1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "sysemu/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Called from RCU critical section */ 784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 785 { 786 RAMBlock *block; 787 788 block = qatomic_rcu_read(&ram_list.mru_block); 789 if (block && addr - block->offset < block->max_length) { 790 return block; 791 } 792 RAMBLOCK_FOREACH(block) { 793 if (addr - block->offset < block->max_length) { 794 goto found; 795 } 796 } 797 798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 799 abort(); 800 801 found: 802 /* It is safe to write mru_block outside the BQL. This 803 * is what happens: 804 * 805 * mru_block = xxx 806 * rcu_read_unlock() 807 * xxx removed from list 808 * rcu_read_lock() 809 * read mru_block 810 * mru_block = NULL; 811 * call_rcu(reclaim_ramblock, xxx); 812 * rcu_read_unlock() 813 * 814 * qatomic_rcu_set is not needed here. The block was already published 815 * when it was placed into the list. Here we're just making an extra 816 * copy of the pointer. 817 */ 818 ram_list.mru_block = block; 819 return block; 820 } 821 822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 823 { 824 CPUState *cpu; 825 ram_addr_t start1; 826 RAMBlock *block; 827 ram_addr_t end; 828 829 assert(tcg_enabled()); 830 end = TARGET_PAGE_ALIGN(start + length); 831 start &= TARGET_PAGE_MASK; 832 833 RCU_READ_LOCK_GUARD(); 834 block = qemu_get_ram_block(start); 835 assert(block == qemu_get_ram_block(end - 1)); 836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 837 CPU_FOREACH(cpu) { 838 tlb_reset_dirty(cpu, start1, length); 839 } 840 } 841 842 /* Note: start and end must be within the same ram block. */ 843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 844 ram_addr_t length, 845 unsigned client) 846 { 847 DirtyMemoryBlocks *blocks; 848 unsigned long end, page, start_page; 849 bool dirty = false; 850 RAMBlock *ramblock; 851 uint64_t mr_offset, mr_size; 852 853 if (length == 0) { 854 return false; 855 } 856 857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 858 start_page = start >> TARGET_PAGE_BITS; 859 page = start_page; 860 861 WITH_RCU_READ_LOCK_GUARD() { 862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 863 ramblock = qemu_get_ram_block(start); 864 /* Range sanity check on the ramblock */ 865 assert(start >= ramblock->offset && 866 start + length <= ramblock->offset + ramblock->used_length); 867 868 while (page < end) { 869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long num = MIN(end - page, 872 DIRTY_MEMORY_BLOCK_SIZE - offset); 873 874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 875 offset, num); 876 page += num; 877 } 878 879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 880 mr_size = (end - start_page) << TARGET_PAGE_BITS; 881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 882 } 883 884 if (dirty && tcg_enabled()) { 885 tlb_reset_dirty_range_all(start, length); 886 } 887 888 return dirty; 889 } 890 891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 893 { 894 DirtyMemoryBlocks *blocks; 895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 899 DirtyBitmapSnapshot *snap; 900 unsigned long page, end, dest; 901 902 snap = g_malloc0(sizeof(*snap) + 903 ((last - first) >> (TARGET_PAGE_BITS + 3))); 904 snap->start = first; 905 snap->end = last; 906 907 page = first >> TARGET_PAGE_BITS; 908 end = last >> TARGET_PAGE_BITS; 909 dest = 0; 910 911 WITH_RCU_READ_LOCK_GUARD() { 912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 913 914 while (page < end) { 915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long num = MIN(end - page, 918 DIRTY_MEMORY_BLOCK_SIZE - ofs); 919 920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 922 ofs >>= BITS_PER_LEVEL; 923 924 bitmap_copy_and_clear_atomic(snap->dirty + dest, 925 blocks->blocks[idx] + ofs, 926 num); 927 page += num; 928 dest += num >> BITS_PER_LEVEL; 929 } 930 } 931 932 if (tcg_enabled()) { 933 tlb_reset_dirty_range_all(start, length); 934 } 935 936 memory_region_clear_dirty_bitmap(mr, offset, length); 937 938 return snap; 939 } 940 941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 942 ram_addr_t start, 943 ram_addr_t length) 944 { 945 unsigned long page, end; 946 947 assert(start >= snap->start); 948 assert(start + length <= snap->end); 949 950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 951 page = (start - snap->start) >> TARGET_PAGE_BITS; 952 953 while (page < end) { 954 if (test_bit(page, snap->dirty)) { 955 return true; 956 } 957 page++; 958 } 959 return false; 960 } 961 962 /* Called from RCU critical section */ 963 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 964 MemoryRegionSection *section) 965 { 966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 967 return section - d->map.sections; 968 } 969 970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 971 uint16_t section); 972 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 973 974 static uint16_t phys_section_add(PhysPageMap *map, 975 MemoryRegionSection *section) 976 { 977 /* The physical section number is ORed with a page-aligned 978 * pointer to produce the iotlb entries. Thus it should 979 * never overflow into the page-aligned value. 980 */ 981 assert(map->sections_nb < TARGET_PAGE_SIZE); 982 983 if (map->sections_nb == map->sections_nb_alloc) { 984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 985 map->sections = g_renew(MemoryRegionSection, map->sections, 986 map->sections_nb_alloc); 987 } 988 map->sections[map->sections_nb] = *section; 989 memory_region_ref(section->mr); 990 return map->sections_nb++; 991 } 992 993 static void phys_section_destroy(MemoryRegion *mr) 994 { 995 bool have_sub_page = mr->subpage; 996 997 memory_region_unref(mr); 998 999 if (have_sub_page) { 1000 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1001 object_unref(OBJECT(&subpage->iomem)); 1002 g_free(subpage); 1003 } 1004 } 1005 1006 static void phys_sections_free(PhysPageMap *map) 1007 { 1008 while (map->sections_nb > 0) { 1009 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1010 phys_section_destroy(section->mr); 1011 } 1012 g_free(map->sections); 1013 g_free(map->nodes); 1014 } 1015 1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1017 { 1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1019 subpage_t *subpage; 1020 hwaddr base = section->offset_within_address_space 1021 & TARGET_PAGE_MASK; 1022 MemoryRegionSection *existing = phys_page_find(d, base); 1023 MemoryRegionSection subsection = { 1024 .offset_within_address_space = base, 1025 .size = int128_make64(TARGET_PAGE_SIZE), 1026 }; 1027 hwaddr start, end; 1028 1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1030 1031 if (!(existing->mr->subpage)) { 1032 subpage = subpage_init(fv, base); 1033 subsection.fv = fv; 1034 subsection.mr = &subpage->iomem; 1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1036 phys_section_add(&d->map, &subsection)); 1037 } else { 1038 subpage = container_of(existing->mr, subpage_t, iomem); 1039 } 1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1041 end = start + int128_get64(section->size) - 1; 1042 subpage_register(subpage, start, end, 1043 phys_section_add(&d->map, section)); 1044 } 1045 1046 1047 static void register_multipage(FlatView *fv, 1048 MemoryRegionSection *section) 1049 { 1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1051 hwaddr start_addr = section->offset_within_address_space; 1052 uint16_t section_index = phys_section_add(&d->map, section); 1053 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1054 TARGET_PAGE_BITS)); 1055 1056 assert(num_pages); 1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1058 } 1059 1060 /* 1061 * The range in *section* may look like this: 1062 * 1063 * |s|PPPPPPP|s| 1064 * 1065 * where s stands for subpage and P for page. 1066 */ 1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1068 { 1069 MemoryRegionSection remain = *section; 1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1071 1072 /* register first subpage */ 1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1075 - remain.offset_within_address_space; 1076 1077 MemoryRegionSection now = remain; 1078 now.size = int128_min(int128_make64(left), now.size); 1079 register_subpage(fv, &now); 1080 if (int128_eq(remain.size, now.size)) { 1081 return; 1082 } 1083 remain.size = int128_sub(remain.size, now.size); 1084 remain.offset_within_address_space += int128_get64(now.size); 1085 remain.offset_within_region += int128_get64(now.size); 1086 } 1087 1088 /* register whole pages */ 1089 if (int128_ge(remain.size, page_size)) { 1090 MemoryRegionSection now = remain; 1091 now.size = int128_and(now.size, int128_neg(page_size)); 1092 register_multipage(fv, &now); 1093 if (int128_eq(remain.size, now.size)) { 1094 return; 1095 } 1096 remain.size = int128_sub(remain.size, now.size); 1097 remain.offset_within_address_space += int128_get64(now.size); 1098 remain.offset_within_region += int128_get64(now.size); 1099 } 1100 1101 /* register last subpage */ 1102 register_subpage(fv, &remain); 1103 } 1104 1105 void qemu_flush_coalesced_mmio_buffer(void) 1106 { 1107 if (kvm_enabled()) 1108 kvm_flush_coalesced_mmio_buffer(); 1109 } 1110 1111 void qemu_mutex_lock_ramlist(void) 1112 { 1113 qemu_mutex_lock(&ram_list.mutex); 1114 } 1115 1116 void qemu_mutex_unlock_ramlist(void) 1117 { 1118 qemu_mutex_unlock(&ram_list.mutex); 1119 } 1120 1121 GString *ram_block_format(void) 1122 { 1123 RAMBlock *block; 1124 char *psize; 1125 GString *buf = g_string_new(""); 1126 1127 RCU_READ_LOCK_GUARD(); 1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1129 "Block Name", "PSize", "Offset", "Used", "Total", 1130 "HVA", "RO"); 1131 1132 RAMBLOCK_FOREACH(block) { 1133 psize = size_to_str(block->page_size); 1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1136 block->idstr, psize, 1137 (uint64_t)block->offset, 1138 (uint64_t)block->used_length, 1139 (uint64_t)block->max_length, 1140 (uint64_t)(uintptr_t)block->host, 1141 block->mr->readonly ? "ro" : "rw"); 1142 1143 g_free(psize); 1144 } 1145 1146 return buf; 1147 } 1148 1149 static int find_min_backend_pagesize(Object *obj, void *opaque) 1150 { 1151 long *hpsize_min = opaque; 1152 1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1155 long hpsize = host_memory_backend_pagesize(backend); 1156 1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1158 *hpsize_min = hpsize; 1159 } 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int find_max_backend_pagesize(Object *obj, void *opaque) 1166 { 1167 long *hpsize_max = opaque; 1168 1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1171 long hpsize = host_memory_backend_pagesize(backend); 1172 1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1174 *hpsize_max = hpsize; 1175 } 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * TODO: We assume right now that all mapped host memory backends are 1183 * used as RAM, however some might be used for different purposes. 1184 */ 1185 long qemu_minrampagesize(void) 1186 { 1187 long hpsize = LONG_MAX; 1188 Object *memdev_root = object_resolve_path("/objects", NULL); 1189 1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1191 return hpsize; 1192 } 1193 1194 long qemu_maxrampagesize(void) 1195 { 1196 long pagesize = 0; 1197 Object *memdev_root = object_resolve_path("/objects", NULL); 1198 1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1200 return pagesize; 1201 } 1202 1203 #ifdef CONFIG_POSIX 1204 static int64_t get_file_size(int fd) 1205 { 1206 int64_t size; 1207 #if defined(__linux__) 1208 struct stat st; 1209 1210 if (fstat(fd, &st) < 0) { 1211 return -errno; 1212 } 1213 1214 /* Special handling for devdax character devices */ 1215 if (S_ISCHR(st.st_mode)) { 1216 g_autofree char *subsystem_path = NULL; 1217 g_autofree char *subsystem = NULL; 1218 1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1220 major(st.st_rdev), minor(st.st_rdev)); 1221 subsystem = g_file_read_link(subsystem_path, NULL); 1222 1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1224 g_autofree char *size_path = NULL; 1225 g_autofree char *size_str = NULL; 1226 1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1228 major(st.st_rdev), minor(st.st_rdev)); 1229 1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1231 return g_ascii_strtoll(size_str, NULL, 0); 1232 } 1233 } 1234 } 1235 #endif /* defined(__linux__) */ 1236 1237 /* st.st_size may be zero for special files yet lseek(2) works */ 1238 size = lseek(fd, 0, SEEK_END); 1239 if (size < 0) { 1240 return -errno; 1241 } 1242 return size; 1243 } 1244 1245 static int64_t get_file_align(int fd) 1246 { 1247 int64_t align = -1; 1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1249 struct stat st; 1250 1251 if (fstat(fd, &st) < 0) { 1252 return -errno; 1253 } 1254 1255 /* Special handling for devdax character devices */ 1256 if (S_ISCHR(st.st_mode)) { 1257 g_autofree char *path = NULL; 1258 g_autofree char *rpath = NULL; 1259 struct daxctl_ctx *ctx; 1260 struct daxctl_region *region; 1261 int rc = 0; 1262 1263 path = g_strdup_printf("/sys/dev/char/%d:%d", 1264 major(st.st_rdev), minor(st.st_rdev)); 1265 rpath = realpath(path, NULL); 1266 if (!rpath) { 1267 return -errno; 1268 } 1269 1270 rc = daxctl_new(&ctx); 1271 if (rc) { 1272 return -1; 1273 } 1274 1275 daxctl_region_foreach(ctx, region) { 1276 if (strstr(rpath, daxctl_region_get_path(region))) { 1277 align = daxctl_region_get_align(region); 1278 break; 1279 } 1280 } 1281 daxctl_unref(ctx); 1282 } 1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1284 1285 return align; 1286 } 1287 1288 static int file_ram_open(const char *path, 1289 const char *region_name, 1290 bool readonly, 1291 bool *created) 1292 { 1293 char *filename; 1294 char *sanitized_name; 1295 char *c; 1296 int fd = -1; 1297 1298 *created = false; 1299 for (;;) { 1300 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1301 if (fd >= 0) { 1302 /* 1303 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1304 * opened a directory and fail similarly to how we fail ENOENT 1305 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1306 */ 1307 if (readonly) { 1308 struct stat file_stat; 1309 1310 if (fstat(fd, &file_stat)) { 1311 close(fd); 1312 if (errno == EINTR) { 1313 continue; 1314 } 1315 return -errno; 1316 } else if (S_ISDIR(file_stat.st_mode)) { 1317 close(fd); 1318 return -EISDIR; 1319 } 1320 } 1321 /* @path names an existing file, use it */ 1322 break; 1323 } 1324 if (errno == ENOENT) { 1325 if (readonly) { 1326 /* Refuse to create new, readonly files. */ 1327 return -ENOENT; 1328 } 1329 /* @path names a file that doesn't exist, create it */ 1330 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1331 if (fd >= 0) { 1332 *created = true; 1333 break; 1334 } 1335 } else if (errno == EISDIR) { 1336 /* @path names a directory, create a file there */ 1337 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1338 sanitized_name = g_strdup(region_name); 1339 for (c = sanitized_name; *c != '\0'; c++) { 1340 if (*c == '/') { 1341 *c = '_'; 1342 } 1343 } 1344 1345 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1346 sanitized_name); 1347 g_free(sanitized_name); 1348 1349 fd = mkstemp(filename); 1350 if (fd >= 0) { 1351 unlink(filename); 1352 g_free(filename); 1353 break; 1354 } 1355 g_free(filename); 1356 } 1357 if (errno != EEXIST && errno != EINTR) { 1358 return -errno; 1359 } 1360 /* 1361 * Try again on EINTR and EEXIST. The latter happens when 1362 * something else creates the file between our two open(). 1363 */ 1364 } 1365 1366 return fd; 1367 } 1368 1369 static void *file_ram_alloc(RAMBlock *block, 1370 ram_addr_t memory, 1371 int fd, 1372 bool truncate, 1373 off_t offset, 1374 Error **errp) 1375 { 1376 uint32_t qemu_map_flags; 1377 void *area; 1378 1379 block->page_size = qemu_fd_getpagesize(fd); 1380 if (block->mr->align % block->page_size) { 1381 error_setg(errp, "alignment 0x%" PRIx64 1382 " must be multiples of page size 0x%zx", 1383 block->mr->align, block->page_size); 1384 return NULL; 1385 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1386 error_setg(errp, "alignment 0x%" PRIx64 1387 " must be a power of two", block->mr->align); 1388 return NULL; 1389 } else if (offset % block->page_size) { 1390 error_setg(errp, "offset 0x%" PRIx64 1391 " must be multiples of page size 0x%zx", 1392 offset, block->page_size); 1393 return NULL; 1394 } 1395 block->mr->align = MAX(block->page_size, block->mr->align); 1396 #if defined(__s390x__) 1397 if (kvm_enabled()) { 1398 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1399 } 1400 #endif 1401 1402 if (memory < block->page_size) { 1403 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1404 "or larger than page size 0x%zx", 1405 memory, block->page_size); 1406 return NULL; 1407 } 1408 1409 memory = ROUND_UP(memory, block->page_size); 1410 1411 /* 1412 * ftruncate is not supported by hugetlbfs in older 1413 * hosts, so don't bother bailing out on errors. 1414 * If anything goes wrong with it under other filesystems, 1415 * mmap will fail. 1416 * 1417 * Do not truncate the non-empty backend file to avoid corrupting 1418 * the existing data in the file. Disabling shrinking is not 1419 * enough. For example, the current vNVDIMM implementation stores 1420 * the guest NVDIMM labels at the end of the backend file. If the 1421 * backend file is later extended, QEMU will not be able to find 1422 * those labels. Therefore, extending the non-empty backend file 1423 * is disabled as well. 1424 */ 1425 if (truncate && ftruncate(fd, offset + memory)) { 1426 perror("ftruncate"); 1427 } 1428 1429 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1430 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1431 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1432 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1433 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1434 if (area == MAP_FAILED) { 1435 error_setg_errno(errp, errno, 1436 "unable to map backing store for guest RAM"); 1437 return NULL; 1438 } 1439 1440 block->fd = fd; 1441 block->fd_offset = offset; 1442 return area; 1443 } 1444 #endif 1445 1446 /* Allocate space within the ram_addr_t space that governs the 1447 * dirty bitmaps. 1448 * Called with the ramlist lock held. 1449 */ 1450 static ram_addr_t find_ram_offset(ram_addr_t size) 1451 { 1452 RAMBlock *block, *next_block; 1453 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1454 1455 assert(size != 0); /* it would hand out same offset multiple times */ 1456 1457 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1458 return 0; 1459 } 1460 1461 RAMBLOCK_FOREACH(block) { 1462 ram_addr_t candidate, next = RAM_ADDR_MAX; 1463 1464 /* Align blocks to start on a 'long' in the bitmap 1465 * which makes the bitmap sync'ing take the fast path. 1466 */ 1467 candidate = block->offset + block->max_length; 1468 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1469 1470 /* Search for the closest following block 1471 * and find the gap. 1472 */ 1473 RAMBLOCK_FOREACH(next_block) { 1474 if (next_block->offset >= candidate) { 1475 next = MIN(next, next_block->offset); 1476 } 1477 } 1478 1479 /* If it fits remember our place and remember the size 1480 * of gap, but keep going so that we might find a smaller 1481 * gap to fill so avoiding fragmentation. 1482 */ 1483 if (next - candidate >= size && next - candidate < mingap) { 1484 offset = candidate; 1485 mingap = next - candidate; 1486 } 1487 1488 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1489 } 1490 1491 if (offset == RAM_ADDR_MAX) { 1492 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1493 (uint64_t)size); 1494 abort(); 1495 } 1496 1497 trace_find_ram_offset(size, offset); 1498 1499 return offset; 1500 } 1501 1502 static unsigned long last_ram_page(void) 1503 { 1504 RAMBlock *block; 1505 ram_addr_t last = 0; 1506 1507 RCU_READ_LOCK_GUARD(); 1508 RAMBLOCK_FOREACH(block) { 1509 last = MAX(last, block->offset + block->max_length); 1510 } 1511 return last >> TARGET_PAGE_BITS; 1512 } 1513 1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1515 { 1516 int ret; 1517 1518 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1519 if (!machine_dump_guest_core(current_machine)) { 1520 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1521 if (ret) { 1522 perror("qemu_madvise"); 1523 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1524 "but dump_guest_core=off specified\n"); 1525 } 1526 } 1527 } 1528 1529 const char *qemu_ram_get_idstr(RAMBlock *rb) 1530 { 1531 return rb->idstr; 1532 } 1533 1534 void *qemu_ram_get_host_addr(RAMBlock *rb) 1535 { 1536 return rb->host; 1537 } 1538 1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1540 { 1541 return rb->offset; 1542 } 1543 1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1545 { 1546 return rb->used_length; 1547 } 1548 1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1550 { 1551 return rb->max_length; 1552 } 1553 1554 bool qemu_ram_is_shared(RAMBlock *rb) 1555 { 1556 return rb->flags & RAM_SHARED; 1557 } 1558 1559 bool qemu_ram_is_noreserve(RAMBlock *rb) 1560 { 1561 return rb->flags & RAM_NORESERVE; 1562 } 1563 1564 /* Note: Only set at the start of postcopy */ 1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1566 { 1567 return rb->flags & RAM_UF_ZEROPAGE; 1568 } 1569 1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1571 { 1572 rb->flags |= RAM_UF_ZEROPAGE; 1573 } 1574 1575 bool qemu_ram_is_migratable(RAMBlock *rb) 1576 { 1577 return rb->flags & RAM_MIGRATABLE; 1578 } 1579 1580 void qemu_ram_set_migratable(RAMBlock *rb) 1581 { 1582 rb->flags |= RAM_MIGRATABLE; 1583 } 1584 1585 void qemu_ram_unset_migratable(RAMBlock *rb) 1586 { 1587 rb->flags &= ~RAM_MIGRATABLE; 1588 } 1589 1590 bool qemu_ram_is_named_file(RAMBlock *rb) 1591 { 1592 return rb->flags & RAM_NAMED_FILE; 1593 } 1594 1595 int qemu_ram_get_fd(RAMBlock *rb) 1596 { 1597 return rb->fd; 1598 } 1599 1600 /* Called with the BQL held. */ 1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1602 { 1603 RAMBlock *block; 1604 1605 assert(new_block); 1606 assert(!new_block->idstr[0]); 1607 1608 if (dev) { 1609 char *id = qdev_get_dev_path(dev); 1610 if (id) { 1611 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1612 g_free(id); 1613 } 1614 } 1615 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1616 1617 RCU_READ_LOCK_GUARD(); 1618 RAMBLOCK_FOREACH(block) { 1619 if (block != new_block && 1620 !strcmp(block->idstr, new_block->idstr)) { 1621 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1622 new_block->idstr); 1623 abort(); 1624 } 1625 } 1626 } 1627 1628 /* Called with the BQL held. */ 1629 void qemu_ram_unset_idstr(RAMBlock *block) 1630 { 1631 /* FIXME: arch_init.c assumes that this is not called throughout 1632 * migration. Ignore the problem since hot-unplug during migration 1633 * does not work anyway. 1634 */ 1635 if (block) { 1636 memset(block->idstr, 0, sizeof(block->idstr)); 1637 } 1638 } 1639 1640 size_t qemu_ram_pagesize(RAMBlock *rb) 1641 { 1642 return rb->page_size; 1643 } 1644 1645 /* Returns the largest size of page in use */ 1646 size_t qemu_ram_pagesize_largest(void) 1647 { 1648 RAMBlock *block; 1649 size_t largest = 0; 1650 1651 RAMBLOCK_FOREACH(block) { 1652 largest = MAX(largest, qemu_ram_pagesize(block)); 1653 } 1654 1655 return largest; 1656 } 1657 1658 static int memory_try_enable_merging(void *addr, size_t len) 1659 { 1660 if (!machine_mem_merge(current_machine)) { 1661 /* disabled by the user */ 1662 return 0; 1663 } 1664 1665 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1666 } 1667 1668 /* 1669 * Resizing RAM while migrating can result in the migration being canceled. 1670 * Care has to be taken if the guest might have already detected the memory. 1671 * 1672 * As memory core doesn't know how is memory accessed, it is up to 1673 * resize callback to update device state and/or add assertions to detect 1674 * misuse, if necessary. 1675 */ 1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1677 { 1678 const ram_addr_t oldsize = block->used_length; 1679 const ram_addr_t unaligned_size = newsize; 1680 1681 assert(block); 1682 1683 newsize = TARGET_PAGE_ALIGN(newsize); 1684 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1685 1686 if (block->used_length == newsize) { 1687 /* 1688 * We don't have to resize the ram block (which only knows aligned 1689 * sizes), however, we have to notify if the unaligned size changed. 1690 */ 1691 if (unaligned_size != memory_region_size(block->mr)) { 1692 memory_region_set_size(block->mr, unaligned_size); 1693 if (block->resized) { 1694 block->resized(block->idstr, unaligned_size, block->host); 1695 } 1696 } 1697 return 0; 1698 } 1699 1700 if (!(block->flags & RAM_RESIZEABLE)) { 1701 error_setg_errno(errp, EINVAL, 1702 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1703 " != 0x" RAM_ADDR_FMT, block->idstr, 1704 newsize, block->used_length); 1705 return -EINVAL; 1706 } 1707 1708 if (block->max_length < newsize) { 1709 error_setg_errno(errp, EINVAL, 1710 "Size too large: %s: 0x" RAM_ADDR_FMT 1711 " > 0x" RAM_ADDR_FMT, block->idstr, 1712 newsize, block->max_length); 1713 return -EINVAL; 1714 } 1715 1716 /* Notify before modifying the ram block and touching the bitmaps. */ 1717 if (block->host) { 1718 ram_block_notify_resize(block->host, oldsize, newsize); 1719 } 1720 1721 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1722 block->used_length = newsize; 1723 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1724 DIRTY_CLIENTS_ALL); 1725 memory_region_set_size(block->mr, unaligned_size); 1726 if (block->resized) { 1727 block->resized(block->idstr, unaligned_size, block->host); 1728 } 1729 return 0; 1730 } 1731 1732 /* 1733 * Trigger sync on the given ram block for range [start, start + length] 1734 * with the backing store if one is available. 1735 * Otherwise no-op. 1736 * @Note: this is supposed to be a synchronous op. 1737 */ 1738 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1739 { 1740 /* The requested range should fit in within the block range */ 1741 g_assert((start + length) <= block->used_length); 1742 1743 #ifdef CONFIG_LIBPMEM 1744 /* The lack of support for pmem should not block the sync */ 1745 if (ramblock_is_pmem(block)) { 1746 void *addr = ramblock_ptr(block, start); 1747 pmem_persist(addr, length); 1748 return; 1749 } 1750 #endif 1751 if (block->fd >= 0) { 1752 /** 1753 * Case there is no support for PMEM or the memory has not been 1754 * specified as persistent (or is not one) - use the msync. 1755 * Less optimal but still achieves the same goal 1756 */ 1757 void *addr = ramblock_ptr(block, start); 1758 if (qemu_msync(addr, length, block->fd)) { 1759 warn_report("%s: failed to sync memory range: start: " 1760 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1761 __func__, start, length); 1762 } 1763 } 1764 } 1765 1766 /* Called with ram_list.mutex held */ 1767 static void dirty_memory_extend(ram_addr_t old_ram_size, 1768 ram_addr_t new_ram_size) 1769 { 1770 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1771 DIRTY_MEMORY_BLOCK_SIZE); 1772 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1773 DIRTY_MEMORY_BLOCK_SIZE); 1774 int i; 1775 1776 /* Only need to extend if block count increased */ 1777 if (new_num_blocks <= old_num_blocks) { 1778 return; 1779 } 1780 1781 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1782 DirtyMemoryBlocks *old_blocks; 1783 DirtyMemoryBlocks *new_blocks; 1784 int j; 1785 1786 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1787 new_blocks = g_malloc(sizeof(*new_blocks) + 1788 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1789 1790 if (old_num_blocks) { 1791 memcpy(new_blocks->blocks, old_blocks->blocks, 1792 old_num_blocks * sizeof(old_blocks->blocks[0])); 1793 } 1794 1795 for (j = old_num_blocks; j < new_num_blocks; j++) { 1796 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1797 } 1798 1799 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1800 1801 if (old_blocks) { 1802 g_free_rcu(old_blocks, rcu); 1803 } 1804 } 1805 } 1806 1807 static void ram_block_add(RAMBlock *new_block, Error **errp) 1808 { 1809 const bool noreserve = qemu_ram_is_noreserve(new_block); 1810 const bool shared = qemu_ram_is_shared(new_block); 1811 RAMBlock *block; 1812 RAMBlock *last_block = NULL; 1813 ram_addr_t old_ram_size, new_ram_size; 1814 Error *err = NULL; 1815 1816 old_ram_size = last_ram_page(); 1817 1818 qemu_mutex_lock_ramlist(); 1819 new_block->offset = find_ram_offset(new_block->max_length); 1820 1821 if (!new_block->host) { 1822 if (xen_enabled()) { 1823 xen_ram_alloc(new_block->offset, new_block->max_length, 1824 new_block->mr, &err); 1825 if (err) { 1826 error_propagate(errp, err); 1827 qemu_mutex_unlock_ramlist(); 1828 return; 1829 } 1830 } else { 1831 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1832 &new_block->mr->align, 1833 shared, noreserve); 1834 if (!new_block->host) { 1835 error_setg_errno(errp, errno, 1836 "cannot set up guest memory '%s'", 1837 memory_region_name(new_block->mr)); 1838 qemu_mutex_unlock_ramlist(); 1839 return; 1840 } 1841 memory_try_enable_merging(new_block->host, new_block->max_length); 1842 } 1843 } 1844 1845 new_ram_size = MAX(old_ram_size, 1846 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1847 if (new_ram_size > old_ram_size) { 1848 dirty_memory_extend(old_ram_size, new_ram_size); 1849 } 1850 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1851 * QLIST (which has an RCU-friendly variant) does not have insertion at 1852 * tail, so save the last element in last_block. 1853 */ 1854 RAMBLOCK_FOREACH(block) { 1855 last_block = block; 1856 if (block->max_length < new_block->max_length) { 1857 break; 1858 } 1859 } 1860 if (block) { 1861 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1862 } else if (last_block) { 1863 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1864 } else { /* list is empty */ 1865 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1866 } 1867 ram_list.mru_block = NULL; 1868 1869 /* Write list before version */ 1870 smp_wmb(); 1871 ram_list.version++; 1872 qemu_mutex_unlock_ramlist(); 1873 1874 cpu_physical_memory_set_dirty_range(new_block->offset, 1875 new_block->used_length, 1876 DIRTY_CLIENTS_ALL); 1877 1878 if (new_block->host) { 1879 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1880 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1881 /* 1882 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1883 * Configure it unless the machine is a qtest server, in which case 1884 * KVM is not used and it may be forked (eg for fuzzing purposes). 1885 */ 1886 if (!qtest_enabled()) { 1887 qemu_madvise(new_block->host, new_block->max_length, 1888 QEMU_MADV_DONTFORK); 1889 } 1890 ram_block_notify_add(new_block->host, new_block->used_length, 1891 new_block->max_length); 1892 } 1893 } 1894 1895 #ifdef CONFIG_POSIX 1896 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1897 uint32_t ram_flags, int fd, off_t offset, 1898 Error **errp) 1899 { 1900 RAMBlock *new_block; 1901 Error *local_err = NULL; 1902 int64_t file_size, file_align; 1903 1904 /* Just support these ram flags by now. */ 1905 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1906 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1907 RAM_READONLY_FD)) == 0); 1908 1909 if (xen_enabled()) { 1910 error_setg(errp, "-mem-path not supported with Xen"); 1911 return NULL; 1912 } 1913 1914 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1915 error_setg(errp, 1916 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1917 return NULL; 1918 } 1919 1920 size = TARGET_PAGE_ALIGN(size); 1921 size = REAL_HOST_PAGE_ALIGN(size); 1922 1923 file_size = get_file_size(fd); 1924 if (file_size > offset && file_size < (offset + size)) { 1925 error_setg(errp, "backing store size 0x%" PRIx64 1926 " does not match 'size' option 0x" RAM_ADDR_FMT, 1927 file_size, size); 1928 return NULL; 1929 } 1930 1931 file_align = get_file_align(fd); 1932 if (file_align > 0 && file_align > mr->align) { 1933 error_setg(errp, "backing store align 0x%" PRIx64 1934 " is larger than 'align' option 0x%" PRIx64, 1935 file_align, mr->align); 1936 return NULL; 1937 } 1938 1939 new_block = g_malloc0(sizeof(*new_block)); 1940 new_block->mr = mr; 1941 new_block->used_length = size; 1942 new_block->max_length = size; 1943 new_block->flags = ram_flags; 1944 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 1945 errp); 1946 if (!new_block->host) { 1947 g_free(new_block); 1948 return NULL; 1949 } 1950 1951 ram_block_add(new_block, &local_err); 1952 if (local_err) { 1953 g_free(new_block); 1954 error_propagate(errp, local_err); 1955 return NULL; 1956 } 1957 return new_block; 1958 1959 } 1960 1961 1962 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1963 uint32_t ram_flags, const char *mem_path, 1964 off_t offset, Error **errp) 1965 { 1966 int fd; 1967 bool created; 1968 RAMBlock *block; 1969 1970 fd = file_ram_open(mem_path, memory_region_name(mr), 1971 !!(ram_flags & RAM_READONLY_FD), &created); 1972 if (fd < 0) { 1973 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 1974 mem_path); 1975 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 1976 fd == -EACCES) { 1977 /* 1978 * If we can open the file R/O (note: will never create a new file) 1979 * and we are dealing with a private mapping, there are still ways 1980 * to consume such files and get RAM instead of ROM. 1981 */ 1982 fd = file_ram_open(mem_path, memory_region_name(mr), true, 1983 &created); 1984 if (fd < 0) { 1985 return NULL; 1986 } 1987 assert(!created); 1988 close(fd); 1989 error_append_hint(errp, "Consider opening the backing store" 1990 " read-only but still creating writable RAM using" 1991 " '-object memory-backend-file,readonly=on,rom=off...'" 1992 " (see \"VM templating\" documentation)\n"); 1993 } 1994 return NULL; 1995 } 1996 1997 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 1998 if (!block) { 1999 if (created) { 2000 unlink(mem_path); 2001 } 2002 close(fd); 2003 return NULL; 2004 } 2005 2006 return block; 2007 } 2008 #endif 2009 2010 static 2011 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2012 void (*resized)(const char*, 2013 uint64_t length, 2014 void *host), 2015 void *host, uint32_t ram_flags, 2016 MemoryRegion *mr, Error **errp) 2017 { 2018 RAMBlock *new_block; 2019 Error *local_err = NULL; 2020 int align; 2021 2022 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2023 RAM_NORESERVE)) == 0); 2024 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2025 2026 align = qemu_real_host_page_size(); 2027 align = MAX(align, TARGET_PAGE_SIZE); 2028 size = ROUND_UP(size, align); 2029 max_size = ROUND_UP(max_size, align); 2030 2031 new_block = g_malloc0(sizeof(*new_block)); 2032 new_block->mr = mr; 2033 new_block->resized = resized; 2034 new_block->used_length = size; 2035 new_block->max_length = max_size; 2036 assert(max_size >= size); 2037 new_block->fd = -1; 2038 new_block->page_size = qemu_real_host_page_size(); 2039 new_block->host = host; 2040 new_block->flags = ram_flags; 2041 ram_block_add(new_block, &local_err); 2042 if (local_err) { 2043 g_free(new_block); 2044 error_propagate(errp, local_err); 2045 return NULL; 2046 } 2047 return new_block; 2048 } 2049 2050 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2051 MemoryRegion *mr, Error **errp) 2052 { 2053 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2054 errp); 2055 } 2056 2057 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2058 MemoryRegion *mr, Error **errp) 2059 { 2060 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2061 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2062 } 2063 2064 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2065 void (*resized)(const char*, 2066 uint64_t length, 2067 void *host), 2068 MemoryRegion *mr, Error **errp) 2069 { 2070 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2071 RAM_RESIZEABLE, mr, errp); 2072 } 2073 2074 static void reclaim_ramblock(RAMBlock *block) 2075 { 2076 if (block->flags & RAM_PREALLOC) { 2077 ; 2078 } else if (xen_enabled()) { 2079 xen_invalidate_map_cache_entry(block->host); 2080 #ifndef _WIN32 2081 } else if (block->fd >= 0) { 2082 qemu_ram_munmap(block->fd, block->host, block->max_length); 2083 close(block->fd); 2084 #endif 2085 } else { 2086 qemu_anon_ram_free(block->host, block->max_length); 2087 } 2088 g_free(block); 2089 } 2090 2091 void qemu_ram_free(RAMBlock *block) 2092 { 2093 if (!block) { 2094 return; 2095 } 2096 2097 if (block->host) { 2098 ram_block_notify_remove(block->host, block->used_length, 2099 block->max_length); 2100 } 2101 2102 qemu_mutex_lock_ramlist(); 2103 QLIST_REMOVE_RCU(block, next); 2104 ram_list.mru_block = NULL; 2105 /* Write list before version */ 2106 smp_wmb(); 2107 ram_list.version++; 2108 call_rcu(block, reclaim_ramblock, rcu); 2109 qemu_mutex_unlock_ramlist(); 2110 } 2111 2112 #ifndef _WIN32 2113 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2114 { 2115 RAMBlock *block; 2116 ram_addr_t offset; 2117 int flags; 2118 void *area, *vaddr; 2119 int prot; 2120 2121 RAMBLOCK_FOREACH(block) { 2122 offset = addr - block->offset; 2123 if (offset < block->max_length) { 2124 vaddr = ramblock_ptr(block, offset); 2125 if (block->flags & RAM_PREALLOC) { 2126 ; 2127 } else if (xen_enabled()) { 2128 abort(); 2129 } else { 2130 flags = MAP_FIXED; 2131 flags |= block->flags & RAM_SHARED ? 2132 MAP_SHARED : MAP_PRIVATE; 2133 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2134 prot = PROT_READ; 2135 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2136 if (block->fd >= 0) { 2137 area = mmap(vaddr, length, prot, flags, block->fd, 2138 offset + block->fd_offset); 2139 } else { 2140 flags |= MAP_ANONYMOUS; 2141 area = mmap(vaddr, length, prot, flags, -1, 0); 2142 } 2143 if (area != vaddr) { 2144 error_report("Could not remap addr: " 2145 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2146 length, addr); 2147 exit(1); 2148 } 2149 memory_try_enable_merging(vaddr, length); 2150 qemu_ram_setup_dump(vaddr, length); 2151 } 2152 } 2153 } 2154 } 2155 #endif /* !_WIN32 */ 2156 2157 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2158 * This should not be used for general purpose DMA. Use address_space_map 2159 * or address_space_rw instead. For local memory (e.g. video ram) that the 2160 * device owns, use memory_region_get_ram_ptr. 2161 * 2162 * Called within RCU critical section. 2163 */ 2164 void *qemu_map_ram_ptr(RAMBlock *block, ram_addr_t addr) 2165 { 2166 if (block == NULL) { 2167 block = qemu_get_ram_block(addr); 2168 addr -= block->offset; 2169 } 2170 2171 if (xen_enabled() && block->host == NULL) { 2172 /* We need to check if the requested address is in the RAM 2173 * because we don't want to map the entire memory in QEMU. 2174 * In that case just map until the end of the page. 2175 */ 2176 if (block->offset == 0) { 2177 return xen_map_cache(addr, 0, 0, false); 2178 } 2179 2180 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2181 } 2182 return ramblock_ptr(block, addr); 2183 } 2184 2185 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2186 * but takes a size argument. 2187 * 2188 * Called within RCU critical section. 2189 */ 2190 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2191 hwaddr *size, bool lock) 2192 { 2193 if (*size == 0) { 2194 return NULL; 2195 } 2196 2197 if (block == NULL) { 2198 block = qemu_get_ram_block(addr); 2199 addr -= block->offset; 2200 } 2201 *size = MIN(*size, block->max_length - addr); 2202 2203 if (xen_enabled() && block->host == NULL) { 2204 /* We need to check if the requested address is in the RAM 2205 * because we don't want to map the entire memory in QEMU. 2206 * In that case just map the requested area. 2207 */ 2208 if (block->offset == 0) { 2209 return xen_map_cache(addr, *size, lock, lock); 2210 } 2211 2212 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2213 } 2214 2215 return ramblock_ptr(block, addr); 2216 } 2217 2218 /* Return the offset of a hostpointer within a ramblock */ 2219 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2220 { 2221 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2222 assert((uintptr_t)host >= (uintptr_t)rb->host); 2223 assert(res < rb->max_length); 2224 2225 return res; 2226 } 2227 2228 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2229 ram_addr_t *offset) 2230 { 2231 RAMBlock *block; 2232 uint8_t *host = ptr; 2233 2234 if (xen_enabled()) { 2235 ram_addr_t ram_addr; 2236 RCU_READ_LOCK_GUARD(); 2237 ram_addr = xen_ram_addr_from_mapcache(ptr); 2238 block = qemu_get_ram_block(ram_addr); 2239 if (block) { 2240 *offset = ram_addr - block->offset; 2241 } 2242 return block; 2243 } 2244 2245 RCU_READ_LOCK_GUARD(); 2246 block = qatomic_rcu_read(&ram_list.mru_block); 2247 if (block && block->host && host - block->host < block->max_length) { 2248 goto found; 2249 } 2250 2251 RAMBLOCK_FOREACH(block) { 2252 /* This case append when the block is not mapped. */ 2253 if (block->host == NULL) { 2254 continue; 2255 } 2256 if (host - block->host < block->max_length) { 2257 goto found; 2258 } 2259 } 2260 2261 return NULL; 2262 2263 found: 2264 *offset = (host - block->host); 2265 if (round_offset) { 2266 *offset &= TARGET_PAGE_MASK; 2267 } 2268 return block; 2269 } 2270 2271 /* 2272 * Finds the named RAMBlock 2273 * 2274 * name: The name of RAMBlock to find 2275 * 2276 * Returns: RAMBlock (or NULL if not found) 2277 */ 2278 RAMBlock *qemu_ram_block_by_name(const char *name) 2279 { 2280 RAMBlock *block; 2281 2282 RAMBLOCK_FOREACH(block) { 2283 if (!strcmp(name, block->idstr)) { 2284 return block; 2285 } 2286 } 2287 2288 return NULL; 2289 } 2290 2291 /* 2292 * Some of the system routines need to translate from a host pointer 2293 * (typically a TLB entry) back to a ram offset. 2294 */ 2295 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2296 { 2297 RAMBlock *block; 2298 ram_addr_t offset; 2299 2300 block = qemu_ram_block_from_host(ptr, false, &offset); 2301 if (!block) { 2302 return RAM_ADDR_INVALID; 2303 } 2304 2305 return block->offset + offset; 2306 } 2307 2308 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2309 { 2310 ram_addr_t ram_addr; 2311 2312 ram_addr = qemu_ram_addr_from_host(ptr); 2313 if (ram_addr == RAM_ADDR_INVALID) { 2314 error_report("Bad ram pointer %p", ptr); 2315 abort(); 2316 } 2317 return ram_addr; 2318 } 2319 2320 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2321 MemTxAttrs attrs, void *buf, hwaddr len); 2322 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2323 const void *buf, hwaddr len); 2324 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2325 bool is_write, MemTxAttrs attrs); 2326 2327 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2328 unsigned len, MemTxAttrs attrs) 2329 { 2330 subpage_t *subpage = opaque; 2331 uint8_t buf[8]; 2332 MemTxResult res; 2333 2334 #if defined(DEBUG_SUBPAGE) 2335 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2336 subpage, len, addr); 2337 #endif 2338 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2339 if (res) { 2340 return res; 2341 } 2342 *data = ldn_p(buf, len); 2343 return MEMTX_OK; 2344 } 2345 2346 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2347 uint64_t value, unsigned len, MemTxAttrs attrs) 2348 { 2349 subpage_t *subpage = opaque; 2350 uint8_t buf[8]; 2351 2352 #if defined(DEBUG_SUBPAGE) 2353 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2354 " value %"PRIx64"\n", 2355 __func__, subpage, len, addr, value); 2356 #endif 2357 stn_p(buf, len, value); 2358 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2359 } 2360 2361 static bool subpage_accepts(void *opaque, hwaddr addr, 2362 unsigned len, bool is_write, 2363 MemTxAttrs attrs) 2364 { 2365 subpage_t *subpage = opaque; 2366 #if defined(DEBUG_SUBPAGE) 2367 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2368 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2369 #endif 2370 2371 return flatview_access_valid(subpage->fv, addr + subpage->base, 2372 len, is_write, attrs); 2373 } 2374 2375 static const MemoryRegionOps subpage_ops = { 2376 .read_with_attrs = subpage_read, 2377 .write_with_attrs = subpage_write, 2378 .impl.min_access_size = 1, 2379 .impl.max_access_size = 8, 2380 .valid.min_access_size = 1, 2381 .valid.max_access_size = 8, 2382 .valid.accepts = subpage_accepts, 2383 .endianness = DEVICE_NATIVE_ENDIAN, 2384 }; 2385 2386 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2387 uint16_t section) 2388 { 2389 int idx, eidx; 2390 2391 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2392 return -1; 2393 idx = SUBPAGE_IDX(start); 2394 eidx = SUBPAGE_IDX(end); 2395 #if defined(DEBUG_SUBPAGE) 2396 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2397 __func__, mmio, start, end, idx, eidx, section); 2398 #endif 2399 for (; idx <= eidx; idx++) { 2400 mmio->sub_section[idx] = section; 2401 } 2402 2403 return 0; 2404 } 2405 2406 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2407 { 2408 subpage_t *mmio; 2409 2410 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2411 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2412 mmio->fv = fv; 2413 mmio->base = base; 2414 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2415 NULL, TARGET_PAGE_SIZE); 2416 mmio->iomem.subpage = true; 2417 #if defined(DEBUG_SUBPAGE) 2418 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2419 mmio, base, TARGET_PAGE_SIZE); 2420 #endif 2421 2422 return mmio; 2423 } 2424 2425 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2426 { 2427 assert(fv); 2428 MemoryRegionSection section = { 2429 .fv = fv, 2430 .mr = mr, 2431 .offset_within_address_space = 0, 2432 .offset_within_region = 0, 2433 .size = int128_2_64(), 2434 }; 2435 2436 return phys_section_add(map, §ion); 2437 } 2438 2439 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2440 hwaddr index, MemTxAttrs attrs) 2441 { 2442 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2443 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2444 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2445 int section_index = index & ~TARGET_PAGE_MASK; 2446 MemoryRegionSection *ret; 2447 2448 assert(section_index < d->map.sections_nb); 2449 ret = d->map.sections + section_index; 2450 assert(ret->mr); 2451 assert(ret->mr->ops); 2452 2453 return ret; 2454 } 2455 2456 static void io_mem_init(void) 2457 { 2458 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2459 NULL, UINT64_MAX); 2460 } 2461 2462 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2463 { 2464 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2465 uint16_t n; 2466 2467 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2468 assert(n == PHYS_SECTION_UNASSIGNED); 2469 2470 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2471 2472 return d; 2473 } 2474 2475 void address_space_dispatch_free(AddressSpaceDispatch *d) 2476 { 2477 phys_sections_free(&d->map); 2478 g_free(d); 2479 } 2480 2481 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2482 { 2483 } 2484 2485 static void tcg_log_global_after_sync(MemoryListener *listener) 2486 { 2487 CPUAddressSpace *cpuas; 2488 2489 /* Wait for the CPU to end the current TB. This avoids the following 2490 * incorrect race: 2491 * 2492 * vCPU migration 2493 * ---------------------- ------------------------- 2494 * TLB check -> slow path 2495 * notdirty_mem_write 2496 * write to RAM 2497 * mark dirty 2498 * clear dirty flag 2499 * TLB check -> fast path 2500 * read memory 2501 * write to RAM 2502 * 2503 * by pushing the migration thread's memory read after the vCPU thread has 2504 * written the memory. 2505 */ 2506 if (replay_mode == REPLAY_MODE_NONE) { 2507 /* 2508 * VGA can make calls to this function while updating the screen. 2509 * In record/replay mode this causes a deadlock, because 2510 * run_on_cpu waits for rr mutex. Therefore no races are possible 2511 * in this case and no need for making run_on_cpu when 2512 * record/replay is enabled. 2513 */ 2514 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2515 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2516 } 2517 } 2518 2519 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2520 { 2521 CPUAddressSpace *cpuas = data.host_ptr; 2522 2523 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2524 tlb_flush(cpu); 2525 } 2526 2527 static void tcg_commit(MemoryListener *listener) 2528 { 2529 CPUAddressSpace *cpuas; 2530 CPUState *cpu; 2531 2532 assert(tcg_enabled()); 2533 /* since each CPU stores ram addresses in its TLB cache, we must 2534 reset the modified entries */ 2535 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2536 cpu = cpuas->cpu; 2537 2538 /* 2539 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2540 * Otherwise we race between (1) other cpu threads and (2) ongoing 2541 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2542 * 2543 * In addition, queueing the work function will kick the cpu back to 2544 * the main loop, which will end the RCU critical section and reclaim 2545 * the memory data structures. 2546 * 2547 * That said, the listener is also called during realize, before 2548 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2549 */ 2550 if (cpu->halt_cond) { 2551 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2552 } else { 2553 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2554 } 2555 } 2556 2557 static void memory_map_init(void) 2558 { 2559 system_memory = g_malloc(sizeof(*system_memory)); 2560 2561 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2562 address_space_init(&address_space_memory, system_memory, "memory"); 2563 2564 system_io = g_malloc(sizeof(*system_io)); 2565 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2566 65536); 2567 address_space_init(&address_space_io, system_io, "I/O"); 2568 } 2569 2570 MemoryRegion *get_system_memory(void) 2571 { 2572 return system_memory; 2573 } 2574 2575 MemoryRegion *get_system_io(void) 2576 { 2577 return system_io; 2578 } 2579 2580 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2581 hwaddr length) 2582 { 2583 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2584 addr += memory_region_get_ram_addr(mr); 2585 2586 /* No early return if dirty_log_mask is or becomes 0, because 2587 * cpu_physical_memory_set_dirty_range will still call 2588 * xen_modified_memory. 2589 */ 2590 if (dirty_log_mask) { 2591 dirty_log_mask = 2592 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2593 } 2594 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2595 assert(tcg_enabled()); 2596 tb_invalidate_phys_range(addr, addr + length - 1); 2597 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2598 } 2599 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2600 } 2601 2602 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2603 { 2604 /* 2605 * In principle this function would work on other memory region types too, 2606 * but the ROM device use case is the only one where this operation is 2607 * necessary. Other memory regions should use the 2608 * address_space_read/write() APIs. 2609 */ 2610 assert(memory_region_is_romd(mr)); 2611 2612 invalidate_and_set_dirty(mr, addr, size); 2613 } 2614 2615 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2616 { 2617 unsigned access_size_max = mr->ops->valid.max_access_size; 2618 2619 /* Regions are assumed to support 1-4 byte accesses unless 2620 otherwise specified. */ 2621 if (access_size_max == 0) { 2622 access_size_max = 4; 2623 } 2624 2625 /* Bound the maximum access by the alignment of the address. */ 2626 if (!mr->ops->impl.unaligned) { 2627 unsigned align_size_max = addr & -addr; 2628 if (align_size_max != 0 && align_size_max < access_size_max) { 2629 access_size_max = align_size_max; 2630 } 2631 } 2632 2633 /* Don't attempt accesses larger than the maximum. */ 2634 if (l > access_size_max) { 2635 l = access_size_max; 2636 } 2637 l = pow2floor(l); 2638 2639 return l; 2640 } 2641 2642 bool prepare_mmio_access(MemoryRegion *mr) 2643 { 2644 bool release_lock = false; 2645 2646 if (!bql_locked()) { 2647 bql_lock(); 2648 release_lock = true; 2649 } 2650 if (mr->flush_coalesced_mmio) { 2651 qemu_flush_coalesced_mmio_buffer(); 2652 } 2653 2654 return release_lock; 2655 } 2656 2657 /** 2658 * flatview_access_allowed 2659 * @mr: #MemoryRegion to be accessed 2660 * @attrs: memory transaction attributes 2661 * @addr: address within that memory region 2662 * @len: the number of bytes to access 2663 * 2664 * Check if a memory transaction is allowed. 2665 * 2666 * Returns: true if transaction is allowed, false if denied. 2667 */ 2668 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2669 hwaddr addr, hwaddr len) 2670 { 2671 if (likely(!attrs.memory)) { 2672 return true; 2673 } 2674 if (memory_region_is_ram(mr)) { 2675 return true; 2676 } 2677 qemu_log_mask(LOG_GUEST_ERROR, 2678 "Invalid access to non-RAM device at " 2679 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2680 "region '%s'\n", addr, len, memory_region_name(mr)); 2681 return false; 2682 } 2683 2684 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2685 const uint8_t *buf, 2686 hwaddr len, hwaddr mr_addr, 2687 hwaddr *l, MemoryRegion *mr) 2688 { 2689 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2690 return MEMTX_ACCESS_ERROR; 2691 } 2692 2693 if (!memory_access_is_direct(mr, true)) { 2694 uint64_t val; 2695 MemTxResult result; 2696 bool release_lock = prepare_mmio_access(mr); 2697 2698 *l = memory_access_size(mr, *l, mr_addr); 2699 /* 2700 * XXX: could force current_cpu to NULL to avoid 2701 * potential bugs 2702 */ 2703 2704 /* 2705 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2706 * the buffer by following ldn_he_p(). 2707 */ 2708 #ifdef QEMU_STATIC_ANALYSIS 2709 assert((*l == 1 && len >= 1) || 2710 (*l == 2 && len >= 2) || 2711 (*l == 4 && len >= 4) || 2712 (*l == 8 && len >= 8)); 2713 #endif 2714 val = ldn_he_p(buf, *l); 2715 result = memory_region_dispatch_write(mr, mr_addr, val, 2716 size_memop(*l), attrs); 2717 if (release_lock) { 2718 bql_unlock(); 2719 } 2720 2721 return result; 2722 } else { 2723 /* RAM case */ 2724 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2725 false); 2726 2727 memmove(ram_ptr, buf, *l); 2728 invalidate_and_set_dirty(mr, mr_addr, *l); 2729 2730 return MEMTX_OK; 2731 } 2732 } 2733 2734 /* Called within RCU critical section. */ 2735 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2736 MemTxAttrs attrs, 2737 const void *ptr, 2738 hwaddr len, hwaddr mr_addr, 2739 hwaddr l, MemoryRegion *mr) 2740 { 2741 MemTxResult result = MEMTX_OK; 2742 const uint8_t *buf = ptr; 2743 2744 for (;;) { 2745 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2746 mr); 2747 2748 len -= l; 2749 buf += l; 2750 addr += l; 2751 2752 if (!len) { 2753 break; 2754 } 2755 2756 l = len; 2757 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2758 } 2759 2760 return result; 2761 } 2762 2763 /* Called from RCU critical section. */ 2764 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2765 const void *buf, hwaddr len) 2766 { 2767 hwaddr l; 2768 hwaddr mr_addr; 2769 MemoryRegion *mr; 2770 2771 l = len; 2772 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2773 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2774 return MEMTX_ACCESS_ERROR; 2775 } 2776 return flatview_write_continue(fv, addr, attrs, buf, len, 2777 mr_addr, l, mr); 2778 } 2779 2780 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2781 hwaddr len, hwaddr mr_addr, 2782 hwaddr *l, 2783 MemoryRegion *mr) 2784 { 2785 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2786 return MEMTX_ACCESS_ERROR; 2787 } 2788 2789 if (!memory_access_is_direct(mr, false)) { 2790 /* I/O case */ 2791 uint64_t val; 2792 MemTxResult result; 2793 bool release_lock = prepare_mmio_access(mr); 2794 2795 *l = memory_access_size(mr, *l, mr_addr); 2796 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2797 attrs); 2798 2799 /* 2800 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2801 * the buffer by following stn_he_p(). 2802 */ 2803 #ifdef QEMU_STATIC_ANALYSIS 2804 assert((*l == 1 && len >= 1) || 2805 (*l == 2 && len >= 2) || 2806 (*l == 4 && len >= 4) || 2807 (*l == 8 && len >= 8)); 2808 #endif 2809 stn_he_p(buf, *l, val); 2810 2811 if (release_lock) { 2812 bql_unlock(); 2813 } 2814 return result; 2815 } else { 2816 /* RAM case */ 2817 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2818 false); 2819 2820 memcpy(buf, ram_ptr, *l); 2821 2822 return MEMTX_OK; 2823 } 2824 } 2825 2826 /* Called within RCU critical section. */ 2827 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2828 MemTxAttrs attrs, void *ptr, 2829 hwaddr len, hwaddr mr_addr, hwaddr l, 2830 MemoryRegion *mr) 2831 { 2832 MemTxResult result = MEMTX_OK; 2833 uint8_t *buf = ptr; 2834 2835 fuzz_dma_read_cb(addr, len, mr); 2836 for (;;) { 2837 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2838 2839 len -= l; 2840 buf += l; 2841 addr += l; 2842 2843 if (!len) { 2844 break; 2845 } 2846 2847 l = len; 2848 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2849 } 2850 2851 return result; 2852 } 2853 2854 /* Called from RCU critical section. */ 2855 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2856 MemTxAttrs attrs, void *buf, hwaddr len) 2857 { 2858 hwaddr l; 2859 hwaddr mr_addr; 2860 MemoryRegion *mr; 2861 2862 l = len; 2863 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2864 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2865 return MEMTX_ACCESS_ERROR; 2866 } 2867 return flatview_read_continue(fv, addr, attrs, buf, len, 2868 mr_addr, l, mr); 2869 } 2870 2871 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2872 MemTxAttrs attrs, void *buf, hwaddr len) 2873 { 2874 MemTxResult result = MEMTX_OK; 2875 FlatView *fv; 2876 2877 if (len > 0) { 2878 RCU_READ_LOCK_GUARD(); 2879 fv = address_space_to_flatview(as); 2880 result = flatview_read(fv, addr, attrs, buf, len); 2881 } 2882 2883 return result; 2884 } 2885 2886 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2887 MemTxAttrs attrs, 2888 const void *buf, hwaddr len) 2889 { 2890 MemTxResult result = MEMTX_OK; 2891 FlatView *fv; 2892 2893 if (len > 0) { 2894 RCU_READ_LOCK_GUARD(); 2895 fv = address_space_to_flatview(as); 2896 result = flatview_write(fv, addr, attrs, buf, len); 2897 } 2898 2899 return result; 2900 } 2901 2902 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2903 void *buf, hwaddr len, bool is_write) 2904 { 2905 if (is_write) { 2906 return address_space_write(as, addr, attrs, buf, len); 2907 } else { 2908 return address_space_read_full(as, addr, attrs, buf, len); 2909 } 2910 } 2911 2912 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2913 uint8_t c, hwaddr len, MemTxAttrs attrs) 2914 { 2915 #define FILLBUF_SIZE 512 2916 uint8_t fillbuf[FILLBUF_SIZE]; 2917 int l; 2918 MemTxResult error = MEMTX_OK; 2919 2920 memset(fillbuf, c, FILLBUF_SIZE); 2921 while (len > 0) { 2922 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2923 error |= address_space_write(as, addr, attrs, fillbuf, l); 2924 len -= l; 2925 addr += l; 2926 } 2927 2928 return error; 2929 } 2930 2931 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2932 hwaddr len, bool is_write) 2933 { 2934 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2935 buf, len, is_write); 2936 } 2937 2938 enum write_rom_type { 2939 WRITE_DATA, 2940 FLUSH_CACHE, 2941 }; 2942 2943 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2944 hwaddr addr, 2945 MemTxAttrs attrs, 2946 const void *ptr, 2947 hwaddr len, 2948 enum write_rom_type type) 2949 { 2950 hwaddr l; 2951 uint8_t *ram_ptr; 2952 hwaddr addr1; 2953 MemoryRegion *mr; 2954 const uint8_t *buf = ptr; 2955 2956 RCU_READ_LOCK_GUARD(); 2957 while (len > 0) { 2958 l = len; 2959 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2960 2961 if (!(memory_region_is_ram(mr) || 2962 memory_region_is_romd(mr))) { 2963 l = memory_access_size(mr, l, addr1); 2964 } else { 2965 /* ROM/RAM case */ 2966 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2967 switch (type) { 2968 case WRITE_DATA: 2969 memcpy(ram_ptr, buf, l); 2970 invalidate_and_set_dirty(mr, addr1, l); 2971 break; 2972 case FLUSH_CACHE: 2973 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2974 break; 2975 } 2976 } 2977 len -= l; 2978 buf += l; 2979 addr += l; 2980 } 2981 return MEMTX_OK; 2982 } 2983 2984 /* used for ROM loading : can write in RAM and ROM */ 2985 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2986 MemTxAttrs attrs, 2987 const void *buf, hwaddr len) 2988 { 2989 return address_space_write_rom_internal(as, addr, attrs, 2990 buf, len, WRITE_DATA); 2991 } 2992 2993 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2994 { 2995 /* 2996 * This function should do the same thing as an icache flush that was 2997 * triggered from within the guest. For TCG we are always cache coherent, 2998 * so there is no need to flush anything. For KVM / Xen we need to flush 2999 * the host's instruction cache at least. 3000 */ 3001 if (tcg_enabled()) { 3002 return; 3003 } 3004 3005 address_space_write_rom_internal(&address_space_memory, 3006 start, MEMTXATTRS_UNSPECIFIED, 3007 NULL, len, FLUSH_CACHE); 3008 } 3009 3010 typedef struct { 3011 MemoryRegion *mr; 3012 void *buffer; 3013 hwaddr addr; 3014 hwaddr len; 3015 bool in_use; 3016 } BounceBuffer; 3017 3018 static BounceBuffer bounce; 3019 3020 typedef struct MapClient { 3021 QEMUBH *bh; 3022 QLIST_ENTRY(MapClient) link; 3023 } MapClient; 3024 3025 QemuMutex map_client_list_lock; 3026 static QLIST_HEAD(, MapClient) map_client_list 3027 = QLIST_HEAD_INITIALIZER(map_client_list); 3028 3029 static void cpu_unregister_map_client_do(MapClient *client) 3030 { 3031 QLIST_REMOVE(client, link); 3032 g_free(client); 3033 } 3034 3035 static void cpu_notify_map_clients_locked(void) 3036 { 3037 MapClient *client; 3038 3039 while (!QLIST_EMPTY(&map_client_list)) { 3040 client = QLIST_FIRST(&map_client_list); 3041 qemu_bh_schedule(client->bh); 3042 cpu_unregister_map_client_do(client); 3043 } 3044 } 3045 3046 void cpu_register_map_client(QEMUBH *bh) 3047 { 3048 MapClient *client = g_malloc(sizeof(*client)); 3049 3050 qemu_mutex_lock(&map_client_list_lock); 3051 client->bh = bh; 3052 QLIST_INSERT_HEAD(&map_client_list, client, link); 3053 /* Write map_client_list before reading in_use. */ 3054 smp_mb(); 3055 if (!qatomic_read(&bounce.in_use)) { 3056 cpu_notify_map_clients_locked(); 3057 } 3058 qemu_mutex_unlock(&map_client_list_lock); 3059 } 3060 3061 void cpu_exec_init_all(void) 3062 { 3063 qemu_mutex_init(&ram_list.mutex); 3064 /* The data structures we set up here depend on knowing the page size, 3065 * so no more changes can be made after this point. 3066 * In an ideal world, nothing we did before we had finished the 3067 * machine setup would care about the target page size, and we could 3068 * do this much later, rather than requiring board models to state 3069 * up front what their requirements are. 3070 */ 3071 finalize_target_page_bits(); 3072 io_mem_init(); 3073 memory_map_init(); 3074 qemu_mutex_init(&map_client_list_lock); 3075 } 3076 3077 void cpu_unregister_map_client(QEMUBH *bh) 3078 { 3079 MapClient *client; 3080 3081 qemu_mutex_lock(&map_client_list_lock); 3082 QLIST_FOREACH(client, &map_client_list, link) { 3083 if (client->bh == bh) { 3084 cpu_unregister_map_client_do(client); 3085 break; 3086 } 3087 } 3088 qemu_mutex_unlock(&map_client_list_lock); 3089 } 3090 3091 static void cpu_notify_map_clients(void) 3092 { 3093 qemu_mutex_lock(&map_client_list_lock); 3094 cpu_notify_map_clients_locked(); 3095 qemu_mutex_unlock(&map_client_list_lock); 3096 } 3097 3098 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3099 bool is_write, MemTxAttrs attrs) 3100 { 3101 MemoryRegion *mr; 3102 hwaddr l, xlat; 3103 3104 while (len > 0) { 3105 l = len; 3106 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3107 if (!memory_access_is_direct(mr, is_write)) { 3108 l = memory_access_size(mr, l, addr); 3109 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3110 return false; 3111 } 3112 } 3113 3114 len -= l; 3115 addr += l; 3116 } 3117 return true; 3118 } 3119 3120 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3121 hwaddr len, bool is_write, 3122 MemTxAttrs attrs) 3123 { 3124 FlatView *fv; 3125 3126 RCU_READ_LOCK_GUARD(); 3127 fv = address_space_to_flatview(as); 3128 return flatview_access_valid(fv, addr, len, is_write, attrs); 3129 } 3130 3131 static hwaddr 3132 flatview_extend_translation(FlatView *fv, hwaddr addr, 3133 hwaddr target_len, 3134 MemoryRegion *mr, hwaddr base, hwaddr len, 3135 bool is_write, MemTxAttrs attrs) 3136 { 3137 hwaddr done = 0; 3138 hwaddr xlat; 3139 MemoryRegion *this_mr; 3140 3141 for (;;) { 3142 target_len -= len; 3143 addr += len; 3144 done += len; 3145 if (target_len == 0) { 3146 return done; 3147 } 3148 3149 len = target_len; 3150 this_mr = flatview_translate(fv, addr, &xlat, 3151 &len, is_write, attrs); 3152 if (this_mr != mr || xlat != base + done) { 3153 return done; 3154 } 3155 } 3156 } 3157 3158 /* Map a physical memory region into a host virtual address. 3159 * May map a subset of the requested range, given by and returned in *plen. 3160 * May return NULL if resources needed to perform the mapping are exhausted. 3161 * Use only for reads OR writes - not for read-modify-write operations. 3162 * Use cpu_register_map_client() to know when retrying the map operation is 3163 * likely to succeed. 3164 */ 3165 void *address_space_map(AddressSpace *as, 3166 hwaddr addr, 3167 hwaddr *plen, 3168 bool is_write, 3169 MemTxAttrs attrs) 3170 { 3171 hwaddr len = *plen; 3172 hwaddr l, xlat; 3173 MemoryRegion *mr; 3174 FlatView *fv; 3175 3176 if (len == 0) { 3177 return NULL; 3178 } 3179 3180 l = len; 3181 RCU_READ_LOCK_GUARD(); 3182 fv = address_space_to_flatview(as); 3183 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3184 3185 if (!memory_access_is_direct(mr, is_write)) { 3186 if (qatomic_xchg(&bounce.in_use, true)) { 3187 *plen = 0; 3188 return NULL; 3189 } 3190 /* Avoid unbounded allocations */ 3191 l = MIN(l, TARGET_PAGE_SIZE); 3192 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3193 bounce.addr = addr; 3194 bounce.len = l; 3195 3196 memory_region_ref(mr); 3197 bounce.mr = mr; 3198 if (!is_write) { 3199 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3200 bounce.buffer, l); 3201 } 3202 3203 *plen = l; 3204 return bounce.buffer; 3205 } 3206 3207 3208 memory_region_ref(mr); 3209 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3210 l, is_write, attrs); 3211 fuzz_dma_read_cb(addr, *plen, mr); 3212 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3213 } 3214 3215 /* Unmaps a memory region previously mapped by address_space_map(). 3216 * Will also mark the memory as dirty if is_write is true. access_len gives 3217 * the amount of memory that was actually read or written by the caller. 3218 */ 3219 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3220 bool is_write, hwaddr access_len) 3221 { 3222 if (buffer != bounce.buffer) { 3223 MemoryRegion *mr; 3224 ram_addr_t addr1; 3225 3226 mr = memory_region_from_host(buffer, &addr1); 3227 assert(mr != NULL); 3228 if (is_write) { 3229 invalidate_and_set_dirty(mr, addr1, access_len); 3230 } 3231 if (xen_enabled()) { 3232 xen_invalidate_map_cache_entry(buffer); 3233 } 3234 memory_region_unref(mr); 3235 return; 3236 } 3237 if (is_write) { 3238 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3239 bounce.buffer, access_len); 3240 } 3241 qemu_vfree(bounce.buffer); 3242 bounce.buffer = NULL; 3243 memory_region_unref(bounce.mr); 3244 /* Clear in_use before reading map_client_list. */ 3245 qatomic_set_mb(&bounce.in_use, false); 3246 cpu_notify_map_clients(); 3247 } 3248 3249 void *cpu_physical_memory_map(hwaddr addr, 3250 hwaddr *plen, 3251 bool is_write) 3252 { 3253 return address_space_map(&address_space_memory, addr, plen, is_write, 3254 MEMTXATTRS_UNSPECIFIED); 3255 } 3256 3257 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3258 bool is_write, hwaddr access_len) 3259 { 3260 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3261 } 3262 3263 #define ARG1_DECL AddressSpace *as 3264 #define ARG1 as 3265 #define SUFFIX 3266 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3267 #define RCU_READ_LOCK(...) rcu_read_lock() 3268 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3269 #include "memory_ldst.c.inc" 3270 3271 int64_t address_space_cache_init(MemoryRegionCache *cache, 3272 AddressSpace *as, 3273 hwaddr addr, 3274 hwaddr len, 3275 bool is_write) 3276 { 3277 AddressSpaceDispatch *d; 3278 hwaddr l; 3279 MemoryRegion *mr; 3280 Int128 diff; 3281 3282 assert(len > 0); 3283 3284 l = len; 3285 cache->fv = address_space_get_flatview(as); 3286 d = flatview_to_dispatch(cache->fv); 3287 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3288 3289 /* 3290 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3291 * Take that into account to compute how many bytes are there between 3292 * cache->xlat and the end of the section. 3293 */ 3294 diff = int128_sub(cache->mrs.size, 3295 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3296 l = int128_get64(int128_min(diff, int128_make64(l))); 3297 3298 mr = cache->mrs.mr; 3299 memory_region_ref(mr); 3300 if (memory_access_is_direct(mr, is_write)) { 3301 /* We don't care about the memory attributes here as we're only 3302 * doing this if we found actual RAM, which behaves the same 3303 * regardless of attributes; so UNSPECIFIED is fine. 3304 */ 3305 l = flatview_extend_translation(cache->fv, addr, len, mr, 3306 cache->xlat, l, is_write, 3307 MEMTXATTRS_UNSPECIFIED); 3308 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3309 } else { 3310 cache->ptr = NULL; 3311 } 3312 3313 cache->len = l; 3314 cache->is_write = is_write; 3315 return l; 3316 } 3317 3318 void address_space_cache_invalidate(MemoryRegionCache *cache, 3319 hwaddr addr, 3320 hwaddr access_len) 3321 { 3322 assert(cache->is_write); 3323 if (likely(cache->ptr)) { 3324 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3325 } 3326 } 3327 3328 void address_space_cache_destroy(MemoryRegionCache *cache) 3329 { 3330 if (!cache->mrs.mr) { 3331 return; 3332 } 3333 3334 if (xen_enabled()) { 3335 xen_invalidate_map_cache_entry(cache->ptr); 3336 } 3337 memory_region_unref(cache->mrs.mr); 3338 flatview_unref(cache->fv); 3339 cache->mrs.mr = NULL; 3340 cache->fv = NULL; 3341 } 3342 3343 /* Called from RCU critical section. This function has the same 3344 * semantics as address_space_translate, but it only works on a 3345 * predefined range of a MemoryRegion that was mapped with 3346 * address_space_cache_init. 3347 */ 3348 static inline MemoryRegion *address_space_translate_cached( 3349 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3350 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3351 { 3352 MemoryRegionSection section; 3353 MemoryRegion *mr; 3354 IOMMUMemoryRegion *iommu_mr; 3355 AddressSpace *target_as; 3356 3357 assert(!cache->ptr); 3358 *xlat = addr + cache->xlat; 3359 3360 mr = cache->mrs.mr; 3361 iommu_mr = memory_region_get_iommu(mr); 3362 if (!iommu_mr) { 3363 /* MMIO region. */ 3364 return mr; 3365 } 3366 3367 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3368 NULL, is_write, true, 3369 &target_as, attrs); 3370 return section.mr; 3371 } 3372 3373 /* Called within RCU critical section. */ 3374 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3375 const void *ptr, 3376 hwaddr len, 3377 hwaddr mr_addr, 3378 hwaddr l, 3379 MemoryRegion *mr) 3380 { 3381 MemTxResult result = MEMTX_OK; 3382 const uint8_t *buf = ptr; 3383 3384 for (;;) { 3385 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3386 mr); 3387 3388 len -= l; 3389 buf += l; 3390 mr_addr += l; 3391 3392 if (!len) { 3393 break; 3394 } 3395 3396 l = len; 3397 } 3398 3399 return result; 3400 } 3401 3402 /* Called within RCU critical section. */ 3403 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3404 void *ptr, hwaddr len, 3405 hwaddr mr_addr, hwaddr l, 3406 MemoryRegion *mr) 3407 { 3408 MemTxResult result = MEMTX_OK; 3409 uint8_t *buf = ptr; 3410 3411 for (;;) { 3412 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3413 len -= l; 3414 buf += l; 3415 mr_addr += l; 3416 3417 if (!len) { 3418 break; 3419 } 3420 l = len; 3421 } 3422 3423 return result; 3424 } 3425 3426 /* Called from RCU critical section. address_space_read_cached uses this 3427 * out of line function when the target is an MMIO or IOMMU region. 3428 */ 3429 MemTxResult 3430 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3431 void *buf, hwaddr len) 3432 { 3433 hwaddr mr_addr, l; 3434 MemoryRegion *mr; 3435 3436 l = len; 3437 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3438 MEMTXATTRS_UNSPECIFIED); 3439 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3440 buf, len, mr_addr, l, mr); 3441 } 3442 3443 /* Called from RCU critical section. address_space_write_cached uses this 3444 * out of line function when the target is an MMIO or IOMMU region. 3445 */ 3446 MemTxResult 3447 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3448 const void *buf, hwaddr len) 3449 { 3450 hwaddr mr_addr, l; 3451 MemoryRegion *mr; 3452 3453 l = len; 3454 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3455 MEMTXATTRS_UNSPECIFIED); 3456 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3457 buf, len, mr_addr, l, mr); 3458 } 3459 3460 #define ARG1_DECL MemoryRegionCache *cache 3461 #define ARG1 cache 3462 #define SUFFIX _cached_slow 3463 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3464 #define RCU_READ_LOCK() ((void)0) 3465 #define RCU_READ_UNLOCK() ((void)0) 3466 #include "memory_ldst.c.inc" 3467 3468 /* virtual memory access for debug (includes writing to ROM) */ 3469 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3470 void *ptr, size_t len, bool is_write) 3471 { 3472 hwaddr phys_addr; 3473 vaddr l, page; 3474 uint8_t *buf = ptr; 3475 3476 cpu_synchronize_state(cpu); 3477 while (len > 0) { 3478 int asidx; 3479 MemTxAttrs attrs; 3480 MemTxResult res; 3481 3482 page = addr & TARGET_PAGE_MASK; 3483 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3484 asidx = cpu_asidx_from_attrs(cpu, attrs); 3485 /* if no physical page mapped, return an error */ 3486 if (phys_addr == -1) 3487 return -1; 3488 l = (page + TARGET_PAGE_SIZE) - addr; 3489 if (l > len) 3490 l = len; 3491 phys_addr += (addr & ~TARGET_PAGE_MASK); 3492 if (is_write) { 3493 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3494 attrs, buf, l); 3495 } else { 3496 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3497 attrs, buf, l); 3498 } 3499 if (res != MEMTX_OK) { 3500 return -1; 3501 } 3502 len -= l; 3503 buf += l; 3504 addr += l; 3505 } 3506 return 0; 3507 } 3508 3509 /* 3510 * Allows code that needs to deal with migration bitmaps etc to still be built 3511 * target independent. 3512 */ 3513 size_t qemu_target_page_size(void) 3514 { 3515 return TARGET_PAGE_SIZE; 3516 } 3517 3518 int qemu_target_page_bits(void) 3519 { 3520 return TARGET_PAGE_BITS; 3521 } 3522 3523 int qemu_target_page_bits_min(void) 3524 { 3525 return TARGET_PAGE_BITS_MIN; 3526 } 3527 3528 /* Convert target pages to MiB (2**20). */ 3529 size_t qemu_target_pages_to_MiB(size_t pages) 3530 { 3531 int page_bits = TARGET_PAGE_BITS; 3532 3533 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3534 g_assert(page_bits < 20); 3535 3536 return pages >> (20 - page_bits); 3537 } 3538 3539 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3540 { 3541 MemoryRegion*mr; 3542 hwaddr l = 1; 3543 3544 RCU_READ_LOCK_GUARD(); 3545 mr = address_space_translate(&address_space_memory, 3546 phys_addr, &phys_addr, &l, false, 3547 MEMTXATTRS_UNSPECIFIED); 3548 3549 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3550 } 3551 3552 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3553 { 3554 RAMBlock *block; 3555 int ret = 0; 3556 3557 RCU_READ_LOCK_GUARD(); 3558 RAMBLOCK_FOREACH(block) { 3559 ret = func(block, opaque); 3560 if (ret) { 3561 break; 3562 } 3563 } 3564 return ret; 3565 } 3566 3567 /* 3568 * Unmap pages of memory from start to start+length such that 3569 * they a) read as 0, b) Trigger whatever fault mechanism 3570 * the OS provides for postcopy. 3571 * The pages must be unmapped by the end of the function. 3572 * Returns: 0 on success, none-0 on failure 3573 * 3574 */ 3575 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3576 { 3577 int ret = -1; 3578 3579 uint8_t *host_startaddr = rb->host + start; 3580 3581 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3582 error_report("%s: Unaligned start address: %p", 3583 __func__, host_startaddr); 3584 goto err; 3585 } 3586 3587 if ((start + length) <= rb->max_length) { 3588 bool need_madvise, need_fallocate; 3589 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3590 error_report("%s: Unaligned length: %zx", __func__, length); 3591 goto err; 3592 } 3593 3594 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3595 3596 /* The logic here is messy; 3597 * madvise DONTNEED fails for hugepages 3598 * fallocate works on hugepages and shmem 3599 * shared anonymous memory requires madvise REMOVE 3600 */ 3601 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3602 need_fallocate = rb->fd != -1; 3603 if (need_fallocate) { 3604 /* For a file, this causes the area of the file to be zero'd 3605 * if read, and for hugetlbfs also causes it to be unmapped 3606 * so a userfault will trigger. 3607 */ 3608 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3609 /* 3610 * fallocate() will fail with readonly files. Let's print a 3611 * proper error message. 3612 */ 3613 if (rb->flags & RAM_READONLY_FD) { 3614 error_report("%s: Discarding RAM with readonly files is not" 3615 " supported", __func__); 3616 goto err; 3617 3618 } 3619 /* 3620 * We'll discard data from the actual file, even though we only 3621 * have a MAP_PRIVATE mapping, possibly messing with other 3622 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3623 * change that behavior whithout violating the promised 3624 * semantics of ram_block_discard_range(). 3625 * 3626 * Only warn, because it works as long as nobody else uses that 3627 * file. 3628 */ 3629 if (!qemu_ram_is_shared(rb)) { 3630 warn_report_once("%s: Discarding RAM" 3631 " in private file mappings is possibly" 3632 " dangerous, because it will modify the" 3633 " underlying file and will affect other" 3634 " users of the file", __func__); 3635 } 3636 3637 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3638 start, length); 3639 if (ret) { 3640 ret = -errno; 3641 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3642 __func__, rb->idstr, start, length, ret); 3643 goto err; 3644 } 3645 #else 3646 ret = -ENOSYS; 3647 error_report("%s: fallocate not available/file" 3648 "%s:%" PRIx64 " +%zx (%d)", 3649 __func__, rb->idstr, start, length, ret); 3650 goto err; 3651 #endif 3652 } 3653 if (need_madvise) { 3654 /* For normal RAM this causes it to be unmapped, 3655 * for shared memory it causes the local mapping to disappear 3656 * and to fall back on the file contents (which we just 3657 * fallocate'd away). 3658 */ 3659 #if defined(CONFIG_MADVISE) 3660 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3661 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3662 } else { 3663 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3664 } 3665 if (ret) { 3666 ret = -errno; 3667 error_report("%s: Failed to discard range " 3668 "%s:%" PRIx64 " +%zx (%d)", 3669 __func__, rb->idstr, start, length, ret); 3670 goto err; 3671 } 3672 #else 3673 ret = -ENOSYS; 3674 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3675 __func__, rb->idstr, start, length, ret); 3676 goto err; 3677 #endif 3678 } 3679 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3680 need_madvise, need_fallocate, ret); 3681 } else { 3682 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3683 __func__, rb->idstr, start, length, rb->max_length); 3684 } 3685 3686 err: 3687 return ret; 3688 } 3689 3690 bool ramblock_is_pmem(RAMBlock *rb) 3691 { 3692 return rb->flags & RAM_PMEM; 3693 } 3694 3695 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3696 { 3697 if (start == end - 1) { 3698 qemu_printf("\t%3d ", start); 3699 } else { 3700 qemu_printf("\t%3d..%-3d ", start, end - 1); 3701 } 3702 qemu_printf(" skip=%d ", skip); 3703 if (ptr == PHYS_MAP_NODE_NIL) { 3704 qemu_printf(" ptr=NIL"); 3705 } else if (!skip) { 3706 qemu_printf(" ptr=#%d", ptr); 3707 } else { 3708 qemu_printf(" ptr=[%d]", ptr); 3709 } 3710 qemu_printf("\n"); 3711 } 3712 3713 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3714 int128_sub((size), int128_one())) : 0) 3715 3716 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3717 { 3718 int i; 3719 3720 qemu_printf(" Dispatch\n"); 3721 qemu_printf(" Physical sections\n"); 3722 3723 for (i = 0; i < d->map.sections_nb; ++i) { 3724 MemoryRegionSection *s = d->map.sections + i; 3725 const char *names[] = { " [unassigned]", " [not dirty]", 3726 " [ROM]", " [watch]" }; 3727 3728 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3729 " %s%s%s%s%s", 3730 i, 3731 s->offset_within_address_space, 3732 s->offset_within_address_space + MR_SIZE(s->size), 3733 s->mr->name ? s->mr->name : "(noname)", 3734 i < ARRAY_SIZE(names) ? names[i] : "", 3735 s->mr == root ? " [ROOT]" : "", 3736 s == d->mru_section ? " [MRU]" : "", 3737 s->mr->is_iommu ? " [iommu]" : ""); 3738 3739 if (s->mr->alias) { 3740 qemu_printf(" alias=%s", s->mr->alias->name ? 3741 s->mr->alias->name : "noname"); 3742 } 3743 qemu_printf("\n"); 3744 } 3745 3746 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3747 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3748 for (i = 0; i < d->map.nodes_nb; ++i) { 3749 int j, jprev; 3750 PhysPageEntry prev; 3751 Node *n = d->map.nodes + i; 3752 3753 qemu_printf(" [%d]\n", i); 3754 3755 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3756 PhysPageEntry *pe = *n + j; 3757 3758 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3759 continue; 3760 } 3761 3762 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3763 3764 jprev = j; 3765 prev = *pe; 3766 } 3767 3768 if (jprev != ARRAY_SIZE(*n)) { 3769 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3770 } 3771 } 3772 } 3773 3774 /* Require any discards to work. */ 3775 static unsigned int ram_block_discard_required_cnt; 3776 /* Require only coordinated discards to work. */ 3777 static unsigned int ram_block_coordinated_discard_required_cnt; 3778 /* Disable any discards. */ 3779 static unsigned int ram_block_discard_disabled_cnt; 3780 /* Disable only uncoordinated discards. */ 3781 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3782 static QemuMutex ram_block_discard_disable_mutex; 3783 3784 static void ram_block_discard_disable_mutex_lock(void) 3785 { 3786 static gsize initialized; 3787 3788 if (g_once_init_enter(&initialized)) { 3789 qemu_mutex_init(&ram_block_discard_disable_mutex); 3790 g_once_init_leave(&initialized, 1); 3791 } 3792 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3793 } 3794 3795 static void ram_block_discard_disable_mutex_unlock(void) 3796 { 3797 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3798 } 3799 3800 int ram_block_discard_disable(bool state) 3801 { 3802 int ret = 0; 3803 3804 ram_block_discard_disable_mutex_lock(); 3805 if (!state) { 3806 ram_block_discard_disabled_cnt--; 3807 } else if (ram_block_discard_required_cnt || 3808 ram_block_coordinated_discard_required_cnt) { 3809 ret = -EBUSY; 3810 } else { 3811 ram_block_discard_disabled_cnt++; 3812 } 3813 ram_block_discard_disable_mutex_unlock(); 3814 return ret; 3815 } 3816 3817 int ram_block_uncoordinated_discard_disable(bool state) 3818 { 3819 int ret = 0; 3820 3821 ram_block_discard_disable_mutex_lock(); 3822 if (!state) { 3823 ram_block_uncoordinated_discard_disabled_cnt--; 3824 } else if (ram_block_discard_required_cnt) { 3825 ret = -EBUSY; 3826 } else { 3827 ram_block_uncoordinated_discard_disabled_cnt++; 3828 } 3829 ram_block_discard_disable_mutex_unlock(); 3830 return ret; 3831 } 3832 3833 int ram_block_discard_require(bool state) 3834 { 3835 int ret = 0; 3836 3837 ram_block_discard_disable_mutex_lock(); 3838 if (!state) { 3839 ram_block_discard_required_cnt--; 3840 } else if (ram_block_discard_disabled_cnt || 3841 ram_block_uncoordinated_discard_disabled_cnt) { 3842 ret = -EBUSY; 3843 } else { 3844 ram_block_discard_required_cnt++; 3845 } 3846 ram_block_discard_disable_mutex_unlock(); 3847 return ret; 3848 } 3849 3850 int ram_block_coordinated_discard_require(bool state) 3851 { 3852 int ret = 0; 3853 3854 ram_block_discard_disable_mutex_lock(); 3855 if (!state) { 3856 ram_block_coordinated_discard_required_cnt--; 3857 } else if (ram_block_discard_disabled_cnt) { 3858 ret = -EBUSY; 3859 } else { 3860 ram_block_coordinated_discard_required_cnt++; 3861 } 3862 ram_block_discard_disable_mutex_unlock(); 3863 return ret; 3864 } 3865 3866 bool ram_block_discard_is_disabled(void) 3867 { 3868 return qatomic_read(&ram_block_discard_disabled_cnt) || 3869 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3870 } 3871 3872 bool ram_block_discard_is_required(void) 3873 { 3874 return qatomic_read(&ram_block_discard_required_cnt) || 3875 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3876 } 3877