MCHK,
337     EXCP_SMP_INTERRUPT,
338     EXCP_CLK_INTERRUPT,
339     EXCP_DEV_INTERRUPT,
340     EXCP_MMFAULT,
341     EXCP_UNALIGN,
342     EXCP_OPCDEC,
343     EXCP_ARITH,
344     EXCP_FEN,
345     EXCP_CALL_PAL,
346 };
347 
348 /* Alpha-specific interrupt pending bits.  */
349 #define CPU_INTERRUPT_TIMER	CPU_INTERRUPT_TGT_EXT_0
350 #define CPU_INTERRUPT_SMP	CPU_INTERRUPT_TGT_EXT_1
351 #define CPU_INTERRUPT_MCHK	CPU_INTERRUPT_TGT_EXT_2
352 
353 /* OSF/1 Page table bits.  */
354 enum {
355     PTE_VALID = 0x0001,
356     PTE_FOR   = 0x0002,  /* used for page protection (fault on read) */
357     PTE_FOW   = 0x0004,  /* used for page protection (fault on write) */
358     PTE_FOE   = 0x0008,  /* used for page protection (fault on exec) */
359     PTE_ASM   = 0x0010,
360     PTE_KRE   = 0x0100,
361     PTE_URE   = 0x0200,
362     PTE_KWE   = 0x1000,
363     PTE_UWE   = 0x2000
364 };
365 
366 /* Hardware interrupt (entInt) constants.  */
367 enum {
368     INT_K_IP,
369     INT_K_CLK,
370     INT_K_MCHK,
371     INT_K_DEV,
372     INT_K_PERF,
373 };
374 
375 /* Memory management (entMM) constants.  */
376 enum {
377     MM_K_TNV,
378     MM_K_ACV,
379     MM_K_FOR,
380     MM_K_FOE,
381     MM_K_FOW
382 };
383 
384 /* Arithmetic exception (entArith) constants.  */
385 enum {
386     EXC_M_SWC = 1,      /* Software completion */
387     EXC_M_INV = 2,      /* Invalid operation */
388     EXC_M_DZE = 4,      /* Division by zero */
389     EXC_M_FOV = 8,      /* Overflow */
390     EXC_M_UNF = 16,     /* Underflow */
391     EXC_M_INE = 32,     /* Inexact result */
392     EXC_M_IOV = 64      /* Integer Overflow */
393 };
394 
395 /* Processor status constants.  */
396 /* Low 3 bits are interrupt mask level.  */
397 #define PS_INT_MASK   7u
398 
399 /* Bits 4 and 5 are the mmu mode.  The VMS PALcode uses all 4 modes;
400    The Unix PALcode only uses bit 4.  */
401 #define PS_USER_MODE  8u
402 
403 /* CPUAlphaState->flags constants.  These are layed out so that we
404    can set or reset the pieces individually by assigning to the byte,
405    or manipulated as a whole.  */
406 
407 #define ENV_FLAG_PAL_SHIFT    0
408 #define ENV_FLAG_PS_SHIFT     8
409 #define ENV_FLAG_RX_SHIFT     16
410 #define ENV_FLAG_FEN_SHIFT    24
411 
412 #define ENV_FLAG_PAL_MODE     (1u << ENV_FLAG_PAL_SHIFT)
413 #define ENV_FLAG_PS_USER      (PS_USER_MODE << ENV_FLAG_PS_SHIFT)
414 #define ENV_FLAG_RX_FLAG      (1u << ENV_FLAG_RX_SHIFT)
415 #define ENV_FLAG_FEN          (1u << ENV_FLAG_FEN_SHIFT)
416 
417 #define ENV_FLAG_TB_MASK \
418     (ENV_FLAG_PAL_MODE | ENV_FLAG_PS_USER | ENV_FLAG_FEN)
419 
420 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
421 {
422     int ret = env->flags & ENV_FLAG_PS_USER ? MMU_USER_IDX : MMU_KERNEL_IDX;
423     if (env->flags & ENV_FLAG_PAL_MODE) {
424         ret = MMU_KERNEL_IDX;
425     }
426     return ret;
427 }
428 
429 enum {
430     IR_V0   = 0,
431     IR_T0   = 1,
432     IR_T1   = 2,
433     IR_T2   = 3,
434     IR_T3   = 4,
435     IR_T4   = 5,
436     IR_T5   = 6,
437     IR_T6   = 7,
438     IR_T7   = 8,
439     IR_S0   = 9,
440     IR_S1   = 10,
441     IR_S2   = 11,
442     IR_S3   = 12,
443     IR_S4   = 13,
444     IR_S5   = 14,
445     IR_S6   = 15,
446     IR_FP   = IR_S6,
447     IR_A0   = 16,
448     IR_A1   = 17,
449     IR_A2   = 18,
450     IR_A3   = 19,
451     IR_A4   = 20,
452     IR_A5   = 21,
453     IR_T8   = 22,
454     IR_T9   = 23,
455     IR_T10  = 24,
456     IR_T11  = 25,
457     IR_RA   = 26,
458     IR_T12  = 27,
459     IR_PV   = IR_T12,
460     IR_AT   = 28,
461     IR_GP   = 29,
462     IR_SP   = 30,
463     IR_ZERO = 31,
464 };
465 
466 void alpha_translate_init(void);
467 
468 #define ALPHA_CPU_TYPE_SUFFIX "-" TYPE_ALPHA_CPU
469 #define ALPHA_CPU_TYPE_NAME(model) model ALPHA_CPU_TYPE_SUFFIX
470 #define CPU_RESOLVING_TYPE TYPE_ALPHA_CPU
471 
472 void alpha_cpu_list(void);
473 /* you can call this signal handler from your SIGBUS and SIGSEGV
474    signal handlers to inform the virtual CPU of exceptions. non zero
475    is returned if the signal was handled by the virtual CPU.  */
476 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
477                              void *puc);
478 int alpha_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size, int rw,
479                                int mmu_idx);
480 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
481 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
482 
483 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
484 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
485 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
486 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
487 #ifndef CONFIG_USER_ONLY
488 void alpha_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
489                                      vaddr addr, unsigned size,
490                                      MMUAccessType access_type,
491                                      int mmu_idx, MemTxAttrs attrs,
492                                      MemTxResult response, uintptr_t retaddr);
493 #endif
494 
495 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
496                                         target_ulong *cs_base, uint32_t *pflags)
497 {
498     *pc = env->pc;
499     *cs_base = 0;
500     *pflags = env->flags & ENV_FLAG_TB_MASK;
501 }
502 
503 #endif /* ALPHA_CPU_H */
504