1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 34 #include "exec/exec-all.h" 35 #include "exec/page-protection.h" 36 #include "exec/target_page.h" 37 #include "exec/translation-block.h" 38 #include "hw/qdev-core.h" 39 #include "hw/qdev-properties.h" 40 #include "hw/boards.h" 41 #include "system/xen.h" 42 #include "system/kvm.h" 43 #include "system/tcg.h" 44 #include "system/qtest.h" 45 #include "qemu/timer.h" 46 #include "qemu/config-file.h" 47 #include "qemu/error-report.h" 48 #include "qemu/qemu-print.h" 49 #include "qemu/log.h" 50 #include "qemu/memalign.h" 51 #include "qemu/memfd.h" 52 #include "exec/memory.h" 53 #include "exec/ioport.h" 54 #include "system/dma.h" 55 #include "system/hostmem.h" 56 #include "system/hw_accel.h" 57 #include "system/xen-mapcache.h" 58 #include "trace.h" 59 60 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 61 #include <linux/falloc.h> 62 #endif 63 64 #include "qemu/rcu_queue.h" 65 #include "qemu/main-loop.h" 66 #include "system/replay.h" 67 68 #include "exec/memory-internal.h" 69 #include "exec/ram_addr.h" 70 71 #include "qemu/pmem.h" 72 73 #include "migration/vmstate.h" 74 75 #include "qemu/range.h" 76 #ifndef _WIN32 77 #include "qemu/mmap-alloc.h" 78 #endif 79 80 #include "monitor/monitor.h" 81 82 #ifdef CONFIG_LIBDAXCTL 83 #include <daxctl/libdaxctl.h> 84 #endif 85 86 //#define DEBUG_SUBPAGE 87 88 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 89 * are protected by the ramlist lock. 90 */ 91 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 92 93 static MemoryRegion *system_memory; 94 static MemoryRegion *system_io; 95 96 AddressSpace address_space_io; 97 AddressSpace address_space_memory; 98 99 static MemoryRegion io_mem_unassigned; 100 101 typedef struct PhysPageEntry PhysPageEntry; 102 103 struct PhysPageEntry { 104 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 105 uint32_t skip : 6; 106 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 107 uint32_t ptr : 26; 108 }; 109 110 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 111 112 /* Size of the L2 (and L3, etc) page tables. */ 113 #define ADDR_SPACE_BITS 64 114 115 #define P_L2_BITS 9 116 #define P_L2_SIZE (1 << P_L2_BITS) 117 118 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 119 120 typedef PhysPageEntry Node[P_L2_SIZE]; 121 122 typedef struct PhysPageMap { 123 struct rcu_head rcu; 124 125 unsigned sections_nb; 126 unsigned sections_nb_alloc; 127 unsigned nodes_nb; 128 unsigned nodes_nb_alloc; 129 Node *nodes; 130 MemoryRegionSection *sections; 131 } PhysPageMap; 132 133 struct AddressSpaceDispatch { 134 MemoryRegionSection *mru_section; 135 /* This is a multi-level map on the physical address space. 136 * The bottom level has pointers to MemoryRegionSections. 137 */ 138 PhysPageEntry phys_map; 139 PhysPageMap map; 140 }; 141 142 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 143 typedef struct subpage_t { 144 MemoryRegion iomem; 145 FlatView *fv; 146 hwaddr base; 147 uint16_t sub_section[]; 148 } subpage_t; 149 150 #define PHYS_SECTION_UNASSIGNED 0 151 152 static void io_mem_init(void); 153 static void memory_map_init(void); 154 static void tcg_log_global_after_sync(MemoryListener *listener); 155 static void tcg_commit(MemoryListener *listener); 156 157 /** 158 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 159 * @cpu: the CPU whose AddressSpace this is 160 * @as: the AddressSpace itself 161 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 162 * @tcg_as_listener: listener for tracking changes to the AddressSpace 163 */ 164 typedef struct CPUAddressSpace { 165 CPUState *cpu; 166 AddressSpace *as; 167 struct AddressSpaceDispatch *memory_dispatch; 168 MemoryListener tcg_as_listener; 169 } CPUAddressSpace; 170 171 struct DirtyBitmapSnapshot { 172 ram_addr_t start; 173 ram_addr_t end; 174 unsigned long dirty[]; 175 }; 176 177 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 178 { 179 static unsigned alloc_hint = 16; 180 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 181 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 182 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 183 alloc_hint = map->nodes_nb_alloc; 184 } 185 } 186 187 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 188 { 189 unsigned i; 190 uint32_t ret; 191 PhysPageEntry e; 192 PhysPageEntry *p; 193 194 ret = map->nodes_nb++; 195 p = map->nodes[ret]; 196 assert(ret != PHYS_MAP_NODE_NIL); 197 assert(ret != map->nodes_nb_alloc); 198 199 e.skip = leaf ? 0 : 1; 200 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 201 for (i = 0; i < P_L2_SIZE; ++i) { 202 memcpy(&p[i], &e, sizeof(e)); 203 } 204 return ret; 205 } 206 207 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 208 hwaddr *index, uint64_t *nb, uint16_t leaf, 209 int level) 210 { 211 PhysPageEntry *p; 212 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 213 214 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 215 lp->ptr = phys_map_node_alloc(map, level == 0); 216 } 217 p = map->nodes[lp->ptr]; 218 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 219 220 while (*nb && lp < &p[P_L2_SIZE]) { 221 if ((*index & (step - 1)) == 0 && *nb >= step) { 222 lp->skip = 0; 223 lp->ptr = leaf; 224 *index += step; 225 *nb -= step; 226 } else { 227 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 228 } 229 ++lp; 230 } 231 } 232 233 static void phys_page_set(AddressSpaceDispatch *d, 234 hwaddr index, uint64_t nb, 235 uint16_t leaf) 236 { 237 /* Wildly overreserve - it doesn't matter much. */ 238 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 239 240 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 241 } 242 243 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 244 * and update our entry so we can skip it and go directly to the destination. 245 */ 246 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 247 { 248 unsigned valid_ptr = P_L2_SIZE; 249 int valid = 0; 250 PhysPageEntry *p; 251 int i; 252 253 if (lp->ptr == PHYS_MAP_NODE_NIL) { 254 return; 255 } 256 257 p = nodes[lp->ptr]; 258 for (i = 0; i < P_L2_SIZE; i++) { 259 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 260 continue; 261 } 262 263 valid_ptr = i; 264 valid++; 265 if (p[i].skip) { 266 phys_page_compact(&p[i], nodes); 267 } 268 } 269 270 /* We can only compress if there's only one child. */ 271 if (valid != 1) { 272 return; 273 } 274 275 assert(valid_ptr < P_L2_SIZE); 276 277 /* Don't compress if it won't fit in the # of bits we have. */ 278 if (P_L2_LEVELS >= (1 << 6) && 279 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 280 return; 281 } 282 283 lp->ptr = p[valid_ptr].ptr; 284 if (!p[valid_ptr].skip) { 285 /* If our only child is a leaf, make this a leaf. */ 286 /* By design, we should have made this node a leaf to begin with so we 287 * should never reach here. 288 * But since it's so simple to handle this, let's do it just in case we 289 * change this rule. 290 */ 291 lp->skip = 0; 292 } else { 293 lp->skip += p[valid_ptr].skip; 294 } 295 } 296 297 void address_space_dispatch_compact(AddressSpaceDispatch *d) 298 { 299 if (d->phys_map.skip) { 300 phys_page_compact(&d->phys_map, d->map.nodes); 301 } 302 } 303 304 static inline bool section_covers_addr(const MemoryRegionSection *section, 305 hwaddr addr) 306 { 307 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 308 * the section must cover the entire address space. 309 */ 310 return int128_gethi(section->size) || 311 range_covers_byte(section->offset_within_address_space, 312 int128_getlo(section->size), addr); 313 } 314 315 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 316 { 317 PhysPageEntry lp = d->phys_map, *p; 318 Node *nodes = d->map.nodes; 319 MemoryRegionSection *sections = d->map.sections; 320 hwaddr index = addr >> TARGET_PAGE_BITS; 321 int i; 322 323 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 324 if (lp.ptr == PHYS_MAP_NODE_NIL) { 325 return §ions[PHYS_SECTION_UNASSIGNED]; 326 } 327 p = nodes[lp.ptr]; 328 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 329 } 330 331 if (section_covers_addr(§ions[lp.ptr], addr)) { 332 return §ions[lp.ptr]; 333 } else { 334 return §ions[PHYS_SECTION_UNASSIGNED]; 335 } 336 } 337 338 /* Called from RCU critical section */ 339 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 340 hwaddr addr, 341 bool resolve_subpage) 342 { 343 MemoryRegionSection *section = qatomic_read(&d->mru_section); 344 subpage_t *subpage; 345 346 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 347 !section_covers_addr(section, addr)) { 348 section = phys_page_find(d, addr); 349 qatomic_set(&d->mru_section, section); 350 } 351 if (resolve_subpage && section->mr->subpage) { 352 subpage = container_of(section->mr, subpage_t, iomem); 353 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 354 } 355 return section; 356 } 357 358 /* Called from RCU critical section */ 359 static MemoryRegionSection * 360 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 361 hwaddr *plen, bool resolve_subpage) 362 { 363 MemoryRegionSection *section; 364 MemoryRegion *mr; 365 Int128 diff; 366 367 section = address_space_lookup_region(d, addr, resolve_subpage); 368 /* Compute offset within MemoryRegionSection */ 369 addr -= section->offset_within_address_space; 370 371 /* Compute offset within MemoryRegion */ 372 *xlat = addr + section->offset_within_region; 373 374 mr = section->mr; 375 376 /* MMIO registers can be expected to perform full-width accesses based only 377 * on their address, without considering adjacent registers that could 378 * decode to completely different MemoryRegions. When such registers 379 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 380 * regions overlap wildly. For this reason we cannot clamp the accesses 381 * here. 382 * 383 * If the length is small (as is the case for address_space_ldl/stl), 384 * everything works fine. If the incoming length is large, however, 385 * the caller really has to do the clamping through memory_access_size. 386 */ 387 if (memory_region_is_ram(mr)) { 388 diff = int128_sub(section->size, int128_make64(addr)); 389 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 390 } 391 return section; 392 } 393 394 /** 395 * address_space_translate_iommu - translate an address through an IOMMU 396 * memory region and then through the target address space. 397 * 398 * @iommu_mr: the IOMMU memory region that we start the translation from 399 * @addr: the address to be translated through the MMU 400 * @xlat: the translated address offset within the destination memory region. 401 * It cannot be %NULL. 402 * @plen_out: valid read/write length of the translated address. It 403 * cannot be %NULL. 404 * @page_mask_out: page mask for the translated address. This 405 * should only be meaningful for IOMMU translated 406 * addresses, since there may be huge pages that this bit 407 * would tell. It can be %NULL if we don't care about it. 408 * @is_write: whether the translation operation is for write 409 * @is_mmio: whether this can be MMIO, set true if it can 410 * @target_as: the address space targeted by the IOMMU 411 * @attrs: transaction attributes 412 * 413 * This function is called from RCU critical section. It is the common 414 * part of flatview_do_translate and address_space_translate_cached. 415 */ 416 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 417 hwaddr *xlat, 418 hwaddr *plen_out, 419 hwaddr *page_mask_out, 420 bool is_write, 421 bool is_mmio, 422 AddressSpace **target_as, 423 MemTxAttrs attrs) 424 { 425 MemoryRegionSection *section; 426 hwaddr page_mask = (hwaddr)-1; 427 428 do { 429 hwaddr addr = *xlat; 430 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 431 int iommu_idx = 0; 432 IOMMUTLBEntry iotlb; 433 434 if (imrc->attrs_to_index) { 435 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 436 } 437 438 iotlb = imrc->translate(iommu_mr, addr, is_write ? 439 IOMMU_WO : IOMMU_RO, iommu_idx); 440 441 if (!(iotlb.perm & (1 << is_write))) { 442 goto unassigned; 443 } 444 445 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 446 | (addr & iotlb.addr_mask)); 447 page_mask &= iotlb.addr_mask; 448 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 449 *target_as = iotlb.target_as; 450 451 section = address_space_translate_internal( 452 address_space_to_dispatch(iotlb.target_as), addr, xlat, 453 plen_out, is_mmio); 454 455 iommu_mr = memory_region_get_iommu(section->mr); 456 } while (unlikely(iommu_mr)); 457 458 if (page_mask_out) { 459 *page_mask_out = page_mask; 460 } 461 return *section; 462 463 unassigned: 464 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 465 } 466 467 /** 468 * flatview_do_translate - translate an address in FlatView 469 * 470 * @fv: the flat view that we want to translate on 471 * @addr: the address to be translated in above address space 472 * @xlat: the translated address offset within memory region. It 473 * cannot be @NULL. 474 * @plen_out: valid read/write length of the translated address. It 475 * can be @NULL when we don't care about it. 476 * @page_mask_out: page mask for the translated address. This 477 * should only be meaningful for IOMMU translated 478 * addresses, since there may be huge pages that this bit 479 * would tell. It can be @NULL if we don't care about it. 480 * @is_write: whether the translation operation is for write 481 * @is_mmio: whether this can be MMIO, set true if it can 482 * @target_as: the address space targeted by the IOMMU 483 * @attrs: memory transaction attributes 484 * 485 * This function is called from RCU critical section 486 */ 487 static MemoryRegionSection flatview_do_translate(FlatView *fv, 488 hwaddr addr, 489 hwaddr *xlat, 490 hwaddr *plen_out, 491 hwaddr *page_mask_out, 492 bool is_write, 493 bool is_mmio, 494 AddressSpace **target_as, 495 MemTxAttrs attrs) 496 { 497 MemoryRegionSection *section; 498 IOMMUMemoryRegion *iommu_mr; 499 hwaddr plen = (hwaddr)(-1); 500 501 if (!plen_out) { 502 plen_out = &plen; 503 } 504 505 section = address_space_translate_internal( 506 flatview_to_dispatch(fv), addr, xlat, 507 plen_out, is_mmio); 508 509 iommu_mr = memory_region_get_iommu(section->mr); 510 if (unlikely(iommu_mr)) { 511 return address_space_translate_iommu(iommu_mr, xlat, 512 plen_out, page_mask_out, 513 is_write, is_mmio, 514 target_as, attrs); 515 } 516 if (page_mask_out) { 517 /* Not behind an IOMMU, use default page size. */ 518 *page_mask_out = ~TARGET_PAGE_MASK; 519 } 520 521 return *section; 522 } 523 524 /* Called from RCU critical section */ 525 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 526 bool is_write, MemTxAttrs attrs) 527 { 528 MemoryRegionSection section; 529 hwaddr xlat, page_mask; 530 531 /* 532 * This can never be MMIO, and we don't really care about plen, 533 * but page mask. 534 */ 535 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 536 NULL, &page_mask, is_write, false, &as, 537 attrs); 538 539 /* Illegal translation */ 540 if (section.mr == &io_mem_unassigned) { 541 goto iotlb_fail; 542 } 543 544 /* Convert memory region offset into address space offset */ 545 xlat += section.offset_within_address_space - 546 section.offset_within_region; 547 548 return (IOMMUTLBEntry) { 549 .target_as = as, 550 .iova = addr & ~page_mask, 551 .translated_addr = xlat & ~page_mask, 552 .addr_mask = page_mask, 553 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 554 .perm = IOMMU_RW, 555 }; 556 557 iotlb_fail: 558 return (IOMMUTLBEntry) {0}; 559 } 560 561 /* Called from RCU critical section */ 562 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 563 hwaddr *plen, bool is_write, 564 MemTxAttrs attrs) 565 { 566 MemoryRegion *mr; 567 MemoryRegionSection section; 568 AddressSpace *as = NULL; 569 570 /* This can be MMIO, so setup MMIO bit. */ 571 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 572 is_write, true, &as, attrs); 573 mr = section.mr; 574 575 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 576 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 577 *plen = MIN(page, *plen); 578 } 579 580 return mr; 581 } 582 583 typedef struct TCGIOMMUNotifier { 584 IOMMUNotifier n; 585 MemoryRegion *mr; 586 CPUState *cpu; 587 int iommu_idx; 588 bool active; 589 } TCGIOMMUNotifier; 590 591 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 592 { 593 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 594 595 if (!notifier->active) { 596 return; 597 } 598 tlb_flush(notifier->cpu); 599 notifier->active = false; 600 /* We leave the notifier struct on the list to avoid reallocating it later. 601 * Generally the number of IOMMUs a CPU deals with will be small. 602 * In any case we can't unregister the iommu notifier from a notify 603 * callback. 604 */ 605 } 606 607 static void tcg_register_iommu_notifier(CPUState *cpu, 608 IOMMUMemoryRegion *iommu_mr, 609 int iommu_idx) 610 { 611 /* Make sure this CPU has an IOMMU notifier registered for this 612 * IOMMU/IOMMU index combination, so that we can flush its TLB 613 * when the IOMMU tells us the mappings we've cached have changed. 614 */ 615 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 616 TCGIOMMUNotifier *notifier = NULL; 617 int i; 618 619 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 620 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 621 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 622 break; 623 } 624 } 625 if (i == cpu->iommu_notifiers->len) { 626 /* Not found, add a new entry at the end of the array */ 627 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 628 notifier = g_new0(TCGIOMMUNotifier, 1); 629 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 630 631 notifier->mr = mr; 632 notifier->iommu_idx = iommu_idx; 633 notifier->cpu = cpu; 634 /* Rather than trying to register interest in the specific part 635 * of the iommu's address space that we've accessed and then 636 * expand it later as subsequent accesses touch more of it, we 637 * just register interest in the whole thing, on the assumption 638 * that iommu reconfiguration will be rare. 639 */ 640 iommu_notifier_init(¬ifier->n, 641 tcg_iommu_unmap_notify, 642 IOMMU_NOTIFIER_UNMAP, 643 0, 644 HWADDR_MAX, 645 iommu_idx); 646 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 647 &error_fatal); 648 } 649 650 if (!notifier->active) { 651 notifier->active = true; 652 } 653 } 654 655 void tcg_iommu_free_notifier_list(CPUState *cpu) 656 { 657 /* Destroy the CPU's notifier list */ 658 int i; 659 TCGIOMMUNotifier *notifier; 660 661 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 662 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 663 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 664 g_free(notifier); 665 } 666 g_array_free(cpu->iommu_notifiers, true); 667 } 668 669 void tcg_iommu_init_notifier_list(CPUState *cpu) 670 { 671 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 672 } 673 674 /* Called from RCU critical section */ 675 MemoryRegionSection * 676 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 677 hwaddr *xlat, hwaddr *plen, 678 MemTxAttrs attrs, int *prot) 679 { 680 MemoryRegionSection *section; 681 IOMMUMemoryRegion *iommu_mr; 682 IOMMUMemoryRegionClass *imrc; 683 IOMMUTLBEntry iotlb; 684 int iommu_idx; 685 hwaddr addr = orig_addr; 686 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 687 688 for (;;) { 689 section = address_space_translate_internal(d, addr, &addr, plen, false); 690 691 iommu_mr = memory_region_get_iommu(section->mr); 692 if (!iommu_mr) { 693 break; 694 } 695 696 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 697 698 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 699 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 700 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 701 * doesn't short-cut its translation table walk. 702 */ 703 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 704 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 705 | (addr & iotlb.addr_mask)); 706 /* Update the caller's prot bits to remove permissions the IOMMU 707 * is giving us a failure response for. If we get down to no 708 * permissions left at all we can give up now. 709 */ 710 if (!(iotlb.perm & IOMMU_RO)) { 711 *prot &= ~(PAGE_READ | PAGE_EXEC); 712 } 713 if (!(iotlb.perm & IOMMU_WO)) { 714 *prot &= ~PAGE_WRITE; 715 } 716 717 if (!*prot) { 718 goto translate_fail; 719 } 720 721 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 722 } 723 724 assert(!memory_region_is_iommu(section->mr)); 725 *xlat = addr; 726 return section; 727 728 translate_fail: 729 /* 730 * We should be given a page-aligned address -- certainly 731 * tlb_set_page_with_attrs() does so. The page offset of xlat 732 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 733 * The page portion of xlat will be logged by memory_region_access_valid() 734 * when this memory access is rejected, so use the original untranslated 735 * physical address. 736 */ 737 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 738 *xlat = orig_addr; 739 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 740 } 741 742 void cpu_address_space_init(CPUState *cpu, int asidx, 743 const char *prefix, MemoryRegion *mr) 744 { 745 CPUAddressSpace *newas; 746 AddressSpace *as = g_new0(AddressSpace, 1); 747 char *as_name; 748 749 assert(mr); 750 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 751 address_space_init(as, mr, as_name); 752 g_free(as_name); 753 754 /* Target code should have set num_ases before calling us */ 755 assert(asidx < cpu->num_ases); 756 757 if (asidx == 0) { 758 /* address space 0 gets the convenience alias */ 759 cpu->as = as; 760 } 761 762 /* KVM cannot currently support multiple address spaces. */ 763 assert(asidx == 0 || !kvm_enabled()); 764 765 if (!cpu->cpu_ases) { 766 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 767 cpu->cpu_ases_count = cpu->num_ases; 768 } 769 770 newas = &cpu->cpu_ases[asidx]; 771 newas->cpu = cpu; 772 newas->as = as; 773 if (tcg_enabled()) { 774 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 775 newas->tcg_as_listener.commit = tcg_commit; 776 newas->tcg_as_listener.name = "tcg"; 777 memory_listener_register(&newas->tcg_as_listener, as); 778 } 779 } 780 781 void cpu_address_space_destroy(CPUState *cpu, int asidx) 782 { 783 CPUAddressSpace *cpuas; 784 785 assert(cpu->cpu_ases); 786 assert(asidx >= 0 && asidx < cpu->num_ases); 787 /* KVM cannot currently support multiple address spaces. */ 788 assert(asidx == 0 || !kvm_enabled()); 789 790 cpuas = &cpu->cpu_ases[asidx]; 791 if (tcg_enabled()) { 792 memory_listener_unregister(&cpuas->tcg_as_listener); 793 } 794 795 address_space_destroy(cpuas->as); 796 g_free_rcu(cpuas->as, rcu); 797 798 if (asidx == 0) { 799 /* reset the convenience alias for address space 0 */ 800 cpu->as = NULL; 801 } 802 803 if (--cpu->cpu_ases_count == 0) { 804 g_free(cpu->cpu_ases); 805 cpu->cpu_ases = NULL; 806 } 807 } 808 809 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 810 { 811 /* Return the AddressSpace corresponding to the specified index */ 812 return cpu->cpu_ases[asidx].as; 813 } 814 815 /* Called from RCU critical section */ 816 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 817 { 818 RAMBlock *block; 819 820 block = qatomic_rcu_read(&ram_list.mru_block); 821 if (block && addr - block->offset < block->max_length) { 822 return block; 823 } 824 RAMBLOCK_FOREACH(block) { 825 if (addr - block->offset < block->max_length) { 826 goto found; 827 } 828 } 829 830 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 831 abort(); 832 833 found: 834 /* It is safe to write mru_block outside the BQL. This 835 * is what happens: 836 * 837 * mru_block = xxx 838 * rcu_read_unlock() 839 * xxx removed from list 840 * rcu_read_lock() 841 * read mru_block 842 * mru_block = NULL; 843 * call_rcu(reclaim_ramblock, xxx); 844 * rcu_read_unlock() 845 * 846 * qatomic_rcu_set is not needed here. The block was already published 847 * when it was placed into the list. Here we're just making an extra 848 * copy of the pointer. 849 */ 850 ram_list.mru_block = block; 851 return block; 852 } 853 854 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 855 { 856 CPUState *cpu; 857 ram_addr_t start1; 858 RAMBlock *block; 859 ram_addr_t end; 860 861 assert(tcg_enabled()); 862 end = TARGET_PAGE_ALIGN(start + length); 863 start &= TARGET_PAGE_MASK; 864 865 RCU_READ_LOCK_GUARD(); 866 block = qemu_get_ram_block(start); 867 assert(block == qemu_get_ram_block(end - 1)); 868 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 869 CPU_FOREACH(cpu) { 870 tlb_reset_dirty(cpu, start1, length); 871 } 872 } 873 874 /* Note: start and end must be within the same ram block. */ 875 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 876 ram_addr_t length, 877 unsigned client) 878 { 879 DirtyMemoryBlocks *blocks; 880 unsigned long end, page, start_page; 881 bool dirty = false; 882 RAMBlock *ramblock; 883 uint64_t mr_offset, mr_size; 884 885 if (length == 0) { 886 return false; 887 } 888 889 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 890 start_page = start >> TARGET_PAGE_BITS; 891 page = start_page; 892 893 WITH_RCU_READ_LOCK_GUARD() { 894 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 895 ramblock = qemu_get_ram_block(start); 896 /* Range sanity check on the ramblock */ 897 assert(start >= ramblock->offset && 898 start + length <= ramblock->offset + ramblock->used_length); 899 900 while (page < end) { 901 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 902 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 903 unsigned long num = MIN(end - page, 904 DIRTY_MEMORY_BLOCK_SIZE - offset); 905 906 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 907 offset, num); 908 page += num; 909 } 910 911 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 912 mr_size = (end - start_page) << TARGET_PAGE_BITS; 913 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 914 } 915 916 if (dirty) { 917 cpu_physical_memory_dirty_bits_cleared(start, length); 918 } 919 920 return dirty; 921 } 922 923 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 924 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 925 { 926 DirtyMemoryBlocks *blocks; 927 ram_addr_t start, first, last; 928 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 929 DirtyBitmapSnapshot *snap; 930 unsigned long page, end, dest; 931 932 start = memory_region_get_ram_addr(mr); 933 /* We know we're only called for RAM MemoryRegions */ 934 assert(start != RAM_ADDR_INVALID); 935 start += offset; 936 937 first = QEMU_ALIGN_DOWN(start, align); 938 last = QEMU_ALIGN_UP(start + length, align); 939 940 snap = g_malloc0(sizeof(*snap) + 941 ((last - first) >> (TARGET_PAGE_BITS + 3))); 942 snap->start = first; 943 snap->end = last; 944 945 page = first >> TARGET_PAGE_BITS; 946 end = last >> TARGET_PAGE_BITS; 947 dest = 0; 948 949 WITH_RCU_READ_LOCK_GUARD() { 950 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 951 952 while (page < end) { 953 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 954 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 955 unsigned long num = MIN(end - page, 956 DIRTY_MEMORY_BLOCK_SIZE - ofs); 957 958 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 959 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 960 ofs >>= BITS_PER_LEVEL; 961 962 bitmap_copy_and_clear_atomic(snap->dirty + dest, 963 blocks->blocks[idx] + ofs, 964 num); 965 page += num; 966 dest += num >> BITS_PER_LEVEL; 967 } 968 } 969 970 cpu_physical_memory_dirty_bits_cleared(start, length); 971 972 memory_region_clear_dirty_bitmap(mr, offset, length); 973 974 return snap; 975 } 976 977 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 978 ram_addr_t start, 979 ram_addr_t length) 980 { 981 unsigned long page, end; 982 983 assert(start >= snap->start); 984 assert(start + length <= snap->end); 985 986 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 987 page = (start - snap->start) >> TARGET_PAGE_BITS; 988 989 while (page < end) { 990 if (test_bit(page, snap->dirty)) { 991 return true; 992 } 993 page++; 994 } 995 return false; 996 } 997 998 /* Called from RCU critical section */ 999 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1000 MemoryRegionSection *section) 1001 { 1002 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1003 return section - d->map.sections; 1004 } 1005 1006 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1007 uint16_t section); 1008 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1009 1010 static uint16_t phys_section_add(PhysPageMap *map, 1011 MemoryRegionSection *section) 1012 { 1013 /* The physical section number is ORed with a page-aligned 1014 * pointer to produce the iotlb entries. Thus it should 1015 * never overflow into the page-aligned value. 1016 */ 1017 assert(map->sections_nb < TARGET_PAGE_SIZE); 1018 1019 if (map->sections_nb == map->sections_nb_alloc) { 1020 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1021 map->sections = g_renew(MemoryRegionSection, map->sections, 1022 map->sections_nb_alloc); 1023 } 1024 map->sections[map->sections_nb] = *section; 1025 memory_region_ref(section->mr); 1026 return map->sections_nb++; 1027 } 1028 1029 static void phys_section_destroy(MemoryRegion *mr) 1030 { 1031 bool have_sub_page = mr->subpage; 1032 1033 memory_region_unref(mr); 1034 1035 if (have_sub_page) { 1036 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1037 object_unref(OBJECT(&subpage->iomem)); 1038 g_free(subpage); 1039 } 1040 } 1041 1042 static void phys_sections_free(PhysPageMap *map) 1043 { 1044 while (map->sections_nb > 0) { 1045 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1046 phys_section_destroy(section->mr); 1047 } 1048 g_free(map->sections); 1049 g_free(map->nodes); 1050 } 1051 1052 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1053 { 1054 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1055 subpage_t *subpage; 1056 hwaddr base = section->offset_within_address_space 1057 & TARGET_PAGE_MASK; 1058 MemoryRegionSection *existing = phys_page_find(d, base); 1059 MemoryRegionSection subsection = { 1060 .offset_within_address_space = base, 1061 .size = int128_make64(TARGET_PAGE_SIZE), 1062 }; 1063 hwaddr start, end; 1064 1065 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1066 1067 if (!(existing->mr->subpage)) { 1068 subpage = subpage_init(fv, base); 1069 subsection.fv = fv; 1070 subsection.mr = &subpage->iomem; 1071 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1072 phys_section_add(&d->map, &subsection)); 1073 } else { 1074 subpage = container_of(existing->mr, subpage_t, iomem); 1075 } 1076 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1077 end = start + int128_get64(section->size) - 1; 1078 subpage_register(subpage, start, end, 1079 phys_section_add(&d->map, section)); 1080 } 1081 1082 1083 static void register_multipage(FlatView *fv, 1084 MemoryRegionSection *section) 1085 { 1086 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1087 hwaddr start_addr = section->offset_within_address_space; 1088 uint16_t section_index = phys_section_add(&d->map, section); 1089 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1090 TARGET_PAGE_BITS)); 1091 1092 assert(num_pages); 1093 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1094 } 1095 1096 /* 1097 * The range in *section* may look like this: 1098 * 1099 * |s|PPPPPPP|s| 1100 * 1101 * where s stands for subpage and P for page. 1102 */ 1103 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1104 { 1105 MemoryRegionSection remain = *section; 1106 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1107 1108 /* register first subpage */ 1109 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1110 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1111 - remain.offset_within_address_space; 1112 1113 MemoryRegionSection now = remain; 1114 now.size = int128_min(int128_make64(left), now.size); 1115 register_subpage(fv, &now); 1116 if (int128_eq(remain.size, now.size)) { 1117 return; 1118 } 1119 remain.size = int128_sub(remain.size, now.size); 1120 remain.offset_within_address_space += int128_get64(now.size); 1121 remain.offset_within_region += int128_get64(now.size); 1122 } 1123 1124 /* register whole pages */ 1125 if (int128_ge(remain.size, page_size)) { 1126 MemoryRegionSection now = remain; 1127 now.size = int128_and(now.size, int128_neg(page_size)); 1128 register_multipage(fv, &now); 1129 if (int128_eq(remain.size, now.size)) { 1130 return; 1131 } 1132 remain.size = int128_sub(remain.size, now.size); 1133 remain.offset_within_address_space += int128_get64(now.size); 1134 remain.offset_within_region += int128_get64(now.size); 1135 } 1136 1137 /* register last subpage */ 1138 register_subpage(fv, &remain); 1139 } 1140 1141 void qemu_flush_coalesced_mmio_buffer(void) 1142 { 1143 if (kvm_enabled()) 1144 kvm_flush_coalesced_mmio_buffer(); 1145 } 1146 1147 void qemu_mutex_lock_ramlist(void) 1148 { 1149 qemu_mutex_lock(&ram_list.mutex); 1150 } 1151 1152 void qemu_mutex_unlock_ramlist(void) 1153 { 1154 qemu_mutex_unlock(&ram_list.mutex); 1155 } 1156 1157 GString *ram_block_format(void) 1158 { 1159 RAMBlock *block; 1160 char *psize; 1161 GString *buf = g_string_new(""); 1162 1163 RCU_READ_LOCK_GUARD(); 1164 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1165 "Block Name", "PSize", "Offset", "Used", "Total", 1166 "HVA", "RO"); 1167 1168 RAMBLOCK_FOREACH(block) { 1169 psize = size_to_str(block->page_size); 1170 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1171 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1172 block->idstr, psize, 1173 (uint64_t)block->offset, 1174 (uint64_t)block->used_length, 1175 (uint64_t)block->max_length, 1176 (uint64_t)(uintptr_t)block->host, 1177 block->mr->readonly ? "ro" : "rw"); 1178 1179 g_free(psize); 1180 } 1181 1182 return buf; 1183 } 1184 1185 static int find_min_backend_pagesize(Object *obj, void *opaque) 1186 { 1187 long *hpsize_min = opaque; 1188 1189 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1190 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1191 long hpsize = host_memory_backend_pagesize(backend); 1192 1193 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1194 *hpsize_min = hpsize; 1195 } 1196 } 1197 1198 return 0; 1199 } 1200 1201 static int find_max_backend_pagesize(Object *obj, void *opaque) 1202 { 1203 long *hpsize_max = opaque; 1204 1205 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1206 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1207 long hpsize = host_memory_backend_pagesize(backend); 1208 1209 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1210 *hpsize_max = hpsize; 1211 } 1212 } 1213 1214 return 0; 1215 } 1216 1217 /* 1218 * TODO: We assume right now that all mapped host memory backends are 1219 * used as RAM, however some might be used for different purposes. 1220 */ 1221 long qemu_minrampagesize(void) 1222 { 1223 long hpsize = LONG_MAX; 1224 Object *memdev_root = object_resolve_path("/objects", NULL); 1225 1226 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1227 return hpsize; 1228 } 1229 1230 long qemu_maxrampagesize(void) 1231 { 1232 long pagesize = 0; 1233 Object *memdev_root = object_resolve_path("/objects", NULL); 1234 1235 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1236 return pagesize; 1237 } 1238 1239 #ifdef CONFIG_POSIX 1240 static int64_t get_file_size(int fd) 1241 { 1242 int64_t size; 1243 #if defined(__linux__) 1244 struct stat st; 1245 1246 if (fstat(fd, &st) < 0) { 1247 return -errno; 1248 } 1249 1250 /* Special handling for devdax character devices */ 1251 if (S_ISCHR(st.st_mode)) { 1252 g_autofree char *subsystem_path = NULL; 1253 g_autofree char *subsystem = NULL; 1254 1255 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1256 major(st.st_rdev), minor(st.st_rdev)); 1257 subsystem = g_file_read_link(subsystem_path, NULL); 1258 1259 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1260 g_autofree char *size_path = NULL; 1261 g_autofree char *size_str = NULL; 1262 1263 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1264 major(st.st_rdev), minor(st.st_rdev)); 1265 1266 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1267 return g_ascii_strtoll(size_str, NULL, 0); 1268 } 1269 } 1270 } 1271 #endif /* defined(__linux__) */ 1272 1273 /* st.st_size may be zero for special files yet lseek(2) works */ 1274 size = lseek(fd, 0, SEEK_END); 1275 if (size < 0) { 1276 return -errno; 1277 } 1278 return size; 1279 } 1280 1281 static int64_t get_file_align(int fd) 1282 { 1283 int64_t align = -1; 1284 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1285 struct stat st; 1286 1287 if (fstat(fd, &st) < 0) { 1288 return -errno; 1289 } 1290 1291 /* Special handling for devdax character devices */ 1292 if (S_ISCHR(st.st_mode)) { 1293 g_autofree char *path = NULL; 1294 g_autofree char *rpath = NULL; 1295 struct daxctl_ctx *ctx; 1296 struct daxctl_region *region; 1297 int rc = 0; 1298 1299 path = g_strdup_printf("/sys/dev/char/%d:%d", 1300 major(st.st_rdev), minor(st.st_rdev)); 1301 rpath = realpath(path, NULL); 1302 if (!rpath) { 1303 return -errno; 1304 } 1305 1306 rc = daxctl_new(&ctx); 1307 if (rc) { 1308 return -1; 1309 } 1310 1311 daxctl_region_foreach(ctx, region) { 1312 if (strstr(rpath, daxctl_region_get_path(region))) { 1313 align = daxctl_region_get_align(region); 1314 break; 1315 } 1316 } 1317 daxctl_unref(ctx); 1318 } 1319 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1320 1321 return align; 1322 } 1323 1324 static int file_ram_open(const char *path, 1325 const char *region_name, 1326 bool readonly, 1327 bool *created) 1328 { 1329 char *filename; 1330 char *sanitized_name; 1331 char *c; 1332 int fd = -1; 1333 1334 *created = false; 1335 for (;;) { 1336 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1337 if (fd >= 0) { 1338 /* 1339 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1340 * opened a directory and fail similarly to how we fail ENOENT 1341 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1342 */ 1343 if (readonly) { 1344 struct stat file_stat; 1345 1346 if (fstat(fd, &file_stat)) { 1347 close(fd); 1348 if (errno == EINTR) { 1349 continue; 1350 } 1351 return -errno; 1352 } else if (S_ISDIR(file_stat.st_mode)) { 1353 close(fd); 1354 return -EISDIR; 1355 } 1356 } 1357 /* @path names an existing file, use it */ 1358 break; 1359 } 1360 if (errno == ENOENT) { 1361 if (readonly) { 1362 /* Refuse to create new, readonly files. */ 1363 return -ENOENT; 1364 } 1365 /* @path names a file that doesn't exist, create it */ 1366 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1367 if (fd >= 0) { 1368 *created = true; 1369 break; 1370 } 1371 } else if (errno == EISDIR) { 1372 /* @path names a directory, create a file there */ 1373 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1374 sanitized_name = g_strdup(region_name); 1375 for (c = sanitized_name; *c != '\0'; c++) { 1376 if (*c == '/') { 1377 *c = '_'; 1378 } 1379 } 1380 1381 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1382 sanitized_name); 1383 g_free(sanitized_name); 1384 1385 fd = mkstemp(filename); 1386 if (fd >= 0) { 1387 unlink(filename); 1388 g_free(filename); 1389 break; 1390 } 1391 g_free(filename); 1392 } 1393 if (errno != EEXIST && errno != EINTR) { 1394 return -errno; 1395 } 1396 /* 1397 * Try again on EINTR and EEXIST. The latter happens when 1398 * something else creates the file between our two open(). 1399 */ 1400 } 1401 1402 return fd; 1403 } 1404 1405 static void *file_ram_alloc(RAMBlock *block, 1406 ram_addr_t memory, 1407 int fd, 1408 bool truncate, 1409 off_t offset, 1410 Error **errp) 1411 { 1412 uint32_t qemu_map_flags; 1413 void *area; 1414 1415 block->page_size = qemu_fd_getpagesize(fd); 1416 if (block->mr->align % block->page_size) { 1417 error_setg(errp, "alignment 0x%" PRIx64 1418 " must be multiples of page size 0x%zx", 1419 block->mr->align, block->page_size); 1420 return NULL; 1421 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1422 error_setg(errp, "alignment 0x%" PRIx64 1423 " must be a power of two", block->mr->align); 1424 return NULL; 1425 } else if (offset % block->page_size) { 1426 error_setg(errp, "offset 0x%" PRIx64 1427 " must be multiples of page size 0x%zx", 1428 offset, block->page_size); 1429 return NULL; 1430 } 1431 block->mr->align = MAX(block->page_size, block->mr->align); 1432 #if defined(__s390x__) 1433 if (kvm_enabled()) { 1434 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1435 } 1436 #endif 1437 1438 if (memory < block->page_size) { 1439 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1440 "or larger than page size 0x%zx", 1441 memory, block->page_size); 1442 return NULL; 1443 } 1444 1445 memory = ROUND_UP(memory, block->page_size); 1446 1447 /* 1448 * ftruncate is not supported by hugetlbfs in older 1449 * hosts, so don't bother bailing out on errors. 1450 * If anything goes wrong with it under other filesystems, 1451 * mmap will fail. 1452 * 1453 * Do not truncate the non-empty backend file to avoid corrupting 1454 * the existing data in the file. Disabling shrinking is not 1455 * enough. For example, the current vNVDIMM implementation stores 1456 * the guest NVDIMM labels at the end of the backend file. If the 1457 * backend file is later extended, QEMU will not be able to find 1458 * those labels. Therefore, extending the non-empty backend file 1459 * is disabled as well. 1460 */ 1461 if (truncate && ftruncate(fd, offset + memory)) { 1462 perror("ftruncate"); 1463 } 1464 1465 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1466 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1467 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1468 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1469 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1470 if (area == MAP_FAILED) { 1471 error_setg_errno(errp, errno, 1472 "unable to map backing store for guest RAM"); 1473 return NULL; 1474 } 1475 1476 block->fd = fd; 1477 block->fd_offset = offset; 1478 return area; 1479 } 1480 #endif 1481 1482 /* Allocate space within the ram_addr_t space that governs the 1483 * dirty bitmaps. 1484 * Called with the ramlist lock held. 1485 */ 1486 static ram_addr_t find_ram_offset(ram_addr_t size) 1487 { 1488 RAMBlock *block, *next_block; 1489 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1490 1491 assert(size != 0); /* it would hand out same offset multiple times */ 1492 1493 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1494 return 0; 1495 } 1496 1497 RAMBLOCK_FOREACH(block) { 1498 ram_addr_t candidate, next = RAM_ADDR_MAX; 1499 1500 /* Align blocks to start on a 'long' in the bitmap 1501 * which makes the bitmap sync'ing take the fast path. 1502 */ 1503 candidate = block->offset + block->max_length; 1504 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1505 1506 /* Search for the closest following block 1507 * and find the gap. 1508 */ 1509 RAMBLOCK_FOREACH(next_block) { 1510 if (next_block->offset >= candidate) { 1511 next = MIN(next, next_block->offset); 1512 } 1513 } 1514 1515 /* If it fits remember our place and remember the size 1516 * of gap, but keep going so that we might find a smaller 1517 * gap to fill so avoiding fragmentation. 1518 */ 1519 if (next - candidate >= size && next - candidate < mingap) { 1520 offset = candidate; 1521 mingap = next - candidate; 1522 } 1523 1524 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1525 } 1526 1527 if (offset == RAM_ADDR_MAX) { 1528 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1529 (uint64_t)size); 1530 abort(); 1531 } 1532 1533 trace_find_ram_offset(size, offset); 1534 1535 return offset; 1536 } 1537 1538 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1539 { 1540 int ret; 1541 1542 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1543 if (!machine_dump_guest_core(current_machine)) { 1544 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1545 if (ret) { 1546 perror("qemu_madvise"); 1547 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1548 "but dump-guest-core=off specified\n"); 1549 } 1550 } 1551 } 1552 1553 const char *qemu_ram_get_idstr(RAMBlock *rb) 1554 { 1555 return rb->idstr; 1556 } 1557 1558 void *qemu_ram_get_host_addr(RAMBlock *rb) 1559 { 1560 return rb->host; 1561 } 1562 1563 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1564 { 1565 return rb->offset; 1566 } 1567 1568 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1569 { 1570 return rb->used_length; 1571 } 1572 1573 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1574 { 1575 return rb->max_length; 1576 } 1577 1578 bool qemu_ram_is_shared(RAMBlock *rb) 1579 { 1580 return rb->flags & RAM_SHARED; 1581 } 1582 1583 bool qemu_ram_is_noreserve(RAMBlock *rb) 1584 { 1585 return rb->flags & RAM_NORESERVE; 1586 } 1587 1588 /* Note: Only set at the start of postcopy */ 1589 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1590 { 1591 return rb->flags & RAM_UF_ZEROPAGE; 1592 } 1593 1594 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1595 { 1596 rb->flags |= RAM_UF_ZEROPAGE; 1597 } 1598 1599 bool qemu_ram_is_migratable(RAMBlock *rb) 1600 { 1601 return rb->flags & RAM_MIGRATABLE; 1602 } 1603 1604 void qemu_ram_set_migratable(RAMBlock *rb) 1605 { 1606 rb->flags |= RAM_MIGRATABLE; 1607 } 1608 1609 void qemu_ram_unset_migratable(RAMBlock *rb) 1610 { 1611 rb->flags &= ~RAM_MIGRATABLE; 1612 } 1613 1614 bool qemu_ram_is_named_file(RAMBlock *rb) 1615 { 1616 return rb->flags & RAM_NAMED_FILE; 1617 } 1618 1619 int qemu_ram_get_fd(RAMBlock *rb) 1620 { 1621 return rb->fd; 1622 } 1623 1624 /* Called with the BQL held. */ 1625 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1626 { 1627 RAMBlock *block; 1628 1629 assert(new_block); 1630 assert(!new_block->idstr[0]); 1631 1632 if (dev) { 1633 char *id = qdev_get_dev_path(dev); 1634 if (id) { 1635 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1636 g_free(id); 1637 } 1638 } 1639 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1640 1641 RCU_READ_LOCK_GUARD(); 1642 RAMBLOCK_FOREACH(block) { 1643 if (block != new_block && 1644 !strcmp(block->idstr, new_block->idstr)) { 1645 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1646 new_block->idstr); 1647 abort(); 1648 } 1649 } 1650 } 1651 1652 /* Called with the BQL held. */ 1653 void qemu_ram_unset_idstr(RAMBlock *block) 1654 { 1655 /* FIXME: arch_init.c assumes that this is not called throughout 1656 * migration. Ignore the problem since hot-unplug during migration 1657 * does not work anyway. 1658 */ 1659 if (block) { 1660 memset(block->idstr, 0, sizeof(block->idstr)); 1661 } 1662 } 1663 1664 size_t qemu_ram_pagesize(RAMBlock *rb) 1665 { 1666 return rb->page_size; 1667 } 1668 1669 /* Returns the largest size of page in use */ 1670 size_t qemu_ram_pagesize_largest(void) 1671 { 1672 RAMBlock *block; 1673 size_t largest = 0; 1674 1675 RAMBLOCK_FOREACH(block) { 1676 largest = MAX(largest, qemu_ram_pagesize(block)); 1677 } 1678 1679 return largest; 1680 } 1681 1682 static int memory_try_enable_merging(void *addr, size_t len) 1683 { 1684 if (!machine_mem_merge(current_machine)) { 1685 /* disabled by the user */ 1686 return 0; 1687 } 1688 1689 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1690 } 1691 1692 /* 1693 * Resizing RAM while migrating can result in the migration being canceled. 1694 * Care has to be taken if the guest might have already detected the memory. 1695 * 1696 * As memory core doesn't know how is memory accessed, it is up to 1697 * resize callback to update device state and/or add assertions to detect 1698 * misuse, if necessary. 1699 */ 1700 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1701 { 1702 const ram_addr_t oldsize = block->used_length; 1703 const ram_addr_t unaligned_size = newsize; 1704 1705 assert(block); 1706 1707 newsize = TARGET_PAGE_ALIGN(newsize); 1708 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1709 1710 if (block->used_length == newsize) { 1711 /* 1712 * We don't have to resize the ram block (which only knows aligned 1713 * sizes), however, we have to notify if the unaligned size changed. 1714 */ 1715 if (unaligned_size != memory_region_size(block->mr)) { 1716 memory_region_set_size(block->mr, unaligned_size); 1717 if (block->resized) { 1718 block->resized(block->idstr, unaligned_size, block->host); 1719 } 1720 } 1721 return 0; 1722 } 1723 1724 if (!(block->flags & RAM_RESIZEABLE)) { 1725 error_setg_errno(errp, EINVAL, 1726 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1727 " != 0x" RAM_ADDR_FMT, block->idstr, 1728 newsize, block->used_length); 1729 return -EINVAL; 1730 } 1731 1732 if (block->max_length < newsize) { 1733 error_setg_errno(errp, EINVAL, 1734 "Size too large: %s: 0x" RAM_ADDR_FMT 1735 " > 0x" RAM_ADDR_FMT, block->idstr, 1736 newsize, block->max_length); 1737 return -EINVAL; 1738 } 1739 1740 /* Notify before modifying the ram block and touching the bitmaps. */ 1741 if (block->host) { 1742 ram_block_notify_resize(block->host, oldsize, newsize); 1743 } 1744 1745 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1746 block->used_length = newsize; 1747 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1748 DIRTY_CLIENTS_ALL); 1749 memory_region_set_size(block->mr, unaligned_size); 1750 if (block->resized) { 1751 block->resized(block->idstr, unaligned_size, block->host); 1752 } 1753 return 0; 1754 } 1755 1756 /* 1757 * Trigger sync on the given ram block for range [start, start + length] 1758 * with the backing store if one is available. 1759 * Otherwise no-op. 1760 * @Note: this is supposed to be a synchronous op. 1761 */ 1762 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1763 { 1764 /* The requested range should fit in within the block range */ 1765 g_assert((start + length) <= block->used_length); 1766 1767 #ifdef CONFIG_LIBPMEM 1768 /* The lack of support for pmem should not block the sync */ 1769 if (ramblock_is_pmem(block)) { 1770 void *addr = ramblock_ptr(block, start); 1771 pmem_persist(addr, length); 1772 return; 1773 } 1774 #endif 1775 if (block->fd >= 0) { 1776 /** 1777 * Case there is no support for PMEM or the memory has not been 1778 * specified as persistent (or is not one) - use the msync. 1779 * Less optimal but still achieves the same goal 1780 */ 1781 void *addr = ramblock_ptr(block, start); 1782 if (qemu_msync(addr, length, block->fd)) { 1783 warn_report("%s: failed to sync memory range: start: " 1784 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1785 __func__, start, length); 1786 } 1787 } 1788 } 1789 1790 /* Called with ram_list.mutex held */ 1791 static void dirty_memory_extend(ram_addr_t new_ram_size) 1792 { 1793 unsigned int old_num_blocks = ram_list.num_dirty_blocks; 1794 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size, 1795 DIRTY_MEMORY_BLOCK_SIZE); 1796 int i; 1797 1798 /* Only need to extend if block count increased */ 1799 if (new_num_blocks <= old_num_blocks) { 1800 return; 1801 } 1802 1803 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1804 DirtyMemoryBlocks *old_blocks; 1805 DirtyMemoryBlocks *new_blocks; 1806 int j; 1807 1808 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1809 new_blocks = g_malloc(sizeof(*new_blocks) + 1810 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1811 1812 if (old_num_blocks) { 1813 memcpy(new_blocks->blocks, old_blocks->blocks, 1814 old_num_blocks * sizeof(old_blocks->blocks[0])); 1815 } 1816 1817 for (j = old_num_blocks; j < new_num_blocks; j++) { 1818 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1819 } 1820 1821 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1822 1823 if (old_blocks) { 1824 g_free_rcu(old_blocks, rcu); 1825 } 1826 } 1827 1828 ram_list.num_dirty_blocks = new_num_blocks; 1829 } 1830 1831 static void ram_block_add(RAMBlock *new_block, Error **errp) 1832 { 1833 const bool noreserve = qemu_ram_is_noreserve(new_block); 1834 const bool shared = qemu_ram_is_shared(new_block); 1835 RAMBlock *block; 1836 RAMBlock *last_block = NULL; 1837 bool free_on_error = false; 1838 ram_addr_t ram_size; 1839 Error *err = NULL; 1840 1841 qemu_mutex_lock_ramlist(); 1842 new_block->offset = find_ram_offset(new_block->max_length); 1843 1844 if (!new_block->host) { 1845 if (xen_enabled()) { 1846 xen_ram_alloc(new_block->offset, new_block->max_length, 1847 new_block->mr, &err); 1848 if (err) { 1849 error_propagate(errp, err); 1850 qemu_mutex_unlock_ramlist(); 1851 return; 1852 } 1853 } else { 1854 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1855 &new_block->mr->align, 1856 shared, noreserve); 1857 if (!new_block->host) { 1858 error_setg_errno(errp, errno, 1859 "cannot set up guest memory '%s'", 1860 memory_region_name(new_block->mr)); 1861 qemu_mutex_unlock_ramlist(); 1862 return; 1863 } 1864 memory_try_enable_merging(new_block->host, new_block->max_length); 1865 free_on_error = true; 1866 } 1867 } 1868 1869 if (new_block->flags & RAM_GUEST_MEMFD) { 1870 int ret; 1871 1872 assert(kvm_enabled()); 1873 assert(new_block->guest_memfd < 0); 1874 1875 ret = ram_block_discard_require(true); 1876 if (ret < 0) { 1877 error_setg_errno(errp, -ret, 1878 "cannot set up private guest memory: discard currently blocked"); 1879 error_append_hint(errp, "Are you using assigned devices?\n"); 1880 goto out_free; 1881 } 1882 1883 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1884 0, errp); 1885 if (new_block->guest_memfd < 0) { 1886 qemu_mutex_unlock_ramlist(); 1887 goto out_free; 1888 } 1889 } 1890 1891 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS; 1892 dirty_memory_extend(ram_size); 1893 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1894 * QLIST (which has an RCU-friendly variant) does not have insertion at 1895 * tail, so save the last element in last_block. 1896 */ 1897 RAMBLOCK_FOREACH(block) { 1898 last_block = block; 1899 if (block->max_length < new_block->max_length) { 1900 break; 1901 } 1902 } 1903 if (block) { 1904 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1905 } else if (last_block) { 1906 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1907 } else { /* list is empty */ 1908 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1909 } 1910 ram_list.mru_block = NULL; 1911 1912 /* Write list before version */ 1913 smp_wmb(); 1914 ram_list.version++; 1915 qemu_mutex_unlock_ramlist(); 1916 1917 cpu_physical_memory_set_dirty_range(new_block->offset, 1918 new_block->used_length, 1919 DIRTY_CLIENTS_ALL); 1920 1921 if (new_block->host) { 1922 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1923 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1924 /* 1925 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1926 * Configure it unless the machine is a qtest server, in which case 1927 * KVM is not used and it may be forked (eg for fuzzing purposes). 1928 */ 1929 if (!qtest_enabled()) { 1930 qemu_madvise(new_block->host, new_block->max_length, 1931 QEMU_MADV_DONTFORK); 1932 } 1933 ram_block_notify_add(new_block->host, new_block->used_length, 1934 new_block->max_length); 1935 } 1936 return; 1937 1938 out_free: 1939 if (free_on_error) { 1940 qemu_anon_ram_free(new_block->host, new_block->max_length); 1941 new_block->host = NULL; 1942 } 1943 } 1944 1945 #ifdef CONFIG_POSIX 1946 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size, 1947 qemu_ram_resize_cb resized, MemoryRegion *mr, 1948 uint32_t ram_flags, int fd, off_t offset, 1949 bool grow, 1950 Error **errp) 1951 { 1952 ERRP_GUARD(); 1953 RAMBlock *new_block; 1954 Error *local_err = NULL; 1955 int64_t file_size, file_align, share_flags; 1956 1957 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 1958 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 1959 ram_flags &= ~RAM_PRIVATE; 1960 1961 /* Just support these ram flags by now. */ 1962 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1963 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1964 RAM_READONLY_FD | RAM_GUEST_MEMFD | 1965 RAM_RESIZEABLE)) == 0); 1966 assert(max_size >= size); 1967 1968 if (xen_enabled()) { 1969 error_setg(errp, "-mem-path not supported with Xen"); 1970 return NULL; 1971 } 1972 1973 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1974 error_setg(errp, 1975 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1976 return NULL; 1977 } 1978 1979 size = TARGET_PAGE_ALIGN(size); 1980 size = REAL_HOST_PAGE_ALIGN(size); 1981 max_size = TARGET_PAGE_ALIGN(max_size); 1982 max_size = REAL_HOST_PAGE_ALIGN(max_size); 1983 1984 file_size = get_file_size(fd); 1985 if (file_size && file_size < offset + max_size && !grow) { 1986 error_setg(errp, "%s backing store size 0x%" PRIx64 1987 " is too small for 'size' option 0x" RAM_ADDR_FMT 1988 " plus 'offset' option 0x%" PRIx64, 1989 memory_region_name(mr), file_size, max_size, 1990 (uint64_t)offset); 1991 return NULL; 1992 } 1993 1994 file_align = get_file_align(fd); 1995 if (file_align > 0 && file_align > mr->align) { 1996 error_setg(errp, "backing store align 0x%" PRIx64 1997 " is larger than 'align' option 0x%" PRIx64, 1998 file_align, mr->align); 1999 return NULL; 2000 } 2001 2002 new_block = g_malloc0(sizeof(*new_block)); 2003 new_block->mr = mr; 2004 new_block->used_length = size; 2005 new_block->max_length = max_size; 2006 new_block->resized = resized; 2007 new_block->flags = ram_flags; 2008 new_block->guest_memfd = -1; 2009 new_block->host = file_ram_alloc(new_block, max_size, fd, 2010 file_size < offset + max_size, 2011 offset, errp); 2012 if (!new_block->host) { 2013 g_free(new_block); 2014 return NULL; 2015 } 2016 2017 ram_block_add(new_block, &local_err); 2018 if (local_err) { 2019 g_free(new_block); 2020 error_propagate(errp, local_err); 2021 return NULL; 2022 } 2023 return new_block; 2024 2025 } 2026 2027 2028 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2029 uint32_t ram_flags, const char *mem_path, 2030 off_t offset, Error **errp) 2031 { 2032 int fd; 2033 bool created; 2034 RAMBlock *block; 2035 2036 fd = file_ram_open(mem_path, memory_region_name(mr), 2037 !!(ram_flags & RAM_READONLY_FD), &created); 2038 if (fd < 0) { 2039 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2040 mem_path); 2041 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2042 fd == -EACCES) { 2043 /* 2044 * If we can open the file R/O (note: will never create a new file) 2045 * and we are dealing with a private mapping, there are still ways 2046 * to consume such files and get RAM instead of ROM. 2047 */ 2048 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2049 &created); 2050 if (fd < 0) { 2051 return NULL; 2052 } 2053 assert(!created); 2054 close(fd); 2055 error_append_hint(errp, "Consider opening the backing store" 2056 " read-only but still creating writable RAM using" 2057 " '-object memory-backend-file,readonly=on,rom=off...'" 2058 " (see \"VM templating\" documentation)\n"); 2059 } 2060 return NULL; 2061 } 2062 2063 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset, 2064 false, errp); 2065 if (!block) { 2066 if (created) { 2067 unlink(mem_path); 2068 } 2069 close(fd); 2070 return NULL; 2071 } 2072 2073 return block; 2074 } 2075 #endif 2076 2077 #ifdef CONFIG_POSIX 2078 /* 2079 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be 2080 * shared with another process if CPR is being used. Use memfd if available 2081 * because it has no size limits, else use POSIX shm. 2082 */ 2083 static int qemu_ram_get_shared_fd(const char *name, Error **errp) 2084 { 2085 int fd; 2086 2087 if (qemu_memfd_check(0)) { 2088 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp); 2089 } else { 2090 fd = qemu_shm_alloc(0, errp); 2091 } 2092 return fd; 2093 } 2094 #endif 2095 2096 static 2097 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2098 qemu_ram_resize_cb resized, 2099 void *host, uint32_t ram_flags, 2100 MemoryRegion *mr, Error **errp) 2101 { 2102 RAMBlock *new_block; 2103 Error *local_err = NULL; 2104 int align, share_flags; 2105 2106 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 2107 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 2108 ram_flags &= ~RAM_PRIVATE; 2109 2110 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2111 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2112 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2113 assert(max_size >= size); 2114 2115 #ifdef CONFIG_POSIX /* ignore RAM_SHARED for Windows */ 2116 if (!host) { 2117 if (!share_flags && current_machine->aux_ram_share) { 2118 ram_flags |= RAM_SHARED; 2119 } 2120 if (ram_flags & RAM_SHARED) { 2121 const char *name = memory_region_name(mr); 2122 int fd = qemu_ram_get_shared_fd(name, errp); 2123 2124 if (fd < 0) { 2125 return NULL; 2126 } 2127 2128 /* Use same alignment as qemu_anon_ram_alloc */ 2129 mr->align = QEMU_VMALLOC_ALIGN; 2130 2131 /* 2132 * This can fail if the shm mount size is too small, or alloc from 2133 * fd is not supported, but previous QEMU versions that called 2134 * qemu_anon_ram_alloc for anonymous shared memory could have 2135 * succeeded. Quietly fail and fall back. 2136 */ 2137 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr, 2138 ram_flags, fd, 0, false, NULL); 2139 if (new_block) { 2140 trace_qemu_ram_alloc_shared(name, new_block->used_length, 2141 new_block->max_length, fd, 2142 new_block->host); 2143 return new_block; 2144 } 2145 2146 close(fd); 2147 /* fall back to anon allocation */ 2148 } 2149 } 2150 #endif 2151 2152 align = qemu_real_host_page_size(); 2153 align = MAX(align, TARGET_PAGE_SIZE); 2154 size = ROUND_UP(size, align); 2155 max_size = ROUND_UP(max_size, align); 2156 2157 new_block = g_malloc0(sizeof(*new_block)); 2158 new_block->mr = mr; 2159 new_block->resized = resized; 2160 new_block->used_length = size; 2161 new_block->max_length = max_size; 2162 new_block->fd = -1; 2163 new_block->guest_memfd = -1; 2164 new_block->page_size = qemu_real_host_page_size(); 2165 new_block->host = host; 2166 new_block->flags = ram_flags; 2167 ram_block_add(new_block, &local_err); 2168 if (local_err) { 2169 g_free(new_block); 2170 error_propagate(errp, local_err); 2171 return NULL; 2172 } 2173 return new_block; 2174 } 2175 2176 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2177 MemoryRegion *mr, Error **errp) 2178 { 2179 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2180 errp); 2181 } 2182 2183 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2184 MemoryRegion *mr, Error **errp) 2185 { 2186 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD | 2187 RAM_PRIVATE)) == 0); 2188 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2189 } 2190 2191 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2192 qemu_ram_resize_cb resized, 2193 MemoryRegion *mr, Error **errp) 2194 { 2195 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2196 RAM_RESIZEABLE, mr, errp); 2197 } 2198 2199 static void reclaim_ramblock(RAMBlock *block) 2200 { 2201 if (block->flags & RAM_PREALLOC) { 2202 ; 2203 } else if (xen_enabled()) { 2204 xen_invalidate_map_cache_entry(block->host); 2205 #ifndef _WIN32 2206 } else if (block->fd >= 0) { 2207 qemu_ram_munmap(block->fd, block->host, block->max_length); 2208 close(block->fd); 2209 #endif 2210 } else { 2211 qemu_anon_ram_free(block->host, block->max_length); 2212 } 2213 2214 if (block->guest_memfd >= 0) { 2215 close(block->guest_memfd); 2216 ram_block_discard_require(false); 2217 } 2218 2219 g_free(block); 2220 } 2221 2222 void qemu_ram_free(RAMBlock *block) 2223 { 2224 if (!block) { 2225 return; 2226 } 2227 2228 if (block->host) { 2229 ram_block_notify_remove(block->host, block->used_length, 2230 block->max_length); 2231 } 2232 2233 qemu_mutex_lock_ramlist(); 2234 QLIST_REMOVE_RCU(block, next); 2235 ram_list.mru_block = NULL; 2236 /* Write list before version */ 2237 smp_wmb(); 2238 ram_list.version++; 2239 call_rcu(block, reclaim_ramblock, rcu); 2240 qemu_mutex_unlock_ramlist(); 2241 } 2242 2243 #ifndef _WIN32 2244 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2245 { 2246 RAMBlock *block; 2247 ram_addr_t offset; 2248 int flags; 2249 void *area, *vaddr; 2250 int prot; 2251 2252 RAMBLOCK_FOREACH(block) { 2253 offset = addr - block->offset; 2254 if (offset < block->max_length) { 2255 vaddr = ramblock_ptr(block, offset); 2256 if (block->flags & RAM_PREALLOC) { 2257 ; 2258 } else if (xen_enabled()) { 2259 abort(); 2260 } else { 2261 flags = MAP_FIXED; 2262 flags |= block->flags & RAM_SHARED ? 2263 MAP_SHARED : MAP_PRIVATE; 2264 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2265 prot = PROT_READ; 2266 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2267 if (block->fd >= 0) { 2268 area = mmap(vaddr, length, prot, flags, block->fd, 2269 offset + block->fd_offset); 2270 } else { 2271 flags |= MAP_ANONYMOUS; 2272 area = mmap(vaddr, length, prot, flags, -1, 0); 2273 } 2274 if (area != vaddr) { 2275 error_report("Could not remap addr: " 2276 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2277 length, addr); 2278 exit(1); 2279 } 2280 memory_try_enable_merging(vaddr, length); 2281 qemu_ram_setup_dump(vaddr, length); 2282 } 2283 } 2284 } 2285 } 2286 #endif /* !_WIN32 */ 2287 2288 /* 2289 * Return a host pointer to guest's ram. 2290 * For Xen, foreign mappings get created if they don't already exist. 2291 * 2292 * @block: block for the RAM to lookup (optional and may be NULL). 2293 * @addr: address within the memory region. 2294 * @size: pointer to requested size (optional and may be NULL). 2295 * size may get modified and return a value smaller than 2296 * what was requested. 2297 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2298 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2299 * (optional and may always be set to true). 2300 * 2301 * Called within RCU critical section. 2302 */ 2303 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2304 hwaddr *size, bool lock, 2305 bool is_write) 2306 { 2307 hwaddr len = 0; 2308 2309 if (size && *size == 0) { 2310 return NULL; 2311 } 2312 2313 if (block == NULL) { 2314 block = qemu_get_ram_block(addr); 2315 addr -= block->offset; 2316 } 2317 if (size) { 2318 *size = MIN(*size, block->max_length - addr); 2319 len = *size; 2320 } 2321 2322 if (xen_enabled() && block->host == NULL) { 2323 /* We need to check if the requested address is in the RAM 2324 * because we don't want to map the entire memory in QEMU. 2325 * In that case just map the requested area. 2326 */ 2327 if (xen_mr_is_memory(block->mr)) { 2328 return xen_map_cache(block->mr, block->offset + addr, 2329 len, block->offset, 2330 lock, lock, is_write); 2331 } 2332 2333 block->host = xen_map_cache(block->mr, block->offset, 2334 block->max_length, 2335 block->offset, 2336 1, lock, is_write); 2337 } 2338 2339 return ramblock_ptr(block, addr); 2340 } 2341 2342 /* 2343 * Return a host pointer to ram allocated with qemu_ram_alloc. 2344 * This should not be used for general purpose DMA. Use address_space_map 2345 * or address_space_rw instead. For local memory (e.g. video ram) that the 2346 * device owns, use memory_region_get_ram_ptr. 2347 * 2348 * Called within RCU critical section. 2349 */ 2350 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2351 { 2352 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2353 } 2354 2355 /* Return the offset of a hostpointer within a ramblock */ 2356 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2357 { 2358 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2359 assert((uintptr_t)host >= (uintptr_t)rb->host); 2360 assert(res < rb->max_length); 2361 2362 return res; 2363 } 2364 2365 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2366 ram_addr_t *offset) 2367 { 2368 RAMBlock *block; 2369 uint8_t *host = ptr; 2370 2371 if (xen_enabled()) { 2372 ram_addr_t ram_addr; 2373 RCU_READ_LOCK_GUARD(); 2374 ram_addr = xen_ram_addr_from_mapcache(ptr); 2375 if (ram_addr == RAM_ADDR_INVALID) { 2376 return NULL; 2377 } 2378 2379 block = qemu_get_ram_block(ram_addr); 2380 if (block) { 2381 *offset = ram_addr - block->offset; 2382 } 2383 return block; 2384 } 2385 2386 RCU_READ_LOCK_GUARD(); 2387 block = qatomic_rcu_read(&ram_list.mru_block); 2388 if (block && block->host && host - block->host < block->max_length) { 2389 goto found; 2390 } 2391 2392 RAMBLOCK_FOREACH(block) { 2393 /* This case append when the block is not mapped. */ 2394 if (block->host == NULL) { 2395 continue; 2396 } 2397 if (host - block->host < block->max_length) { 2398 goto found; 2399 } 2400 } 2401 2402 return NULL; 2403 2404 found: 2405 *offset = (host - block->host); 2406 if (round_offset) { 2407 *offset &= TARGET_PAGE_MASK; 2408 } 2409 return block; 2410 } 2411 2412 /* 2413 * Finds the named RAMBlock 2414 * 2415 * name: The name of RAMBlock to find 2416 * 2417 * Returns: RAMBlock (or NULL if not found) 2418 */ 2419 RAMBlock *qemu_ram_block_by_name(const char *name) 2420 { 2421 RAMBlock *block; 2422 2423 RAMBLOCK_FOREACH(block) { 2424 if (!strcmp(name, block->idstr)) { 2425 return block; 2426 } 2427 } 2428 2429 return NULL; 2430 } 2431 2432 /* 2433 * Some of the system routines need to translate from a host pointer 2434 * (typically a TLB entry) back to a ram offset. 2435 */ 2436 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2437 { 2438 RAMBlock *block; 2439 ram_addr_t offset; 2440 2441 block = qemu_ram_block_from_host(ptr, false, &offset); 2442 if (!block) { 2443 return RAM_ADDR_INVALID; 2444 } 2445 2446 return block->offset + offset; 2447 } 2448 2449 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2450 { 2451 ram_addr_t ram_addr; 2452 2453 ram_addr = qemu_ram_addr_from_host(ptr); 2454 if (ram_addr == RAM_ADDR_INVALID) { 2455 error_report("Bad ram pointer %p", ptr); 2456 abort(); 2457 } 2458 return ram_addr; 2459 } 2460 2461 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2462 MemTxAttrs attrs, void *buf, hwaddr len); 2463 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2464 const void *buf, hwaddr len); 2465 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2466 bool is_write, MemTxAttrs attrs); 2467 2468 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2469 unsigned len, MemTxAttrs attrs) 2470 { 2471 subpage_t *subpage = opaque; 2472 uint8_t buf[8]; 2473 MemTxResult res; 2474 2475 #if defined(DEBUG_SUBPAGE) 2476 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2477 subpage, len, addr); 2478 #endif 2479 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2480 if (res) { 2481 return res; 2482 } 2483 *data = ldn_p(buf, len); 2484 return MEMTX_OK; 2485 } 2486 2487 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2488 uint64_t value, unsigned len, MemTxAttrs attrs) 2489 { 2490 subpage_t *subpage = opaque; 2491 uint8_t buf[8]; 2492 2493 #if defined(DEBUG_SUBPAGE) 2494 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2495 " value %"PRIx64"\n", 2496 __func__, subpage, len, addr, value); 2497 #endif 2498 stn_p(buf, len, value); 2499 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2500 } 2501 2502 static bool subpage_accepts(void *opaque, hwaddr addr, 2503 unsigned len, bool is_write, 2504 MemTxAttrs attrs) 2505 { 2506 subpage_t *subpage = opaque; 2507 #if defined(DEBUG_SUBPAGE) 2508 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2509 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2510 #endif 2511 2512 return flatview_access_valid(subpage->fv, addr + subpage->base, 2513 len, is_write, attrs); 2514 } 2515 2516 static const MemoryRegionOps subpage_ops = { 2517 .read_with_attrs = subpage_read, 2518 .write_with_attrs = subpage_write, 2519 .impl.min_access_size = 1, 2520 .impl.max_access_size = 8, 2521 .valid.min_access_size = 1, 2522 .valid.max_access_size = 8, 2523 .valid.accepts = subpage_accepts, 2524 .endianness = DEVICE_NATIVE_ENDIAN, 2525 }; 2526 2527 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2528 uint16_t section) 2529 { 2530 int idx, eidx; 2531 2532 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2533 return -1; 2534 idx = SUBPAGE_IDX(start); 2535 eidx = SUBPAGE_IDX(end); 2536 #if defined(DEBUG_SUBPAGE) 2537 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2538 __func__, mmio, start, end, idx, eidx, section); 2539 #endif 2540 for (; idx <= eidx; idx++) { 2541 mmio->sub_section[idx] = section; 2542 } 2543 2544 return 0; 2545 } 2546 2547 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2548 { 2549 subpage_t *mmio; 2550 2551 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2552 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2553 mmio->fv = fv; 2554 mmio->base = base; 2555 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2556 NULL, TARGET_PAGE_SIZE); 2557 mmio->iomem.subpage = true; 2558 #if defined(DEBUG_SUBPAGE) 2559 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2560 mmio, base, TARGET_PAGE_SIZE); 2561 #endif 2562 2563 return mmio; 2564 } 2565 2566 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2567 { 2568 assert(fv); 2569 MemoryRegionSection section = { 2570 .fv = fv, 2571 .mr = mr, 2572 .offset_within_address_space = 0, 2573 .offset_within_region = 0, 2574 .size = int128_2_64(), 2575 }; 2576 2577 return phys_section_add(map, §ion); 2578 } 2579 2580 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2581 hwaddr index, MemTxAttrs attrs) 2582 { 2583 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2584 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2585 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2586 int section_index = index & ~TARGET_PAGE_MASK; 2587 MemoryRegionSection *ret; 2588 2589 assert(section_index < d->map.sections_nb); 2590 ret = d->map.sections + section_index; 2591 assert(ret->mr); 2592 assert(ret->mr->ops); 2593 2594 return ret; 2595 } 2596 2597 static void io_mem_init(void) 2598 { 2599 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2600 NULL, UINT64_MAX); 2601 } 2602 2603 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2604 { 2605 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2606 uint16_t n; 2607 2608 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2609 assert(n == PHYS_SECTION_UNASSIGNED); 2610 2611 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2612 2613 return d; 2614 } 2615 2616 void address_space_dispatch_free(AddressSpaceDispatch *d) 2617 { 2618 phys_sections_free(&d->map); 2619 g_free(d); 2620 } 2621 2622 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2623 { 2624 } 2625 2626 static void tcg_log_global_after_sync(MemoryListener *listener) 2627 { 2628 CPUAddressSpace *cpuas; 2629 2630 /* Wait for the CPU to end the current TB. This avoids the following 2631 * incorrect race: 2632 * 2633 * vCPU migration 2634 * ---------------------- ------------------------- 2635 * TLB check -> slow path 2636 * notdirty_mem_write 2637 * write to RAM 2638 * mark dirty 2639 * clear dirty flag 2640 * TLB check -> fast path 2641 * read memory 2642 * write to RAM 2643 * 2644 * by pushing the migration thread's memory read after the vCPU thread has 2645 * written the memory. 2646 */ 2647 if (replay_mode == REPLAY_MODE_NONE) { 2648 /* 2649 * VGA can make calls to this function while updating the screen. 2650 * In record/replay mode this causes a deadlock, because 2651 * run_on_cpu waits for rr mutex. Therefore no races are possible 2652 * in this case and no need for making run_on_cpu when 2653 * record/replay is enabled. 2654 */ 2655 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2656 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2657 } 2658 } 2659 2660 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2661 { 2662 CPUAddressSpace *cpuas = data.host_ptr; 2663 2664 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2665 tlb_flush(cpu); 2666 } 2667 2668 static void tcg_commit(MemoryListener *listener) 2669 { 2670 CPUAddressSpace *cpuas; 2671 CPUState *cpu; 2672 2673 assert(tcg_enabled()); 2674 /* since each CPU stores ram addresses in its TLB cache, we must 2675 reset the modified entries */ 2676 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2677 cpu = cpuas->cpu; 2678 2679 /* 2680 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2681 * Otherwise we race between (1) other cpu threads and (2) ongoing 2682 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2683 * 2684 * In addition, queueing the work function will kick the cpu back to 2685 * the main loop, which will end the RCU critical section and reclaim 2686 * the memory data structures. 2687 * 2688 * That said, the listener is also called during realize, before 2689 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2690 */ 2691 if (cpu->halt_cond) { 2692 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2693 } else { 2694 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2695 } 2696 } 2697 2698 static void memory_map_init(void) 2699 { 2700 system_memory = g_malloc(sizeof(*system_memory)); 2701 2702 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2703 address_space_init(&address_space_memory, system_memory, "memory"); 2704 2705 system_io = g_malloc(sizeof(*system_io)); 2706 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2707 65536); 2708 address_space_init(&address_space_io, system_io, "I/O"); 2709 } 2710 2711 MemoryRegion *get_system_memory(void) 2712 { 2713 return system_memory; 2714 } 2715 2716 MemoryRegion *get_system_io(void) 2717 { 2718 return system_io; 2719 } 2720 2721 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2722 hwaddr length) 2723 { 2724 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2725 ram_addr_t ramaddr = memory_region_get_ram_addr(mr); 2726 2727 /* We know we're only called for RAM MemoryRegions */ 2728 assert(ramaddr != RAM_ADDR_INVALID); 2729 addr += ramaddr; 2730 2731 /* No early return if dirty_log_mask is or becomes 0, because 2732 * cpu_physical_memory_set_dirty_range will still call 2733 * xen_modified_memory. 2734 */ 2735 if (dirty_log_mask) { 2736 dirty_log_mask = 2737 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2738 } 2739 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2740 assert(tcg_enabled()); 2741 tb_invalidate_phys_range(addr, addr + length - 1); 2742 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2743 } 2744 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2745 } 2746 2747 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2748 { 2749 /* 2750 * In principle this function would work on other memory region types too, 2751 * but the ROM device use case is the only one where this operation is 2752 * necessary. Other memory regions should use the 2753 * address_space_read/write() APIs. 2754 */ 2755 assert(memory_region_is_romd(mr)); 2756 2757 invalidate_and_set_dirty(mr, addr, size); 2758 } 2759 2760 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2761 { 2762 unsigned access_size_max = mr->ops->valid.max_access_size; 2763 2764 /* Regions are assumed to support 1-4 byte accesses unless 2765 otherwise specified. */ 2766 if (access_size_max == 0) { 2767 access_size_max = 4; 2768 } 2769 2770 /* Bound the maximum access by the alignment of the address. */ 2771 if (!mr->ops->impl.unaligned) { 2772 unsigned align_size_max = addr & -addr; 2773 if (align_size_max != 0 && align_size_max < access_size_max) { 2774 access_size_max = align_size_max; 2775 } 2776 } 2777 2778 /* Don't attempt accesses larger than the maximum. */ 2779 if (l > access_size_max) { 2780 l = access_size_max; 2781 } 2782 l = pow2floor(l); 2783 2784 return l; 2785 } 2786 2787 bool prepare_mmio_access(MemoryRegion *mr) 2788 { 2789 bool release_lock = false; 2790 2791 if (!bql_locked()) { 2792 bql_lock(); 2793 release_lock = true; 2794 } 2795 if (mr->flush_coalesced_mmio) { 2796 qemu_flush_coalesced_mmio_buffer(); 2797 } 2798 2799 return release_lock; 2800 } 2801 2802 /** 2803 * flatview_access_allowed 2804 * @mr: #MemoryRegion to be accessed 2805 * @attrs: memory transaction attributes 2806 * @addr: address within that memory region 2807 * @len: the number of bytes to access 2808 * 2809 * Check if a memory transaction is allowed. 2810 * 2811 * Returns: true if transaction is allowed, false if denied. 2812 */ 2813 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2814 hwaddr addr, hwaddr len) 2815 { 2816 if (likely(!attrs.memory)) { 2817 return true; 2818 } 2819 if (memory_region_is_ram(mr)) { 2820 return true; 2821 } 2822 qemu_log_mask(LOG_INVALID_MEM, 2823 "Invalid access to non-RAM device at " 2824 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2825 "region '%s'\n", addr, len, memory_region_name(mr)); 2826 return false; 2827 } 2828 2829 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2830 const uint8_t *buf, 2831 hwaddr len, hwaddr mr_addr, 2832 hwaddr *l, MemoryRegion *mr) 2833 { 2834 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2835 return MEMTX_ACCESS_ERROR; 2836 } 2837 2838 if (!memory_access_is_direct(mr, true)) { 2839 uint64_t val; 2840 MemTxResult result; 2841 bool release_lock = prepare_mmio_access(mr); 2842 2843 *l = memory_access_size(mr, *l, mr_addr); 2844 /* 2845 * XXX: could force current_cpu to NULL to avoid 2846 * potential bugs 2847 */ 2848 2849 /* 2850 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2851 * the buffer by following ldn_he_p(). 2852 */ 2853 #ifdef QEMU_STATIC_ANALYSIS 2854 assert((*l == 1 && len >= 1) || 2855 (*l == 2 && len >= 2) || 2856 (*l == 4 && len >= 4) || 2857 (*l == 8 && len >= 8)); 2858 #endif 2859 val = ldn_he_p(buf, *l); 2860 result = memory_region_dispatch_write(mr, mr_addr, val, 2861 size_memop(*l), attrs); 2862 if (release_lock) { 2863 bql_unlock(); 2864 } 2865 2866 return result; 2867 } else { 2868 /* RAM case */ 2869 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2870 false, true); 2871 2872 memmove(ram_ptr, buf, *l); 2873 invalidate_and_set_dirty(mr, mr_addr, *l); 2874 2875 return MEMTX_OK; 2876 } 2877 } 2878 2879 /* Called within RCU critical section. */ 2880 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2881 MemTxAttrs attrs, 2882 const void *ptr, 2883 hwaddr len, hwaddr mr_addr, 2884 hwaddr l, MemoryRegion *mr) 2885 { 2886 MemTxResult result = MEMTX_OK; 2887 const uint8_t *buf = ptr; 2888 2889 for (;;) { 2890 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2891 mr); 2892 2893 len -= l; 2894 buf += l; 2895 addr += l; 2896 2897 if (!len) { 2898 break; 2899 } 2900 2901 l = len; 2902 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2903 } 2904 2905 return result; 2906 } 2907 2908 /* Called from RCU critical section. */ 2909 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2910 const void *buf, hwaddr len) 2911 { 2912 hwaddr l; 2913 hwaddr mr_addr; 2914 MemoryRegion *mr; 2915 2916 l = len; 2917 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2918 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2919 return MEMTX_ACCESS_ERROR; 2920 } 2921 return flatview_write_continue(fv, addr, attrs, buf, len, 2922 mr_addr, l, mr); 2923 } 2924 2925 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2926 hwaddr len, hwaddr mr_addr, 2927 hwaddr *l, 2928 MemoryRegion *mr) 2929 { 2930 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2931 return MEMTX_ACCESS_ERROR; 2932 } 2933 2934 if (!memory_access_is_direct(mr, false)) { 2935 /* I/O case */ 2936 uint64_t val; 2937 MemTxResult result; 2938 bool release_lock = prepare_mmio_access(mr); 2939 2940 *l = memory_access_size(mr, *l, mr_addr); 2941 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2942 attrs); 2943 2944 /* 2945 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2946 * the buffer by following stn_he_p(). 2947 */ 2948 #ifdef QEMU_STATIC_ANALYSIS 2949 assert((*l == 1 && len >= 1) || 2950 (*l == 2 && len >= 2) || 2951 (*l == 4 && len >= 4) || 2952 (*l == 8 && len >= 8)); 2953 #endif 2954 stn_he_p(buf, *l, val); 2955 2956 if (release_lock) { 2957 bql_unlock(); 2958 } 2959 return result; 2960 } else { 2961 /* RAM case */ 2962 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2963 false, false); 2964 2965 memcpy(buf, ram_ptr, *l); 2966 2967 return MEMTX_OK; 2968 } 2969 } 2970 2971 /* Called within RCU critical section. */ 2972 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2973 MemTxAttrs attrs, void *ptr, 2974 hwaddr len, hwaddr mr_addr, hwaddr l, 2975 MemoryRegion *mr) 2976 { 2977 MemTxResult result = MEMTX_OK; 2978 uint8_t *buf = ptr; 2979 2980 fuzz_dma_read_cb(addr, len, mr); 2981 for (;;) { 2982 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2983 2984 len -= l; 2985 buf += l; 2986 addr += l; 2987 2988 if (!len) { 2989 break; 2990 } 2991 2992 l = len; 2993 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2994 } 2995 2996 return result; 2997 } 2998 2999 /* Called from RCU critical section. */ 3000 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 3001 MemTxAttrs attrs, void *buf, hwaddr len) 3002 { 3003 hwaddr l; 3004 hwaddr mr_addr; 3005 MemoryRegion *mr; 3006 3007 l = len; 3008 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3009 if (!flatview_access_allowed(mr, attrs, addr, len)) { 3010 return MEMTX_ACCESS_ERROR; 3011 } 3012 return flatview_read_continue(fv, addr, attrs, buf, len, 3013 mr_addr, l, mr); 3014 } 3015 3016 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 3017 MemTxAttrs attrs, void *buf, hwaddr len) 3018 { 3019 MemTxResult result = MEMTX_OK; 3020 FlatView *fv; 3021 3022 if (len > 0) { 3023 RCU_READ_LOCK_GUARD(); 3024 fv = address_space_to_flatview(as); 3025 result = flatview_read(fv, addr, attrs, buf, len); 3026 } 3027 3028 return result; 3029 } 3030 3031 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 3032 MemTxAttrs attrs, 3033 const void *buf, hwaddr len) 3034 { 3035 MemTxResult result = MEMTX_OK; 3036 FlatView *fv; 3037 3038 if (len > 0) { 3039 RCU_READ_LOCK_GUARD(); 3040 fv = address_space_to_flatview(as); 3041 result = flatview_write(fv, addr, attrs, buf, len); 3042 } 3043 3044 return result; 3045 } 3046 3047 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 3048 void *buf, hwaddr len, bool is_write) 3049 { 3050 if (is_write) { 3051 return address_space_write(as, addr, attrs, buf, len); 3052 } else { 3053 return address_space_read_full(as, addr, attrs, buf, len); 3054 } 3055 } 3056 3057 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3058 uint8_t c, hwaddr len, MemTxAttrs attrs) 3059 { 3060 #define FILLBUF_SIZE 512 3061 uint8_t fillbuf[FILLBUF_SIZE]; 3062 int l; 3063 MemTxResult error = MEMTX_OK; 3064 3065 memset(fillbuf, c, FILLBUF_SIZE); 3066 while (len > 0) { 3067 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 3068 error |= address_space_write(as, addr, attrs, fillbuf, l); 3069 len -= l; 3070 addr += l; 3071 } 3072 3073 return error; 3074 } 3075 3076 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3077 hwaddr len, bool is_write) 3078 { 3079 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3080 buf, len, is_write); 3081 } 3082 3083 enum write_rom_type { 3084 WRITE_DATA, 3085 FLUSH_CACHE, 3086 }; 3087 3088 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3089 hwaddr addr, 3090 MemTxAttrs attrs, 3091 const void *ptr, 3092 hwaddr len, 3093 enum write_rom_type type) 3094 { 3095 hwaddr l; 3096 uint8_t *ram_ptr; 3097 hwaddr addr1; 3098 MemoryRegion *mr; 3099 const uint8_t *buf = ptr; 3100 3101 RCU_READ_LOCK_GUARD(); 3102 while (len > 0) { 3103 l = len; 3104 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3105 3106 if (!(memory_region_is_ram(mr) || 3107 memory_region_is_romd(mr))) { 3108 l = memory_access_size(mr, l, addr1); 3109 } else { 3110 /* ROM/RAM case */ 3111 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3112 switch (type) { 3113 case WRITE_DATA: 3114 memcpy(ram_ptr, buf, l); 3115 invalidate_and_set_dirty(mr, addr1, l); 3116 break; 3117 case FLUSH_CACHE: 3118 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3119 break; 3120 } 3121 } 3122 len -= l; 3123 buf += l; 3124 addr += l; 3125 } 3126 return MEMTX_OK; 3127 } 3128 3129 /* used for ROM loading : can write in RAM and ROM */ 3130 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3131 MemTxAttrs attrs, 3132 const void *buf, hwaddr len) 3133 { 3134 return address_space_write_rom_internal(as, addr, attrs, 3135 buf, len, WRITE_DATA); 3136 } 3137 3138 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3139 { 3140 /* 3141 * This function should do the same thing as an icache flush that was 3142 * triggered from within the guest. For TCG we are always cache coherent, 3143 * so there is no need to flush anything. For KVM / Xen we need to flush 3144 * the host's instruction cache at least. 3145 */ 3146 if (tcg_enabled()) { 3147 return; 3148 } 3149 3150 address_space_write_rom_internal(&address_space_memory, 3151 start, MEMTXATTRS_UNSPECIFIED, 3152 NULL, len, FLUSH_CACHE); 3153 } 3154 3155 /* 3156 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used 3157 * to detect illegal pointers passed to address_space_unmap. 3158 */ 3159 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed 3160 3161 typedef struct { 3162 uint64_t magic; 3163 MemoryRegion *mr; 3164 hwaddr addr; 3165 size_t len; 3166 uint8_t buffer[]; 3167 } BounceBuffer; 3168 3169 static void 3170 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3171 { 3172 QLIST_REMOVE(client, link); 3173 g_free(client); 3174 } 3175 3176 static void address_space_notify_map_clients_locked(AddressSpace *as) 3177 { 3178 AddressSpaceMapClient *client; 3179 3180 while (!QLIST_EMPTY(&as->map_client_list)) { 3181 client = QLIST_FIRST(&as->map_client_list); 3182 qemu_bh_schedule(client->bh); 3183 address_space_unregister_map_client_do(client); 3184 } 3185 } 3186 3187 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3188 { 3189 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3190 3191 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3192 client->bh = bh; 3193 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3194 /* Write map_client_list before reading bounce_buffer_size. */ 3195 smp_mb(); 3196 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) { 3197 address_space_notify_map_clients_locked(as); 3198 } 3199 } 3200 3201 void cpu_exec_init_all(void) 3202 { 3203 qemu_mutex_init(&ram_list.mutex); 3204 /* The data structures we set up here depend on knowing the page size, 3205 * so no more changes can be made after this point. 3206 * In an ideal world, nothing we did before we had finished the 3207 * machine setup would care about the target page size, and we could 3208 * do this much later, rather than requiring board models to state 3209 * up front what their requirements are. 3210 */ 3211 finalize_target_page_bits(); 3212 io_mem_init(); 3213 memory_map_init(); 3214 } 3215 3216 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3217 { 3218 AddressSpaceMapClient *client; 3219 3220 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3221 QLIST_FOREACH(client, &as->map_client_list, link) { 3222 if (client->bh == bh) { 3223 address_space_unregister_map_client_do(client); 3224 break; 3225 } 3226 } 3227 } 3228 3229 static void address_space_notify_map_clients(AddressSpace *as) 3230 { 3231 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3232 address_space_notify_map_clients_locked(as); 3233 } 3234 3235 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3236 bool is_write, MemTxAttrs attrs) 3237 { 3238 MemoryRegion *mr; 3239 hwaddr l, xlat; 3240 3241 while (len > 0) { 3242 l = len; 3243 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3244 if (!memory_access_is_direct(mr, is_write)) { 3245 l = memory_access_size(mr, l, addr); 3246 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3247 return false; 3248 } 3249 } 3250 3251 len -= l; 3252 addr += l; 3253 } 3254 return true; 3255 } 3256 3257 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3258 hwaddr len, bool is_write, 3259 MemTxAttrs attrs) 3260 { 3261 FlatView *fv; 3262 3263 RCU_READ_LOCK_GUARD(); 3264 fv = address_space_to_flatview(as); 3265 return flatview_access_valid(fv, addr, len, is_write, attrs); 3266 } 3267 3268 static hwaddr 3269 flatview_extend_translation(FlatView *fv, hwaddr addr, 3270 hwaddr target_len, 3271 MemoryRegion *mr, hwaddr base, hwaddr len, 3272 bool is_write, MemTxAttrs attrs) 3273 { 3274 hwaddr done = 0; 3275 hwaddr xlat; 3276 MemoryRegion *this_mr; 3277 3278 for (;;) { 3279 target_len -= len; 3280 addr += len; 3281 done += len; 3282 if (target_len == 0) { 3283 return done; 3284 } 3285 3286 len = target_len; 3287 this_mr = flatview_translate(fv, addr, &xlat, 3288 &len, is_write, attrs); 3289 if (this_mr != mr || xlat != base + done) { 3290 return done; 3291 } 3292 } 3293 } 3294 3295 /* Map a physical memory region into a host virtual address. 3296 * May map a subset of the requested range, given by and returned in *plen. 3297 * May return NULL if resources needed to perform the mapping are exhausted. 3298 * Use only for reads OR writes - not for read-modify-write operations. 3299 * Use address_space_register_map_client() to know when retrying the map 3300 * operation is likely to succeed. 3301 */ 3302 void *address_space_map(AddressSpace *as, 3303 hwaddr addr, 3304 hwaddr *plen, 3305 bool is_write, 3306 MemTxAttrs attrs) 3307 { 3308 hwaddr len = *plen; 3309 hwaddr l, xlat; 3310 MemoryRegion *mr; 3311 FlatView *fv; 3312 3313 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3314 3315 if (len == 0) { 3316 return NULL; 3317 } 3318 3319 l = len; 3320 RCU_READ_LOCK_GUARD(); 3321 fv = address_space_to_flatview(as); 3322 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3323 3324 if (!memory_access_is_direct(mr, is_write)) { 3325 size_t used = qatomic_read(&as->bounce_buffer_size); 3326 for (;;) { 3327 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l); 3328 size_t new_size = used + alloc; 3329 size_t actual = 3330 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size); 3331 if (actual == used) { 3332 l = alloc; 3333 break; 3334 } 3335 used = actual; 3336 } 3337 3338 if (l == 0) { 3339 *plen = 0; 3340 return NULL; 3341 } 3342 3343 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer)); 3344 bounce->magic = BOUNCE_BUFFER_MAGIC; 3345 memory_region_ref(mr); 3346 bounce->mr = mr; 3347 bounce->addr = addr; 3348 bounce->len = l; 3349 3350 if (!is_write) { 3351 flatview_read(fv, addr, attrs, 3352 bounce->buffer, l); 3353 } 3354 3355 *plen = l; 3356 return bounce->buffer; 3357 } 3358 3359 memory_region_ref(mr); 3360 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3361 l, is_write, attrs); 3362 fuzz_dma_read_cb(addr, *plen, mr); 3363 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3364 } 3365 3366 /* Unmaps a memory region previously mapped by address_space_map(). 3367 * Will also mark the memory as dirty if is_write is true. access_len gives 3368 * the amount of memory that was actually read or written by the caller. 3369 */ 3370 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3371 bool is_write, hwaddr access_len) 3372 { 3373 MemoryRegion *mr; 3374 ram_addr_t addr1; 3375 3376 mr = memory_region_from_host(buffer, &addr1); 3377 if (mr != NULL) { 3378 if (is_write) { 3379 invalidate_and_set_dirty(mr, addr1, access_len); 3380 } 3381 if (xen_enabled()) { 3382 xen_invalidate_map_cache_entry(buffer); 3383 } 3384 memory_region_unref(mr); 3385 return; 3386 } 3387 3388 3389 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer); 3390 assert(bounce->magic == BOUNCE_BUFFER_MAGIC); 3391 3392 if (is_write) { 3393 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED, 3394 bounce->buffer, access_len); 3395 } 3396 3397 qatomic_sub(&as->bounce_buffer_size, bounce->len); 3398 bounce->magic = ~BOUNCE_BUFFER_MAGIC; 3399 memory_region_unref(bounce->mr); 3400 g_free(bounce); 3401 /* Write bounce_buffer_size before reading map_client_list. */ 3402 smp_mb(); 3403 address_space_notify_map_clients(as); 3404 } 3405 3406 void *cpu_physical_memory_map(hwaddr addr, 3407 hwaddr *plen, 3408 bool is_write) 3409 { 3410 return address_space_map(&address_space_memory, addr, plen, is_write, 3411 MEMTXATTRS_UNSPECIFIED); 3412 } 3413 3414 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3415 bool is_write, hwaddr access_len) 3416 { 3417 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3418 } 3419 3420 #define ARG1_DECL AddressSpace *as 3421 #define ARG1 as 3422 #define SUFFIX 3423 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3424 #define RCU_READ_LOCK(...) rcu_read_lock() 3425 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3426 #include "memory_ldst.c.inc" 3427 3428 int64_t address_space_cache_init(MemoryRegionCache *cache, 3429 AddressSpace *as, 3430 hwaddr addr, 3431 hwaddr len, 3432 bool is_write) 3433 { 3434 AddressSpaceDispatch *d; 3435 hwaddr l; 3436 MemoryRegion *mr; 3437 Int128 diff; 3438 3439 assert(len > 0); 3440 3441 l = len; 3442 cache->fv = address_space_get_flatview(as); 3443 d = flatview_to_dispatch(cache->fv); 3444 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3445 3446 /* 3447 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3448 * Take that into account to compute how many bytes are there between 3449 * cache->xlat and the end of the section. 3450 */ 3451 diff = int128_sub(cache->mrs.size, 3452 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3453 l = int128_get64(int128_min(diff, int128_make64(l))); 3454 3455 mr = cache->mrs.mr; 3456 memory_region_ref(mr); 3457 if (memory_access_is_direct(mr, is_write)) { 3458 /* We don't care about the memory attributes here as we're only 3459 * doing this if we found actual RAM, which behaves the same 3460 * regardless of attributes; so UNSPECIFIED is fine. 3461 */ 3462 l = flatview_extend_translation(cache->fv, addr, len, mr, 3463 cache->xlat, l, is_write, 3464 MEMTXATTRS_UNSPECIFIED); 3465 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3466 is_write); 3467 } else { 3468 cache->ptr = NULL; 3469 } 3470 3471 cache->len = l; 3472 cache->is_write = is_write; 3473 return l; 3474 } 3475 3476 void address_space_cache_invalidate(MemoryRegionCache *cache, 3477 hwaddr addr, 3478 hwaddr access_len) 3479 { 3480 assert(cache->is_write); 3481 if (likely(cache->ptr)) { 3482 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3483 } 3484 } 3485 3486 void address_space_cache_destroy(MemoryRegionCache *cache) 3487 { 3488 if (!cache->mrs.mr) { 3489 return; 3490 } 3491 3492 if (xen_enabled()) { 3493 xen_invalidate_map_cache_entry(cache->ptr); 3494 } 3495 memory_region_unref(cache->mrs.mr); 3496 flatview_unref(cache->fv); 3497 cache->mrs.mr = NULL; 3498 cache->fv = NULL; 3499 } 3500 3501 /* Called from RCU critical section. This function has the same 3502 * semantics as address_space_translate, but it only works on a 3503 * predefined range of a MemoryRegion that was mapped with 3504 * address_space_cache_init. 3505 */ 3506 static inline MemoryRegion *address_space_translate_cached( 3507 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3508 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3509 { 3510 MemoryRegionSection section; 3511 MemoryRegion *mr; 3512 IOMMUMemoryRegion *iommu_mr; 3513 AddressSpace *target_as; 3514 3515 assert(!cache->ptr); 3516 *xlat = addr + cache->xlat; 3517 3518 mr = cache->mrs.mr; 3519 iommu_mr = memory_region_get_iommu(mr); 3520 if (!iommu_mr) { 3521 /* MMIO region. */ 3522 return mr; 3523 } 3524 3525 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3526 NULL, is_write, true, 3527 &target_as, attrs); 3528 return section.mr; 3529 } 3530 3531 /* Called within RCU critical section. */ 3532 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3533 const void *ptr, 3534 hwaddr len, 3535 hwaddr mr_addr, 3536 hwaddr l, 3537 MemoryRegion *mr) 3538 { 3539 MemTxResult result = MEMTX_OK; 3540 const uint8_t *buf = ptr; 3541 3542 for (;;) { 3543 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3544 mr); 3545 3546 len -= l; 3547 buf += l; 3548 mr_addr += l; 3549 3550 if (!len) { 3551 break; 3552 } 3553 3554 l = len; 3555 } 3556 3557 return result; 3558 } 3559 3560 /* Called within RCU critical section. */ 3561 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3562 void *ptr, hwaddr len, 3563 hwaddr mr_addr, hwaddr l, 3564 MemoryRegion *mr) 3565 { 3566 MemTxResult result = MEMTX_OK; 3567 uint8_t *buf = ptr; 3568 3569 for (;;) { 3570 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3571 len -= l; 3572 buf += l; 3573 mr_addr += l; 3574 3575 if (!len) { 3576 break; 3577 } 3578 l = len; 3579 } 3580 3581 return result; 3582 } 3583 3584 /* Called from RCU critical section. address_space_read_cached uses this 3585 * out of line function when the target is an MMIO or IOMMU region. 3586 */ 3587 MemTxResult 3588 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3589 void *buf, hwaddr len) 3590 { 3591 hwaddr mr_addr, l; 3592 MemoryRegion *mr; 3593 3594 l = len; 3595 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3596 MEMTXATTRS_UNSPECIFIED); 3597 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3598 buf, len, mr_addr, l, mr); 3599 } 3600 3601 /* Called from RCU critical section. address_space_write_cached uses this 3602 * out of line function when the target is an MMIO or IOMMU region. 3603 */ 3604 MemTxResult 3605 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3606 const void *buf, hwaddr len) 3607 { 3608 hwaddr mr_addr, l; 3609 MemoryRegion *mr; 3610 3611 l = len; 3612 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3613 MEMTXATTRS_UNSPECIFIED); 3614 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3615 buf, len, mr_addr, l, mr); 3616 } 3617 3618 #define ARG1_DECL MemoryRegionCache *cache 3619 #define ARG1 cache 3620 #define SUFFIX _cached_slow 3621 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3622 #define RCU_READ_LOCK() ((void)0) 3623 #define RCU_READ_UNLOCK() ((void)0) 3624 #include "memory_ldst.c.inc" 3625 3626 /* virtual memory access for debug (includes writing to ROM) */ 3627 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3628 void *ptr, size_t len, bool is_write) 3629 { 3630 hwaddr phys_addr; 3631 vaddr l, page; 3632 uint8_t *buf = ptr; 3633 3634 cpu_synchronize_state(cpu); 3635 while (len > 0) { 3636 int asidx; 3637 MemTxAttrs attrs; 3638 MemTxResult res; 3639 3640 page = addr & TARGET_PAGE_MASK; 3641 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3642 asidx = cpu_asidx_from_attrs(cpu, attrs); 3643 /* if no physical page mapped, return an error */ 3644 if (phys_addr == -1) 3645 return -1; 3646 l = (page + TARGET_PAGE_SIZE) - addr; 3647 if (l > len) 3648 l = len; 3649 phys_addr += (addr & ~TARGET_PAGE_MASK); 3650 if (is_write) { 3651 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3652 attrs, buf, l); 3653 } else { 3654 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3655 attrs, buf, l); 3656 } 3657 if (res != MEMTX_OK) { 3658 return -1; 3659 } 3660 len -= l; 3661 buf += l; 3662 addr += l; 3663 } 3664 return 0; 3665 } 3666 3667 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3668 { 3669 MemoryRegion*mr; 3670 hwaddr l = 1; 3671 3672 RCU_READ_LOCK_GUARD(); 3673 mr = address_space_translate(&address_space_memory, 3674 phys_addr, &phys_addr, &l, false, 3675 MEMTXATTRS_UNSPECIFIED); 3676 3677 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3678 } 3679 3680 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3681 { 3682 RAMBlock *block; 3683 int ret = 0; 3684 3685 RCU_READ_LOCK_GUARD(); 3686 RAMBLOCK_FOREACH(block) { 3687 ret = func(block, opaque); 3688 if (ret) { 3689 break; 3690 } 3691 } 3692 return ret; 3693 } 3694 3695 /* 3696 * Unmap pages of memory from start to start+length such that 3697 * they a) read as 0, b) Trigger whatever fault mechanism 3698 * the OS provides for postcopy. 3699 * The pages must be unmapped by the end of the function. 3700 * Returns: 0 on success, none-0 on failure 3701 * 3702 */ 3703 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3704 { 3705 int ret = -1; 3706 3707 uint8_t *host_startaddr = rb->host + start; 3708 3709 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3710 error_report("%s: Unaligned start address: %p", 3711 __func__, host_startaddr); 3712 goto err; 3713 } 3714 3715 if ((start + length) <= rb->max_length) { 3716 bool need_madvise, need_fallocate; 3717 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3718 error_report("%s: Unaligned length: %zx", __func__, length); 3719 goto err; 3720 } 3721 3722 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3723 3724 /* The logic here is messy; 3725 * madvise DONTNEED fails for hugepages 3726 * fallocate works on hugepages and shmem 3727 * shared anonymous memory requires madvise REMOVE 3728 */ 3729 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3730 need_fallocate = rb->fd != -1; 3731 if (need_fallocate) { 3732 /* For a file, this causes the area of the file to be zero'd 3733 * if read, and for hugetlbfs also causes it to be unmapped 3734 * so a userfault will trigger. 3735 */ 3736 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3737 /* 3738 * fallocate() will fail with readonly files. Let's print a 3739 * proper error message. 3740 */ 3741 if (rb->flags & RAM_READONLY_FD) { 3742 error_report("%s: Discarding RAM with readonly files is not" 3743 " supported", __func__); 3744 goto err; 3745 3746 } 3747 /* 3748 * We'll discard data from the actual file, even though we only 3749 * have a MAP_PRIVATE mapping, possibly messing with other 3750 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3751 * change that behavior whithout violating the promised 3752 * semantics of ram_block_discard_range(). 3753 * 3754 * Only warn, because it works as long as nobody else uses that 3755 * file. 3756 */ 3757 if (!qemu_ram_is_shared(rb)) { 3758 warn_report_once("%s: Discarding RAM" 3759 " in private file mappings is possibly" 3760 " dangerous, because it will modify the" 3761 " underlying file and will affect other" 3762 " users of the file", __func__); 3763 } 3764 3765 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3766 start, length); 3767 if (ret) { 3768 ret = -errno; 3769 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3770 __func__, rb->idstr, start, length, ret); 3771 goto err; 3772 } 3773 #else 3774 ret = -ENOSYS; 3775 error_report("%s: fallocate not available/file" 3776 "%s:%" PRIx64 " +%zx (%d)", 3777 __func__, rb->idstr, start, length, ret); 3778 goto err; 3779 #endif 3780 } 3781 if (need_madvise) { 3782 /* For normal RAM this causes it to be unmapped, 3783 * for shared memory it causes the local mapping to disappear 3784 * and to fall back on the file contents (which we just 3785 * fallocate'd away). 3786 */ 3787 #if defined(CONFIG_MADVISE) 3788 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3789 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3790 } else { 3791 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3792 } 3793 if (ret) { 3794 ret = -errno; 3795 error_report("%s: Failed to discard range " 3796 "%s:%" PRIx64 " +%zx (%d)", 3797 __func__, rb->idstr, start, length, ret); 3798 goto err; 3799 } 3800 #else 3801 ret = -ENOSYS; 3802 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3803 __func__, rb->idstr, start, length, ret); 3804 goto err; 3805 #endif 3806 } 3807 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3808 need_madvise, need_fallocate, ret); 3809 } else { 3810 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3811 __func__, rb->idstr, start, length, rb->max_length); 3812 } 3813 3814 err: 3815 return ret; 3816 } 3817 3818 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3819 size_t length) 3820 { 3821 int ret = -1; 3822 3823 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3824 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3825 start, length); 3826 3827 if (ret) { 3828 ret = -errno; 3829 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3830 __func__, rb->idstr, start, length, ret); 3831 } 3832 #else 3833 ret = -ENOSYS; 3834 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3835 __func__, rb->idstr, start, length, ret); 3836 #endif 3837 3838 return ret; 3839 } 3840 3841 bool ramblock_is_pmem(RAMBlock *rb) 3842 { 3843 return rb->flags & RAM_PMEM; 3844 } 3845 3846 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3847 { 3848 if (start == end - 1) { 3849 qemu_printf("\t%3d ", start); 3850 } else { 3851 qemu_printf("\t%3d..%-3d ", start, end - 1); 3852 } 3853 qemu_printf(" skip=%d ", skip); 3854 if (ptr == PHYS_MAP_NODE_NIL) { 3855 qemu_printf(" ptr=NIL"); 3856 } else if (!skip) { 3857 qemu_printf(" ptr=#%d", ptr); 3858 } else { 3859 qemu_printf(" ptr=[%d]", ptr); 3860 } 3861 qemu_printf("\n"); 3862 } 3863 3864 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3865 int128_sub((size), int128_one())) : 0) 3866 3867 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3868 { 3869 int i; 3870 3871 qemu_printf(" Dispatch\n"); 3872 qemu_printf(" Physical sections\n"); 3873 3874 for (i = 0; i < d->map.sections_nb; ++i) { 3875 MemoryRegionSection *s = d->map.sections + i; 3876 const char *names[] = { " [unassigned]", " [not dirty]", 3877 " [ROM]", " [watch]" }; 3878 3879 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3880 " %s%s%s%s%s", 3881 i, 3882 s->offset_within_address_space, 3883 s->offset_within_address_space + MR_SIZE(s->size), 3884 s->mr->name ? s->mr->name : "(noname)", 3885 i < ARRAY_SIZE(names) ? names[i] : "", 3886 s->mr == root ? " [ROOT]" : "", 3887 s == d->mru_section ? " [MRU]" : "", 3888 s->mr->is_iommu ? " [iommu]" : ""); 3889 3890 if (s->mr->alias) { 3891 qemu_printf(" alias=%s", s->mr->alias->name ? 3892 s->mr->alias->name : "noname"); 3893 } 3894 qemu_printf("\n"); 3895 } 3896 3897 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3898 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3899 for (i = 0; i < d->map.nodes_nb; ++i) { 3900 int j, jprev; 3901 PhysPageEntry prev; 3902 Node *n = d->map.nodes + i; 3903 3904 qemu_printf(" [%d]\n", i); 3905 3906 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3907 PhysPageEntry *pe = *n + j; 3908 3909 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3910 continue; 3911 } 3912 3913 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3914 3915 jprev = j; 3916 prev = *pe; 3917 } 3918 3919 if (jprev != ARRAY_SIZE(*n)) { 3920 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3921 } 3922 } 3923 } 3924 3925 /* Require any discards to work. */ 3926 static unsigned int ram_block_discard_required_cnt; 3927 /* Require only coordinated discards to work. */ 3928 static unsigned int ram_block_coordinated_discard_required_cnt; 3929 /* Disable any discards. */ 3930 static unsigned int ram_block_discard_disabled_cnt; 3931 /* Disable only uncoordinated discards. */ 3932 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3933 static QemuMutex ram_block_discard_disable_mutex; 3934 3935 static void ram_block_discard_disable_mutex_lock(void) 3936 { 3937 static gsize initialized; 3938 3939 if (g_once_init_enter(&initialized)) { 3940 qemu_mutex_init(&ram_block_discard_disable_mutex); 3941 g_once_init_leave(&initialized, 1); 3942 } 3943 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3944 } 3945 3946 static void ram_block_discard_disable_mutex_unlock(void) 3947 { 3948 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3949 } 3950 3951 int ram_block_discard_disable(bool state) 3952 { 3953 int ret = 0; 3954 3955 ram_block_discard_disable_mutex_lock(); 3956 if (!state) { 3957 ram_block_discard_disabled_cnt--; 3958 } else if (ram_block_discard_required_cnt || 3959 ram_block_coordinated_discard_required_cnt) { 3960 ret = -EBUSY; 3961 } else { 3962 ram_block_discard_disabled_cnt++; 3963 } 3964 ram_block_discard_disable_mutex_unlock(); 3965 return ret; 3966 } 3967 3968 int ram_block_uncoordinated_discard_disable(bool state) 3969 { 3970 int ret = 0; 3971 3972 ram_block_discard_disable_mutex_lock(); 3973 if (!state) { 3974 ram_block_uncoordinated_discard_disabled_cnt--; 3975 } else if (ram_block_discard_required_cnt) { 3976 ret = -EBUSY; 3977 } else { 3978 ram_block_uncoordinated_discard_disabled_cnt++; 3979 } 3980 ram_block_discard_disable_mutex_unlock(); 3981 return ret; 3982 } 3983 3984 int ram_block_discard_require(bool state) 3985 { 3986 int ret = 0; 3987 3988 ram_block_discard_disable_mutex_lock(); 3989 if (!state) { 3990 ram_block_discard_required_cnt--; 3991 } else if (ram_block_discard_disabled_cnt || 3992 ram_block_uncoordinated_discard_disabled_cnt) { 3993 ret = -EBUSY; 3994 } else { 3995 ram_block_discard_required_cnt++; 3996 } 3997 ram_block_discard_disable_mutex_unlock(); 3998 return ret; 3999 } 4000 4001 int ram_block_coordinated_discard_require(bool state) 4002 { 4003 int ret = 0; 4004 4005 ram_block_discard_disable_mutex_lock(); 4006 if (!state) { 4007 ram_block_coordinated_discard_required_cnt--; 4008 } else if (ram_block_discard_disabled_cnt) { 4009 ret = -EBUSY; 4010 } else { 4011 ram_block_coordinated_discard_required_cnt++; 4012 } 4013 ram_block_discard_disable_mutex_unlock(); 4014 return ret; 4015 } 4016 4017 bool ram_block_discard_is_disabled(void) 4018 { 4019 return qatomic_read(&ram_block_discard_disabled_cnt) || 4020 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 4021 } 4022 4023 bool ram_block_discard_is_required(void) 4024 { 4025 return qatomic_read(&ram_block_discard_required_cnt) || 4026 qatomic_read(&ram_block_coordinated_discard_required_cnt); 4027 } 4028