1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "sysemu/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Called from RCU critical section */ 784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 785 { 786 RAMBlock *block; 787 788 block = qatomic_rcu_read(&ram_list.mru_block); 789 if (block && addr - block->offset < block->max_length) { 790 return block; 791 } 792 RAMBLOCK_FOREACH(block) { 793 if (addr - block->offset < block->max_length) { 794 goto found; 795 } 796 } 797 798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 799 abort(); 800 801 found: 802 /* It is safe to write mru_block outside the BQL. This 803 * is what happens: 804 * 805 * mru_block = xxx 806 * rcu_read_unlock() 807 * xxx removed from list 808 * rcu_read_lock() 809 * read mru_block 810 * mru_block = NULL; 811 * call_rcu(reclaim_ramblock, xxx); 812 * rcu_read_unlock() 813 * 814 * qatomic_rcu_set is not needed here. The block was already published 815 * when it was placed into the list. Here we're just making an extra 816 * copy of the pointer. 817 */ 818 ram_list.mru_block = block; 819 return block; 820 } 821 822 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 823 { 824 CPUState *cpu; 825 ram_addr_t start1; 826 RAMBlock *block; 827 ram_addr_t end; 828 829 assert(tcg_enabled()); 830 end = TARGET_PAGE_ALIGN(start + length); 831 start &= TARGET_PAGE_MASK; 832 833 RCU_READ_LOCK_GUARD(); 834 block = qemu_get_ram_block(start); 835 assert(block == qemu_get_ram_block(end - 1)); 836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 837 CPU_FOREACH(cpu) { 838 tlb_reset_dirty(cpu, start1, length); 839 } 840 } 841 842 /* Note: start and end must be within the same ram block. */ 843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 844 ram_addr_t length, 845 unsigned client) 846 { 847 DirtyMemoryBlocks *blocks; 848 unsigned long end, page, start_page; 849 bool dirty = false; 850 RAMBlock *ramblock; 851 uint64_t mr_offset, mr_size; 852 853 if (length == 0) { 854 return false; 855 } 856 857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 858 start_page = start >> TARGET_PAGE_BITS; 859 page = start_page; 860 861 WITH_RCU_READ_LOCK_GUARD() { 862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 863 ramblock = qemu_get_ram_block(start); 864 /* Range sanity check on the ramblock */ 865 assert(start >= ramblock->offset && 866 start + length <= ramblock->offset + ramblock->used_length); 867 868 while (page < end) { 869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long num = MIN(end - page, 872 DIRTY_MEMORY_BLOCK_SIZE - offset); 873 874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 875 offset, num); 876 page += num; 877 } 878 879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 880 mr_size = (end - start_page) << TARGET_PAGE_BITS; 881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 882 } 883 884 if (dirty) { 885 cpu_physical_memory_dirty_bits_cleared(start, length); 886 } 887 888 return dirty; 889 } 890 891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 893 { 894 DirtyMemoryBlocks *blocks; 895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 899 DirtyBitmapSnapshot *snap; 900 unsigned long page, end, dest; 901 902 snap = g_malloc0(sizeof(*snap) + 903 ((last - first) >> (TARGET_PAGE_BITS + 3))); 904 snap->start = first; 905 snap->end = last; 906 907 page = first >> TARGET_PAGE_BITS; 908 end = last >> TARGET_PAGE_BITS; 909 dest = 0; 910 911 WITH_RCU_READ_LOCK_GUARD() { 912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 913 914 while (page < end) { 915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long num = MIN(end - page, 918 DIRTY_MEMORY_BLOCK_SIZE - ofs); 919 920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 922 ofs >>= BITS_PER_LEVEL; 923 924 bitmap_copy_and_clear_atomic(snap->dirty + dest, 925 blocks->blocks[idx] + ofs, 926 num); 927 page += num; 928 dest += num >> BITS_PER_LEVEL; 929 } 930 } 931 932 cpu_physical_memory_dirty_bits_cleared(start, length); 933 934 memory_region_clear_dirty_bitmap(mr, offset, length); 935 936 return snap; 937 } 938 939 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 940 ram_addr_t start, 941 ram_addr_t length) 942 { 943 unsigned long page, end; 944 945 assert(start >= snap->start); 946 assert(start + length <= snap->end); 947 948 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 949 page = (start - snap->start) >> TARGET_PAGE_BITS; 950 951 while (page < end) { 952 if (test_bit(page, snap->dirty)) { 953 return true; 954 } 955 page++; 956 } 957 return false; 958 } 959 960 /* Called from RCU critical section */ 961 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 962 MemoryRegionSection *section) 963 { 964 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 965 return section - d->map.sections; 966 } 967 968 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 969 uint16_t section); 970 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 971 972 static uint16_t phys_section_add(PhysPageMap *map, 973 MemoryRegionSection *section) 974 { 975 /* The physical section number is ORed with a page-aligned 976 * pointer to produce the iotlb entries. Thus it should 977 * never overflow into the page-aligned value. 978 */ 979 assert(map->sections_nb < TARGET_PAGE_SIZE); 980 981 if (map->sections_nb == map->sections_nb_alloc) { 982 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 983 map->sections = g_renew(MemoryRegionSection, map->sections, 984 map->sections_nb_alloc); 985 } 986 map->sections[map->sections_nb] = *section; 987 memory_region_ref(section->mr); 988 return map->sections_nb++; 989 } 990 991 static void phys_section_destroy(MemoryRegion *mr) 992 { 993 bool have_sub_page = mr->subpage; 994 995 memory_region_unref(mr); 996 997 if (have_sub_page) { 998 subpage_t *subpage = container_of(mr, subpage_t, iomem); 999 object_unref(OBJECT(&subpage->iomem)); 1000 g_free(subpage); 1001 } 1002 } 1003 1004 static void phys_sections_free(PhysPageMap *map) 1005 { 1006 while (map->sections_nb > 0) { 1007 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1008 phys_section_destroy(section->mr); 1009 } 1010 g_free(map->sections); 1011 g_free(map->nodes); 1012 } 1013 1014 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1015 { 1016 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1017 subpage_t *subpage; 1018 hwaddr base = section->offset_within_address_space 1019 & TARGET_PAGE_MASK; 1020 MemoryRegionSection *existing = phys_page_find(d, base); 1021 MemoryRegionSection subsection = { 1022 .offset_within_address_space = base, 1023 .size = int128_make64(TARGET_PAGE_SIZE), 1024 }; 1025 hwaddr start, end; 1026 1027 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1028 1029 if (!(existing->mr->subpage)) { 1030 subpage = subpage_init(fv, base); 1031 subsection.fv = fv; 1032 subsection.mr = &subpage->iomem; 1033 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1034 phys_section_add(&d->map, &subsection)); 1035 } else { 1036 subpage = container_of(existing->mr, subpage_t, iomem); 1037 } 1038 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1039 end = start + int128_get64(section->size) - 1; 1040 subpage_register(subpage, start, end, 1041 phys_section_add(&d->map, section)); 1042 } 1043 1044 1045 static void register_multipage(FlatView *fv, 1046 MemoryRegionSection *section) 1047 { 1048 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1049 hwaddr start_addr = section->offset_within_address_space; 1050 uint16_t section_index = phys_section_add(&d->map, section); 1051 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1052 TARGET_PAGE_BITS)); 1053 1054 assert(num_pages); 1055 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1056 } 1057 1058 /* 1059 * The range in *section* may look like this: 1060 * 1061 * |s|PPPPPPP|s| 1062 * 1063 * where s stands for subpage and P for page. 1064 */ 1065 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1066 { 1067 MemoryRegionSection remain = *section; 1068 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1069 1070 /* register first subpage */ 1071 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1072 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1073 - remain.offset_within_address_space; 1074 1075 MemoryRegionSection now = remain; 1076 now.size = int128_min(int128_make64(left), now.size); 1077 register_subpage(fv, &now); 1078 if (int128_eq(remain.size, now.size)) { 1079 return; 1080 } 1081 remain.size = int128_sub(remain.size, now.size); 1082 remain.offset_within_address_space += int128_get64(now.size); 1083 remain.offset_within_region += int128_get64(now.size); 1084 } 1085 1086 /* register whole pages */ 1087 if (int128_ge(remain.size, page_size)) { 1088 MemoryRegionSection now = remain; 1089 now.size = int128_and(now.size, int128_neg(page_size)); 1090 register_multipage(fv, &now); 1091 if (int128_eq(remain.size, now.size)) { 1092 return; 1093 } 1094 remain.size = int128_sub(remain.size, now.size); 1095 remain.offset_within_address_space += int128_get64(now.size); 1096 remain.offset_within_region += int128_get64(now.size); 1097 } 1098 1099 /* register last subpage */ 1100 register_subpage(fv, &remain); 1101 } 1102 1103 void qemu_flush_coalesced_mmio_buffer(void) 1104 { 1105 if (kvm_enabled()) 1106 kvm_flush_coalesced_mmio_buffer(); 1107 } 1108 1109 void qemu_mutex_lock_ramlist(void) 1110 { 1111 qemu_mutex_lock(&ram_list.mutex); 1112 } 1113 1114 void qemu_mutex_unlock_ramlist(void) 1115 { 1116 qemu_mutex_unlock(&ram_list.mutex); 1117 } 1118 1119 GString *ram_block_format(void) 1120 { 1121 RAMBlock *block; 1122 char *psize; 1123 GString *buf = g_string_new(""); 1124 1125 RCU_READ_LOCK_GUARD(); 1126 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1127 "Block Name", "PSize", "Offset", "Used", "Total", 1128 "HVA", "RO"); 1129 1130 RAMBLOCK_FOREACH(block) { 1131 psize = size_to_str(block->page_size); 1132 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1133 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1134 block->idstr, psize, 1135 (uint64_t)block->offset, 1136 (uint64_t)block->used_length, 1137 (uint64_t)block->max_length, 1138 (uint64_t)(uintptr_t)block->host, 1139 block->mr->readonly ? "ro" : "rw"); 1140 1141 g_free(psize); 1142 } 1143 1144 return buf; 1145 } 1146 1147 static int find_min_backend_pagesize(Object *obj, void *opaque) 1148 { 1149 long *hpsize_min = opaque; 1150 1151 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1152 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1153 long hpsize = host_memory_backend_pagesize(backend); 1154 1155 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1156 *hpsize_min = hpsize; 1157 } 1158 } 1159 1160 return 0; 1161 } 1162 1163 static int find_max_backend_pagesize(Object *obj, void *opaque) 1164 { 1165 long *hpsize_max = opaque; 1166 1167 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1168 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1169 long hpsize = host_memory_backend_pagesize(backend); 1170 1171 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1172 *hpsize_max = hpsize; 1173 } 1174 } 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * TODO: We assume right now that all mapped host memory backends are 1181 * used as RAM, however some might be used for different purposes. 1182 */ 1183 long qemu_minrampagesize(void) 1184 { 1185 long hpsize = LONG_MAX; 1186 Object *memdev_root = object_resolve_path("/objects", NULL); 1187 1188 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1189 return hpsize; 1190 } 1191 1192 long qemu_maxrampagesize(void) 1193 { 1194 long pagesize = 0; 1195 Object *memdev_root = object_resolve_path("/objects", NULL); 1196 1197 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1198 return pagesize; 1199 } 1200 1201 #ifdef CONFIG_POSIX 1202 static int64_t get_file_size(int fd) 1203 { 1204 int64_t size; 1205 #if defined(__linux__) 1206 struct stat st; 1207 1208 if (fstat(fd, &st) < 0) { 1209 return -errno; 1210 } 1211 1212 /* Special handling for devdax character devices */ 1213 if (S_ISCHR(st.st_mode)) { 1214 g_autofree char *subsystem_path = NULL; 1215 g_autofree char *subsystem = NULL; 1216 1217 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1218 major(st.st_rdev), minor(st.st_rdev)); 1219 subsystem = g_file_read_link(subsystem_path, NULL); 1220 1221 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1222 g_autofree char *size_path = NULL; 1223 g_autofree char *size_str = NULL; 1224 1225 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1226 major(st.st_rdev), minor(st.st_rdev)); 1227 1228 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1229 return g_ascii_strtoll(size_str, NULL, 0); 1230 } 1231 } 1232 } 1233 #endif /* defined(__linux__) */ 1234 1235 /* st.st_size may be zero for special files yet lseek(2) works */ 1236 size = lseek(fd, 0, SEEK_END); 1237 if (size < 0) { 1238 return -errno; 1239 } 1240 return size; 1241 } 1242 1243 static int64_t get_file_align(int fd) 1244 { 1245 int64_t align = -1; 1246 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1247 struct stat st; 1248 1249 if (fstat(fd, &st) < 0) { 1250 return -errno; 1251 } 1252 1253 /* Special handling for devdax character devices */ 1254 if (S_ISCHR(st.st_mode)) { 1255 g_autofree char *path = NULL; 1256 g_autofree char *rpath = NULL; 1257 struct daxctl_ctx *ctx; 1258 struct daxctl_region *region; 1259 int rc = 0; 1260 1261 path = g_strdup_printf("/sys/dev/char/%d:%d", 1262 major(st.st_rdev), minor(st.st_rdev)); 1263 rpath = realpath(path, NULL); 1264 if (!rpath) { 1265 return -errno; 1266 } 1267 1268 rc = daxctl_new(&ctx); 1269 if (rc) { 1270 return -1; 1271 } 1272 1273 daxctl_region_foreach(ctx, region) { 1274 if (strstr(rpath, daxctl_region_get_path(region))) { 1275 align = daxctl_region_get_align(region); 1276 break; 1277 } 1278 } 1279 daxctl_unref(ctx); 1280 } 1281 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1282 1283 return align; 1284 } 1285 1286 static int file_ram_open(const char *path, 1287 const char *region_name, 1288 bool readonly, 1289 bool *created) 1290 { 1291 char *filename; 1292 char *sanitized_name; 1293 char *c; 1294 int fd = -1; 1295 1296 *created = false; 1297 for (;;) { 1298 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1299 if (fd >= 0) { 1300 /* 1301 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1302 * opened a directory and fail similarly to how we fail ENOENT 1303 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1304 */ 1305 if (readonly) { 1306 struct stat file_stat; 1307 1308 if (fstat(fd, &file_stat)) { 1309 close(fd); 1310 if (errno == EINTR) { 1311 continue; 1312 } 1313 return -errno; 1314 } else if (S_ISDIR(file_stat.st_mode)) { 1315 close(fd); 1316 return -EISDIR; 1317 } 1318 } 1319 /* @path names an existing file, use it */ 1320 break; 1321 } 1322 if (errno == ENOENT) { 1323 if (readonly) { 1324 /* Refuse to create new, readonly files. */ 1325 return -ENOENT; 1326 } 1327 /* @path names a file that doesn't exist, create it */ 1328 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1329 if (fd >= 0) { 1330 *created = true; 1331 break; 1332 } 1333 } else if (errno == EISDIR) { 1334 /* @path names a directory, create a file there */ 1335 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1336 sanitized_name = g_strdup(region_name); 1337 for (c = sanitized_name; *c != '\0'; c++) { 1338 if (*c == '/') { 1339 *c = '_'; 1340 } 1341 } 1342 1343 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1344 sanitized_name); 1345 g_free(sanitized_name); 1346 1347 fd = mkstemp(filename); 1348 if (fd >= 0) { 1349 unlink(filename); 1350 g_free(filename); 1351 break; 1352 } 1353 g_free(filename); 1354 } 1355 if (errno != EEXIST && errno != EINTR) { 1356 return -errno; 1357 } 1358 /* 1359 * Try again on EINTR and EEXIST. The latter happens when 1360 * something else creates the file between our two open(). 1361 */ 1362 } 1363 1364 return fd; 1365 } 1366 1367 static void *file_ram_alloc(RAMBlock *block, 1368 ram_addr_t memory, 1369 int fd, 1370 bool truncate, 1371 off_t offset, 1372 Error **errp) 1373 { 1374 uint32_t qemu_map_flags; 1375 void *area; 1376 1377 block->page_size = qemu_fd_getpagesize(fd); 1378 if (block->mr->align % block->page_size) { 1379 error_setg(errp, "alignment 0x%" PRIx64 1380 " must be multiples of page size 0x%zx", 1381 block->mr->align, block->page_size); 1382 return NULL; 1383 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1384 error_setg(errp, "alignment 0x%" PRIx64 1385 " must be a power of two", block->mr->align); 1386 return NULL; 1387 } else if (offset % block->page_size) { 1388 error_setg(errp, "offset 0x%" PRIx64 1389 " must be multiples of page size 0x%zx", 1390 offset, block->page_size); 1391 return NULL; 1392 } 1393 block->mr->align = MAX(block->page_size, block->mr->align); 1394 #if defined(__s390x__) 1395 if (kvm_enabled()) { 1396 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1397 } 1398 #endif 1399 1400 if (memory < block->page_size) { 1401 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1402 "or larger than page size 0x%zx", 1403 memory, block->page_size); 1404 return NULL; 1405 } 1406 1407 memory = ROUND_UP(memory, block->page_size); 1408 1409 /* 1410 * ftruncate is not supported by hugetlbfs in older 1411 * hosts, so don't bother bailing out on errors. 1412 * If anything goes wrong with it under other filesystems, 1413 * mmap will fail. 1414 * 1415 * Do not truncate the non-empty backend file to avoid corrupting 1416 * the existing data in the file. Disabling shrinking is not 1417 * enough. For example, the current vNVDIMM implementation stores 1418 * the guest NVDIMM labels at the end of the backend file. If the 1419 * backend file is later extended, QEMU will not be able to find 1420 * those labels. Therefore, extending the non-empty backend file 1421 * is disabled as well. 1422 */ 1423 if (truncate && ftruncate(fd, offset + memory)) { 1424 perror("ftruncate"); 1425 } 1426 1427 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1428 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1429 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1430 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1431 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1432 if (area == MAP_FAILED) { 1433 error_setg_errno(errp, errno, 1434 "unable to map backing store for guest RAM"); 1435 return NULL; 1436 } 1437 1438 block->fd = fd; 1439 block->fd_offset = offset; 1440 return area; 1441 } 1442 #endif 1443 1444 /* Allocate space within the ram_addr_t space that governs the 1445 * dirty bitmaps. 1446 * Called with the ramlist lock held. 1447 */ 1448 static ram_addr_t find_ram_offset(ram_addr_t size) 1449 { 1450 RAMBlock *block, *next_block; 1451 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1452 1453 assert(size != 0); /* it would hand out same offset multiple times */ 1454 1455 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1456 return 0; 1457 } 1458 1459 RAMBLOCK_FOREACH(block) { 1460 ram_addr_t candidate, next = RAM_ADDR_MAX; 1461 1462 /* Align blocks to start on a 'long' in the bitmap 1463 * which makes the bitmap sync'ing take the fast path. 1464 */ 1465 candidate = block->offset + block->max_length; 1466 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1467 1468 /* Search for the closest following block 1469 * and find the gap. 1470 */ 1471 RAMBLOCK_FOREACH(next_block) { 1472 if (next_block->offset >= candidate) { 1473 next = MIN(next, next_block->offset); 1474 } 1475 } 1476 1477 /* If it fits remember our place and remember the size 1478 * of gap, but keep going so that we might find a smaller 1479 * gap to fill so avoiding fragmentation. 1480 */ 1481 if (next - candidate >= size && next - candidate < mingap) { 1482 offset = candidate; 1483 mingap = next - candidate; 1484 } 1485 1486 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1487 } 1488 1489 if (offset == RAM_ADDR_MAX) { 1490 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1491 (uint64_t)size); 1492 abort(); 1493 } 1494 1495 trace_find_ram_offset(size, offset); 1496 1497 return offset; 1498 } 1499 1500 static unsigned long last_ram_page(void) 1501 { 1502 RAMBlock *block; 1503 ram_addr_t last = 0; 1504 1505 RCU_READ_LOCK_GUARD(); 1506 RAMBLOCK_FOREACH(block) { 1507 last = MAX(last, block->offset + block->max_length); 1508 } 1509 return last >> TARGET_PAGE_BITS; 1510 } 1511 1512 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1513 { 1514 int ret; 1515 1516 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1517 if (!machine_dump_guest_core(current_machine)) { 1518 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1519 if (ret) { 1520 perror("qemu_madvise"); 1521 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1522 "but dump_guest_core=off specified\n"); 1523 } 1524 } 1525 } 1526 1527 const char *qemu_ram_get_idstr(RAMBlock *rb) 1528 { 1529 return rb->idstr; 1530 } 1531 1532 void *qemu_ram_get_host_addr(RAMBlock *rb) 1533 { 1534 return rb->host; 1535 } 1536 1537 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1538 { 1539 return rb->offset; 1540 } 1541 1542 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1543 { 1544 return rb->used_length; 1545 } 1546 1547 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1548 { 1549 return rb->max_length; 1550 } 1551 1552 bool qemu_ram_is_shared(RAMBlock *rb) 1553 { 1554 return rb->flags & RAM_SHARED; 1555 } 1556 1557 bool qemu_ram_is_noreserve(RAMBlock *rb) 1558 { 1559 return rb->flags & RAM_NORESERVE; 1560 } 1561 1562 /* Note: Only set at the start of postcopy */ 1563 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1564 { 1565 return rb->flags & RAM_UF_ZEROPAGE; 1566 } 1567 1568 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1569 { 1570 rb->flags |= RAM_UF_ZEROPAGE; 1571 } 1572 1573 bool qemu_ram_is_migratable(RAMBlock *rb) 1574 { 1575 return rb->flags & RAM_MIGRATABLE; 1576 } 1577 1578 void qemu_ram_set_migratable(RAMBlock *rb) 1579 { 1580 rb->flags |= RAM_MIGRATABLE; 1581 } 1582 1583 void qemu_ram_unset_migratable(RAMBlock *rb) 1584 { 1585 rb->flags &= ~RAM_MIGRATABLE; 1586 } 1587 1588 bool qemu_ram_is_named_file(RAMBlock *rb) 1589 { 1590 return rb->flags & RAM_NAMED_FILE; 1591 } 1592 1593 int qemu_ram_get_fd(RAMBlock *rb) 1594 { 1595 return rb->fd; 1596 } 1597 1598 /* Called with the BQL held. */ 1599 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1600 { 1601 RAMBlock *block; 1602 1603 assert(new_block); 1604 assert(!new_block->idstr[0]); 1605 1606 if (dev) { 1607 char *id = qdev_get_dev_path(dev); 1608 if (id) { 1609 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1610 g_free(id); 1611 } 1612 } 1613 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1614 1615 RCU_READ_LOCK_GUARD(); 1616 RAMBLOCK_FOREACH(block) { 1617 if (block != new_block && 1618 !strcmp(block->idstr, new_block->idstr)) { 1619 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1620 new_block->idstr); 1621 abort(); 1622 } 1623 } 1624 } 1625 1626 /* Called with the BQL held. */ 1627 void qemu_ram_unset_idstr(RAMBlock *block) 1628 { 1629 /* FIXME: arch_init.c assumes that this is not called throughout 1630 * migration. Ignore the problem since hot-unplug during migration 1631 * does not work anyway. 1632 */ 1633 if (block) { 1634 memset(block->idstr, 0, sizeof(block->idstr)); 1635 } 1636 } 1637 1638 size_t qemu_ram_pagesize(RAMBlock *rb) 1639 { 1640 return rb->page_size; 1641 } 1642 1643 /* Returns the largest size of page in use */ 1644 size_t qemu_ram_pagesize_largest(void) 1645 { 1646 RAMBlock *block; 1647 size_t largest = 0; 1648 1649 RAMBLOCK_FOREACH(block) { 1650 largest = MAX(largest, qemu_ram_pagesize(block)); 1651 } 1652 1653 return largest; 1654 } 1655 1656 static int memory_try_enable_merging(void *addr, size_t len) 1657 { 1658 if (!machine_mem_merge(current_machine)) { 1659 /* disabled by the user */ 1660 return 0; 1661 } 1662 1663 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1664 } 1665 1666 /* 1667 * Resizing RAM while migrating can result in the migration being canceled. 1668 * Care has to be taken if the guest might have already detected the memory. 1669 * 1670 * As memory core doesn't know how is memory accessed, it is up to 1671 * resize callback to update device state and/or add assertions to detect 1672 * misuse, if necessary. 1673 */ 1674 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1675 { 1676 const ram_addr_t oldsize = block->used_length; 1677 const ram_addr_t unaligned_size = newsize; 1678 1679 assert(block); 1680 1681 newsize = TARGET_PAGE_ALIGN(newsize); 1682 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1683 1684 if (block->used_length == newsize) { 1685 /* 1686 * We don't have to resize the ram block (which only knows aligned 1687 * sizes), however, we have to notify if the unaligned size changed. 1688 */ 1689 if (unaligned_size != memory_region_size(block->mr)) { 1690 memory_region_set_size(block->mr, unaligned_size); 1691 if (block->resized) { 1692 block->resized(block->idstr, unaligned_size, block->host); 1693 } 1694 } 1695 return 0; 1696 } 1697 1698 if (!(block->flags & RAM_RESIZEABLE)) { 1699 error_setg_errno(errp, EINVAL, 1700 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1701 " != 0x" RAM_ADDR_FMT, block->idstr, 1702 newsize, block->used_length); 1703 return -EINVAL; 1704 } 1705 1706 if (block->max_length < newsize) { 1707 error_setg_errno(errp, EINVAL, 1708 "Size too large: %s: 0x" RAM_ADDR_FMT 1709 " > 0x" RAM_ADDR_FMT, block->idstr, 1710 newsize, block->max_length); 1711 return -EINVAL; 1712 } 1713 1714 /* Notify before modifying the ram block and touching the bitmaps. */ 1715 if (block->host) { 1716 ram_block_notify_resize(block->host, oldsize, newsize); 1717 } 1718 1719 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1720 block->used_length = newsize; 1721 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1722 DIRTY_CLIENTS_ALL); 1723 memory_region_set_size(block->mr, unaligned_size); 1724 if (block->resized) { 1725 block->resized(block->idstr, unaligned_size, block->host); 1726 } 1727 return 0; 1728 } 1729 1730 /* 1731 * Trigger sync on the given ram block for range [start, start + length] 1732 * with the backing store if one is available. 1733 * Otherwise no-op. 1734 * @Note: this is supposed to be a synchronous op. 1735 */ 1736 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1737 { 1738 /* The requested range should fit in within the block range */ 1739 g_assert((start + length) <= block->used_length); 1740 1741 #ifdef CONFIG_LIBPMEM 1742 /* The lack of support for pmem should not block the sync */ 1743 if (ramblock_is_pmem(block)) { 1744 void *addr = ramblock_ptr(block, start); 1745 pmem_persist(addr, length); 1746 return; 1747 } 1748 #endif 1749 if (block->fd >= 0) { 1750 /** 1751 * Case there is no support for PMEM or the memory has not been 1752 * specified as persistent (or is not one) - use the msync. 1753 * Less optimal but still achieves the same goal 1754 */ 1755 void *addr = ramblock_ptr(block, start); 1756 if (qemu_msync(addr, length, block->fd)) { 1757 warn_report("%s: failed to sync memory range: start: " 1758 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1759 __func__, start, length); 1760 } 1761 } 1762 } 1763 1764 /* Called with ram_list.mutex held */ 1765 static void dirty_memory_extend(ram_addr_t old_ram_size, 1766 ram_addr_t new_ram_size) 1767 { 1768 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1769 DIRTY_MEMORY_BLOCK_SIZE); 1770 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1771 DIRTY_MEMORY_BLOCK_SIZE); 1772 int i; 1773 1774 /* Only need to extend if block count increased */ 1775 if (new_num_blocks <= old_num_blocks) { 1776 return; 1777 } 1778 1779 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1780 DirtyMemoryBlocks *old_blocks; 1781 DirtyMemoryBlocks *new_blocks; 1782 int j; 1783 1784 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1785 new_blocks = g_malloc(sizeof(*new_blocks) + 1786 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1787 1788 if (old_num_blocks) { 1789 memcpy(new_blocks->blocks, old_blocks->blocks, 1790 old_num_blocks * sizeof(old_blocks->blocks[0])); 1791 } 1792 1793 for (j = old_num_blocks; j < new_num_blocks; j++) { 1794 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1795 } 1796 1797 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1798 1799 if (old_blocks) { 1800 g_free_rcu(old_blocks, rcu); 1801 } 1802 } 1803 } 1804 1805 static void ram_block_add(RAMBlock *new_block, Error **errp) 1806 { 1807 const bool noreserve = qemu_ram_is_noreserve(new_block); 1808 const bool shared = qemu_ram_is_shared(new_block); 1809 RAMBlock *block; 1810 RAMBlock *last_block = NULL; 1811 ram_addr_t old_ram_size, new_ram_size; 1812 Error *err = NULL; 1813 1814 old_ram_size = last_ram_page(); 1815 1816 qemu_mutex_lock_ramlist(); 1817 new_block->offset = find_ram_offset(new_block->max_length); 1818 1819 if (!new_block->host) { 1820 if (xen_enabled()) { 1821 xen_ram_alloc(new_block->offset, new_block->max_length, 1822 new_block->mr, &err); 1823 if (err) { 1824 error_propagate(errp, err); 1825 qemu_mutex_unlock_ramlist(); 1826 return; 1827 } 1828 } else { 1829 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1830 &new_block->mr->align, 1831 shared, noreserve); 1832 if (!new_block->host) { 1833 error_setg_errno(errp, errno, 1834 "cannot set up guest memory '%s'", 1835 memory_region_name(new_block->mr)); 1836 qemu_mutex_unlock_ramlist(); 1837 return; 1838 } 1839 memory_try_enable_merging(new_block->host, new_block->max_length); 1840 } 1841 } 1842 1843 new_ram_size = MAX(old_ram_size, 1844 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1845 if (new_ram_size > old_ram_size) { 1846 dirty_memory_extend(old_ram_size, new_ram_size); 1847 } 1848 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1849 * QLIST (which has an RCU-friendly variant) does not have insertion at 1850 * tail, so save the last element in last_block. 1851 */ 1852 RAMBLOCK_FOREACH(block) { 1853 last_block = block; 1854 if (block->max_length < new_block->max_length) { 1855 break; 1856 } 1857 } 1858 if (block) { 1859 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1860 } else if (last_block) { 1861 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1862 } else { /* list is empty */ 1863 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1864 } 1865 ram_list.mru_block = NULL; 1866 1867 /* Write list before version */ 1868 smp_wmb(); 1869 ram_list.version++; 1870 qemu_mutex_unlock_ramlist(); 1871 1872 cpu_physical_memory_set_dirty_range(new_block->offset, 1873 new_block->used_length, 1874 DIRTY_CLIENTS_ALL); 1875 1876 if (new_block->host) { 1877 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1878 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1879 /* 1880 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1881 * Configure it unless the machine is a qtest server, in which case 1882 * KVM is not used and it may be forked (eg for fuzzing purposes). 1883 */ 1884 if (!qtest_enabled()) { 1885 qemu_madvise(new_block->host, new_block->max_length, 1886 QEMU_MADV_DONTFORK); 1887 } 1888 ram_block_notify_add(new_block->host, new_block->used_length, 1889 new_block->max_length); 1890 } 1891 } 1892 1893 #ifdef CONFIG_POSIX 1894 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1895 uint32_t ram_flags, int fd, off_t offset, 1896 Error **errp) 1897 { 1898 RAMBlock *new_block; 1899 Error *local_err = NULL; 1900 int64_t file_size, file_align; 1901 1902 /* Just support these ram flags by now. */ 1903 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1904 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1905 RAM_READONLY_FD)) == 0); 1906 1907 if (xen_enabled()) { 1908 error_setg(errp, "-mem-path not supported with Xen"); 1909 return NULL; 1910 } 1911 1912 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1913 error_setg(errp, 1914 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1915 return NULL; 1916 } 1917 1918 size = TARGET_PAGE_ALIGN(size); 1919 size = REAL_HOST_PAGE_ALIGN(size); 1920 1921 file_size = get_file_size(fd); 1922 if (file_size > offset && file_size < (offset + size)) { 1923 error_setg(errp, "backing store size 0x%" PRIx64 1924 " does not match 'size' option 0x" RAM_ADDR_FMT, 1925 file_size, size); 1926 return NULL; 1927 } 1928 1929 file_align = get_file_align(fd); 1930 if (file_align > 0 && file_align > mr->align) { 1931 error_setg(errp, "backing store align 0x%" PRIx64 1932 " is larger than 'align' option 0x%" PRIx64, 1933 file_align, mr->align); 1934 return NULL; 1935 } 1936 1937 new_block = g_malloc0(sizeof(*new_block)); 1938 new_block->mr = mr; 1939 new_block->used_length = size; 1940 new_block->max_length = size; 1941 new_block->flags = ram_flags; 1942 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 1943 errp); 1944 if (!new_block->host) { 1945 g_free(new_block); 1946 return NULL; 1947 } 1948 1949 ram_block_add(new_block, &local_err); 1950 if (local_err) { 1951 g_free(new_block); 1952 error_propagate(errp, local_err); 1953 return NULL; 1954 } 1955 return new_block; 1956 1957 } 1958 1959 1960 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1961 uint32_t ram_flags, const char *mem_path, 1962 off_t offset, Error **errp) 1963 { 1964 int fd; 1965 bool created; 1966 RAMBlock *block; 1967 1968 fd = file_ram_open(mem_path, memory_region_name(mr), 1969 !!(ram_flags & RAM_READONLY_FD), &created); 1970 if (fd < 0) { 1971 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 1972 mem_path); 1973 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 1974 fd == -EACCES) { 1975 /* 1976 * If we can open the file R/O (note: will never create a new file) 1977 * and we are dealing with a private mapping, there are still ways 1978 * to consume such files and get RAM instead of ROM. 1979 */ 1980 fd = file_ram_open(mem_path, memory_region_name(mr), true, 1981 &created); 1982 if (fd < 0) { 1983 return NULL; 1984 } 1985 assert(!created); 1986 close(fd); 1987 error_append_hint(errp, "Consider opening the backing store" 1988 " read-only but still creating writable RAM using" 1989 " '-object memory-backend-file,readonly=on,rom=off...'" 1990 " (see \"VM templating\" documentation)\n"); 1991 } 1992 return NULL; 1993 } 1994 1995 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 1996 if (!block) { 1997 if (created) { 1998 unlink(mem_path); 1999 } 2000 close(fd); 2001 return NULL; 2002 } 2003 2004 return block; 2005 } 2006 #endif 2007 2008 static 2009 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2010 void (*resized)(const char*, 2011 uint64_t length, 2012 void *host), 2013 void *host, uint32_t ram_flags, 2014 MemoryRegion *mr, Error **errp) 2015 { 2016 RAMBlock *new_block; 2017 Error *local_err = NULL; 2018 int align; 2019 2020 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2021 RAM_NORESERVE)) == 0); 2022 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2023 2024 align = qemu_real_host_page_size(); 2025 align = MAX(align, TARGET_PAGE_SIZE); 2026 size = ROUND_UP(size, align); 2027 max_size = ROUND_UP(max_size, align); 2028 2029 new_block = g_malloc0(sizeof(*new_block)); 2030 new_block->mr = mr; 2031 new_block->resized = resized; 2032 new_block->used_length = size; 2033 new_block->max_length = max_size; 2034 assert(max_size >= size); 2035 new_block->fd = -1; 2036 new_block->page_size = qemu_real_host_page_size(); 2037 new_block->host = host; 2038 new_block->flags = ram_flags; 2039 ram_block_add(new_block, &local_err); 2040 if (local_err) { 2041 g_free(new_block); 2042 error_propagate(errp, local_err); 2043 return NULL; 2044 } 2045 return new_block; 2046 } 2047 2048 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2049 MemoryRegion *mr, Error **errp) 2050 { 2051 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2052 errp); 2053 } 2054 2055 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2056 MemoryRegion *mr, Error **errp) 2057 { 2058 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2059 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2060 } 2061 2062 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2063 void (*resized)(const char*, 2064 uint64_t length, 2065 void *host), 2066 MemoryRegion *mr, Error **errp) 2067 { 2068 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2069 RAM_RESIZEABLE, mr, errp); 2070 } 2071 2072 static void reclaim_ramblock(RAMBlock *block) 2073 { 2074 if (block->flags & RAM_PREALLOC) { 2075 ; 2076 } else if (xen_enabled()) { 2077 xen_invalidate_map_cache_entry(block->host); 2078 #ifndef _WIN32 2079 } else if (block->fd >= 0) { 2080 qemu_ram_munmap(block->fd, block->host, block->max_length); 2081 close(block->fd); 2082 #endif 2083 } else { 2084 qemu_anon_ram_free(block->host, block->max_length); 2085 } 2086 g_free(block); 2087 } 2088 2089 void qemu_ram_free(RAMBlock *block) 2090 { 2091 if (!block) { 2092 return; 2093 } 2094 2095 if (block->host) { 2096 ram_block_notify_remove(block->host, block->used_length, 2097 block->max_length); 2098 } 2099 2100 qemu_mutex_lock_ramlist(); 2101 QLIST_REMOVE_RCU(block, next); 2102 ram_list.mru_block = NULL; 2103 /* Write list before version */ 2104 smp_wmb(); 2105 ram_list.version++; 2106 call_rcu(block, reclaim_ramblock, rcu); 2107 qemu_mutex_unlock_ramlist(); 2108 } 2109 2110 #ifndef _WIN32 2111 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2112 { 2113 RAMBlock *block; 2114 ram_addr_t offset; 2115 int flags; 2116 void *area, *vaddr; 2117 int prot; 2118 2119 RAMBLOCK_FOREACH(block) { 2120 offset = addr - block->offset; 2121 if (offset < block->max_length) { 2122 vaddr = ramblock_ptr(block, offset); 2123 if (block->flags & RAM_PREALLOC) { 2124 ; 2125 } else if (xen_enabled()) { 2126 abort(); 2127 } else { 2128 flags = MAP_FIXED; 2129 flags |= block->flags & RAM_SHARED ? 2130 MAP_SHARED : MAP_PRIVATE; 2131 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2132 prot = PROT_READ; 2133 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2134 if (block->fd >= 0) { 2135 area = mmap(vaddr, length, prot, flags, block->fd, 2136 offset + block->fd_offset); 2137 } else { 2138 flags |= MAP_ANONYMOUS; 2139 area = mmap(vaddr, length, prot, flags, -1, 0); 2140 } 2141 if (area != vaddr) { 2142 error_report("Could not remap addr: " 2143 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2144 length, addr); 2145 exit(1); 2146 } 2147 memory_try_enable_merging(vaddr, length); 2148 qemu_ram_setup_dump(vaddr, length); 2149 } 2150 } 2151 } 2152 } 2153 #endif /* !_WIN32 */ 2154 2155 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2156 * This should not be used for general purpose DMA. Use address_space_map 2157 * or address_space_rw instead. For local memory (e.g. video ram) that the 2158 * device owns, use memory_region_get_ram_ptr. 2159 * 2160 * Called within RCU critical section. 2161 */ 2162 void *qemu_map_ram_ptr(RAMBlock *block, ram_addr_t addr) 2163 { 2164 if (block == NULL) { 2165 block = qemu_get_ram_block(addr); 2166 addr -= block->offset; 2167 } 2168 2169 if (xen_enabled() && block->host == NULL) { 2170 /* We need to check if the requested address is in the RAM 2171 * because we don't want to map the entire memory in QEMU. 2172 * In that case just map until the end of the page. 2173 */ 2174 if (block->offset == 0) { 2175 return xen_map_cache(addr, 0, 0, false); 2176 } 2177 2178 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2179 } 2180 return ramblock_ptr(block, addr); 2181 } 2182 2183 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2184 * but takes a size argument. 2185 * 2186 * Called within RCU critical section. 2187 */ 2188 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2189 hwaddr *size, bool lock) 2190 { 2191 if (*size == 0) { 2192 return NULL; 2193 } 2194 2195 if (block == NULL) { 2196 block = qemu_get_ram_block(addr); 2197 addr -= block->offset; 2198 } 2199 *size = MIN(*size, block->max_length - addr); 2200 2201 if (xen_enabled() && block->host == NULL) { 2202 /* We need to check if the requested address is in the RAM 2203 * because we don't want to map the entire memory in QEMU. 2204 * In that case just map the requested area. 2205 */ 2206 if (block->offset == 0) { 2207 return xen_map_cache(addr, *size, lock, lock); 2208 } 2209 2210 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2211 } 2212 2213 return ramblock_ptr(block, addr); 2214 } 2215 2216 /* Return the offset of a hostpointer within a ramblock */ 2217 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2218 { 2219 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2220 assert((uintptr_t)host >= (uintptr_t)rb->host); 2221 assert(res < rb->max_length); 2222 2223 return res; 2224 } 2225 2226 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2227 ram_addr_t *offset) 2228 { 2229 RAMBlock *block; 2230 uint8_t *host = ptr; 2231 2232 if (xen_enabled()) { 2233 ram_addr_t ram_addr; 2234 RCU_READ_LOCK_GUARD(); 2235 ram_addr = xen_ram_addr_from_mapcache(ptr); 2236 block = qemu_get_ram_block(ram_addr); 2237 if (block) { 2238 *offset = ram_addr - block->offset; 2239 } 2240 return block; 2241 } 2242 2243 RCU_READ_LOCK_GUARD(); 2244 block = qatomic_rcu_read(&ram_list.mru_block); 2245 if (block && block->host && host - block->host < block->max_length) { 2246 goto found; 2247 } 2248 2249 RAMBLOCK_FOREACH(block) { 2250 /* This case append when the block is not mapped. */ 2251 if (block->host == NULL) { 2252 continue; 2253 } 2254 if (host - block->host < block->max_length) { 2255 goto found; 2256 } 2257 } 2258 2259 return NULL; 2260 2261 found: 2262 *offset = (host - block->host); 2263 if (round_offset) { 2264 *offset &= TARGET_PAGE_MASK; 2265 } 2266 return block; 2267 } 2268 2269 /* 2270 * Finds the named RAMBlock 2271 * 2272 * name: The name of RAMBlock to find 2273 * 2274 * Returns: RAMBlock (or NULL if not found) 2275 */ 2276 RAMBlock *qemu_ram_block_by_name(const char *name) 2277 { 2278 RAMBlock *block; 2279 2280 RAMBLOCK_FOREACH(block) { 2281 if (!strcmp(name, block->idstr)) { 2282 return block; 2283 } 2284 } 2285 2286 return NULL; 2287 } 2288 2289 /* 2290 * Some of the system routines need to translate from a host pointer 2291 * (typically a TLB entry) back to a ram offset. 2292 */ 2293 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2294 { 2295 RAMBlock *block; 2296 ram_addr_t offset; 2297 2298 block = qemu_ram_block_from_host(ptr, false, &offset); 2299 if (!block) { 2300 return RAM_ADDR_INVALID; 2301 } 2302 2303 return block->offset + offset; 2304 } 2305 2306 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2307 { 2308 ram_addr_t ram_addr; 2309 2310 ram_addr = qemu_ram_addr_from_host(ptr); 2311 if (ram_addr == RAM_ADDR_INVALID) { 2312 error_report("Bad ram pointer %p", ptr); 2313 abort(); 2314 } 2315 return ram_addr; 2316 } 2317 2318 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2319 MemTxAttrs attrs, void *buf, hwaddr len); 2320 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2321 const void *buf, hwaddr len); 2322 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2323 bool is_write, MemTxAttrs attrs); 2324 2325 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2326 unsigned len, MemTxAttrs attrs) 2327 { 2328 subpage_t *subpage = opaque; 2329 uint8_t buf[8]; 2330 MemTxResult res; 2331 2332 #if defined(DEBUG_SUBPAGE) 2333 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2334 subpage, len, addr); 2335 #endif 2336 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2337 if (res) { 2338 return res; 2339 } 2340 *data = ldn_p(buf, len); 2341 return MEMTX_OK; 2342 } 2343 2344 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2345 uint64_t value, unsigned len, MemTxAttrs attrs) 2346 { 2347 subpage_t *subpage = opaque; 2348 uint8_t buf[8]; 2349 2350 #if defined(DEBUG_SUBPAGE) 2351 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2352 " value %"PRIx64"\n", 2353 __func__, subpage, len, addr, value); 2354 #endif 2355 stn_p(buf, len, value); 2356 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2357 } 2358 2359 static bool subpage_accepts(void *opaque, hwaddr addr, 2360 unsigned len, bool is_write, 2361 MemTxAttrs attrs) 2362 { 2363 subpage_t *subpage = opaque; 2364 #if defined(DEBUG_SUBPAGE) 2365 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2366 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2367 #endif 2368 2369 return flatview_access_valid(subpage->fv, addr + subpage->base, 2370 len, is_write, attrs); 2371 } 2372 2373 static const MemoryRegionOps subpage_ops = { 2374 .read_with_attrs = subpage_read, 2375 .write_with_attrs = subpage_write, 2376 .impl.min_access_size = 1, 2377 .impl.max_access_size = 8, 2378 .valid.min_access_size = 1, 2379 .valid.max_access_size = 8, 2380 .valid.accepts = subpage_accepts, 2381 .endianness = DEVICE_NATIVE_ENDIAN, 2382 }; 2383 2384 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2385 uint16_t section) 2386 { 2387 int idx, eidx; 2388 2389 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2390 return -1; 2391 idx = SUBPAGE_IDX(start); 2392 eidx = SUBPAGE_IDX(end); 2393 #if defined(DEBUG_SUBPAGE) 2394 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2395 __func__, mmio, start, end, idx, eidx, section); 2396 #endif 2397 for (; idx <= eidx; idx++) { 2398 mmio->sub_section[idx] = section; 2399 } 2400 2401 return 0; 2402 } 2403 2404 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2405 { 2406 subpage_t *mmio; 2407 2408 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2409 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2410 mmio->fv = fv; 2411 mmio->base = base; 2412 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2413 NULL, TARGET_PAGE_SIZE); 2414 mmio->iomem.subpage = true; 2415 #if defined(DEBUG_SUBPAGE) 2416 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2417 mmio, base, TARGET_PAGE_SIZE); 2418 #endif 2419 2420 return mmio; 2421 } 2422 2423 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2424 { 2425 assert(fv); 2426 MemoryRegionSection section = { 2427 .fv = fv, 2428 .mr = mr, 2429 .offset_within_address_space = 0, 2430 .offset_within_region = 0, 2431 .size = int128_2_64(), 2432 }; 2433 2434 return phys_section_add(map, §ion); 2435 } 2436 2437 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2438 hwaddr index, MemTxAttrs attrs) 2439 { 2440 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2441 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2442 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2443 int section_index = index & ~TARGET_PAGE_MASK; 2444 MemoryRegionSection *ret; 2445 2446 assert(section_index < d->map.sections_nb); 2447 ret = d->map.sections + section_index; 2448 assert(ret->mr); 2449 assert(ret->mr->ops); 2450 2451 return ret; 2452 } 2453 2454 static void io_mem_init(void) 2455 { 2456 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2457 NULL, UINT64_MAX); 2458 } 2459 2460 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2461 { 2462 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2463 uint16_t n; 2464 2465 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2466 assert(n == PHYS_SECTION_UNASSIGNED); 2467 2468 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2469 2470 return d; 2471 } 2472 2473 void address_space_dispatch_free(AddressSpaceDispatch *d) 2474 { 2475 phys_sections_free(&d->map); 2476 g_free(d); 2477 } 2478 2479 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2480 { 2481 } 2482 2483 static void tcg_log_global_after_sync(MemoryListener *listener) 2484 { 2485 CPUAddressSpace *cpuas; 2486 2487 /* Wait for the CPU to end the current TB. This avoids the following 2488 * incorrect race: 2489 * 2490 * vCPU migration 2491 * ---------------------- ------------------------- 2492 * TLB check -> slow path 2493 * notdirty_mem_write 2494 * write to RAM 2495 * mark dirty 2496 * clear dirty flag 2497 * TLB check -> fast path 2498 * read memory 2499 * write to RAM 2500 * 2501 * by pushing the migration thread's memory read after the vCPU thread has 2502 * written the memory. 2503 */ 2504 if (replay_mode == REPLAY_MODE_NONE) { 2505 /* 2506 * VGA can make calls to this function while updating the screen. 2507 * In record/replay mode this causes a deadlock, because 2508 * run_on_cpu waits for rr mutex. Therefore no races are possible 2509 * in this case and no need for making run_on_cpu when 2510 * record/replay is enabled. 2511 */ 2512 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2513 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2514 } 2515 } 2516 2517 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2518 { 2519 CPUAddressSpace *cpuas = data.host_ptr; 2520 2521 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2522 tlb_flush(cpu); 2523 } 2524 2525 static void tcg_commit(MemoryListener *listener) 2526 { 2527 CPUAddressSpace *cpuas; 2528 CPUState *cpu; 2529 2530 assert(tcg_enabled()); 2531 /* since each CPU stores ram addresses in its TLB cache, we must 2532 reset the modified entries */ 2533 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2534 cpu = cpuas->cpu; 2535 2536 /* 2537 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2538 * Otherwise we race between (1) other cpu threads and (2) ongoing 2539 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2540 * 2541 * In addition, queueing the work function will kick the cpu back to 2542 * the main loop, which will end the RCU critical section and reclaim 2543 * the memory data structures. 2544 * 2545 * That said, the listener is also called during realize, before 2546 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2547 */ 2548 if (cpu->halt_cond) { 2549 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2550 } else { 2551 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2552 } 2553 } 2554 2555 static void memory_map_init(void) 2556 { 2557 system_memory = g_malloc(sizeof(*system_memory)); 2558 2559 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2560 address_space_init(&address_space_memory, system_memory, "memory"); 2561 2562 system_io = g_malloc(sizeof(*system_io)); 2563 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2564 65536); 2565 address_space_init(&address_space_io, system_io, "I/O"); 2566 } 2567 2568 MemoryRegion *get_system_memory(void) 2569 { 2570 return system_memory; 2571 } 2572 2573 MemoryRegion *get_system_io(void) 2574 { 2575 return system_io; 2576 } 2577 2578 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2579 hwaddr length) 2580 { 2581 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2582 addr += memory_region_get_ram_addr(mr); 2583 2584 /* No early return if dirty_log_mask is or becomes 0, because 2585 * cpu_physical_memory_set_dirty_range will still call 2586 * xen_modified_memory. 2587 */ 2588 if (dirty_log_mask) { 2589 dirty_log_mask = 2590 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2591 } 2592 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2593 assert(tcg_enabled()); 2594 tb_invalidate_phys_range(addr, addr + length - 1); 2595 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2596 } 2597 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2598 } 2599 2600 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2601 { 2602 /* 2603 * In principle this function would work on other memory region types too, 2604 * but the ROM device use case is the only one where this operation is 2605 * necessary. Other memory regions should use the 2606 * address_space_read/write() APIs. 2607 */ 2608 assert(memory_region_is_romd(mr)); 2609 2610 invalidate_and_set_dirty(mr, addr, size); 2611 } 2612 2613 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2614 { 2615 unsigned access_size_max = mr->ops->valid.max_access_size; 2616 2617 /* Regions are assumed to support 1-4 byte accesses unless 2618 otherwise specified. */ 2619 if (access_size_max == 0) { 2620 access_size_max = 4; 2621 } 2622 2623 /* Bound the maximum access by the alignment of the address. */ 2624 if (!mr->ops->impl.unaligned) { 2625 unsigned align_size_max = addr & -addr; 2626 if (align_size_max != 0 && align_size_max < access_size_max) { 2627 access_size_max = align_size_max; 2628 } 2629 } 2630 2631 /* Don't attempt accesses larger than the maximum. */ 2632 if (l > access_size_max) { 2633 l = access_size_max; 2634 } 2635 l = pow2floor(l); 2636 2637 return l; 2638 } 2639 2640 bool prepare_mmio_access(MemoryRegion *mr) 2641 { 2642 bool release_lock = false; 2643 2644 if (!bql_locked()) { 2645 bql_lock(); 2646 release_lock = true; 2647 } 2648 if (mr->flush_coalesced_mmio) { 2649 qemu_flush_coalesced_mmio_buffer(); 2650 } 2651 2652 return release_lock; 2653 } 2654 2655 /** 2656 * flatview_access_allowed 2657 * @mr: #MemoryRegion to be accessed 2658 * @attrs: memory transaction attributes 2659 * @addr: address within that memory region 2660 * @len: the number of bytes to access 2661 * 2662 * Check if a memory transaction is allowed. 2663 * 2664 * Returns: true if transaction is allowed, false if denied. 2665 */ 2666 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2667 hwaddr addr, hwaddr len) 2668 { 2669 if (likely(!attrs.memory)) { 2670 return true; 2671 } 2672 if (memory_region_is_ram(mr)) { 2673 return true; 2674 } 2675 qemu_log_mask(LOG_GUEST_ERROR, 2676 "Invalid access to non-RAM device at " 2677 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2678 "region '%s'\n", addr, len, memory_region_name(mr)); 2679 return false; 2680 } 2681 2682 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2683 const uint8_t *buf, 2684 hwaddr len, hwaddr mr_addr, 2685 hwaddr *l, MemoryRegion *mr) 2686 { 2687 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2688 return MEMTX_ACCESS_ERROR; 2689 } 2690 2691 if (!memory_access_is_direct(mr, true)) { 2692 uint64_t val; 2693 MemTxResult result; 2694 bool release_lock = prepare_mmio_access(mr); 2695 2696 *l = memory_access_size(mr, *l, mr_addr); 2697 /* 2698 * XXX: could force current_cpu to NULL to avoid 2699 * potential bugs 2700 */ 2701 2702 /* 2703 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2704 * the buffer by following ldn_he_p(). 2705 */ 2706 #ifdef QEMU_STATIC_ANALYSIS 2707 assert((*l == 1 && len >= 1) || 2708 (*l == 2 && len >= 2) || 2709 (*l == 4 && len >= 4) || 2710 (*l == 8 && len >= 8)); 2711 #endif 2712 val = ldn_he_p(buf, *l); 2713 result = memory_region_dispatch_write(mr, mr_addr, val, 2714 size_memop(*l), attrs); 2715 if (release_lock) { 2716 bql_unlock(); 2717 } 2718 2719 return result; 2720 } else { 2721 /* RAM case */ 2722 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2723 false); 2724 2725 memmove(ram_ptr, buf, *l); 2726 invalidate_and_set_dirty(mr, mr_addr, *l); 2727 2728 return MEMTX_OK; 2729 } 2730 } 2731 2732 /* Called within RCU critical section. */ 2733 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2734 MemTxAttrs attrs, 2735 const void *ptr, 2736 hwaddr len, hwaddr mr_addr, 2737 hwaddr l, MemoryRegion *mr) 2738 { 2739 MemTxResult result = MEMTX_OK; 2740 const uint8_t *buf = ptr; 2741 2742 for (;;) { 2743 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2744 mr); 2745 2746 len -= l; 2747 buf += l; 2748 addr += l; 2749 2750 if (!len) { 2751 break; 2752 } 2753 2754 l = len; 2755 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2756 } 2757 2758 return result; 2759 } 2760 2761 /* Called from RCU critical section. */ 2762 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2763 const void *buf, hwaddr len) 2764 { 2765 hwaddr l; 2766 hwaddr mr_addr; 2767 MemoryRegion *mr; 2768 2769 l = len; 2770 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2771 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2772 return MEMTX_ACCESS_ERROR; 2773 } 2774 return flatview_write_continue(fv, addr, attrs, buf, len, 2775 mr_addr, l, mr); 2776 } 2777 2778 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2779 hwaddr len, hwaddr mr_addr, 2780 hwaddr *l, 2781 MemoryRegion *mr) 2782 { 2783 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2784 return MEMTX_ACCESS_ERROR; 2785 } 2786 2787 if (!memory_access_is_direct(mr, false)) { 2788 /* I/O case */ 2789 uint64_t val; 2790 MemTxResult result; 2791 bool release_lock = prepare_mmio_access(mr); 2792 2793 *l = memory_access_size(mr, *l, mr_addr); 2794 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2795 attrs); 2796 2797 /* 2798 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2799 * the buffer by following stn_he_p(). 2800 */ 2801 #ifdef QEMU_STATIC_ANALYSIS 2802 assert((*l == 1 && len >= 1) || 2803 (*l == 2 && len >= 2) || 2804 (*l == 4 && len >= 4) || 2805 (*l == 8 && len >= 8)); 2806 #endif 2807 stn_he_p(buf, *l, val); 2808 2809 if (release_lock) { 2810 bql_unlock(); 2811 } 2812 return result; 2813 } else { 2814 /* RAM case */ 2815 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2816 false); 2817 2818 memcpy(buf, ram_ptr, *l); 2819 2820 return MEMTX_OK; 2821 } 2822 } 2823 2824 /* Called within RCU critical section. */ 2825 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2826 MemTxAttrs attrs, void *ptr, 2827 hwaddr len, hwaddr mr_addr, hwaddr l, 2828 MemoryRegion *mr) 2829 { 2830 MemTxResult result = MEMTX_OK; 2831 uint8_t *buf = ptr; 2832 2833 fuzz_dma_read_cb(addr, len, mr); 2834 for (;;) { 2835 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2836 2837 len -= l; 2838 buf += l; 2839 addr += l; 2840 2841 if (!len) { 2842 break; 2843 } 2844 2845 l = len; 2846 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2847 } 2848 2849 return result; 2850 } 2851 2852 /* Called from RCU critical section. */ 2853 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2854 MemTxAttrs attrs, void *buf, hwaddr len) 2855 { 2856 hwaddr l; 2857 hwaddr mr_addr; 2858 MemoryRegion *mr; 2859 2860 l = len; 2861 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2862 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2863 return MEMTX_ACCESS_ERROR; 2864 } 2865 return flatview_read_continue(fv, addr, attrs, buf, len, 2866 mr_addr, l, mr); 2867 } 2868 2869 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2870 MemTxAttrs attrs, void *buf, hwaddr len) 2871 { 2872 MemTxResult result = MEMTX_OK; 2873 FlatView *fv; 2874 2875 if (len > 0) { 2876 RCU_READ_LOCK_GUARD(); 2877 fv = address_space_to_flatview(as); 2878 result = flatview_read(fv, addr, attrs, buf, len); 2879 } 2880 2881 return result; 2882 } 2883 2884 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2885 MemTxAttrs attrs, 2886 const void *buf, hwaddr len) 2887 { 2888 MemTxResult result = MEMTX_OK; 2889 FlatView *fv; 2890 2891 if (len > 0) { 2892 RCU_READ_LOCK_GUARD(); 2893 fv = address_space_to_flatview(as); 2894 result = flatview_write(fv, addr, attrs, buf, len); 2895 } 2896 2897 return result; 2898 } 2899 2900 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2901 void *buf, hwaddr len, bool is_write) 2902 { 2903 if (is_write) { 2904 return address_space_write(as, addr, attrs, buf, len); 2905 } else { 2906 return address_space_read_full(as, addr, attrs, buf, len); 2907 } 2908 } 2909 2910 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2911 uint8_t c, hwaddr len, MemTxAttrs attrs) 2912 { 2913 #define FILLBUF_SIZE 512 2914 uint8_t fillbuf[FILLBUF_SIZE]; 2915 int l; 2916 MemTxResult error = MEMTX_OK; 2917 2918 memset(fillbuf, c, FILLBUF_SIZE); 2919 while (len > 0) { 2920 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2921 error |= address_space_write(as, addr, attrs, fillbuf, l); 2922 len -= l; 2923 addr += l; 2924 } 2925 2926 return error; 2927 } 2928 2929 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2930 hwaddr len, bool is_write) 2931 { 2932 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2933 buf, len, is_write); 2934 } 2935 2936 enum write_rom_type { 2937 WRITE_DATA, 2938 FLUSH_CACHE, 2939 }; 2940 2941 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2942 hwaddr addr, 2943 MemTxAttrs attrs, 2944 const void *ptr, 2945 hwaddr len, 2946 enum write_rom_type type) 2947 { 2948 hwaddr l; 2949 uint8_t *ram_ptr; 2950 hwaddr addr1; 2951 MemoryRegion *mr; 2952 const uint8_t *buf = ptr; 2953 2954 RCU_READ_LOCK_GUARD(); 2955 while (len > 0) { 2956 l = len; 2957 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2958 2959 if (!(memory_region_is_ram(mr) || 2960 memory_region_is_romd(mr))) { 2961 l = memory_access_size(mr, l, addr1); 2962 } else { 2963 /* ROM/RAM case */ 2964 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2965 switch (type) { 2966 case WRITE_DATA: 2967 memcpy(ram_ptr, buf, l); 2968 invalidate_and_set_dirty(mr, addr1, l); 2969 break; 2970 case FLUSH_CACHE: 2971 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2972 break; 2973 } 2974 } 2975 len -= l; 2976 buf += l; 2977 addr += l; 2978 } 2979 return MEMTX_OK; 2980 } 2981 2982 /* used for ROM loading : can write in RAM and ROM */ 2983 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2984 MemTxAttrs attrs, 2985 const void *buf, hwaddr len) 2986 { 2987 return address_space_write_rom_internal(as, addr, attrs, 2988 buf, len, WRITE_DATA); 2989 } 2990 2991 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2992 { 2993 /* 2994 * This function should do the same thing as an icache flush that was 2995 * triggered from within the guest. For TCG we are always cache coherent, 2996 * so there is no need to flush anything. For KVM / Xen we need to flush 2997 * the host's instruction cache at least. 2998 */ 2999 if (tcg_enabled()) { 3000 return; 3001 } 3002 3003 address_space_write_rom_internal(&address_space_memory, 3004 start, MEMTXATTRS_UNSPECIFIED, 3005 NULL, len, FLUSH_CACHE); 3006 } 3007 3008 typedef struct { 3009 MemoryRegion *mr; 3010 void *buffer; 3011 hwaddr addr; 3012 hwaddr len; 3013 bool in_use; 3014 } BounceBuffer; 3015 3016 static BounceBuffer bounce; 3017 3018 typedef struct MapClient { 3019 QEMUBH *bh; 3020 QLIST_ENTRY(MapClient) link; 3021 } MapClient; 3022 3023 QemuMutex map_client_list_lock; 3024 static QLIST_HEAD(, MapClient) map_client_list 3025 = QLIST_HEAD_INITIALIZER(map_client_list); 3026 3027 static void cpu_unregister_map_client_do(MapClient *client) 3028 { 3029 QLIST_REMOVE(client, link); 3030 g_free(client); 3031 } 3032 3033 static void cpu_notify_map_clients_locked(void) 3034 { 3035 MapClient *client; 3036 3037 while (!QLIST_EMPTY(&map_client_list)) { 3038 client = QLIST_FIRST(&map_client_list); 3039 qemu_bh_schedule(client->bh); 3040 cpu_unregister_map_client_do(client); 3041 } 3042 } 3043 3044 void cpu_register_map_client(QEMUBH *bh) 3045 { 3046 MapClient *client = g_malloc(sizeof(*client)); 3047 3048 qemu_mutex_lock(&map_client_list_lock); 3049 client->bh = bh; 3050 QLIST_INSERT_HEAD(&map_client_list, client, link); 3051 /* Write map_client_list before reading in_use. */ 3052 smp_mb(); 3053 if (!qatomic_read(&bounce.in_use)) { 3054 cpu_notify_map_clients_locked(); 3055 } 3056 qemu_mutex_unlock(&map_client_list_lock); 3057 } 3058 3059 void cpu_exec_init_all(void) 3060 { 3061 qemu_mutex_init(&ram_list.mutex); 3062 /* The data structures we set up here depend on knowing the page size, 3063 * so no more changes can be made after this point. 3064 * In an ideal world, nothing we did before we had finished the 3065 * machine setup would care about the target page size, and we could 3066 * do this much later, rather than requiring board models to state 3067 * up front what their requirements are. 3068 */ 3069 finalize_target_page_bits(); 3070 io_mem_init(); 3071 memory_map_init(); 3072 qemu_mutex_init(&map_client_list_lock); 3073 } 3074 3075 void cpu_unregister_map_client(QEMUBH *bh) 3076 { 3077 MapClient *client; 3078 3079 qemu_mutex_lock(&map_client_list_lock); 3080 QLIST_FOREACH(client, &map_client_list, link) { 3081 if (client->bh == bh) { 3082 cpu_unregister_map_client_do(client); 3083 break; 3084 } 3085 } 3086 qemu_mutex_unlock(&map_client_list_lock); 3087 } 3088 3089 static void cpu_notify_map_clients(void) 3090 { 3091 qemu_mutex_lock(&map_client_list_lock); 3092 cpu_notify_map_clients_locked(); 3093 qemu_mutex_unlock(&map_client_list_lock); 3094 } 3095 3096 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3097 bool is_write, MemTxAttrs attrs) 3098 { 3099 MemoryRegion *mr; 3100 hwaddr l, xlat; 3101 3102 while (len > 0) { 3103 l = len; 3104 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3105 if (!memory_access_is_direct(mr, is_write)) { 3106 l = memory_access_size(mr, l, addr); 3107 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3108 return false; 3109 } 3110 } 3111 3112 len -= l; 3113 addr += l; 3114 } 3115 return true; 3116 } 3117 3118 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3119 hwaddr len, bool is_write, 3120 MemTxAttrs attrs) 3121 { 3122 FlatView *fv; 3123 3124 RCU_READ_LOCK_GUARD(); 3125 fv = address_space_to_flatview(as); 3126 return flatview_access_valid(fv, addr, len, is_write, attrs); 3127 } 3128 3129 static hwaddr 3130 flatview_extend_translation(FlatView *fv, hwaddr addr, 3131 hwaddr target_len, 3132 MemoryRegion *mr, hwaddr base, hwaddr len, 3133 bool is_write, MemTxAttrs attrs) 3134 { 3135 hwaddr done = 0; 3136 hwaddr xlat; 3137 MemoryRegion *this_mr; 3138 3139 for (;;) { 3140 target_len -= len; 3141 addr += len; 3142 done += len; 3143 if (target_len == 0) { 3144 return done; 3145 } 3146 3147 len = target_len; 3148 this_mr = flatview_translate(fv, addr, &xlat, 3149 &len, is_write, attrs); 3150 if (this_mr != mr || xlat != base + done) { 3151 return done; 3152 } 3153 } 3154 } 3155 3156 /* Map a physical memory region into a host virtual address. 3157 * May map a subset of the requested range, given by and returned in *plen. 3158 * May return NULL if resources needed to perform the mapping are exhausted. 3159 * Use only for reads OR writes - not for read-modify-write operations. 3160 * Use cpu_register_map_client() to know when retrying the map operation is 3161 * likely to succeed. 3162 */ 3163 void *address_space_map(AddressSpace *as, 3164 hwaddr addr, 3165 hwaddr *plen, 3166 bool is_write, 3167 MemTxAttrs attrs) 3168 { 3169 hwaddr len = *plen; 3170 hwaddr l, xlat; 3171 MemoryRegion *mr; 3172 FlatView *fv; 3173 3174 if (len == 0) { 3175 return NULL; 3176 } 3177 3178 l = len; 3179 RCU_READ_LOCK_GUARD(); 3180 fv = address_space_to_flatview(as); 3181 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3182 3183 if (!memory_access_is_direct(mr, is_write)) { 3184 if (qatomic_xchg(&bounce.in_use, true)) { 3185 *plen = 0; 3186 return NULL; 3187 } 3188 /* Avoid unbounded allocations */ 3189 l = MIN(l, TARGET_PAGE_SIZE); 3190 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3191 bounce.addr = addr; 3192 bounce.len = l; 3193 3194 memory_region_ref(mr); 3195 bounce.mr = mr; 3196 if (!is_write) { 3197 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3198 bounce.buffer, l); 3199 } 3200 3201 *plen = l; 3202 return bounce.buffer; 3203 } 3204 3205 3206 memory_region_ref(mr); 3207 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3208 l, is_write, attrs); 3209 fuzz_dma_read_cb(addr, *plen, mr); 3210 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3211 } 3212 3213 /* Unmaps a memory region previously mapped by address_space_map(). 3214 * Will also mark the memory as dirty if is_write is true. access_len gives 3215 * the amount of memory that was actually read or written by the caller. 3216 */ 3217 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3218 bool is_write, hwaddr access_len) 3219 { 3220 if (buffer != bounce.buffer) { 3221 MemoryRegion *mr; 3222 ram_addr_t addr1; 3223 3224 mr = memory_region_from_host(buffer, &addr1); 3225 assert(mr != NULL); 3226 if (is_write) { 3227 invalidate_and_set_dirty(mr, addr1, access_len); 3228 } 3229 if (xen_enabled()) { 3230 xen_invalidate_map_cache_entry(buffer); 3231 } 3232 memory_region_unref(mr); 3233 return; 3234 } 3235 if (is_write) { 3236 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3237 bounce.buffer, access_len); 3238 } 3239 qemu_vfree(bounce.buffer); 3240 bounce.buffer = NULL; 3241 memory_region_unref(bounce.mr); 3242 /* Clear in_use before reading map_client_list. */ 3243 qatomic_set_mb(&bounce.in_use, false); 3244 cpu_notify_map_clients(); 3245 } 3246 3247 void *cpu_physical_memory_map(hwaddr addr, 3248 hwaddr *plen, 3249 bool is_write) 3250 { 3251 return address_space_map(&address_space_memory, addr, plen, is_write, 3252 MEMTXATTRS_UNSPECIFIED); 3253 } 3254 3255 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3256 bool is_write, hwaddr access_len) 3257 { 3258 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3259 } 3260 3261 #define ARG1_DECL AddressSpace *as 3262 #define ARG1 as 3263 #define SUFFIX 3264 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3265 #define RCU_READ_LOCK(...) rcu_read_lock() 3266 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3267 #include "memory_ldst.c.inc" 3268 3269 int64_t address_space_cache_init(MemoryRegionCache *cache, 3270 AddressSpace *as, 3271 hwaddr addr, 3272 hwaddr len, 3273 bool is_write) 3274 { 3275 AddressSpaceDispatch *d; 3276 hwaddr l; 3277 MemoryRegion *mr; 3278 Int128 diff; 3279 3280 assert(len > 0); 3281 3282 l = len; 3283 cache->fv = address_space_get_flatview(as); 3284 d = flatview_to_dispatch(cache->fv); 3285 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3286 3287 /* 3288 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3289 * Take that into account to compute how many bytes are there between 3290 * cache->xlat and the end of the section. 3291 */ 3292 diff = int128_sub(cache->mrs.size, 3293 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3294 l = int128_get64(int128_min(diff, int128_make64(l))); 3295 3296 mr = cache->mrs.mr; 3297 memory_region_ref(mr); 3298 if (memory_access_is_direct(mr, is_write)) { 3299 /* We don't care about the memory attributes here as we're only 3300 * doing this if we found actual RAM, which behaves the same 3301 * regardless of attributes; so UNSPECIFIED is fine. 3302 */ 3303 l = flatview_extend_translation(cache->fv, addr, len, mr, 3304 cache->xlat, l, is_write, 3305 MEMTXATTRS_UNSPECIFIED); 3306 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3307 } else { 3308 cache->ptr = NULL; 3309 } 3310 3311 cache->len = l; 3312 cache->is_write = is_write; 3313 return l; 3314 } 3315 3316 void address_space_cache_invalidate(MemoryRegionCache *cache, 3317 hwaddr addr, 3318 hwaddr access_len) 3319 { 3320 assert(cache->is_write); 3321 if (likely(cache->ptr)) { 3322 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3323 } 3324 } 3325 3326 void address_space_cache_destroy(MemoryRegionCache *cache) 3327 { 3328 if (!cache->mrs.mr) { 3329 return; 3330 } 3331 3332 if (xen_enabled()) { 3333 xen_invalidate_map_cache_entry(cache->ptr); 3334 } 3335 memory_region_unref(cache->mrs.mr); 3336 flatview_unref(cache->fv); 3337 cache->mrs.mr = NULL; 3338 cache->fv = NULL; 3339 } 3340 3341 /* Called from RCU critical section. This function has the same 3342 * semantics as address_space_translate, but it only works on a 3343 * predefined range of a MemoryRegion that was mapped with 3344 * address_space_cache_init. 3345 */ 3346 static inline MemoryRegion *address_space_translate_cached( 3347 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3348 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3349 { 3350 MemoryRegionSection section; 3351 MemoryRegion *mr; 3352 IOMMUMemoryRegion *iommu_mr; 3353 AddressSpace *target_as; 3354 3355 assert(!cache->ptr); 3356 *xlat = addr + cache->xlat; 3357 3358 mr = cache->mrs.mr; 3359 iommu_mr = memory_region_get_iommu(mr); 3360 if (!iommu_mr) { 3361 /* MMIO region. */ 3362 return mr; 3363 } 3364 3365 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3366 NULL, is_write, true, 3367 &target_as, attrs); 3368 return section.mr; 3369 } 3370 3371 /* Called within RCU critical section. */ 3372 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3373 const void *ptr, 3374 hwaddr len, 3375 hwaddr mr_addr, 3376 hwaddr l, 3377 MemoryRegion *mr) 3378 { 3379 MemTxResult result = MEMTX_OK; 3380 const uint8_t *buf = ptr; 3381 3382 for (;;) { 3383 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3384 mr); 3385 3386 len -= l; 3387 buf += l; 3388 mr_addr += l; 3389 3390 if (!len) { 3391 break; 3392 } 3393 3394 l = len; 3395 } 3396 3397 return result; 3398 } 3399 3400 /* Called within RCU critical section. */ 3401 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3402 void *ptr, hwaddr len, 3403 hwaddr mr_addr, hwaddr l, 3404 MemoryRegion *mr) 3405 { 3406 MemTxResult result = MEMTX_OK; 3407 uint8_t *buf = ptr; 3408 3409 for (;;) { 3410 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3411 len -= l; 3412 buf += l; 3413 mr_addr += l; 3414 3415 if (!len) { 3416 break; 3417 } 3418 l = len; 3419 } 3420 3421 return result; 3422 } 3423 3424 /* Called from RCU critical section. address_space_read_cached uses this 3425 * out of line function when the target is an MMIO or IOMMU region. 3426 */ 3427 MemTxResult 3428 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3429 void *buf, hwaddr len) 3430 { 3431 hwaddr mr_addr, l; 3432 MemoryRegion *mr; 3433 3434 l = len; 3435 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3436 MEMTXATTRS_UNSPECIFIED); 3437 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3438 buf, len, mr_addr, l, mr); 3439 } 3440 3441 /* Called from RCU critical section. address_space_write_cached uses this 3442 * out of line function when the target is an MMIO or IOMMU region. 3443 */ 3444 MemTxResult 3445 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3446 const void *buf, hwaddr len) 3447 { 3448 hwaddr mr_addr, l; 3449 MemoryRegion *mr; 3450 3451 l = len; 3452 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3453 MEMTXATTRS_UNSPECIFIED); 3454 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3455 buf, len, mr_addr, l, mr); 3456 } 3457 3458 #define ARG1_DECL MemoryRegionCache *cache 3459 #define ARG1 cache 3460 #define SUFFIX _cached_slow 3461 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3462 #define RCU_READ_LOCK() ((void)0) 3463 #define RCU_READ_UNLOCK() ((void)0) 3464 #include "memory_ldst.c.inc" 3465 3466 /* virtual memory access for debug (includes writing to ROM) */ 3467 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3468 void *ptr, size_t len, bool is_write) 3469 { 3470 hwaddr phys_addr; 3471 vaddr l, page; 3472 uint8_t *buf = ptr; 3473 3474 cpu_synchronize_state(cpu); 3475 while (len > 0) { 3476 int asidx; 3477 MemTxAttrs attrs; 3478 MemTxResult res; 3479 3480 page = addr & TARGET_PAGE_MASK; 3481 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3482 asidx = cpu_asidx_from_attrs(cpu, attrs); 3483 /* if no physical page mapped, return an error */ 3484 if (phys_addr == -1) 3485 return -1; 3486 l = (page + TARGET_PAGE_SIZE) - addr; 3487 if (l > len) 3488 l = len; 3489 phys_addr += (addr & ~TARGET_PAGE_MASK); 3490 if (is_write) { 3491 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3492 attrs, buf, l); 3493 } else { 3494 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3495 attrs, buf, l); 3496 } 3497 if (res != MEMTX_OK) { 3498 return -1; 3499 } 3500 len -= l; 3501 buf += l; 3502 addr += l; 3503 } 3504 return 0; 3505 } 3506 3507 /* 3508 * Allows code that needs to deal with migration bitmaps etc to still be built 3509 * target independent. 3510 */ 3511 size_t qemu_target_page_size(void) 3512 { 3513 return TARGET_PAGE_SIZE; 3514 } 3515 3516 int qemu_target_page_bits(void) 3517 { 3518 return TARGET_PAGE_BITS; 3519 } 3520 3521 int qemu_target_page_bits_min(void) 3522 { 3523 return TARGET_PAGE_BITS_MIN; 3524 } 3525 3526 /* Convert target pages to MiB (2**20). */ 3527 size_t qemu_target_pages_to_MiB(size_t pages) 3528 { 3529 int page_bits = TARGET_PAGE_BITS; 3530 3531 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3532 g_assert(page_bits < 20); 3533 3534 return pages >> (20 - page_bits); 3535 } 3536 3537 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3538 { 3539 MemoryRegion*mr; 3540 hwaddr l = 1; 3541 3542 RCU_READ_LOCK_GUARD(); 3543 mr = address_space_translate(&address_space_memory, 3544 phys_addr, &phys_addr, &l, false, 3545 MEMTXATTRS_UNSPECIFIED); 3546 3547 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3548 } 3549 3550 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3551 { 3552 RAMBlock *block; 3553 int ret = 0; 3554 3555 RCU_READ_LOCK_GUARD(); 3556 RAMBLOCK_FOREACH(block) { 3557 ret = func(block, opaque); 3558 if (ret) { 3559 break; 3560 } 3561 } 3562 return ret; 3563 } 3564 3565 /* 3566 * Unmap pages of memory from start to start+length such that 3567 * they a) read as 0, b) Trigger whatever fault mechanism 3568 * the OS provides for postcopy. 3569 * The pages must be unmapped by the end of the function. 3570 * Returns: 0 on success, none-0 on failure 3571 * 3572 */ 3573 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3574 { 3575 int ret = -1; 3576 3577 uint8_t *host_startaddr = rb->host + start; 3578 3579 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3580 error_report("%s: Unaligned start address: %p", 3581 __func__, host_startaddr); 3582 goto err; 3583 } 3584 3585 if ((start + length) <= rb->max_length) { 3586 bool need_madvise, need_fallocate; 3587 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3588 error_report("%s: Unaligned length: %zx", __func__, length); 3589 goto err; 3590 } 3591 3592 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3593 3594 /* The logic here is messy; 3595 * madvise DONTNEED fails for hugepages 3596 * fallocate works on hugepages and shmem 3597 * shared anonymous memory requires madvise REMOVE 3598 */ 3599 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3600 need_fallocate = rb->fd != -1; 3601 if (need_fallocate) { 3602 /* For a file, this causes the area of the file to be zero'd 3603 * if read, and for hugetlbfs also causes it to be unmapped 3604 * so a userfault will trigger. 3605 */ 3606 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3607 /* 3608 * fallocate() will fail with readonly files. Let's print a 3609 * proper error message. 3610 */ 3611 if (rb->flags & RAM_READONLY_FD) { 3612 error_report("%s: Discarding RAM with readonly files is not" 3613 " supported", __func__); 3614 goto err; 3615 3616 } 3617 /* 3618 * We'll discard data from the actual file, even though we only 3619 * have a MAP_PRIVATE mapping, possibly messing with other 3620 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3621 * change that behavior whithout violating the promised 3622 * semantics of ram_block_discard_range(). 3623 * 3624 * Only warn, because it works as long as nobody else uses that 3625 * file. 3626 */ 3627 if (!qemu_ram_is_shared(rb)) { 3628 warn_report_once("%s: Discarding RAM" 3629 " in private file mappings is possibly" 3630 " dangerous, because it will modify the" 3631 " underlying file and will affect other" 3632 " users of the file", __func__); 3633 } 3634 3635 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3636 start, length); 3637 if (ret) { 3638 ret = -errno; 3639 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3640 __func__, rb->idstr, start, length, ret); 3641 goto err; 3642 } 3643 #else 3644 ret = -ENOSYS; 3645 error_report("%s: fallocate not available/file" 3646 "%s:%" PRIx64 " +%zx (%d)", 3647 __func__, rb->idstr, start, length, ret); 3648 goto err; 3649 #endif 3650 } 3651 if (need_madvise) { 3652 /* For normal RAM this causes it to be unmapped, 3653 * for shared memory it causes the local mapping to disappear 3654 * and to fall back on the file contents (which we just 3655 * fallocate'd away). 3656 */ 3657 #if defined(CONFIG_MADVISE) 3658 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3659 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3660 } else { 3661 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3662 } 3663 if (ret) { 3664 ret = -errno; 3665 error_report("%s: Failed to discard range " 3666 "%s:%" PRIx64 " +%zx (%d)", 3667 __func__, rb->idstr, start, length, ret); 3668 goto err; 3669 } 3670 #else 3671 ret = -ENOSYS; 3672 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3673 __func__, rb->idstr, start, length, ret); 3674 goto err; 3675 #endif 3676 } 3677 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3678 need_madvise, need_fallocate, ret); 3679 } else { 3680 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3681 __func__, rb->idstr, start, length, rb->max_length); 3682 } 3683 3684 err: 3685 return ret; 3686 } 3687 3688 bool ramblock_is_pmem(RAMBlock *rb) 3689 { 3690 return rb->flags & RAM_PMEM; 3691 } 3692 3693 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3694 { 3695 if (start == end - 1) { 3696 qemu_printf("\t%3d ", start); 3697 } else { 3698 qemu_printf("\t%3d..%-3d ", start, end - 1); 3699 } 3700 qemu_printf(" skip=%d ", skip); 3701 if (ptr == PHYS_MAP_NODE_NIL) { 3702 qemu_printf(" ptr=NIL"); 3703 } else if (!skip) { 3704 qemu_printf(" ptr=#%d", ptr); 3705 } else { 3706 qemu_printf(" ptr=[%d]", ptr); 3707 } 3708 qemu_printf("\n"); 3709 } 3710 3711 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3712 int128_sub((size), int128_one())) : 0) 3713 3714 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3715 { 3716 int i; 3717 3718 qemu_printf(" Dispatch\n"); 3719 qemu_printf(" Physical sections\n"); 3720 3721 for (i = 0; i < d->map.sections_nb; ++i) { 3722 MemoryRegionSection *s = d->map.sections + i; 3723 const char *names[] = { " [unassigned]", " [not dirty]", 3724 " [ROM]", " [watch]" }; 3725 3726 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3727 " %s%s%s%s%s", 3728 i, 3729 s->offset_within_address_space, 3730 s->offset_within_address_space + MR_SIZE(s->size), 3731 s->mr->name ? s->mr->name : "(noname)", 3732 i < ARRAY_SIZE(names) ? names[i] : "", 3733 s->mr == root ? " [ROOT]" : "", 3734 s == d->mru_section ? " [MRU]" : "", 3735 s->mr->is_iommu ? " [iommu]" : ""); 3736 3737 if (s->mr->alias) { 3738 qemu_printf(" alias=%s", s->mr->alias->name ? 3739 s->mr->alias->name : "noname"); 3740 } 3741 qemu_printf("\n"); 3742 } 3743 3744 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3745 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3746 for (i = 0; i < d->map.nodes_nb; ++i) { 3747 int j, jprev; 3748 PhysPageEntry prev; 3749 Node *n = d->map.nodes + i; 3750 3751 qemu_printf(" [%d]\n", i); 3752 3753 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3754 PhysPageEntry *pe = *n + j; 3755 3756 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3757 continue; 3758 } 3759 3760 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3761 3762 jprev = j; 3763 prev = *pe; 3764 } 3765 3766 if (jprev != ARRAY_SIZE(*n)) { 3767 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3768 } 3769 } 3770 } 3771 3772 /* Require any discards to work. */ 3773 static unsigned int ram_block_discard_required_cnt; 3774 /* Require only coordinated discards to work. */ 3775 static unsigned int ram_block_coordinated_discard_required_cnt; 3776 /* Disable any discards. */ 3777 static unsigned int ram_block_discard_disabled_cnt; 3778 /* Disable only uncoordinated discards. */ 3779 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3780 static QemuMutex ram_block_discard_disable_mutex; 3781 3782 static void ram_block_discard_disable_mutex_lock(void) 3783 { 3784 static gsize initialized; 3785 3786 if (g_once_init_enter(&initialized)) { 3787 qemu_mutex_init(&ram_block_discard_disable_mutex); 3788 g_once_init_leave(&initialized, 1); 3789 } 3790 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3791 } 3792 3793 static void ram_block_discard_disable_mutex_unlock(void) 3794 { 3795 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3796 } 3797 3798 int ram_block_discard_disable(bool state) 3799 { 3800 int ret = 0; 3801 3802 ram_block_discard_disable_mutex_lock(); 3803 if (!state) { 3804 ram_block_discard_disabled_cnt--; 3805 } else if (ram_block_discard_required_cnt || 3806 ram_block_coordinated_discard_required_cnt) { 3807 ret = -EBUSY; 3808 } else { 3809 ram_block_discard_disabled_cnt++; 3810 } 3811 ram_block_discard_disable_mutex_unlock(); 3812 return ret; 3813 } 3814 3815 int ram_block_uncoordinated_discard_disable(bool state) 3816 { 3817 int ret = 0; 3818 3819 ram_block_discard_disable_mutex_lock(); 3820 if (!state) { 3821 ram_block_uncoordinated_discard_disabled_cnt--; 3822 } else if (ram_block_discard_required_cnt) { 3823 ret = -EBUSY; 3824 } else { 3825 ram_block_uncoordinated_discard_disabled_cnt++; 3826 } 3827 ram_block_discard_disable_mutex_unlock(); 3828 return ret; 3829 } 3830 3831 int ram_block_discard_require(bool state) 3832 { 3833 int ret = 0; 3834 3835 ram_block_discard_disable_mutex_lock(); 3836 if (!state) { 3837 ram_block_discard_required_cnt--; 3838 } else if (ram_block_discard_disabled_cnt || 3839 ram_block_uncoordinated_discard_disabled_cnt) { 3840 ret = -EBUSY; 3841 } else { 3842 ram_block_discard_required_cnt++; 3843 } 3844 ram_block_discard_disable_mutex_unlock(); 3845 return ret; 3846 } 3847 3848 int ram_block_coordinated_discard_require(bool state) 3849 { 3850 int ret = 0; 3851 3852 ram_block_discard_disable_mutex_lock(); 3853 if (!state) { 3854 ram_block_coordinated_discard_required_cnt--; 3855 } else if (ram_block_discard_disabled_cnt) { 3856 ret = -EBUSY; 3857 } else { 3858 ram_block_coordinated_discard_required_cnt++; 3859 } 3860 ram_block_discard_disable_mutex_unlock(); 3861 return ret; 3862 } 3863 3864 bool ram_block_discard_is_disabled(void) 3865 { 3866 return qatomic_read(&ram_block_discard_disabled_cnt) || 3867 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3868 } 3869 3870 bool ram_block_discard_is_required(void) 3871 { 3872 return qatomic_read(&ram_block_discard_required_cnt) || 3873 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3874 } 3875