1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 34 #include "exec/exec-all.h" 35 #include "exec/page-protection.h" 36 #include "exec/target_page.h" 37 #include "hw/qdev-core.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/boards.h" 40 #include "sysemu/xen.h" 41 #include "sysemu/kvm.h" 42 #include "sysemu/tcg.h" 43 #include "sysemu/qtest.h" 44 #include "qemu/timer.h" 45 #include "qemu/config-file.h" 46 #include "qemu/error-report.h" 47 #include "qemu/qemu-print.h" 48 #include "qemu/log.h" 49 #include "qemu/memalign.h" 50 #include "exec/memory.h" 51 #include "exec/ioport.h" 52 #include "sysemu/dma.h" 53 #include "sysemu/hostmem.h" 54 #include "sysemu/hw_accel.h" 55 #include "sysemu/xen-mapcache.h" 56 #include "trace.h" 57 58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 59 #include <linux/falloc.h> 60 #endif 61 62 #include "qemu/rcu_queue.h" 63 #include "qemu/main-loop.h" 64 #include "exec/translate-all.h" 65 #include "sysemu/replay.h" 66 67 #include "exec/memory-internal.h" 68 #include "exec/ram_addr.h" 69 70 #include "qemu/pmem.h" 71 72 #include "migration/vmstate.h" 73 74 #include "qemu/range.h" 75 #ifndef _WIN32 76 #include "qemu/mmap-alloc.h" 77 #endif 78 79 #include "monitor/monitor.h" 80 81 #ifdef CONFIG_LIBDAXCTL 82 #include <daxctl/libdaxctl.h> 83 #endif 84 85 //#define DEBUG_SUBPAGE 86 87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 88 * are protected by the ramlist lock. 89 */ 90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 91 92 static MemoryRegion *system_memory; 93 static MemoryRegion *system_io; 94 95 AddressSpace address_space_io; 96 AddressSpace address_space_memory; 97 98 static MemoryRegion io_mem_unassigned; 99 100 typedef struct PhysPageEntry PhysPageEntry; 101 102 struct PhysPageEntry { 103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 104 uint32_t skip : 6; 105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 106 uint32_t ptr : 26; 107 }; 108 109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 110 111 /* Size of the L2 (and L3, etc) page tables. */ 112 #define ADDR_SPACE_BITS 64 113 114 #define P_L2_BITS 9 115 #define P_L2_SIZE (1 << P_L2_BITS) 116 117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 118 119 typedef PhysPageEntry Node[P_L2_SIZE]; 120 121 typedef struct PhysPageMap { 122 struct rcu_head rcu; 123 124 unsigned sections_nb; 125 unsigned sections_nb_alloc; 126 unsigned nodes_nb; 127 unsigned nodes_nb_alloc; 128 Node *nodes; 129 MemoryRegionSection *sections; 130 } PhysPageMap; 131 132 struct AddressSpaceDispatch { 133 MemoryRegionSection *mru_section; 134 /* This is a multi-level map on the physical address space. 135 * The bottom level has pointers to MemoryRegionSections. 136 */ 137 PhysPageEntry phys_map; 138 PhysPageMap map; 139 }; 140 141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 142 typedef struct subpage_t { 143 MemoryRegion iomem; 144 FlatView *fv; 145 hwaddr base; 146 uint16_t sub_section[]; 147 } subpage_t; 148 149 #define PHYS_SECTION_UNASSIGNED 0 150 151 static void io_mem_init(void); 152 static void memory_map_init(void); 153 static void tcg_log_global_after_sync(MemoryListener *listener); 154 static void tcg_commit(MemoryListener *listener); 155 156 /** 157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 158 * @cpu: the CPU whose AddressSpace this is 159 * @as: the AddressSpace itself 160 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 161 * @tcg_as_listener: listener for tracking changes to the AddressSpace 162 */ 163 typedef struct CPUAddressSpace { 164 CPUState *cpu; 165 AddressSpace *as; 166 struct AddressSpaceDispatch *memory_dispatch; 167 MemoryListener tcg_as_listener; 168 } CPUAddressSpace; 169 170 struct DirtyBitmapSnapshot { 171 ram_addr_t start; 172 ram_addr_t end; 173 unsigned long dirty[]; 174 }; 175 176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 177 { 178 static unsigned alloc_hint = 16; 179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 182 alloc_hint = map->nodes_nb_alloc; 183 } 184 } 185 186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 187 { 188 unsigned i; 189 uint32_t ret; 190 PhysPageEntry e; 191 PhysPageEntry *p; 192 193 ret = map->nodes_nb++; 194 p = map->nodes[ret]; 195 assert(ret != PHYS_MAP_NODE_NIL); 196 assert(ret != map->nodes_nb_alloc); 197 198 e.skip = leaf ? 0 : 1; 199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 200 for (i = 0; i < P_L2_SIZE; ++i) { 201 memcpy(&p[i], &e, sizeof(e)); 202 } 203 return ret; 204 } 205 206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 207 hwaddr *index, uint64_t *nb, uint16_t leaf, 208 int level) 209 { 210 PhysPageEntry *p; 211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 212 213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 214 lp->ptr = phys_map_node_alloc(map, level == 0); 215 } 216 p = map->nodes[lp->ptr]; 217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 218 219 while (*nb && lp < &p[P_L2_SIZE]) { 220 if ((*index & (step - 1)) == 0 && *nb >= step) { 221 lp->skip = 0; 222 lp->ptr = leaf; 223 *index += step; 224 *nb -= step; 225 } else { 226 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 227 } 228 ++lp; 229 } 230 } 231 232 static void phys_page_set(AddressSpaceDispatch *d, 233 hwaddr index, uint64_t nb, 234 uint16_t leaf) 235 { 236 /* Wildly overreserve - it doesn't matter much. */ 237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 238 239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 240 } 241 242 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 243 * and update our entry so we can skip it and go directly to the destination. 244 */ 245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 246 { 247 unsigned valid_ptr = P_L2_SIZE; 248 int valid = 0; 249 PhysPageEntry *p; 250 int i; 251 252 if (lp->ptr == PHYS_MAP_NODE_NIL) { 253 return; 254 } 255 256 p = nodes[lp->ptr]; 257 for (i = 0; i < P_L2_SIZE; i++) { 258 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 259 continue; 260 } 261 262 valid_ptr = i; 263 valid++; 264 if (p[i].skip) { 265 phys_page_compact(&p[i], nodes); 266 } 267 } 268 269 /* We can only compress if there's only one child. */ 270 if (valid != 1) { 271 return; 272 } 273 274 assert(valid_ptr < P_L2_SIZE); 275 276 /* Don't compress if it won't fit in the # of bits we have. */ 277 if (P_L2_LEVELS >= (1 << 6) && 278 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 279 return; 280 } 281 282 lp->ptr = p[valid_ptr].ptr; 283 if (!p[valid_ptr].skip) { 284 /* If our only child is a leaf, make this a leaf. */ 285 /* By design, we should have made this node a leaf to begin with so we 286 * should never reach here. 287 * But since it's so simple to handle this, let's do it just in case we 288 * change this rule. 289 */ 290 lp->skip = 0; 291 } else { 292 lp->skip += p[valid_ptr].skip; 293 } 294 } 295 296 void address_space_dispatch_compact(AddressSpaceDispatch *d) 297 { 298 if (d->phys_map.skip) { 299 phys_page_compact(&d->phys_map, d->map.nodes); 300 } 301 } 302 303 static inline bool section_covers_addr(const MemoryRegionSection *section, 304 hwaddr addr) 305 { 306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 307 * the section must cover the entire address space. 308 */ 309 return int128_gethi(section->size) || 310 range_covers_byte(section->offset_within_address_space, 311 int128_getlo(section->size), addr); 312 } 313 314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 315 { 316 PhysPageEntry lp = d->phys_map, *p; 317 Node *nodes = d->map.nodes; 318 MemoryRegionSection *sections = d->map.sections; 319 hwaddr index = addr >> TARGET_PAGE_BITS; 320 int i; 321 322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 323 if (lp.ptr == PHYS_MAP_NODE_NIL) { 324 return §ions[PHYS_SECTION_UNASSIGNED]; 325 } 326 p = nodes[lp.ptr]; 327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 328 } 329 330 if (section_covers_addr(§ions[lp.ptr], addr)) { 331 return §ions[lp.ptr]; 332 } else { 333 return §ions[PHYS_SECTION_UNASSIGNED]; 334 } 335 } 336 337 /* Called from RCU critical section */ 338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 339 hwaddr addr, 340 bool resolve_subpage) 341 { 342 MemoryRegionSection *section = qatomic_read(&d->mru_section); 343 subpage_t *subpage; 344 345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 346 !section_covers_addr(section, addr)) { 347 section = phys_page_find(d, addr); 348 qatomic_set(&d->mru_section, section); 349 } 350 if (resolve_subpage && section->mr->subpage) { 351 subpage = container_of(section->mr, subpage_t, iomem); 352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 353 } 354 return section; 355 } 356 357 /* Called from RCU critical section */ 358 static MemoryRegionSection * 359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 360 hwaddr *plen, bool resolve_subpage) 361 { 362 MemoryRegionSection *section; 363 MemoryRegion *mr; 364 Int128 diff; 365 366 section = address_space_lookup_region(d, addr, resolve_subpage); 367 /* Compute offset within MemoryRegionSection */ 368 addr -= section->offset_within_address_space; 369 370 /* Compute offset within MemoryRegion */ 371 *xlat = addr + section->offset_within_region; 372 373 mr = section->mr; 374 375 /* MMIO registers can be expected to perform full-width accesses based only 376 * on their address, without considering adjacent registers that could 377 * decode to completely different MemoryRegions. When such registers 378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 379 * regions overlap wildly. For this reason we cannot clamp the accesses 380 * here. 381 * 382 * If the length is small (as is the case for address_space_ldl/stl), 383 * everything works fine. If the incoming length is large, however, 384 * the caller really has to do the clamping through memory_access_size. 385 */ 386 if (memory_region_is_ram(mr)) { 387 diff = int128_sub(section->size, int128_make64(addr)); 388 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 389 } 390 return section; 391 } 392 393 /** 394 * address_space_translate_iommu - translate an address through an IOMMU 395 * memory region and then through the target address space. 396 * 397 * @iommu_mr: the IOMMU memory region that we start the translation from 398 * @addr: the address to be translated through the MMU 399 * @xlat: the translated address offset within the destination memory region. 400 * It cannot be %NULL. 401 * @plen_out: valid read/write length of the translated address. It 402 * cannot be %NULL. 403 * @page_mask_out: page mask for the translated address. This 404 * should only be meaningful for IOMMU translated 405 * addresses, since there may be huge pages that this bit 406 * would tell. It can be %NULL if we don't care about it. 407 * @is_write: whether the translation operation is for write 408 * @is_mmio: whether this can be MMIO, set true if it can 409 * @target_as: the address space targeted by the IOMMU 410 * @attrs: transaction attributes 411 * 412 * This function is called from RCU critical section. It is the common 413 * part of flatview_do_translate and address_space_translate_cached. 414 */ 415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 416 hwaddr *xlat, 417 hwaddr *plen_out, 418 hwaddr *page_mask_out, 419 bool is_write, 420 bool is_mmio, 421 AddressSpace **target_as, 422 MemTxAttrs attrs) 423 { 424 MemoryRegionSection *section; 425 hwaddr page_mask = (hwaddr)-1; 426 427 do { 428 hwaddr addr = *xlat; 429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 430 int iommu_idx = 0; 431 IOMMUTLBEntry iotlb; 432 433 if (imrc->attrs_to_index) { 434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 435 } 436 437 iotlb = imrc->translate(iommu_mr, addr, is_write ? 438 IOMMU_WO : IOMMU_RO, iommu_idx); 439 440 if (!(iotlb.perm & (1 << is_write))) { 441 goto unassigned; 442 } 443 444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 445 | (addr & iotlb.addr_mask)); 446 page_mask &= iotlb.addr_mask; 447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 448 *target_as = iotlb.target_as; 449 450 section = address_space_translate_internal( 451 address_space_to_dispatch(iotlb.target_as), addr, xlat, 452 plen_out, is_mmio); 453 454 iommu_mr = memory_region_get_iommu(section->mr); 455 } while (unlikely(iommu_mr)); 456 457 if (page_mask_out) { 458 *page_mask_out = page_mask; 459 } 460 return *section; 461 462 unassigned: 463 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 464 } 465 466 /** 467 * flatview_do_translate - translate an address in FlatView 468 * 469 * @fv: the flat view that we want to translate on 470 * @addr: the address to be translated in above address space 471 * @xlat: the translated address offset within memory region. It 472 * cannot be @NULL. 473 * @plen_out: valid read/write length of the translated address. It 474 * can be @NULL when we don't care about it. 475 * @page_mask_out: page mask for the translated address. This 476 * should only be meaningful for IOMMU translated 477 * addresses, since there may be huge pages that this bit 478 * would tell. It can be @NULL if we don't care about it. 479 * @is_write: whether the translation operation is for write 480 * @is_mmio: whether this can be MMIO, set true if it can 481 * @target_as: the address space targeted by the IOMMU 482 * @attrs: memory transaction attributes 483 * 484 * This function is called from RCU critical section 485 */ 486 static MemoryRegionSection flatview_do_translate(FlatView *fv, 487 hwaddr addr, 488 hwaddr *xlat, 489 hwaddr *plen_out, 490 hwaddr *page_mask_out, 491 bool is_write, 492 bool is_mmio, 493 AddressSpace **target_as, 494 MemTxAttrs attrs) 495 { 496 MemoryRegionSection *section; 497 IOMMUMemoryRegion *iommu_mr; 498 hwaddr plen = (hwaddr)(-1); 499 500 if (!plen_out) { 501 plen_out = &plen; 502 } 503 504 section = address_space_translate_internal( 505 flatview_to_dispatch(fv), addr, xlat, 506 plen_out, is_mmio); 507 508 iommu_mr = memory_region_get_iommu(section->mr); 509 if (unlikely(iommu_mr)) { 510 return address_space_translate_iommu(iommu_mr, xlat, 511 plen_out, page_mask_out, 512 is_write, is_mmio, 513 target_as, attrs); 514 } 515 if (page_mask_out) { 516 /* Not behind an IOMMU, use default page size. */ 517 *page_mask_out = ~TARGET_PAGE_MASK; 518 } 519 520 return *section; 521 } 522 523 /* Called from RCU critical section */ 524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 525 bool is_write, MemTxAttrs attrs) 526 { 527 MemoryRegionSection section; 528 hwaddr xlat, page_mask; 529 530 /* 531 * This can never be MMIO, and we don't really care about plen, 532 * but page mask. 533 */ 534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 535 NULL, &page_mask, is_write, false, &as, 536 attrs); 537 538 /* Illegal translation */ 539 if (section.mr == &io_mem_unassigned) { 540 goto iotlb_fail; 541 } 542 543 /* Convert memory region offset into address space offset */ 544 xlat += section.offset_within_address_space - 545 section.offset_within_region; 546 547 return (IOMMUTLBEntry) { 548 .target_as = as, 549 .iova = addr & ~page_mask, 550 .translated_addr = xlat & ~page_mask, 551 .addr_mask = page_mask, 552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 553 .perm = IOMMU_RW, 554 }; 555 556 iotlb_fail: 557 return (IOMMUTLBEntry) {0}; 558 } 559 560 /* Called from RCU critical section */ 561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 562 hwaddr *plen, bool is_write, 563 MemTxAttrs attrs) 564 { 565 MemoryRegion *mr; 566 MemoryRegionSection section; 567 AddressSpace *as = NULL; 568 569 /* This can be MMIO, so setup MMIO bit. */ 570 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 571 is_write, true, &as, attrs); 572 mr = section.mr; 573 574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 576 *plen = MIN(page, *plen); 577 } 578 579 return mr; 580 } 581 582 typedef struct TCGIOMMUNotifier { 583 IOMMUNotifier n; 584 MemoryRegion *mr; 585 CPUState *cpu; 586 int iommu_idx; 587 bool active; 588 } TCGIOMMUNotifier; 589 590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 591 { 592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 593 594 if (!notifier->active) { 595 return; 596 } 597 tlb_flush(notifier->cpu); 598 notifier->active = false; 599 /* We leave the notifier struct on the list to avoid reallocating it later. 600 * Generally the number of IOMMUs a CPU deals with will be small. 601 * In any case we can't unregister the iommu notifier from a notify 602 * callback. 603 */ 604 } 605 606 static void tcg_register_iommu_notifier(CPUState *cpu, 607 IOMMUMemoryRegion *iommu_mr, 608 int iommu_idx) 609 { 610 /* Make sure this CPU has an IOMMU notifier registered for this 611 * IOMMU/IOMMU index combination, so that we can flush its TLB 612 * when the IOMMU tells us the mappings we've cached have changed. 613 */ 614 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 615 TCGIOMMUNotifier *notifier = NULL; 616 int i; 617 618 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 621 break; 622 } 623 } 624 if (i == cpu->iommu_notifiers->len) { 625 /* Not found, add a new entry at the end of the array */ 626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 627 notifier = g_new0(TCGIOMMUNotifier, 1); 628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 629 630 notifier->mr = mr; 631 notifier->iommu_idx = iommu_idx; 632 notifier->cpu = cpu; 633 /* Rather than trying to register interest in the specific part 634 * of the iommu's address space that we've accessed and then 635 * expand it later as subsequent accesses touch more of it, we 636 * just register interest in the whole thing, on the assumption 637 * that iommu reconfiguration will be rare. 638 */ 639 iommu_notifier_init(¬ifier->n, 640 tcg_iommu_unmap_notify, 641 IOMMU_NOTIFIER_UNMAP, 642 0, 643 HWADDR_MAX, 644 iommu_idx); 645 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 646 &error_fatal); 647 } 648 649 if (!notifier->active) { 650 notifier->active = true; 651 } 652 } 653 654 void tcg_iommu_free_notifier_list(CPUState *cpu) 655 { 656 /* Destroy the CPU's notifier list */ 657 int i; 658 TCGIOMMUNotifier *notifier; 659 660 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 662 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 663 g_free(notifier); 664 } 665 g_array_free(cpu->iommu_notifiers, true); 666 } 667 668 void tcg_iommu_init_notifier_list(CPUState *cpu) 669 { 670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 671 } 672 673 /* Called from RCU critical section */ 674 MemoryRegionSection * 675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 676 hwaddr *xlat, hwaddr *plen, 677 MemTxAttrs attrs, int *prot) 678 { 679 MemoryRegionSection *section; 680 IOMMUMemoryRegion *iommu_mr; 681 IOMMUMemoryRegionClass *imrc; 682 IOMMUTLBEntry iotlb; 683 int iommu_idx; 684 hwaddr addr = orig_addr; 685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 686 687 for (;;) { 688 section = address_space_translate_internal(d, addr, &addr, plen, false); 689 690 iommu_mr = memory_region_get_iommu(section->mr); 691 if (!iommu_mr) { 692 break; 693 } 694 695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 696 697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 700 * doesn't short-cut its translation table walk. 701 */ 702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 704 | (addr & iotlb.addr_mask)); 705 /* Update the caller's prot bits to remove permissions the IOMMU 706 * is giving us a failure response for. If we get down to no 707 * permissions left at all we can give up now. 708 */ 709 if (!(iotlb.perm & IOMMU_RO)) { 710 *prot &= ~(PAGE_READ | PAGE_EXEC); 711 } 712 if (!(iotlb.perm & IOMMU_WO)) { 713 *prot &= ~PAGE_WRITE; 714 } 715 716 if (!*prot) { 717 goto translate_fail; 718 } 719 720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 721 } 722 723 assert(!memory_region_is_iommu(section->mr)); 724 *xlat = addr; 725 return section; 726 727 translate_fail: 728 /* 729 * We should be given a page-aligned address -- certainly 730 * tlb_set_page_with_attrs() does so. The page offset of xlat 731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 732 * The page portion of xlat will be logged by memory_region_access_valid() 733 * when this memory access is rejected, so use the original untranslated 734 * physical address. 735 */ 736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 737 *xlat = orig_addr; 738 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 739 } 740 741 void cpu_address_space_init(CPUState *cpu, int asidx, 742 const char *prefix, MemoryRegion *mr) 743 { 744 CPUAddressSpace *newas; 745 AddressSpace *as = g_new0(AddressSpace, 1); 746 char *as_name; 747 748 assert(mr); 749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 750 address_space_init(as, mr, as_name); 751 g_free(as_name); 752 753 /* Target code should have set num_ases before calling us */ 754 assert(asidx < cpu->num_ases); 755 756 if (asidx == 0) { 757 /* address space 0 gets the convenience alias */ 758 cpu->as = as; 759 } 760 761 /* KVM cannot currently support multiple address spaces. */ 762 assert(asidx == 0 || !kvm_enabled()); 763 764 if (!cpu->cpu_ases) { 765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 766 cpu->cpu_ases_count = cpu->num_ases; 767 } 768 769 newas = &cpu->cpu_ases[asidx]; 770 newas->cpu = cpu; 771 newas->as = as; 772 if (tcg_enabled()) { 773 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 774 newas->tcg_as_listener.commit = tcg_commit; 775 newas->tcg_as_listener.name = "tcg"; 776 memory_listener_register(&newas->tcg_as_listener, as); 777 } 778 } 779 780 void cpu_address_space_destroy(CPUState *cpu, int asidx) 781 { 782 CPUAddressSpace *cpuas; 783 784 assert(cpu->cpu_ases); 785 assert(asidx >= 0 && asidx < cpu->num_ases); 786 /* KVM cannot currently support multiple address spaces. */ 787 assert(asidx == 0 || !kvm_enabled()); 788 789 cpuas = &cpu->cpu_ases[asidx]; 790 if (tcg_enabled()) { 791 memory_listener_unregister(&cpuas->tcg_as_listener); 792 } 793 794 address_space_destroy(cpuas->as); 795 g_free_rcu(cpuas->as, rcu); 796 797 if (asidx == 0) { 798 /* reset the convenience alias for address space 0 */ 799 cpu->as = NULL; 800 } 801 802 if (--cpu->cpu_ases_count == 0) { 803 g_free(cpu->cpu_ases); 804 cpu->cpu_ases = NULL; 805 } 806 } 807 808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 809 { 810 /* Return the AddressSpace corresponding to the specified index */ 811 return cpu->cpu_ases[asidx].as; 812 } 813 814 /* Called from RCU critical section */ 815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 816 { 817 RAMBlock *block; 818 819 block = qatomic_rcu_read(&ram_list.mru_block); 820 if (block && addr - block->offset < block->max_length) { 821 return block; 822 } 823 RAMBLOCK_FOREACH(block) { 824 if (addr - block->offset < block->max_length) { 825 goto found; 826 } 827 } 828 829 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 830 abort(); 831 832 found: 833 /* It is safe to write mru_block outside the BQL. This 834 * is what happens: 835 * 836 * mru_block = xxx 837 * rcu_read_unlock() 838 * xxx removed from list 839 * rcu_read_lock() 840 * read mru_block 841 * mru_block = NULL; 842 * call_rcu(reclaim_ramblock, xxx); 843 * rcu_read_unlock() 844 * 845 * qatomic_rcu_set is not needed here. The block was already published 846 * when it was placed into the list. Here we're just making an extra 847 * copy of the pointer. 848 */ 849 ram_list.mru_block = block; 850 return block; 851 } 852 853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 854 { 855 CPUState *cpu; 856 ram_addr_t start1; 857 RAMBlock *block; 858 ram_addr_t end; 859 860 assert(tcg_enabled()); 861 end = TARGET_PAGE_ALIGN(start + length); 862 start &= TARGET_PAGE_MASK; 863 864 RCU_READ_LOCK_GUARD(); 865 block = qemu_get_ram_block(start); 866 assert(block == qemu_get_ram_block(end - 1)); 867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 868 CPU_FOREACH(cpu) { 869 tlb_reset_dirty(cpu, start1, length); 870 } 871 } 872 873 /* Note: start and end must be within the same ram block. */ 874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 875 ram_addr_t length, 876 unsigned client) 877 { 878 DirtyMemoryBlocks *blocks; 879 unsigned long end, page, start_page; 880 bool dirty = false; 881 RAMBlock *ramblock; 882 uint64_t mr_offset, mr_size; 883 884 if (length == 0) { 885 return false; 886 } 887 888 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 889 start_page = start >> TARGET_PAGE_BITS; 890 page = start_page; 891 892 WITH_RCU_READ_LOCK_GUARD() { 893 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 894 ramblock = qemu_get_ram_block(start); 895 /* Range sanity check on the ramblock */ 896 assert(start >= ramblock->offset && 897 start + length <= ramblock->offset + ramblock->used_length); 898 899 while (page < end) { 900 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 901 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 902 unsigned long num = MIN(end - page, 903 DIRTY_MEMORY_BLOCK_SIZE - offset); 904 905 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 906 offset, num); 907 page += num; 908 } 909 910 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 911 mr_size = (end - start_page) << TARGET_PAGE_BITS; 912 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 913 } 914 915 if (dirty) { 916 cpu_physical_memory_dirty_bits_cleared(start, length); 917 } 918 919 return dirty; 920 } 921 922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 923 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 924 { 925 DirtyMemoryBlocks *blocks; 926 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 927 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 928 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 929 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 930 DirtyBitmapSnapshot *snap; 931 unsigned long page, end, dest; 932 933 snap = g_malloc0(sizeof(*snap) + 934 ((last - first) >> (TARGET_PAGE_BITS + 3))); 935 snap->start = first; 936 snap->end = last; 937 938 page = first >> TARGET_PAGE_BITS; 939 end = last >> TARGET_PAGE_BITS; 940 dest = 0; 941 942 WITH_RCU_READ_LOCK_GUARD() { 943 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 944 945 while (page < end) { 946 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 947 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 948 unsigned long num = MIN(end - page, 949 DIRTY_MEMORY_BLOCK_SIZE - ofs); 950 951 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 952 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 953 ofs >>= BITS_PER_LEVEL; 954 955 bitmap_copy_and_clear_atomic(snap->dirty + dest, 956 blocks->blocks[idx] + ofs, 957 num); 958 page += num; 959 dest += num >> BITS_PER_LEVEL; 960 } 961 } 962 963 cpu_physical_memory_dirty_bits_cleared(start, length); 964 965 memory_region_clear_dirty_bitmap(mr, offset, length); 966 967 return snap; 968 } 969 970 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 971 ram_addr_t start, 972 ram_addr_t length) 973 { 974 unsigned long page, end; 975 976 assert(start >= snap->start); 977 assert(start + length <= snap->end); 978 979 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 980 page = (start - snap->start) >> TARGET_PAGE_BITS; 981 982 while (page < end) { 983 if (test_bit(page, snap->dirty)) { 984 return true; 985 } 986 page++; 987 } 988 return false; 989 } 990 991 /* Called from RCU critical section */ 992 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 993 MemoryRegionSection *section) 994 { 995 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 996 return section - d->map.sections; 997 } 998 999 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1000 uint16_t section); 1001 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1002 1003 static uint16_t phys_section_add(PhysPageMap *map, 1004 MemoryRegionSection *section) 1005 { 1006 /* The physical section number is ORed with a page-aligned 1007 * pointer to produce the iotlb entries. Thus it should 1008 * never overflow into the page-aligned value. 1009 */ 1010 assert(map->sections_nb < TARGET_PAGE_SIZE); 1011 1012 if (map->sections_nb == map->sections_nb_alloc) { 1013 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1014 map->sections = g_renew(MemoryRegionSection, map->sections, 1015 map->sections_nb_alloc); 1016 } 1017 map->sections[map->sections_nb] = *section; 1018 memory_region_ref(section->mr); 1019 return map->sections_nb++; 1020 } 1021 1022 static void phys_section_destroy(MemoryRegion *mr) 1023 { 1024 bool have_sub_page = mr->subpage; 1025 1026 memory_region_unref(mr); 1027 1028 if (have_sub_page) { 1029 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1030 object_unref(OBJECT(&subpage->iomem)); 1031 g_free(subpage); 1032 } 1033 } 1034 1035 static void phys_sections_free(PhysPageMap *map) 1036 { 1037 while (map->sections_nb > 0) { 1038 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1039 phys_section_destroy(section->mr); 1040 } 1041 g_free(map->sections); 1042 g_free(map->nodes); 1043 } 1044 1045 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1046 { 1047 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1048 subpage_t *subpage; 1049 hwaddr base = section->offset_within_address_space 1050 & TARGET_PAGE_MASK; 1051 MemoryRegionSection *existing = phys_page_find(d, base); 1052 MemoryRegionSection subsection = { 1053 .offset_within_address_space = base, 1054 .size = int128_make64(TARGET_PAGE_SIZE), 1055 }; 1056 hwaddr start, end; 1057 1058 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1059 1060 if (!(existing->mr->subpage)) { 1061 subpage = subpage_init(fv, base); 1062 subsection.fv = fv; 1063 subsection.mr = &subpage->iomem; 1064 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1065 phys_section_add(&d->map, &subsection)); 1066 } else { 1067 subpage = container_of(existing->mr, subpage_t, iomem); 1068 } 1069 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1070 end = start + int128_get64(section->size) - 1; 1071 subpage_register(subpage, start, end, 1072 phys_section_add(&d->map, section)); 1073 } 1074 1075 1076 static void register_multipage(FlatView *fv, 1077 MemoryRegionSection *section) 1078 { 1079 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1080 hwaddr start_addr = section->offset_within_address_space; 1081 uint16_t section_index = phys_section_add(&d->map, section); 1082 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1083 TARGET_PAGE_BITS)); 1084 1085 assert(num_pages); 1086 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1087 } 1088 1089 /* 1090 * The range in *section* may look like this: 1091 * 1092 * |s|PPPPPPP|s| 1093 * 1094 * where s stands for subpage and P for page. 1095 */ 1096 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1097 { 1098 MemoryRegionSection remain = *section; 1099 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1100 1101 /* register first subpage */ 1102 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1103 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1104 - remain.offset_within_address_space; 1105 1106 MemoryRegionSection now = remain; 1107 now.size = int128_min(int128_make64(left), now.size); 1108 register_subpage(fv, &now); 1109 if (int128_eq(remain.size, now.size)) { 1110 return; 1111 } 1112 remain.size = int128_sub(remain.size, now.size); 1113 remain.offset_within_address_space += int128_get64(now.size); 1114 remain.offset_within_region += int128_get64(now.size); 1115 } 1116 1117 /* register whole pages */ 1118 if (int128_ge(remain.size, page_size)) { 1119 MemoryRegionSection now = remain; 1120 now.size = int128_and(now.size, int128_neg(page_size)); 1121 register_multipage(fv, &now); 1122 if (int128_eq(remain.size, now.size)) { 1123 return; 1124 } 1125 remain.size = int128_sub(remain.size, now.size); 1126 remain.offset_within_address_space += int128_get64(now.size); 1127 remain.offset_within_region += int128_get64(now.size); 1128 } 1129 1130 /* register last subpage */ 1131 register_subpage(fv, &remain); 1132 } 1133 1134 void qemu_flush_coalesced_mmio_buffer(void) 1135 { 1136 if (kvm_enabled()) 1137 kvm_flush_coalesced_mmio_buffer(); 1138 } 1139 1140 void qemu_mutex_lock_ramlist(void) 1141 { 1142 qemu_mutex_lock(&ram_list.mutex); 1143 } 1144 1145 void qemu_mutex_unlock_ramlist(void) 1146 { 1147 qemu_mutex_unlock(&ram_list.mutex); 1148 } 1149 1150 GString *ram_block_format(void) 1151 { 1152 RAMBlock *block; 1153 char *psize; 1154 GString *buf = g_string_new(""); 1155 1156 RCU_READ_LOCK_GUARD(); 1157 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1158 "Block Name", "PSize", "Offset", "Used", "Total", 1159 "HVA", "RO"); 1160 1161 RAMBLOCK_FOREACH(block) { 1162 psize = size_to_str(block->page_size); 1163 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1164 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1165 block->idstr, psize, 1166 (uint64_t)block->offset, 1167 (uint64_t)block->used_length, 1168 (uint64_t)block->max_length, 1169 (uint64_t)(uintptr_t)block->host, 1170 block->mr->readonly ? "ro" : "rw"); 1171 1172 g_free(psize); 1173 } 1174 1175 return buf; 1176 } 1177 1178 static int find_min_backend_pagesize(Object *obj, void *opaque) 1179 { 1180 long *hpsize_min = opaque; 1181 1182 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1183 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1184 long hpsize = host_memory_backend_pagesize(backend); 1185 1186 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1187 *hpsize_min = hpsize; 1188 } 1189 } 1190 1191 return 0; 1192 } 1193 1194 static int find_max_backend_pagesize(Object *obj, void *opaque) 1195 { 1196 long *hpsize_max = opaque; 1197 1198 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1199 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1200 long hpsize = host_memory_backend_pagesize(backend); 1201 1202 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1203 *hpsize_max = hpsize; 1204 } 1205 } 1206 1207 return 0; 1208 } 1209 1210 /* 1211 * TODO: We assume right now that all mapped host memory backends are 1212 * used as RAM, however some might be used for different purposes. 1213 */ 1214 long qemu_minrampagesize(void) 1215 { 1216 long hpsize = LONG_MAX; 1217 Object *memdev_root = object_resolve_path("/objects", NULL); 1218 1219 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1220 return hpsize; 1221 } 1222 1223 long qemu_maxrampagesize(void) 1224 { 1225 long pagesize = 0; 1226 Object *memdev_root = object_resolve_path("/objects", NULL); 1227 1228 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1229 return pagesize; 1230 } 1231 1232 #ifdef CONFIG_POSIX 1233 static int64_t get_file_size(int fd) 1234 { 1235 int64_t size; 1236 #if defined(__linux__) 1237 struct stat st; 1238 1239 if (fstat(fd, &st) < 0) { 1240 return -errno; 1241 } 1242 1243 /* Special handling for devdax character devices */ 1244 if (S_ISCHR(st.st_mode)) { 1245 g_autofree char *subsystem_path = NULL; 1246 g_autofree char *subsystem = NULL; 1247 1248 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1249 major(st.st_rdev), minor(st.st_rdev)); 1250 subsystem = g_file_read_link(subsystem_path, NULL); 1251 1252 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1253 g_autofree char *size_path = NULL; 1254 g_autofree char *size_str = NULL; 1255 1256 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1257 major(st.st_rdev), minor(st.st_rdev)); 1258 1259 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1260 return g_ascii_strtoll(size_str, NULL, 0); 1261 } 1262 } 1263 } 1264 #endif /* defined(__linux__) */ 1265 1266 /* st.st_size may be zero for special files yet lseek(2) works */ 1267 size = lseek(fd, 0, SEEK_END); 1268 if (size < 0) { 1269 return -errno; 1270 } 1271 return size; 1272 } 1273 1274 static int64_t get_file_align(int fd) 1275 { 1276 int64_t align = -1; 1277 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1278 struct stat st; 1279 1280 if (fstat(fd, &st) < 0) { 1281 return -errno; 1282 } 1283 1284 /* Special handling for devdax character devices */ 1285 if (S_ISCHR(st.st_mode)) { 1286 g_autofree char *path = NULL; 1287 g_autofree char *rpath = NULL; 1288 struct daxctl_ctx *ctx; 1289 struct daxctl_region *region; 1290 int rc = 0; 1291 1292 path = g_strdup_printf("/sys/dev/char/%d:%d", 1293 major(st.st_rdev), minor(st.st_rdev)); 1294 rpath = realpath(path, NULL); 1295 if (!rpath) { 1296 return -errno; 1297 } 1298 1299 rc = daxctl_new(&ctx); 1300 if (rc) { 1301 return -1; 1302 } 1303 1304 daxctl_region_foreach(ctx, region) { 1305 if (strstr(rpath, daxctl_region_get_path(region))) { 1306 align = daxctl_region_get_align(region); 1307 break; 1308 } 1309 } 1310 daxctl_unref(ctx); 1311 } 1312 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1313 1314 return align; 1315 } 1316 1317 static int file_ram_open(const char *path, 1318 const char *region_name, 1319 bool readonly, 1320 bool *created) 1321 { 1322 char *filename; 1323 char *sanitized_name; 1324 char *c; 1325 int fd = -1; 1326 1327 *created = false; 1328 for (;;) { 1329 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1330 if (fd >= 0) { 1331 /* 1332 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1333 * opened a directory and fail similarly to how we fail ENOENT 1334 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1335 */ 1336 if (readonly) { 1337 struct stat file_stat; 1338 1339 if (fstat(fd, &file_stat)) { 1340 close(fd); 1341 if (errno == EINTR) { 1342 continue; 1343 } 1344 return -errno; 1345 } else if (S_ISDIR(file_stat.st_mode)) { 1346 close(fd); 1347 return -EISDIR; 1348 } 1349 } 1350 /* @path names an existing file, use it */ 1351 break; 1352 } 1353 if (errno == ENOENT) { 1354 if (readonly) { 1355 /* Refuse to create new, readonly files. */ 1356 return -ENOENT; 1357 } 1358 /* @path names a file that doesn't exist, create it */ 1359 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1360 if (fd >= 0) { 1361 *created = true; 1362 break; 1363 } 1364 } else if (errno == EISDIR) { 1365 /* @path names a directory, create a file there */ 1366 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1367 sanitized_name = g_strdup(region_name); 1368 for (c = sanitized_name; *c != '\0'; c++) { 1369 if (*c == '/') { 1370 *c = '_'; 1371 } 1372 } 1373 1374 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1375 sanitized_name); 1376 g_free(sanitized_name); 1377 1378 fd = mkstemp(filename); 1379 if (fd >= 0) { 1380 unlink(filename); 1381 g_free(filename); 1382 break; 1383 } 1384 g_free(filename); 1385 } 1386 if (errno != EEXIST && errno != EINTR) { 1387 return -errno; 1388 } 1389 /* 1390 * Try again on EINTR and EEXIST. The latter happens when 1391 * something else creates the file between our two open(). 1392 */ 1393 } 1394 1395 return fd; 1396 } 1397 1398 static void *file_ram_alloc(RAMBlock *block, 1399 ram_addr_t memory, 1400 int fd, 1401 bool truncate, 1402 off_t offset, 1403 Error **errp) 1404 { 1405 uint32_t qemu_map_flags; 1406 void *area; 1407 1408 block->page_size = qemu_fd_getpagesize(fd); 1409 if (block->mr->align % block->page_size) { 1410 error_setg(errp, "alignment 0x%" PRIx64 1411 " must be multiples of page size 0x%zx", 1412 block->mr->align, block->page_size); 1413 return NULL; 1414 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1415 error_setg(errp, "alignment 0x%" PRIx64 1416 " must be a power of two", block->mr->align); 1417 return NULL; 1418 } else if (offset % block->page_size) { 1419 error_setg(errp, "offset 0x%" PRIx64 1420 " must be multiples of page size 0x%zx", 1421 offset, block->page_size); 1422 return NULL; 1423 } 1424 block->mr->align = MAX(block->page_size, block->mr->align); 1425 #if defined(__s390x__) 1426 if (kvm_enabled()) { 1427 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1428 } 1429 #endif 1430 1431 if (memory < block->page_size) { 1432 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1433 "or larger than page size 0x%zx", 1434 memory, block->page_size); 1435 return NULL; 1436 } 1437 1438 memory = ROUND_UP(memory, block->page_size); 1439 1440 /* 1441 * ftruncate is not supported by hugetlbfs in older 1442 * hosts, so don't bother bailing out on errors. 1443 * If anything goes wrong with it under other filesystems, 1444 * mmap will fail. 1445 * 1446 * Do not truncate the non-empty backend file to avoid corrupting 1447 * the existing data in the file. Disabling shrinking is not 1448 * enough. For example, the current vNVDIMM implementation stores 1449 * the guest NVDIMM labels at the end of the backend file. If the 1450 * backend file is later extended, QEMU will not be able to find 1451 * those labels. Therefore, extending the non-empty backend file 1452 * is disabled as well. 1453 */ 1454 if (truncate && ftruncate(fd, offset + memory)) { 1455 perror("ftruncate"); 1456 } 1457 1458 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1459 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1460 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1461 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1462 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1463 if (area == MAP_FAILED) { 1464 error_setg_errno(errp, errno, 1465 "unable to map backing store for guest RAM"); 1466 return NULL; 1467 } 1468 1469 block->fd = fd; 1470 block->fd_offset = offset; 1471 return area; 1472 } 1473 #endif 1474 1475 /* Allocate space within the ram_addr_t space that governs the 1476 * dirty bitmaps. 1477 * Called with the ramlist lock held. 1478 */ 1479 static ram_addr_t find_ram_offset(ram_addr_t size) 1480 { 1481 RAMBlock *block, *next_block; 1482 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1483 1484 assert(size != 0); /* it would hand out same offset multiple times */ 1485 1486 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1487 return 0; 1488 } 1489 1490 RAMBLOCK_FOREACH(block) { 1491 ram_addr_t candidate, next = RAM_ADDR_MAX; 1492 1493 /* Align blocks to start on a 'long' in the bitmap 1494 * which makes the bitmap sync'ing take the fast path. 1495 */ 1496 candidate = block->offset + block->max_length; 1497 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1498 1499 /* Search for the closest following block 1500 * and find the gap. 1501 */ 1502 RAMBLOCK_FOREACH(next_block) { 1503 if (next_block->offset >= candidate) { 1504 next = MIN(next, next_block->offset); 1505 } 1506 } 1507 1508 /* If it fits remember our place and remember the size 1509 * of gap, but keep going so that we might find a smaller 1510 * gap to fill so avoiding fragmentation. 1511 */ 1512 if (next - candidate >= size && next - candidate < mingap) { 1513 offset = candidate; 1514 mingap = next - candidate; 1515 } 1516 1517 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1518 } 1519 1520 if (offset == RAM_ADDR_MAX) { 1521 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1522 (uint64_t)size); 1523 abort(); 1524 } 1525 1526 trace_find_ram_offset(size, offset); 1527 1528 return offset; 1529 } 1530 1531 static unsigned long last_ram_page(void) 1532 { 1533 RAMBlock *block; 1534 ram_addr_t last = 0; 1535 1536 RCU_READ_LOCK_GUARD(); 1537 RAMBLOCK_FOREACH(block) { 1538 last = MAX(last, block->offset + block->max_length); 1539 } 1540 return last >> TARGET_PAGE_BITS; 1541 } 1542 1543 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1544 { 1545 int ret; 1546 1547 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1548 if (!machine_dump_guest_core(current_machine)) { 1549 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1550 if (ret) { 1551 perror("qemu_madvise"); 1552 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1553 "but dump-guest-core=off specified\n"); 1554 } 1555 } 1556 } 1557 1558 const char *qemu_ram_get_idstr(RAMBlock *rb) 1559 { 1560 return rb->idstr; 1561 } 1562 1563 void *qemu_ram_get_host_addr(RAMBlock *rb) 1564 { 1565 return rb->host; 1566 } 1567 1568 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1569 { 1570 return rb->offset; 1571 } 1572 1573 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1574 { 1575 return rb->used_length; 1576 } 1577 1578 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1579 { 1580 return rb->max_length; 1581 } 1582 1583 bool qemu_ram_is_shared(RAMBlock *rb) 1584 { 1585 return rb->flags & RAM_SHARED; 1586 } 1587 1588 bool qemu_ram_is_noreserve(RAMBlock *rb) 1589 { 1590 return rb->flags & RAM_NORESERVE; 1591 } 1592 1593 /* Note: Only set at the start of postcopy */ 1594 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1595 { 1596 return rb->flags & RAM_UF_ZEROPAGE; 1597 } 1598 1599 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1600 { 1601 rb->flags |= RAM_UF_ZEROPAGE; 1602 } 1603 1604 bool qemu_ram_is_migratable(RAMBlock *rb) 1605 { 1606 return rb->flags & RAM_MIGRATABLE; 1607 } 1608 1609 void qemu_ram_set_migratable(RAMBlock *rb) 1610 { 1611 rb->flags |= RAM_MIGRATABLE; 1612 } 1613 1614 void qemu_ram_unset_migratable(RAMBlock *rb) 1615 { 1616 rb->flags &= ~RAM_MIGRATABLE; 1617 } 1618 1619 bool qemu_ram_is_named_file(RAMBlock *rb) 1620 { 1621 return rb->flags & RAM_NAMED_FILE; 1622 } 1623 1624 int qemu_ram_get_fd(RAMBlock *rb) 1625 { 1626 return rb->fd; 1627 } 1628 1629 /* Called with the BQL held. */ 1630 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1631 { 1632 RAMBlock *block; 1633 1634 assert(new_block); 1635 assert(!new_block->idstr[0]); 1636 1637 if (dev) { 1638 char *id = qdev_get_dev_path(dev); 1639 if (id) { 1640 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1641 g_free(id); 1642 } 1643 } 1644 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1645 1646 RCU_READ_LOCK_GUARD(); 1647 RAMBLOCK_FOREACH(block) { 1648 if (block != new_block && 1649 !strcmp(block->idstr, new_block->idstr)) { 1650 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1651 new_block->idstr); 1652 abort(); 1653 } 1654 } 1655 } 1656 1657 /* Called with the BQL held. */ 1658 void qemu_ram_unset_idstr(RAMBlock *block) 1659 { 1660 /* FIXME: arch_init.c assumes that this is not called throughout 1661 * migration. Ignore the problem since hot-unplug during migration 1662 * does not work anyway. 1663 */ 1664 if (block) { 1665 memset(block->idstr, 0, sizeof(block->idstr)); 1666 } 1667 } 1668 1669 size_t qemu_ram_pagesize(RAMBlock *rb) 1670 { 1671 return rb->page_size; 1672 } 1673 1674 /* Returns the largest size of page in use */ 1675 size_t qemu_ram_pagesize_largest(void) 1676 { 1677 RAMBlock *block; 1678 size_t largest = 0; 1679 1680 RAMBLOCK_FOREACH(block) { 1681 largest = MAX(largest, qemu_ram_pagesize(block)); 1682 } 1683 1684 return largest; 1685 } 1686 1687 static int memory_try_enable_merging(void *addr, size_t len) 1688 { 1689 if (!machine_mem_merge(current_machine)) { 1690 /* disabled by the user */ 1691 return 0; 1692 } 1693 1694 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1695 } 1696 1697 /* 1698 * Resizing RAM while migrating can result in the migration being canceled. 1699 * Care has to be taken if the guest might have already detected the memory. 1700 * 1701 * As memory core doesn't know how is memory accessed, it is up to 1702 * resize callback to update device state and/or add assertions to detect 1703 * misuse, if necessary. 1704 */ 1705 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1706 { 1707 const ram_addr_t oldsize = block->used_length; 1708 const ram_addr_t unaligned_size = newsize; 1709 1710 assert(block); 1711 1712 newsize = TARGET_PAGE_ALIGN(newsize); 1713 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1714 1715 if (block->used_length == newsize) { 1716 /* 1717 * We don't have to resize the ram block (which only knows aligned 1718 * sizes), however, we have to notify if the unaligned size changed. 1719 */ 1720 if (unaligned_size != memory_region_size(block->mr)) { 1721 memory_region_set_size(block->mr, unaligned_size); 1722 if (block->resized) { 1723 block->resized(block->idstr, unaligned_size, block->host); 1724 } 1725 } 1726 return 0; 1727 } 1728 1729 if (!(block->flags & RAM_RESIZEABLE)) { 1730 error_setg_errno(errp, EINVAL, 1731 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1732 " != 0x" RAM_ADDR_FMT, block->idstr, 1733 newsize, block->used_length); 1734 return -EINVAL; 1735 } 1736 1737 if (block->max_length < newsize) { 1738 error_setg_errno(errp, EINVAL, 1739 "Size too large: %s: 0x" RAM_ADDR_FMT 1740 " > 0x" RAM_ADDR_FMT, block->idstr, 1741 newsize, block->max_length); 1742 return -EINVAL; 1743 } 1744 1745 /* Notify before modifying the ram block and touching the bitmaps. */ 1746 if (block->host) { 1747 ram_block_notify_resize(block->host, oldsize, newsize); 1748 } 1749 1750 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1751 block->used_length = newsize; 1752 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1753 DIRTY_CLIENTS_ALL); 1754 memory_region_set_size(block->mr, unaligned_size); 1755 if (block->resized) { 1756 block->resized(block->idstr, unaligned_size, block->host); 1757 } 1758 return 0; 1759 } 1760 1761 /* 1762 * Trigger sync on the given ram block for range [start, start + length] 1763 * with the backing store if one is available. 1764 * Otherwise no-op. 1765 * @Note: this is supposed to be a synchronous op. 1766 */ 1767 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1768 { 1769 /* The requested range should fit in within the block range */ 1770 g_assert((start + length) <= block->used_length); 1771 1772 #ifdef CONFIG_LIBPMEM 1773 /* The lack of support for pmem should not block the sync */ 1774 if (ramblock_is_pmem(block)) { 1775 void *addr = ramblock_ptr(block, start); 1776 pmem_persist(addr, length); 1777 return; 1778 } 1779 #endif 1780 if (block->fd >= 0) { 1781 /** 1782 * Case there is no support for PMEM or the memory has not been 1783 * specified as persistent (or is not one) - use the msync. 1784 * Less optimal but still achieves the same goal 1785 */ 1786 void *addr = ramblock_ptr(block, start); 1787 if (qemu_msync(addr, length, block->fd)) { 1788 warn_report("%s: failed to sync memory range: start: " 1789 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1790 __func__, start, length); 1791 } 1792 } 1793 } 1794 1795 /* Called with ram_list.mutex held */ 1796 static void dirty_memory_extend(ram_addr_t old_ram_size, 1797 ram_addr_t new_ram_size) 1798 { 1799 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1800 DIRTY_MEMORY_BLOCK_SIZE); 1801 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1802 DIRTY_MEMORY_BLOCK_SIZE); 1803 int i; 1804 1805 /* Only need to extend if block count increased */ 1806 if (new_num_blocks <= old_num_blocks) { 1807 return; 1808 } 1809 1810 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1811 DirtyMemoryBlocks *old_blocks; 1812 DirtyMemoryBlocks *new_blocks; 1813 int j; 1814 1815 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1816 new_blocks = g_malloc(sizeof(*new_blocks) + 1817 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1818 1819 if (old_num_blocks) { 1820 memcpy(new_blocks->blocks, old_blocks->blocks, 1821 old_num_blocks * sizeof(old_blocks->blocks[0])); 1822 } 1823 1824 for (j = old_num_blocks; j < new_num_blocks; j++) { 1825 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1826 } 1827 1828 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1829 1830 if (old_blocks) { 1831 g_free_rcu(old_blocks, rcu); 1832 } 1833 } 1834 } 1835 1836 static void ram_block_add(RAMBlock *new_block, Error **errp) 1837 { 1838 const bool noreserve = qemu_ram_is_noreserve(new_block); 1839 const bool shared = qemu_ram_is_shared(new_block); 1840 RAMBlock *block; 1841 RAMBlock *last_block = NULL; 1842 bool free_on_error = false; 1843 ram_addr_t old_ram_size, new_ram_size; 1844 Error *err = NULL; 1845 1846 old_ram_size = last_ram_page(); 1847 1848 qemu_mutex_lock_ramlist(); 1849 new_block->offset = find_ram_offset(new_block->max_length); 1850 1851 if (!new_block->host) { 1852 if (xen_enabled()) { 1853 xen_ram_alloc(new_block->offset, new_block->max_length, 1854 new_block->mr, &err); 1855 if (err) { 1856 error_propagate(errp, err); 1857 qemu_mutex_unlock_ramlist(); 1858 return; 1859 } 1860 } else { 1861 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1862 &new_block->mr->align, 1863 shared, noreserve); 1864 if (!new_block->host) { 1865 error_setg_errno(errp, errno, 1866 "cannot set up guest memory '%s'", 1867 memory_region_name(new_block->mr)); 1868 qemu_mutex_unlock_ramlist(); 1869 return; 1870 } 1871 memory_try_enable_merging(new_block->host, new_block->max_length); 1872 free_on_error = true; 1873 } 1874 } 1875 1876 if (new_block->flags & RAM_GUEST_MEMFD) { 1877 int ret; 1878 1879 assert(kvm_enabled()); 1880 assert(new_block->guest_memfd < 0); 1881 1882 ret = ram_block_discard_require(true); 1883 if (ret < 0) { 1884 error_setg_errno(errp, -ret, 1885 "cannot set up private guest memory: discard currently blocked"); 1886 error_append_hint(errp, "Are you using assigned devices?\n"); 1887 goto out_free; 1888 } 1889 1890 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1891 0, errp); 1892 if (new_block->guest_memfd < 0) { 1893 qemu_mutex_unlock_ramlist(); 1894 goto out_free; 1895 } 1896 } 1897 1898 new_ram_size = MAX(old_ram_size, 1899 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1900 if (new_ram_size > old_ram_size) { 1901 dirty_memory_extend(old_ram_size, new_ram_size); 1902 } 1903 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1904 * QLIST (which has an RCU-friendly variant) does not have insertion at 1905 * tail, so save the last element in last_block. 1906 */ 1907 RAMBLOCK_FOREACH(block) { 1908 last_block = block; 1909 if (block->max_length < new_block->max_length) { 1910 break; 1911 } 1912 } 1913 if (block) { 1914 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1915 } else if (last_block) { 1916 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1917 } else { /* list is empty */ 1918 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1919 } 1920 ram_list.mru_block = NULL; 1921 1922 /* Write list before version */ 1923 smp_wmb(); 1924 ram_list.version++; 1925 qemu_mutex_unlock_ramlist(); 1926 1927 cpu_physical_memory_set_dirty_range(new_block->offset, 1928 new_block->used_length, 1929 DIRTY_CLIENTS_ALL); 1930 1931 if (new_block->host) { 1932 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1933 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1934 /* 1935 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1936 * Configure it unless the machine is a qtest server, in which case 1937 * KVM is not used and it may be forked (eg for fuzzing purposes). 1938 */ 1939 if (!qtest_enabled()) { 1940 qemu_madvise(new_block->host, new_block->max_length, 1941 QEMU_MADV_DONTFORK); 1942 } 1943 ram_block_notify_add(new_block->host, new_block->used_length, 1944 new_block->max_length); 1945 } 1946 return; 1947 1948 out_free: 1949 if (free_on_error) { 1950 qemu_anon_ram_free(new_block->host, new_block->max_length); 1951 new_block->host = NULL; 1952 } 1953 } 1954 1955 #ifdef CONFIG_POSIX 1956 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1957 uint32_t ram_flags, int fd, off_t offset, 1958 Error **errp) 1959 { 1960 RAMBlock *new_block; 1961 Error *local_err = NULL; 1962 int64_t file_size, file_align; 1963 1964 /* Just support these ram flags by now. */ 1965 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1966 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1967 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0); 1968 1969 if (xen_enabled()) { 1970 error_setg(errp, "-mem-path not supported with Xen"); 1971 return NULL; 1972 } 1973 1974 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1975 error_setg(errp, 1976 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1977 return NULL; 1978 } 1979 1980 size = TARGET_PAGE_ALIGN(size); 1981 size = REAL_HOST_PAGE_ALIGN(size); 1982 1983 file_size = get_file_size(fd); 1984 if (file_size > offset && file_size < (offset + size)) { 1985 error_setg(errp, "backing store size 0x%" PRIx64 1986 " does not match 'size' option 0x" RAM_ADDR_FMT, 1987 file_size, size); 1988 return NULL; 1989 } 1990 1991 file_align = get_file_align(fd); 1992 if (file_align > 0 && file_align > mr->align) { 1993 error_setg(errp, "backing store align 0x%" PRIx64 1994 " is larger than 'align' option 0x%" PRIx64, 1995 file_align, mr->align); 1996 return NULL; 1997 } 1998 1999 new_block = g_malloc0(sizeof(*new_block)); 2000 new_block->mr = mr; 2001 new_block->used_length = size; 2002 new_block->max_length = size; 2003 new_block->flags = ram_flags; 2004 new_block->guest_memfd = -1; 2005 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 2006 errp); 2007 if (!new_block->host) { 2008 g_free(new_block); 2009 return NULL; 2010 } 2011 2012 ram_block_add(new_block, &local_err); 2013 if (local_err) { 2014 g_free(new_block); 2015 error_propagate(errp, local_err); 2016 return NULL; 2017 } 2018 return new_block; 2019 2020 } 2021 2022 2023 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2024 uint32_t ram_flags, const char *mem_path, 2025 off_t offset, Error **errp) 2026 { 2027 int fd; 2028 bool created; 2029 RAMBlock *block; 2030 2031 fd = file_ram_open(mem_path, memory_region_name(mr), 2032 !!(ram_flags & RAM_READONLY_FD), &created); 2033 if (fd < 0) { 2034 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2035 mem_path); 2036 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2037 fd == -EACCES) { 2038 /* 2039 * If we can open the file R/O (note: will never create a new file) 2040 * and we are dealing with a private mapping, there are still ways 2041 * to consume such files and get RAM instead of ROM. 2042 */ 2043 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2044 &created); 2045 if (fd < 0) { 2046 return NULL; 2047 } 2048 assert(!created); 2049 close(fd); 2050 error_append_hint(errp, "Consider opening the backing store" 2051 " read-only but still creating writable RAM using" 2052 " '-object memory-backend-file,readonly=on,rom=off...'" 2053 " (see \"VM templating\" documentation)\n"); 2054 } 2055 return NULL; 2056 } 2057 2058 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 2059 if (!block) { 2060 if (created) { 2061 unlink(mem_path); 2062 } 2063 close(fd); 2064 return NULL; 2065 } 2066 2067 return block; 2068 } 2069 #endif 2070 2071 static 2072 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2073 void (*resized)(const char*, 2074 uint64_t length, 2075 void *host), 2076 void *host, uint32_t ram_flags, 2077 MemoryRegion *mr, Error **errp) 2078 { 2079 RAMBlock *new_block; 2080 Error *local_err = NULL; 2081 int align; 2082 2083 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2084 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2085 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2086 2087 align = qemu_real_host_page_size(); 2088 align = MAX(align, TARGET_PAGE_SIZE); 2089 size = ROUND_UP(size, align); 2090 max_size = ROUND_UP(max_size, align); 2091 2092 new_block = g_malloc0(sizeof(*new_block)); 2093 new_block->mr = mr; 2094 new_block->resized = resized; 2095 new_block->used_length = size; 2096 new_block->max_length = max_size; 2097 assert(max_size >= size); 2098 new_block->fd = -1; 2099 new_block->guest_memfd = -1; 2100 new_block->page_size = qemu_real_host_page_size(); 2101 new_block->host = host; 2102 new_block->flags = ram_flags; 2103 ram_block_add(new_block, &local_err); 2104 if (local_err) { 2105 g_free(new_block); 2106 error_propagate(errp, local_err); 2107 return NULL; 2108 } 2109 return new_block; 2110 } 2111 2112 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2113 MemoryRegion *mr, Error **errp) 2114 { 2115 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2116 errp); 2117 } 2118 2119 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2120 MemoryRegion *mr, Error **errp) 2121 { 2122 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2123 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2124 } 2125 2126 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2127 void (*resized)(const char*, 2128 uint64_t length, 2129 void *host), 2130 MemoryRegion *mr, Error **errp) 2131 { 2132 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2133 RAM_RESIZEABLE, mr, errp); 2134 } 2135 2136 static void reclaim_ramblock(RAMBlock *block) 2137 { 2138 if (block->flags & RAM_PREALLOC) { 2139 ; 2140 } else if (xen_enabled()) { 2141 xen_invalidate_map_cache_entry(block->host); 2142 #ifndef _WIN32 2143 } else if (block->fd >= 0) { 2144 qemu_ram_munmap(block->fd, block->host, block->max_length); 2145 close(block->fd); 2146 #endif 2147 } else { 2148 qemu_anon_ram_free(block->host, block->max_length); 2149 } 2150 2151 if (block->guest_memfd >= 0) { 2152 close(block->guest_memfd); 2153 ram_block_discard_require(false); 2154 } 2155 2156 g_free(block); 2157 } 2158 2159 void qemu_ram_free(RAMBlock *block) 2160 { 2161 if (!block) { 2162 return; 2163 } 2164 2165 if (block->host) { 2166 ram_block_notify_remove(block->host, block->used_length, 2167 block->max_length); 2168 } 2169 2170 qemu_mutex_lock_ramlist(); 2171 QLIST_REMOVE_RCU(block, next); 2172 ram_list.mru_block = NULL; 2173 /* Write list before version */ 2174 smp_wmb(); 2175 ram_list.version++; 2176 call_rcu(block, reclaim_ramblock, rcu); 2177 qemu_mutex_unlock_ramlist(); 2178 } 2179 2180 #ifndef _WIN32 2181 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2182 { 2183 RAMBlock *block; 2184 ram_addr_t offset; 2185 int flags; 2186 void *area, *vaddr; 2187 int prot; 2188 2189 RAMBLOCK_FOREACH(block) { 2190 offset = addr - block->offset; 2191 if (offset < block->max_length) { 2192 vaddr = ramblock_ptr(block, offset); 2193 if (block->flags & RAM_PREALLOC) { 2194 ; 2195 } else if (xen_enabled()) { 2196 abort(); 2197 } else { 2198 flags = MAP_FIXED; 2199 flags |= block->flags & RAM_SHARED ? 2200 MAP_SHARED : MAP_PRIVATE; 2201 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2202 prot = PROT_READ; 2203 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2204 if (block->fd >= 0) { 2205 area = mmap(vaddr, length, prot, flags, block->fd, 2206 offset + block->fd_offset); 2207 } else { 2208 flags |= MAP_ANONYMOUS; 2209 area = mmap(vaddr, length, prot, flags, -1, 0); 2210 } 2211 if (area != vaddr) { 2212 error_report("Could not remap addr: " 2213 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2214 length, addr); 2215 exit(1); 2216 } 2217 memory_try_enable_merging(vaddr, length); 2218 qemu_ram_setup_dump(vaddr, length); 2219 } 2220 } 2221 } 2222 } 2223 #endif /* !_WIN32 */ 2224 2225 /* 2226 * Return a host pointer to guest's ram. 2227 * For Xen, foreign mappings get created if they don't already exist. 2228 * 2229 * @block: block for the RAM to lookup (optional and may be NULL). 2230 * @addr: address within the memory region. 2231 * @size: pointer to requested size (optional and may be NULL). 2232 * size may get modified and return a value smaller than 2233 * what was requested. 2234 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2235 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2236 * (optional and may always be set to true). 2237 * 2238 * Called within RCU critical section. 2239 */ 2240 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2241 hwaddr *size, bool lock, 2242 bool is_write) 2243 { 2244 hwaddr len = 0; 2245 2246 if (size && *size == 0) { 2247 return NULL; 2248 } 2249 2250 if (block == NULL) { 2251 block = qemu_get_ram_block(addr); 2252 addr -= block->offset; 2253 } 2254 if (size) { 2255 *size = MIN(*size, block->max_length - addr); 2256 len = *size; 2257 } 2258 2259 if (xen_enabled() && block->host == NULL) { 2260 /* We need to check if the requested address is in the RAM 2261 * because we don't want to map the entire memory in QEMU. 2262 * In that case just map the requested area. 2263 */ 2264 if (xen_mr_is_memory(block->mr)) { 2265 return xen_map_cache(block->mr, block->offset + addr, 2266 len, block->offset, 2267 lock, lock, is_write); 2268 } 2269 2270 block->host = xen_map_cache(block->mr, block->offset, 2271 block->max_length, 2272 block->offset, 2273 1, lock, is_write); 2274 } 2275 2276 return ramblock_ptr(block, addr); 2277 } 2278 2279 /* 2280 * Return a host pointer to ram allocated with qemu_ram_alloc. 2281 * This should not be used for general purpose DMA. Use address_space_map 2282 * or address_space_rw instead. For local memory (e.g. video ram) that the 2283 * device owns, use memory_region_get_ram_ptr. 2284 * 2285 * Called within RCU critical section. 2286 */ 2287 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2288 { 2289 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2290 } 2291 2292 /* Return the offset of a hostpointer within a ramblock */ 2293 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2294 { 2295 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2296 assert((uintptr_t)host >= (uintptr_t)rb->host); 2297 assert(res < rb->max_length); 2298 2299 return res; 2300 } 2301 2302 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2303 ram_addr_t *offset) 2304 { 2305 RAMBlock *block; 2306 uint8_t *host = ptr; 2307 2308 if (xen_enabled()) { 2309 ram_addr_t ram_addr; 2310 RCU_READ_LOCK_GUARD(); 2311 ram_addr = xen_ram_addr_from_mapcache(ptr); 2312 if (ram_addr == RAM_ADDR_INVALID) { 2313 return NULL; 2314 } 2315 2316 block = qemu_get_ram_block(ram_addr); 2317 if (block) { 2318 *offset = ram_addr - block->offset; 2319 } 2320 return block; 2321 } 2322 2323 RCU_READ_LOCK_GUARD(); 2324 block = qatomic_rcu_read(&ram_list.mru_block); 2325 if (block && block->host && host - block->host < block->max_length) { 2326 goto found; 2327 } 2328 2329 RAMBLOCK_FOREACH(block) { 2330 /* This case append when the block is not mapped. */ 2331 if (block->host == NULL) { 2332 continue; 2333 } 2334 if (host - block->host < block->max_length) { 2335 goto found; 2336 } 2337 } 2338 2339 return NULL; 2340 2341 found: 2342 *offset = (host - block->host); 2343 if (round_offset) { 2344 *offset &= TARGET_PAGE_MASK; 2345 } 2346 return block; 2347 } 2348 2349 /* 2350 * Finds the named RAMBlock 2351 * 2352 * name: The name of RAMBlock to find 2353 * 2354 * Returns: RAMBlock (or NULL if not found) 2355 */ 2356 RAMBlock *qemu_ram_block_by_name(const char *name) 2357 { 2358 RAMBlock *block; 2359 2360 RAMBLOCK_FOREACH(block) { 2361 if (!strcmp(name, block->idstr)) { 2362 return block; 2363 } 2364 } 2365 2366 return NULL; 2367 } 2368 2369 /* 2370 * Some of the system routines need to translate from a host pointer 2371 * (typically a TLB entry) back to a ram offset. 2372 */ 2373 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2374 { 2375 RAMBlock *block; 2376 ram_addr_t offset; 2377 2378 block = qemu_ram_block_from_host(ptr, false, &offset); 2379 if (!block) { 2380 return RAM_ADDR_INVALID; 2381 } 2382 2383 return block->offset + offset; 2384 } 2385 2386 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2387 { 2388 ram_addr_t ram_addr; 2389 2390 ram_addr = qemu_ram_addr_from_host(ptr); 2391 if (ram_addr == RAM_ADDR_INVALID) { 2392 error_report("Bad ram pointer %p", ptr); 2393 abort(); 2394 } 2395 return ram_addr; 2396 } 2397 2398 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2399 MemTxAttrs attrs, void *buf, hwaddr len); 2400 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2401 const void *buf, hwaddr len); 2402 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2403 bool is_write, MemTxAttrs attrs); 2404 2405 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2406 unsigned len, MemTxAttrs attrs) 2407 { 2408 subpage_t *subpage = opaque; 2409 uint8_t buf[8]; 2410 MemTxResult res; 2411 2412 #if defined(DEBUG_SUBPAGE) 2413 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2414 subpage, len, addr); 2415 #endif 2416 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2417 if (res) { 2418 return res; 2419 } 2420 *data = ldn_p(buf, len); 2421 return MEMTX_OK; 2422 } 2423 2424 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2425 uint64_t value, unsigned len, MemTxAttrs attrs) 2426 { 2427 subpage_t *subpage = opaque; 2428 uint8_t buf[8]; 2429 2430 #if defined(DEBUG_SUBPAGE) 2431 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2432 " value %"PRIx64"\n", 2433 __func__, subpage, len, addr, value); 2434 #endif 2435 stn_p(buf, len, value); 2436 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2437 } 2438 2439 static bool subpage_accepts(void *opaque, hwaddr addr, 2440 unsigned len, bool is_write, 2441 MemTxAttrs attrs) 2442 { 2443 subpage_t *subpage = opaque; 2444 #if defined(DEBUG_SUBPAGE) 2445 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2446 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2447 #endif 2448 2449 return flatview_access_valid(subpage->fv, addr + subpage->base, 2450 len, is_write, attrs); 2451 } 2452 2453 static const MemoryRegionOps subpage_ops = { 2454 .read_with_attrs = subpage_read, 2455 .write_with_attrs = subpage_write, 2456 .impl.min_access_size = 1, 2457 .impl.max_access_size = 8, 2458 .valid.min_access_size = 1, 2459 .valid.max_access_size = 8, 2460 .valid.accepts = subpage_accepts, 2461 .endianness = DEVICE_NATIVE_ENDIAN, 2462 }; 2463 2464 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2465 uint16_t section) 2466 { 2467 int idx, eidx; 2468 2469 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2470 return -1; 2471 idx = SUBPAGE_IDX(start); 2472 eidx = SUBPAGE_IDX(end); 2473 #if defined(DEBUG_SUBPAGE) 2474 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2475 __func__, mmio, start, end, idx, eidx, section); 2476 #endif 2477 for (; idx <= eidx; idx++) { 2478 mmio->sub_section[idx] = section; 2479 } 2480 2481 return 0; 2482 } 2483 2484 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2485 { 2486 subpage_t *mmio; 2487 2488 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2489 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2490 mmio->fv = fv; 2491 mmio->base = base; 2492 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2493 NULL, TARGET_PAGE_SIZE); 2494 mmio->iomem.subpage = true; 2495 #if defined(DEBUG_SUBPAGE) 2496 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2497 mmio, base, TARGET_PAGE_SIZE); 2498 #endif 2499 2500 return mmio; 2501 } 2502 2503 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2504 { 2505 assert(fv); 2506 MemoryRegionSection section = { 2507 .fv = fv, 2508 .mr = mr, 2509 .offset_within_address_space = 0, 2510 .offset_within_region = 0, 2511 .size = int128_2_64(), 2512 }; 2513 2514 return phys_section_add(map, §ion); 2515 } 2516 2517 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2518 hwaddr index, MemTxAttrs attrs) 2519 { 2520 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2521 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2522 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2523 int section_index = index & ~TARGET_PAGE_MASK; 2524 MemoryRegionSection *ret; 2525 2526 assert(section_index < d->map.sections_nb); 2527 ret = d->map.sections + section_index; 2528 assert(ret->mr); 2529 assert(ret->mr->ops); 2530 2531 return ret; 2532 } 2533 2534 static void io_mem_init(void) 2535 { 2536 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2537 NULL, UINT64_MAX); 2538 } 2539 2540 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2541 { 2542 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2543 uint16_t n; 2544 2545 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2546 assert(n == PHYS_SECTION_UNASSIGNED); 2547 2548 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2549 2550 return d; 2551 } 2552 2553 void address_space_dispatch_free(AddressSpaceDispatch *d) 2554 { 2555 phys_sections_free(&d->map); 2556 g_free(d); 2557 } 2558 2559 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2560 { 2561 } 2562 2563 static void tcg_log_global_after_sync(MemoryListener *listener) 2564 { 2565 CPUAddressSpace *cpuas; 2566 2567 /* Wait for the CPU to end the current TB. This avoids the following 2568 * incorrect race: 2569 * 2570 * vCPU migration 2571 * ---------------------- ------------------------- 2572 * TLB check -> slow path 2573 * notdirty_mem_write 2574 * write to RAM 2575 * mark dirty 2576 * clear dirty flag 2577 * TLB check -> fast path 2578 * read memory 2579 * write to RAM 2580 * 2581 * by pushing the migration thread's memory read after the vCPU thread has 2582 * written the memory. 2583 */ 2584 if (replay_mode == REPLAY_MODE_NONE) { 2585 /* 2586 * VGA can make calls to this function while updating the screen. 2587 * In record/replay mode this causes a deadlock, because 2588 * run_on_cpu waits for rr mutex. Therefore no races are possible 2589 * in this case and no need for making run_on_cpu when 2590 * record/replay is enabled. 2591 */ 2592 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2593 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2594 } 2595 } 2596 2597 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2598 { 2599 CPUAddressSpace *cpuas = data.host_ptr; 2600 2601 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2602 tlb_flush(cpu); 2603 } 2604 2605 static void tcg_commit(MemoryListener *listener) 2606 { 2607 CPUAddressSpace *cpuas; 2608 CPUState *cpu; 2609 2610 assert(tcg_enabled()); 2611 /* since each CPU stores ram addresses in its TLB cache, we must 2612 reset the modified entries */ 2613 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2614 cpu = cpuas->cpu; 2615 2616 /* 2617 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2618 * Otherwise we race between (1) other cpu threads and (2) ongoing 2619 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2620 * 2621 * In addition, queueing the work function will kick the cpu back to 2622 * the main loop, which will end the RCU critical section and reclaim 2623 * the memory data structures. 2624 * 2625 * That said, the listener is also called during realize, before 2626 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2627 */ 2628 if (cpu->halt_cond) { 2629 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2630 } else { 2631 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2632 } 2633 } 2634 2635 static void memory_map_init(void) 2636 { 2637 system_memory = g_malloc(sizeof(*system_memory)); 2638 2639 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2640 address_space_init(&address_space_memory, system_memory, "memory"); 2641 2642 system_io = g_malloc(sizeof(*system_io)); 2643 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2644 65536); 2645 address_space_init(&address_space_io, system_io, "I/O"); 2646 } 2647 2648 MemoryRegion *get_system_memory(void) 2649 { 2650 return system_memory; 2651 } 2652 2653 MemoryRegion *get_system_io(void) 2654 { 2655 return system_io; 2656 } 2657 2658 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2659 hwaddr length) 2660 { 2661 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2662 addr += memory_region_get_ram_addr(mr); 2663 2664 /* No early return if dirty_log_mask is or becomes 0, because 2665 * cpu_physical_memory_set_dirty_range will still call 2666 * xen_modified_memory. 2667 */ 2668 if (dirty_log_mask) { 2669 dirty_log_mask = 2670 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2671 } 2672 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2673 assert(tcg_enabled()); 2674 tb_invalidate_phys_range(addr, addr + length - 1); 2675 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2676 } 2677 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2678 } 2679 2680 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2681 { 2682 /* 2683 * In principle this function would work on other memory region types too, 2684 * but the ROM device use case is the only one where this operation is 2685 * necessary. Other memory regions should use the 2686 * address_space_read/write() APIs. 2687 */ 2688 assert(memory_region_is_romd(mr)); 2689 2690 invalidate_and_set_dirty(mr, addr, size); 2691 } 2692 2693 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2694 { 2695 unsigned access_size_max = mr->ops->valid.max_access_size; 2696 2697 /* Regions are assumed to support 1-4 byte accesses unless 2698 otherwise specified. */ 2699 if (access_size_max == 0) { 2700 access_size_max = 4; 2701 } 2702 2703 /* Bound the maximum access by the alignment of the address. */ 2704 if (!mr->ops->impl.unaligned) { 2705 unsigned align_size_max = addr & -addr; 2706 if (align_size_max != 0 && align_size_max < access_size_max) { 2707 access_size_max = align_size_max; 2708 } 2709 } 2710 2711 /* Don't attempt accesses larger than the maximum. */ 2712 if (l > access_size_max) { 2713 l = access_size_max; 2714 } 2715 l = pow2floor(l); 2716 2717 return l; 2718 } 2719 2720 bool prepare_mmio_access(MemoryRegion *mr) 2721 { 2722 bool release_lock = false; 2723 2724 if (!bql_locked()) { 2725 bql_lock(); 2726 release_lock = true; 2727 } 2728 if (mr->flush_coalesced_mmio) { 2729 qemu_flush_coalesced_mmio_buffer(); 2730 } 2731 2732 return release_lock; 2733 } 2734 2735 /** 2736 * flatview_access_allowed 2737 * @mr: #MemoryRegion to be accessed 2738 * @attrs: memory transaction attributes 2739 * @addr: address within that memory region 2740 * @len: the number of bytes to access 2741 * 2742 * Check if a memory transaction is allowed. 2743 * 2744 * Returns: true if transaction is allowed, false if denied. 2745 */ 2746 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2747 hwaddr addr, hwaddr len) 2748 { 2749 if (likely(!attrs.memory)) { 2750 return true; 2751 } 2752 if (memory_region_is_ram(mr)) { 2753 return true; 2754 } 2755 qemu_log_mask(LOG_GUEST_ERROR, 2756 "Invalid access to non-RAM device at " 2757 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2758 "region '%s'\n", addr, len, memory_region_name(mr)); 2759 return false; 2760 } 2761 2762 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2763 const uint8_t *buf, 2764 hwaddr len, hwaddr mr_addr, 2765 hwaddr *l, MemoryRegion *mr) 2766 { 2767 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2768 return MEMTX_ACCESS_ERROR; 2769 } 2770 2771 if (!memory_access_is_direct(mr, true)) { 2772 uint64_t val; 2773 MemTxResult result; 2774 bool release_lock = prepare_mmio_access(mr); 2775 2776 *l = memory_access_size(mr, *l, mr_addr); 2777 /* 2778 * XXX: could force current_cpu to NULL to avoid 2779 * potential bugs 2780 */ 2781 2782 /* 2783 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2784 * the buffer by following ldn_he_p(). 2785 */ 2786 #ifdef QEMU_STATIC_ANALYSIS 2787 assert((*l == 1 && len >= 1) || 2788 (*l == 2 && len >= 2) || 2789 (*l == 4 && len >= 4) || 2790 (*l == 8 && len >= 8)); 2791 #endif 2792 val = ldn_he_p(buf, *l); 2793 result = memory_region_dispatch_write(mr, mr_addr, val, 2794 size_memop(*l), attrs); 2795 if (release_lock) { 2796 bql_unlock(); 2797 } 2798 2799 return result; 2800 } else { 2801 /* RAM case */ 2802 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2803 false, true); 2804 2805 memmove(ram_ptr, buf, *l); 2806 invalidate_and_set_dirty(mr, mr_addr, *l); 2807 2808 return MEMTX_OK; 2809 } 2810 } 2811 2812 /* Called within RCU critical section. */ 2813 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2814 MemTxAttrs attrs, 2815 const void *ptr, 2816 hwaddr len, hwaddr mr_addr, 2817 hwaddr l, MemoryRegion *mr) 2818 { 2819 MemTxResult result = MEMTX_OK; 2820 const uint8_t *buf = ptr; 2821 2822 for (;;) { 2823 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2824 mr); 2825 2826 len -= l; 2827 buf += l; 2828 addr += l; 2829 2830 if (!len) { 2831 break; 2832 } 2833 2834 l = len; 2835 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2836 } 2837 2838 return result; 2839 } 2840 2841 /* Called from RCU critical section. */ 2842 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2843 const void *buf, hwaddr len) 2844 { 2845 hwaddr l; 2846 hwaddr mr_addr; 2847 MemoryRegion *mr; 2848 2849 l = len; 2850 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2851 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2852 return MEMTX_ACCESS_ERROR; 2853 } 2854 return flatview_write_continue(fv, addr, attrs, buf, len, 2855 mr_addr, l, mr); 2856 } 2857 2858 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2859 hwaddr len, hwaddr mr_addr, 2860 hwaddr *l, 2861 MemoryRegion *mr) 2862 { 2863 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2864 return MEMTX_ACCESS_ERROR; 2865 } 2866 2867 if (!memory_access_is_direct(mr, false)) { 2868 /* I/O case */ 2869 uint64_t val; 2870 MemTxResult result; 2871 bool release_lock = prepare_mmio_access(mr); 2872 2873 *l = memory_access_size(mr, *l, mr_addr); 2874 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2875 attrs); 2876 2877 /* 2878 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2879 * the buffer by following stn_he_p(). 2880 */ 2881 #ifdef QEMU_STATIC_ANALYSIS 2882 assert((*l == 1 && len >= 1) || 2883 (*l == 2 && len >= 2) || 2884 (*l == 4 && len >= 4) || 2885 (*l == 8 && len >= 8)); 2886 #endif 2887 stn_he_p(buf, *l, val); 2888 2889 if (release_lock) { 2890 bql_unlock(); 2891 } 2892 return result; 2893 } else { 2894 /* RAM case */ 2895 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2896 false, false); 2897 2898 memcpy(buf, ram_ptr, *l); 2899 2900 return MEMTX_OK; 2901 } 2902 } 2903 2904 /* Called within RCU critical section. */ 2905 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2906 MemTxAttrs attrs, void *ptr, 2907 hwaddr len, hwaddr mr_addr, hwaddr l, 2908 MemoryRegion *mr) 2909 { 2910 MemTxResult result = MEMTX_OK; 2911 uint8_t *buf = ptr; 2912 2913 fuzz_dma_read_cb(addr, len, mr); 2914 for (;;) { 2915 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2916 2917 len -= l; 2918 buf += l; 2919 addr += l; 2920 2921 if (!len) { 2922 break; 2923 } 2924 2925 l = len; 2926 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2927 } 2928 2929 return result; 2930 } 2931 2932 /* Called from RCU critical section. */ 2933 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2934 MemTxAttrs attrs, void *buf, hwaddr len) 2935 { 2936 hwaddr l; 2937 hwaddr mr_addr; 2938 MemoryRegion *mr; 2939 2940 l = len; 2941 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2942 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2943 return MEMTX_ACCESS_ERROR; 2944 } 2945 return flatview_read_continue(fv, addr, attrs, buf, len, 2946 mr_addr, l, mr); 2947 } 2948 2949 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2950 MemTxAttrs attrs, void *buf, hwaddr len) 2951 { 2952 MemTxResult result = MEMTX_OK; 2953 FlatView *fv; 2954 2955 if (len > 0) { 2956 RCU_READ_LOCK_GUARD(); 2957 fv = address_space_to_flatview(as); 2958 result = flatview_read(fv, addr, attrs, buf, len); 2959 } 2960 2961 return result; 2962 } 2963 2964 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2965 MemTxAttrs attrs, 2966 const void *buf, hwaddr len) 2967 { 2968 MemTxResult result = MEMTX_OK; 2969 FlatView *fv; 2970 2971 if (len > 0) { 2972 RCU_READ_LOCK_GUARD(); 2973 fv = address_space_to_flatview(as); 2974 result = flatview_write(fv, addr, attrs, buf, len); 2975 } 2976 2977 return result; 2978 } 2979 2980 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2981 void *buf, hwaddr len, bool is_write) 2982 { 2983 if (is_write) { 2984 return address_space_write(as, addr, attrs, buf, len); 2985 } else { 2986 return address_space_read_full(as, addr, attrs, buf, len); 2987 } 2988 } 2989 2990 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2991 uint8_t c, hwaddr len, MemTxAttrs attrs) 2992 { 2993 #define FILLBUF_SIZE 512 2994 uint8_t fillbuf[FILLBUF_SIZE]; 2995 int l; 2996 MemTxResult error = MEMTX_OK; 2997 2998 memset(fillbuf, c, FILLBUF_SIZE); 2999 while (len > 0) { 3000 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 3001 error |= address_space_write(as, addr, attrs, fillbuf, l); 3002 len -= l; 3003 addr += l; 3004 } 3005 3006 return error; 3007 } 3008 3009 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3010 hwaddr len, bool is_write) 3011 { 3012 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3013 buf, len, is_write); 3014 } 3015 3016 enum write_rom_type { 3017 WRITE_DATA, 3018 FLUSH_CACHE, 3019 }; 3020 3021 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3022 hwaddr addr, 3023 MemTxAttrs attrs, 3024 const void *ptr, 3025 hwaddr len, 3026 enum write_rom_type type) 3027 { 3028 hwaddr l; 3029 uint8_t *ram_ptr; 3030 hwaddr addr1; 3031 MemoryRegion *mr; 3032 const uint8_t *buf = ptr; 3033 3034 RCU_READ_LOCK_GUARD(); 3035 while (len > 0) { 3036 l = len; 3037 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3038 3039 if (!(memory_region_is_ram(mr) || 3040 memory_region_is_romd(mr))) { 3041 l = memory_access_size(mr, l, addr1); 3042 } else { 3043 /* ROM/RAM case */ 3044 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3045 switch (type) { 3046 case WRITE_DATA: 3047 memcpy(ram_ptr, buf, l); 3048 invalidate_and_set_dirty(mr, addr1, l); 3049 break; 3050 case FLUSH_CACHE: 3051 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3052 break; 3053 } 3054 } 3055 len -= l; 3056 buf += l; 3057 addr += l; 3058 } 3059 return MEMTX_OK; 3060 } 3061 3062 /* used for ROM loading : can write in RAM and ROM */ 3063 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3064 MemTxAttrs attrs, 3065 const void *buf, hwaddr len) 3066 { 3067 return address_space_write_rom_internal(as, addr, attrs, 3068 buf, len, WRITE_DATA); 3069 } 3070 3071 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3072 { 3073 /* 3074 * This function should do the same thing as an icache flush that was 3075 * triggered from within the guest. For TCG we are always cache coherent, 3076 * so there is no need to flush anything. For KVM / Xen we need to flush 3077 * the host's instruction cache at least. 3078 */ 3079 if (tcg_enabled()) { 3080 return; 3081 } 3082 3083 address_space_write_rom_internal(&address_space_memory, 3084 start, MEMTXATTRS_UNSPECIFIED, 3085 NULL, len, FLUSH_CACHE); 3086 } 3087 3088 static void 3089 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3090 { 3091 QLIST_REMOVE(client, link); 3092 g_free(client); 3093 } 3094 3095 static void address_space_notify_map_clients_locked(AddressSpace *as) 3096 { 3097 AddressSpaceMapClient *client; 3098 3099 while (!QLIST_EMPTY(&as->map_client_list)) { 3100 client = QLIST_FIRST(&as->map_client_list); 3101 qemu_bh_schedule(client->bh); 3102 address_space_unregister_map_client_do(client); 3103 } 3104 } 3105 3106 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3107 { 3108 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3109 3110 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3111 client->bh = bh; 3112 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3113 /* Write map_client_list before reading in_use. */ 3114 smp_mb(); 3115 if (!qatomic_read(&as->bounce.in_use)) { 3116 address_space_notify_map_clients_locked(as); 3117 } 3118 } 3119 3120 void cpu_exec_init_all(void) 3121 { 3122 qemu_mutex_init(&ram_list.mutex); 3123 /* The data structures we set up here depend on knowing the page size, 3124 * so no more changes can be made after this point. 3125 * In an ideal world, nothing we did before we had finished the 3126 * machine setup would care about the target page size, and we could 3127 * do this much later, rather than requiring board models to state 3128 * up front what their requirements are. 3129 */ 3130 finalize_target_page_bits(); 3131 io_mem_init(); 3132 memory_map_init(); 3133 } 3134 3135 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3136 { 3137 AddressSpaceMapClient *client; 3138 3139 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3140 QLIST_FOREACH(client, &as->map_client_list, link) { 3141 if (client->bh == bh) { 3142 address_space_unregister_map_client_do(client); 3143 break; 3144 } 3145 } 3146 } 3147 3148 static void address_space_notify_map_clients(AddressSpace *as) 3149 { 3150 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3151 address_space_notify_map_clients_locked(as); 3152 } 3153 3154 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3155 bool is_write, MemTxAttrs attrs) 3156 { 3157 MemoryRegion *mr; 3158 hwaddr l, xlat; 3159 3160 while (len > 0) { 3161 l = len; 3162 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3163 if (!memory_access_is_direct(mr, is_write)) { 3164 l = memory_access_size(mr, l, addr); 3165 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3166 return false; 3167 } 3168 } 3169 3170 len -= l; 3171 addr += l; 3172 } 3173 return true; 3174 } 3175 3176 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3177 hwaddr len, bool is_write, 3178 MemTxAttrs attrs) 3179 { 3180 FlatView *fv; 3181 3182 RCU_READ_LOCK_GUARD(); 3183 fv = address_space_to_flatview(as); 3184 return flatview_access_valid(fv, addr, len, is_write, attrs); 3185 } 3186 3187 static hwaddr 3188 flatview_extend_translation(FlatView *fv, hwaddr addr, 3189 hwaddr target_len, 3190 MemoryRegion *mr, hwaddr base, hwaddr len, 3191 bool is_write, MemTxAttrs attrs) 3192 { 3193 hwaddr done = 0; 3194 hwaddr xlat; 3195 MemoryRegion *this_mr; 3196 3197 for (;;) { 3198 target_len -= len; 3199 addr += len; 3200 done += len; 3201 if (target_len == 0) { 3202 return done; 3203 } 3204 3205 len = target_len; 3206 this_mr = flatview_translate(fv, addr, &xlat, 3207 &len, is_write, attrs); 3208 if (this_mr != mr || xlat != base + done) { 3209 return done; 3210 } 3211 } 3212 } 3213 3214 /* Map a physical memory region into a host virtual address. 3215 * May map a subset of the requested range, given by and returned in *plen. 3216 * May return NULL if resources needed to perform the mapping are exhausted. 3217 * Use only for reads OR writes - not for read-modify-write operations. 3218 * Use address_space_register_map_client() to know when retrying the map 3219 * operation is likely to succeed. 3220 */ 3221 void *address_space_map(AddressSpace *as, 3222 hwaddr addr, 3223 hwaddr *plen, 3224 bool is_write, 3225 MemTxAttrs attrs) 3226 { 3227 hwaddr len = *plen; 3228 hwaddr l, xlat; 3229 MemoryRegion *mr; 3230 FlatView *fv; 3231 3232 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3233 3234 if (len == 0) { 3235 return NULL; 3236 } 3237 3238 l = len; 3239 RCU_READ_LOCK_GUARD(); 3240 fv = address_space_to_flatview(as); 3241 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3242 3243 if (!memory_access_is_direct(mr, is_write)) { 3244 if (qatomic_xchg(&as->bounce.in_use, true)) { 3245 *plen = 0; 3246 return NULL; 3247 } 3248 /* Avoid unbounded allocations */ 3249 l = MIN(l, TARGET_PAGE_SIZE); 3250 as->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3251 as->bounce.addr = addr; 3252 as->bounce.len = l; 3253 3254 memory_region_ref(mr); 3255 as->bounce.mr = mr; 3256 if (!is_write) { 3257 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3258 as->bounce.buffer, l); 3259 } 3260 3261 *plen = l; 3262 return as->bounce.buffer; 3263 } 3264 3265 3266 memory_region_ref(mr); 3267 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3268 l, is_write, attrs); 3269 fuzz_dma_read_cb(addr, *plen, mr); 3270 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3271 } 3272 3273 /* Unmaps a memory region previously mapped by address_space_map(). 3274 * Will also mark the memory as dirty if is_write is true. access_len gives 3275 * the amount of memory that was actually read or written by the caller. 3276 */ 3277 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3278 bool is_write, hwaddr access_len) 3279 { 3280 if (buffer != as->bounce.buffer) { 3281 MemoryRegion *mr; 3282 ram_addr_t addr1; 3283 3284 mr = memory_region_from_host(buffer, &addr1); 3285 assert(mr != NULL); 3286 if (is_write) { 3287 invalidate_and_set_dirty(mr, addr1, access_len); 3288 } 3289 if (xen_enabled()) { 3290 xen_invalidate_map_cache_entry(buffer); 3291 } 3292 memory_region_unref(mr); 3293 return; 3294 } 3295 if (is_write) { 3296 address_space_write(as, as->bounce.addr, MEMTXATTRS_UNSPECIFIED, 3297 as->bounce.buffer, access_len); 3298 } 3299 qemu_vfree(as->bounce.buffer); 3300 as->bounce.buffer = NULL; 3301 memory_region_unref(as->bounce.mr); 3302 /* Clear in_use before reading map_client_list. */ 3303 qatomic_set_mb(&as->bounce.in_use, false); 3304 address_space_notify_map_clients(as); 3305 } 3306 3307 void *cpu_physical_memory_map(hwaddr addr, 3308 hwaddr *plen, 3309 bool is_write) 3310 { 3311 return address_space_map(&address_space_memory, addr, plen, is_write, 3312 MEMTXATTRS_UNSPECIFIED); 3313 } 3314 3315 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3316 bool is_write, hwaddr access_len) 3317 { 3318 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3319 } 3320 3321 #define ARG1_DECL AddressSpace *as 3322 #define ARG1 as 3323 #define SUFFIX 3324 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3325 #define RCU_READ_LOCK(...) rcu_read_lock() 3326 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3327 #include "memory_ldst.c.inc" 3328 3329 int64_t address_space_cache_init(MemoryRegionCache *cache, 3330 AddressSpace *as, 3331 hwaddr addr, 3332 hwaddr len, 3333 bool is_write) 3334 { 3335 AddressSpaceDispatch *d; 3336 hwaddr l; 3337 MemoryRegion *mr; 3338 Int128 diff; 3339 3340 assert(len > 0); 3341 3342 l = len; 3343 cache->fv = address_space_get_flatview(as); 3344 d = flatview_to_dispatch(cache->fv); 3345 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3346 3347 /* 3348 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3349 * Take that into account to compute how many bytes are there between 3350 * cache->xlat and the end of the section. 3351 */ 3352 diff = int128_sub(cache->mrs.size, 3353 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3354 l = int128_get64(int128_min(diff, int128_make64(l))); 3355 3356 mr = cache->mrs.mr; 3357 memory_region_ref(mr); 3358 if (memory_access_is_direct(mr, is_write)) { 3359 /* We don't care about the memory attributes here as we're only 3360 * doing this if we found actual RAM, which behaves the same 3361 * regardless of attributes; so UNSPECIFIED is fine. 3362 */ 3363 l = flatview_extend_translation(cache->fv, addr, len, mr, 3364 cache->xlat, l, is_write, 3365 MEMTXATTRS_UNSPECIFIED); 3366 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3367 is_write); 3368 } else { 3369 cache->ptr = NULL; 3370 } 3371 3372 cache->len = l; 3373 cache->is_write = is_write; 3374 return l; 3375 } 3376 3377 void address_space_cache_invalidate(MemoryRegionCache *cache, 3378 hwaddr addr, 3379 hwaddr access_len) 3380 { 3381 assert(cache->is_write); 3382 if (likely(cache->ptr)) { 3383 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3384 } 3385 } 3386 3387 void address_space_cache_destroy(MemoryRegionCache *cache) 3388 { 3389 if (!cache->mrs.mr) { 3390 return; 3391 } 3392 3393 if (xen_enabled()) { 3394 xen_invalidate_map_cache_entry(cache->ptr); 3395 } 3396 memory_region_unref(cache->mrs.mr); 3397 flatview_unref(cache->fv); 3398 cache->mrs.mr = NULL; 3399 cache->fv = NULL; 3400 } 3401 3402 /* Called from RCU critical section. This function has the same 3403 * semantics as address_space_translate, but it only works on a 3404 * predefined range of a MemoryRegion that was mapped with 3405 * address_space_cache_init. 3406 */ 3407 static inline MemoryRegion *address_space_translate_cached( 3408 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3409 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3410 { 3411 MemoryRegionSection section; 3412 MemoryRegion *mr; 3413 IOMMUMemoryRegion *iommu_mr; 3414 AddressSpace *target_as; 3415 3416 assert(!cache->ptr); 3417 *xlat = addr + cache->xlat; 3418 3419 mr = cache->mrs.mr; 3420 iommu_mr = memory_region_get_iommu(mr); 3421 if (!iommu_mr) { 3422 /* MMIO region. */ 3423 return mr; 3424 } 3425 3426 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3427 NULL, is_write, true, 3428 &target_as, attrs); 3429 return section.mr; 3430 } 3431 3432 /* Called within RCU critical section. */ 3433 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3434 const void *ptr, 3435 hwaddr len, 3436 hwaddr mr_addr, 3437 hwaddr l, 3438 MemoryRegion *mr) 3439 { 3440 MemTxResult result = MEMTX_OK; 3441 const uint8_t *buf = ptr; 3442 3443 for (;;) { 3444 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3445 mr); 3446 3447 len -= l; 3448 buf += l; 3449 mr_addr += l; 3450 3451 if (!len) { 3452 break; 3453 } 3454 3455 l = len; 3456 } 3457 3458 return result; 3459 } 3460 3461 /* Called within RCU critical section. */ 3462 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3463 void *ptr, hwaddr len, 3464 hwaddr mr_addr, hwaddr l, 3465 MemoryRegion *mr) 3466 { 3467 MemTxResult result = MEMTX_OK; 3468 uint8_t *buf = ptr; 3469 3470 for (;;) { 3471 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3472 len -= l; 3473 buf += l; 3474 mr_addr += l; 3475 3476 if (!len) { 3477 break; 3478 } 3479 l = len; 3480 } 3481 3482 return result; 3483 } 3484 3485 /* Called from RCU critical section. address_space_read_cached uses this 3486 * out of line function when the target is an MMIO or IOMMU region. 3487 */ 3488 MemTxResult 3489 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3490 void *buf, hwaddr len) 3491 { 3492 hwaddr mr_addr, l; 3493 MemoryRegion *mr; 3494 3495 l = len; 3496 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3497 MEMTXATTRS_UNSPECIFIED); 3498 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3499 buf, len, mr_addr, l, mr); 3500 } 3501 3502 /* Called from RCU critical section. address_space_write_cached uses this 3503 * out of line function when the target is an MMIO or IOMMU region. 3504 */ 3505 MemTxResult 3506 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3507 const void *buf, hwaddr len) 3508 { 3509 hwaddr mr_addr, l; 3510 MemoryRegion *mr; 3511 3512 l = len; 3513 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3514 MEMTXATTRS_UNSPECIFIED); 3515 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3516 buf, len, mr_addr, l, mr); 3517 } 3518 3519 #define ARG1_DECL MemoryRegionCache *cache 3520 #define ARG1 cache 3521 #define SUFFIX _cached_slow 3522 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3523 #define RCU_READ_LOCK() ((void)0) 3524 #define RCU_READ_UNLOCK() ((void)0) 3525 #include "memory_ldst.c.inc" 3526 3527 /* virtual memory access for debug (includes writing to ROM) */ 3528 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3529 void *ptr, size_t len, bool is_write) 3530 { 3531 hwaddr phys_addr; 3532 vaddr l, page; 3533 uint8_t *buf = ptr; 3534 3535 cpu_synchronize_state(cpu); 3536 while (len > 0) { 3537 int asidx; 3538 MemTxAttrs attrs; 3539 MemTxResult res; 3540 3541 page = addr & TARGET_PAGE_MASK; 3542 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3543 asidx = cpu_asidx_from_attrs(cpu, attrs); 3544 /* if no physical page mapped, return an error */ 3545 if (phys_addr == -1) 3546 return -1; 3547 l = (page + TARGET_PAGE_SIZE) - addr; 3548 if (l > len) 3549 l = len; 3550 phys_addr += (addr & ~TARGET_PAGE_MASK); 3551 if (is_write) { 3552 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3553 attrs, buf, l); 3554 } else { 3555 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3556 attrs, buf, l); 3557 } 3558 if (res != MEMTX_OK) { 3559 return -1; 3560 } 3561 len -= l; 3562 buf += l; 3563 addr += l; 3564 } 3565 return 0; 3566 } 3567 3568 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3569 { 3570 MemoryRegion*mr; 3571 hwaddr l = 1; 3572 3573 RCU_READ_LOCK_GUARD(); 3574 mr = address_space_translate(&address_space_memory, 3575 phys_addr, &phys_addr, &l, false, 3576 MEMTXATTRS_UNSPECIFIED); 3577 3578 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3579 } 3580 3581 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3582 { 3583 RAMBlock *block; 3584 int ret = 0; 3585 3586 RCU_READ_LOCK_GUARD(); 3587 RAMBLOCK_FOREACH(block) { 3588 ret = func(block, opaque); 3589 if (ret) { 3590 break; 3591 } 3592 } 3593 return ret; 3594 } 3595 3596 /* 3597 * Unmap pages of memory from start to start+length such that 3598 * they a) read as 0, b) Trigger whatever fault mechanism 3599 * the OS provides for postcopy. 3600 * The pages must be unmapped by the end of the function. 3601 * Returns: 0 on success, none-0 on failure 3602 * 3603 */ 3604 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3605 { 3606 int ret = -1; 3607 3608 uint8_t *host_startaddr = rb->host + start; 3609 3610 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3611 error_report("%s: Unaligned start address: %p", 3612 __func__, host_startaddr); 3613 goto err; 3614 } 3615 3616 if ((start + length) <= rb->max_length) { 3617 bool need_madvise, need_fallocate; 3618 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3619 error_report("%s: Unaligned length: %zx", __func__, length); 3620 goto err; 3621 } 3622 3623 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3624 3625 /* The logic here is messy; 3626 * madvise DONTNEED fails for hugepages 3627 * fallocate works on hugepages and shmem 3628 * shared anonymous memory requires madvise REMOVE 3629 */ 3630 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3631 need_fallocate = rb->fd != -1; 3632 if (need_fallocate) { 3633 /* For a file, this causes the area of the file to be zero'd 3634 * if read, and for hugetlbfs also causes it to be unmapped 3635 * so a userfault will trigger. 3636 */ 3637 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3638 /* 3639 * fallocate() will fail with readonly files. Let's print a 3640 * proper error message. 3641 */ 3642 if (rb->flags & RAM_READONLY_FD) { 3643 error_report("%s: Discarding RAM with readonly files is not" 3644 " supported", __func__); 3645 goto err; 3646 3647 } 3648 /* 3649 * We'll discard data from the actual file, even though we only 3650 * have a MAP_PRIVATE mapping, possibly messing with other 3651 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3652 * change that behavior whithout violating the promised 3653 * semantics of ram_block_discard_range(). 3654 * 3655 * Only warn, because it works as long as nobody else uses that 3656 * file. 3657 */ 3658 if (!qemu_ram_is_shared(rb)) { 3659 warn_report_once("%s: Discarding RAM" 3660 " in private file mappings is possibly" 3661 " dangerous, because it will modify the" 3662 " underlying file and will affect other" 3663 " users of the file", __func__); 3664 } 3665 3666 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3667 start, length); 3668 if (ret) { 3669 ret = -errno; 3670 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3671 __func__, rb->idstr, start, length, ret); 3672 goto err; 3673 } 3674 #else 3675 ret = -ENOSYS; 3676 error_report("%s: fallocate not available/file" 3677 "%s:%" PRIx64 " +%zx (%d)", 3678 __func__, rb->idstr, start, length, ret); 3679 goto err; 3680 #endif 3681 } 3682 if (need_madvise) { 3683 /* For normal RAM this causes it to be unmapped, 3684 * for shared memory it causes the local mapping to disappear 3685 * and to fall back on the file contents (which we just 3686 * fallocate'd away). 3687 */ 3688 #if defined(CONFIG_MADVISE) 3689 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3690 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3691 } else { 3692 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3693 } 3694 if (ret) { 3695 ret = -errno; 3696 error_report("%s: Failed to discard range " 3697 "%s:%" PRIx64 " +%zx (%d)", 3698 __func__, rb->idstr, start, length, ret); 3699 goto err; 3700 } 3701 #else 3702 ret = -ENOSYS; 3703 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3704 __func__, rb->idstr, start, length, ret); 3705 goto err; 3706 #endif 3707 } 3708 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3709 need_madvise, need_fallocate, ret); 3710 } else { 3711 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3712 __func__, rb->idstr, start, length, rb->max_length); 3713 } 3714 3715 err: 3716 return ret; 3717 } 3718 3719 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3720 size_t length) 3721 { 3722 int ret = -1; 3723 3724 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3725 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3726 start, length); 3727 3728 if (ret) { 3729 ret = -errno; 3730 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3731 __func__, rb->idstr, start, length, ret); 3732 } 3733 #else 3734 ret = -ENOSYS; 3735 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3736 __func__, rb->idstr, start, length, ret); 3737 #endif 3738 3739 return ret; 3740 } 3741 3742 bool ramblock_is_pmem(RAMBlock *rb) 3743 { 3744 return rb->flags & RAM_PMEM; 3745 } 3746 3747 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3748 { 3749 if (start == end - 1) { 3750 qemu_printf("\t%3d ", start); 3751 } else { 3752 qemu_printf("\t%3d..%-3d ", start, end - 1); 3753 } 3754 qemu_printf(" skip=%d ", skip); 3755 if (ptr == PHYS_MAP_NODE_NIL) { 3756 qemu_printf(" ptr=NIL"); 3757 } else if (!skip) { 3758 qemu_printf(" ptr=#%d", ptr); 3759 } else { 3760 qemu_printf(" ptr=[%d]", ptr); 3761 } 3762 qemu_printf("\n"); 3763 } 3764 3765 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3766 int128_sub((size), int128_one())) : 0) 3767 3768 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3769 { 3770 int i; 3771 3772 qemu_printf(" Dispatch\n"); 3773 qemu_printf(" Physical sections\n"); 3774 3775 for (i = 0; i < d->map.sections_nb; ++i) { 3776 MemoryRegionSection *s = d->map.sections + i; 3777 const char *names[] = { " [unassigned]", " [not dirty]", 3778 " [ROM]", " [watch]" }; 3779 3780 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3781 " %s%s%s%s%s", 3782 i, 3783 s->offset_within_address_space, 3784 s->offset_within_address_space + MR_SIZE(s->size), 3785 s->mr->name ? s->mr->name : "(noname)", 3786 i < ARRAY_SIZE(names) ? names[i] : "", 3787 s->mr == root ? " [ROOT]" : "", 3788 s == d->mru_section ? " [MRU]" : "", 3789 s->mr->is_iommu ? " [iommu]" : ""); 3790 3791 if (s->mr->alias) { 3792 qemu_printf(" alias=%s", s->mr->alias->name ? 3793 s->mr->alias->name : "noname"); 3794 } 3795 qemu_printf("\n"); 3796 } 3797 3798 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3799 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3800 for (i = 0; i < d->map.nodes_nb; ++i) { 3801 int j, jprev; 3802 PhysPageEntry prev; 3803 Node *n = d->map.nodes + i; 3804 3805 qemu_printf(" [%d]\n", i); 3806 3807 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3808 PhysPageEntry *pe = *n + j; 3809 3810 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3811 continue; 3812 } 3813 3814 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3815 3816 jprev = j; 3817 prev = *pe; 3818 } 3819 3820 if (jprev != ARRAY_SIZE(*n)) { 3821 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3822 } 3823 } 3824 } 3825 3826 /* Require any discards to work. */ 3827 static unsigned int ram_block_discard_required_cnt; 3828 /* Require only coordinated discards to work. */ 3829 static unsigned int ram_block_coordinated_discard_required_cnt; 3830 /* Disable any discards. */ 3831 static unsigned int ram_block_discard_disabled_cnt; 3832 /* Disable only uncoordinated discards. */ 3833 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3834 static QemuMutex ram_block_discard_disable_mutex; 3835 3836 static void ram_block_discard_disable_mutex_lock(void) 3837 { 3838 static gsize initialized; 3839 3840 if (g_once_init_enter(&initialized)) { 3841 qemu_mutex_init(&ram_block_discard_disable_mutex); 3842 g_once_init_leave(&initialized, 1); 3843 } 3844 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3845 } 3846 3847 static void ram_block_discard_disable_mutex_unlock(void) 3848 { 3849 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3850 } 3851 3852 int ram_block_discard_disable(bool state) 3853 { 3854 int ret = 0; 3855 3856 ram_block_discard_disable_mutex_lock(); 3857 if (!state) { 3858 ram_block_discard_disabled_cnt--; 3859 } else if (ram_block_discard_required_cnt || 3860 ram_block_coordinated_discard_required_cnt) { 3861 ret = -EBUSY; 3862 } else { 3863 ram_block_discard_disabled_cnt++; 3864 } 3865 ram_block_discard_disable_mutex_unlock(); 3866 return ret; 3867 } 3868 3869 int ram_block_uncoordinated_discard_disable(bool state) 3870 { 3871 int ret = 0; 3872 3873 ram_block_discard_disable_mutex_lock(); 3874 if (!state) { 3875 ram_block_uncoordinated_discard_disabled_cnt--; 3876 } else if (ram_block_discard_required_cnt) { 3877 ret = -EBUSY; 3878 } else { 3879 ram_block_uncoordinated_discard_disabled_cnt++; 3880 } 3881 ram_block_discard_disable_mutex_unlock(); 3882 return ret; 3883 } 3884 3885 int ram_block_discard_require(bool state) 3886 { 3887 int ret = 0; 3888 3889 ram_block_discard_disable_mutex_lock(); 3890 if (!state) { 3891 ram_block_discard_required_cnt--; 3892 } else if (ram_block_discard_disabled_cnt || 3893 ram_block_uncoordinated_discard_disabled_cnt) { 3894 ret = -EBUSY; 3895 } else { 3896 ram_block_discard_required_cnt++; 3897 } 3898 ram_block_discard_disable_mutex_unlock(); 3899 return ret; 3900 } 3901 3902 int ram_block_coordinated_discard_require(bool state) 3903 { 3904 int ret = 0; 3905 3906 ram_block_discard_disable_mutex_lock(); 3907 if (!state) { 3908 ram_block_coordinated_discard_required_cnt--; 3909 } else if (ram_block_discard_disabled_cnt) { 3910 ret = -EBUSY; 3911 } else { 3912 ram_block_coordinated_discard_required_cnt++; 3913 } 3914 ram_block_discard_disable_mutex_unlock(); 3915 return ret; 3916 } 3917 3918 bool ram_block_discard_is_disabled(void) 3919 { 3920 return qatomic_read(&ram_block_discard_disabled_cnt) || 3921 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3922 } 3923 3924 bool ram_block_discard_is_required(void) 3925 { 3926 return qatomic_read(&ram_block_discard_required_cnt) || 3927 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3928 } 3929