xref: /openbmc/qemu/system/physmem.c (revision 5f69e42d)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29 
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace/trace-root.h"
57 
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
61 
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
66 
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
69 
70 #include "qemu/pmem.h"
71 
72 #include "migration/vmstate.h"
73 
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
78 
79 #include "monitor/monitor.h"
80 
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
84 
85 //#define DEBUG_SUBPAGE
86 
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
88  * are protected by the ramlist lock.
89  */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91 
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94 
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97 
98 static MemoryRegion io_mem_unassigned;
99 
100 typedef struct PhysPageEntry PhysPageEntry;
101 
102 struct PhysPageEntry {
103     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104     uint32_t skip : 6;
105      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106     uint32_t ptr : 26;
107 };
108 
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110 
111 /* Size of the L2 (and L3, etc) page tables.  */
112 #define ADDR_SPACE_BITS 64
113 
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
116 
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118 
119 typedef PhysPageEntry Node[P_L2_SIZE];
120 
121 typedef struct PhysPageMap {
122     struct rcu_head rcu;
123 
124     unsigned sections_nb;
125     unsigned sections_nb_alloc;
126     unsigned nodes_nb;
127     unsigned nodes_nb_alloc;
128     Node *nodes;
129     MemoryRegionSection *sections;
130 } PhysPageMap;
131 
132 struct AddressSpaceDispatch {
133     MemoryRegionSection *mru_section;
134     /* This is a multi-level map on the physical address space.
135      * The bottom level has pointers to MemoryRegionSections.
136      */
137     PhysPageEntry phys_map;
138     PhysPageMap map;
139 };
140 
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143     MemoryRegion iomem;
144     FlatView *fv;
145     hwaddr base;
146     uint16_t sub_section[];
147 } subpage_t;
148 
149 #define PHYS_SECTION_UNASSIGNED 0
150 
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
155 
156 /**
157  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158  * @cpu: the CPU whose AddressSpace this is
159  * @as: the AddressSpace itself
160  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161  * @tcg_as_listener: listener for tracking changes to the AddressSpace
162  */
163 typedef struct CPUAddressSpace {
164     CPUState *cpu;
165     AddressSpace *as;
166     struct AddressSpaceDispatch *memory_dispatch;
167     MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
169 
170 struct DirtyBitmapSnapshot {
171     ram_addr_t start;
172     ram_addr_t end;
173     unsigned long dirty[];
174 };
175 
176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177 {
178     static unsigned alloc_hint = 16;
179     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182         alloc_hint = map->nodes_nb_alloc;
183     }
184 }
185 
186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187 {
188     unsigned i;
189     uint32_t ret;
190     PhysPageEntry e;
191     PhysPageEntry *p;
192 
193     ret = map->nodes_nb++;
194     p = map->nodes[ret];
195     assert(ret != PHYS_MAP_NODE_NIL);
196     assert(ret != map->nodes_nb_alloc);
197 
198     e.skip = leaf ? 0 : 1;
199     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200     for (i = 0; i < P_L2_SIZE; ++i) {
201         memcpy(&p[i], &e, sizeof(e));
202     }
203     return ret;
204 }
205 
206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
208                                 int level)
209 {
210     PhysPageEntry *p;
211     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212 
213     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214         lp->ptr = phys_map_node_alloc(map, level == 0);
215     }
216     p = map->nodes[lp->ptr];
217     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218 
219     while (*nb && lp < &p[P_L2_SIZE]) {
220         if ((*index & (step - 1)) == 0 && *nb >= step) {
221             lp->skip = 0;
222             lp->ptr = leaf;
223             *index += step;
224             *nb -= step;
225         } else {
226             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227         }
228         ++lp;
229     }
230 }
231 
232 static void phys_page_set(AddressSpaceDispatch *d,
233                           hwaddr index, uint64_t nb,
234                           uint16_t leaf)
235 {
236     /* Wildly overreserve - it doesn't matter much. */
237     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238 
239     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 }
241 
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243  * and update our entry so we can skip it and go directly to the destination.
244  */
245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246 {
247     unsigned valid_ptr = P_L2_SIZE;
248     int valid = 0;
249     PhysPageEntry *p;
250     int i;
251 
252     if (lp->ptr == PHYS_MAP_NODE_NIL) {
253         return;
254     }
255 
256     p = nodes[lp->ptr];
257     for (i = 0; i < P_L2_SIZE; i++) {
258         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259             continue;
260         }
261 
262         valid_ptr = i;
263         valid++;
264         if (p[i].skip) {
265             phys_page_compact(&p[i], nodes);
266         }
267     }
268 
269     /* We can only compress if there's only one child. */
270     if (valid != 1) {
271         return;
272     }
273 
274     assert(valid_ptr < P_L2_SIZE);
275 
276     /* Don't compress if it won't fit in the # of bits we have. */
277     if (P_L2_LEVELS >= (1 << 6) &&
278         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279         return;
280     }
281 
282     lp->ptr = p[valid_ptr].ptr;
283     if (!p[valid_ptr].skip) {
284         /* If our only child is a leaf, make this a leaf. */
285         /* By design, we should have made this node a leaf to begin with so we
286          * should never reach here.
287          * But since it's so simple to handle this, let's do it just in case we
288          * change this rule.
289          */
290         lp->skip = 0;
291     } else {
292         lp->skip += p[valid_ptr].skip;
293     }
294 }
295 
296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
297 {
298     if (d->phys_map.skip) {
299         phys_page_compact(&d->phys_map, d->map.nodes);
300     }
301 }
302 
303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304                                        hwaddr addr)
305 {
306     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307      * the section must cover the entire address space.
308      */
309     return int128_gethi(section->size) ||
310            range_covers_byte(section->offset_within_address_space,
311                              int128_getlo(section->size), addr);
312 }
313 
314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315 {
316     PhysPageEntry lp = d->phys_map, *p;
317     Node *nodes = d->map.nodes;
318     MemoryRegionSection *sections = d->map.sections;
319     hwaddr index = addr >> TARGET_PAGE_BITS;
320     int i;
321 
322     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323         if (lp.ptr == PHYS_MAP_NODE_NIL) {
324             return &sections[PHYS_SECTION_UNASSIGNED];
325         }
326         p = nodes[lp.ptr];
327         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328     }
329 
330     if (section_covers_addr(&sections[lp.ptr], addr)) {
331         return &sections[lp.ptr];
332     } else {
333         return &sections[PHYS_SECTION_UNASSIGNED];
334     }
335 }
336 
337 /* Called from RCU critical section */
338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339                                                         hwaddr addr,
340                                                         bool resolve_subpage)
341 {
342     MemoryRegionSection *section = qatomic_read(&d->mru_section);
343     subpage_t *subpage;
344 
345     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346         !section_covers_addr(section, addr)) {
347         section = phys_page_find(d, addr);
348         qatomic_set(&d->mru_section, section);
349     }
350     if (resolve_subpage && section->mr->subpage) {
351         subpage = container_of(section->mr, subpage_t, iomem);
352         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353     }
354     return section;
355 }
356 
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360                                  hwaddr *plen, bool resolve_subpage)
361 {
362     MemoryRegionSection *section;
363     MemoryRegion *mr;
364     Int128 diff;
365 
366     section = address_space_lookup_region(d, addr, resolve_subpage);
367     /* Compute offset within MemoryRegionSection */
368     addr -= section->offset_within_address_space;
369 
370     /* Compute offset within MemoryRegion */
371     *xlat = addr + section->offset_within_region;
372 
373     mr = section->mr;
374 
375     /* MMIO registers can be expected to perform full-width accesses based only
376      * on their address, without considering adjacent registers that could
377      * decode to completely different MemoryRegions.  When such registers
378      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379      * regions overlap wildly.  For this reason we cannot clamp the accesses
380      * here.
381      *
382      * If the length is small (as is the case for address_space_ldl/stl),
383      * everything works fine.  If the incoming length is large, however,
384      * the caller really has to do the clamping through memory_access_size.
385      */
386     if (memory_region_is_ram(mr)) {
387         diff = int128_sub(section->size, int128_make64(addr));
388         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389     }
390     return section;
391 }
392 
393 /**
394  * address_space_translate_iommu - translate an address through an IOMMU
395  * memory region and then through the target address space.
396  *
397  * @iommu_mr: the IOMMU memory region that we start the translation from
398  * @addr: the address to be translated through the MMU
399  * @xlat: the translated address offset within the destination memory region.
400  *        It cannot be %NULL.
401  * @plen_out: valid read/write length of the translated address. It
402  *            cannot be %NULL.
403  * @page_mask_out: page mask for the translated address. This
404  *            should only be meaningful for IOMMU translated
405  *            addresses, since there may be huge pages that this bit
406  *            would tell. It can be %NULL if we don't care about it.
407  * @is_write: whether the translation operation is for write
408  * @is_mmio: whether this can be MMIO, set true if it can
409  * @target_as: the address space targeted by the IOMMU
410  * @attrs: transaction attributes
411  *
412  * This function is called from RCU critical section.  It is the common
413  * part of flatview_do_translate and address_space_translate_cached.
414  */
415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416                                                          hwaddr *xlat,
417                                                          hwaddr *plen_out,
418                                                          hwaddr *page_mask_out,
419                                                          bool is_write,
420                                                          bool is_mmio,
421                                                          AddressSpace **target_as,
422                                                          MemTxAttrs attrs)
423 {
424     MemoryRegionSection *section;
425     hwaddr page_mask = (hwaddr)-1;
426 
427     do {
428         hwaddr addr = *xlat;
429         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430         int iommu_idx = 0;
431         IOMMUTLBEntry iotlb;
432 
433         if (imrc->attrs_to_index) {
434             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435         }
436 
437         iotlb = imrc->translate(iommu_mr, addr, is_write ?
438                                 IOMMU_WO : IOMMU_RO, iommu_idx);
439 
440         if (!(iotlb.perm & (1 << is_write))) {
441             goto unassigned;
442         }
443 
444         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445                 | (addr & iotlb.addr_mask));
446         page_mask &= iotlb.addr_mask;
447         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448         *target_as = iotlb.target_as;
449 
450         section = address_space_translate_internal(
451                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452                 plen_out, is_mmio);
453 
454         iommu_mr = memory_region_get_iommu(section->mr);
455     } while (unlikely(iommu_mr));
456 
457     if (page_mask_out) {
458         *page_mask_out = page_mask;
459     }
460     return *section;
461 
462 unassigned:
463     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 }
465 
466 /**
467  * flatview_do_translate - translate an address in FlatView
468  *
469  * @fv: the flat view that we want to translate on
470  * @addr: the address to be translated in above address space
471  * @xlat: the translated address offset within memory region. It
472  *        cannot be @NULL.
473  * @plen_out: valid read/write length of the translated address. It
474  *            can be @NULL when we don't care about it.
475  * @page_mask_out: page mask for the translated address. This
476  *            should only be meaningful for IOMMU translated
477  *            addresses, since there may be huge pages that this bit
478  *            would tell. It can be @NULL if we don't care about it.
479  * @is_write: whether the translation operation is for write
480  * @is_mmio: whether this can be MMIO, set true if it can
481  * @target_as: the address space targeted by the IOMMU
482  * @attrs: memory transaction attributes
483  *
484  * This function is called from RCU critical section
485  */
486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487                                                  hwaddr addr,
488                                                  hwaddr *xlat,
489                                                  hwaddr *plen_out,
490                                                  hwaddr *page_mask_out,
491                                                  bool is_write,
492                                                  bool is_mmio,
493                                                  AddressSpace **target_as,
494                                                  MemTxAttrs attrs)
495 {
496     MemoryRegionSection *section;
497     IOMMUMemoryRegion *iommu_mr;
498     hwaddr plen = (hwaddr)(-1);
499 
500     if (!plen_out) {
501         plen_out = &plen;
502     }
503 
504     section = address_space_translate_internal(
505             flatview_to_dispatch(fv), addr, xlat,
506             plen_out, is_mmio);
507 
508     iommu_mr = memory_region_get_iommu(section->mr);
509     if (unlikely(iommu_mr)) {
510         return address_space_translate_iommu(iommu_mr, xlat,
511                                              plen_out, page_mask_out,
512                                              is_write, is_mmio,
513                                              target_as, attrs);
514     }
515     if (page_mask_out) {
516         /* Not behind an IOMMU, use default page size. */
517         *page_mask_out = ~TARGET_PAGE_MASK;
518     }
519 
520     return *section;
521 }
522 
523 /* Called from RCU critical section */
524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525                                             bool is_write, MemTxAttrs attrs)
526 {
527     MemoryRegionSection section;
528     hwaddr xlat, page_mask;
529 
530     /*
531      * This can never be MMIO, and we don't really care about plen,
532      * but page mask.
533      */
534     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535                                     NULL, &page_mask, is_write, false, &as,
536                                     attrs);
537 
538     /* Illegal translation */
539     if (section.mr == &io_mem_unassigned) {
540         goto iotlb_fail;
541     }
542 
543     /* Convert memory region offset into address space offset */
544     xlat += section.offset_within_address_space -
545         section.offset_within_region;
546 
547     return (IOMMUTLBEntry) {
548         .target_as = as,
549         .iova = addr & ~page_mask,
550         .translated_addr = xlat & ~page_mask,
551         .addr_mask = page_mask,
552         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553         .perm = IOMMU_RW,
554     };
555 
556 iotlb_fail:
557     return (IOMMUTLBEntry) {0};
558 }
559 
560 /* Called from RCU critical section */
561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562                                  hwaddr *plen, bool is_write,
563                                  MemTxAttrs attrs)
564 {
565     MemoryRegion *mr;
566     MemoryRegionSection section;
567     AddressSpace *as = NULL;
568 
569     /* This can be MMIO, so setup MMIO bit. */
570     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571                                     is_write, true, &as, attrs);
572     mr = section.mr;
573 
574     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576         *plen = MIN(page, *plen);
577     }
578 
579     return mr;
580 }
581 
582 typedef struct TCGIOMMUNotifier {
583     IOMMUNotifier n;
584     MemoryRegion *mr;
585     CPUState *cpu;
586     int iommu_idx;
587     bool active;
588 } TCGIOMMUNotifier;
589 
590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591 {
592     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593 
594     if (!notifier->active) {
595         return;
596     }
597     tlb_flush(notifier->cpu);
598     notifier->active = false;
599     /* We leave the notifier struct on the list to avoid reallocating it later.
600      * Generally the number of IOMMUs a CPU deals with will be small.
601      * In any case we can't unregister the iommu notifier from a notify
602      * callback.
603      */
604 }
605 
606 static void tcg_register_iommu_notifier(CPUState *cpu,
607                                         IOMMUMemoryRegion *iommu_mr,
608                                         int iommu_idx)
609 {
610     /* Make sure this CPU has an IOMMU notifier registered for this
611      * IOMMU/IOMMU index combination, so that we can flush its TLB
612      * when the IOMMU tells us the mappings we've cached have changed.
613      */
614     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615     TCGIOMMUNotifier *notifier = NULL;
616     int i;
617 
618     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621             break;
622         }
623     }
624     if (i == cpu->iommu_notifiers->len) {
625         /* Not found, add a new entry at the end of the array */
626         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627         notifier = g_new0(TCGIOMMUNotifier, 1);
628         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629 
630         notifier->mr = mr;
631         notifier->iommu_idx = iommu_idx;
632         notifier->cpu = cpu;
633         /* Rather than trying to register interest in the specific part
634          * of the iommu's address space that we've accessed and then
635          * expand it later as subsequent accesses touch more of it, we
636          * just register interest in the whole thing, on the assumption
637          * that iommu reconfiguration will be rare.
638          */
639         iommu_notifier_init(&notifier->n,
640                             tcg_iommu_unmap_notify,
641                             IOMMU_NOTIFIER_UNMAP,
642                             0,
643                             HWADDR_MAX,
644                             iommu_idx);
645         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
646                                               &error_fatal);
647     }
648 
649     if (!notifier->active) {
650         notifier->active = true;
651     }
652 }
653 
654 void tcg_iommu_free_notifier_list(CPUState *cpu)
655 {
656     /* Destroy the CPU's notifier list */
657     int i;
658     TCGIOMMUNotifier *notifier;
659 
660     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
663         g_free(notifier);
664     }
665     g_array_free(cpu->iommu_notifiers, true);
666 }
667 
668 void tcg_iommu_init_notifier_list(CPUState *cpu)
669 {
670     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 }
672 
673 /* Called from RCU critical section */
674 MemoryRegionSection *
675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676                                   hwaddr *xlat, hwaddr *plen,
677                                   MemTxAttrs attrs, int *prot)
678 {
679     MemoryRegionSection *section;
680     IOMMUMemoryRegion *iommu_mr;
681     IOMMUMemoryRegionClass *imrc;
682     IOMMUTLBEntry iotlb;
683     int iommu_idx;
684     hwaddr addr = orig_addr;
685     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686 
687     for (;;) {
688         section = address_space_translate_internal(d, addr, &addr, plen, false);
689 
690         iommu_mr = memory_region_get_iommu(section->mr);
691         if (!iommu_mr) {
692             break;
693         }
694 
695         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696 
697         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700          * doesn't short-cut its translation table walk.
701          */
702         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704                 | (addr & iotlb.addr_mask));
705         /* Update the caller's prot bits to remove permissions the IOMMU
706          * is giving us a failure response for. If we get down to no
707          * permissions left at all we can give up now.
708          */
709         if (!(iotlb.perm & IOMMU_RO)) {
710             *prot &= ~(PAGE_READ | PAGE_EXEC);
711         }
712         if (!(iotlb.perm & IOMMU_WO)) {
713             *prot &= ~PAGE_WRITE;
714         }
715 
716         if (!*prot) {
717             goto translate_fail;
718         }
719 
720         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721     }
722 
723     assert(!memory_region_is_iommu(section->mr));
724     *xlat = addr;
725     return section;
726 
727 translate_fail:
728     /*
729      * We should be given a page-aligned address -- certainly
730      * tlb_set_page_with_attrs() does so.  The page offset of xlat
731      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732      * The page portion of xlat will be logged by memory_region_access_valid()
733      * when this memory access is rejected, so use the original untranslated
734      * physical address.
735      */
736     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737     *xlat = orig_addr;
738     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 }
740 
741 void cpu_address_space_init(CPUState *cpu, int asidx,
742                             const char *prefix, MemoryRegion *mr)
743 {
744     CPUAddressSpace *newas;
745     AddressSpace *as = g_new0(AddressSpace, 1);
746     char *as_name;
747 
748     assert(mr);
749     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750     address_space_init(as, mr, as_name);
751     g_free(as_name);
752 
753     /* Target code should have set num_ases before calling us */
754     assert(asidx < cpu->num_ases);
755 
756     if (asidx == 0) {
757         /* address space 0 gets the convenience alias */
758         cpu->as = as;
759     }
760 
761     /* KVM cannot currently support multiple address spaces. */
762     assert(asidx == 0 || !kvm_enabled());
763 
764     if (!cpu->cpu_ases) {
765         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766     }
767 
768     newas = &cpu->cpu_ases[asidx];
769     newas->cpu = cpu;
770     newas->as = as;
771     if (tcg_enabled()) {
772         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
773         newas->tcg_as_listener.commit = tcg_commit;
774         newas->tcg_as_listener.name = "tcg";
775         memory_listener_register(&newas->tcg_as_listener, as);
776     }
777 }
778 
779 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
780 {
781     /* Return the AddressSpace corresponding to the specified index */
782     return cpu->cpu_ases[asidx].as;
783 }
784 
785 /* Called from RCU critical section */
786 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
787 {
788     RAMBlock *block;
789 
790     block = qatomic_rcu_read(&ram_list.mru_block);
791     if (block && addr - block->offset < block->max_length) {
792         return block;
793     }
794     RAMBLOCK_FOREACH(block) {
795         if (addr - block->offset < block->max_length) {
796             goto found;
797         }
798     }
799 
800     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
801     abort();
802 
803 found:
804     /* It is safe to write mru_block outside the BQL.  This
805      * is what happens:
806      *
807      *     mru_block = xxx
808      *     rcu_read_unlock()
809      *                                        xxx removed from list
810      *                  rcu_read_lock()
811      *                  read mru_block
812      *                                        mru_block = NULL;
813      *                                        call_rcu(reclaim_ramblock, xxx);
814      *                  rcu_read_unlock()
815      *
816      * qatomic_rcu_set is not needed here.  The block was already published
817      * when it was placed into the list.  Here we're just making an extra
818      * copy of the pointer.
819      */
820     ram_list.mru_block = block;
821     return block;
822 }
823 
824 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
825 {
826     CPUState *cpu;
827     ram_addr_t start1;
828     RAMBlock *block;
829     ram_addr_t end;
830 
831     assert(tcg_enabled());
832     end = TARGET_PAGE_ALIGN(start + length);
833     start &= TARGET_PAGE_MASK;
834 
835     RCU_READ_LOCK_GUARD();
836     block = qemu_get_ram_block(start);
837     assert(block == qemu_get_ram_block(end - 1));
838     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
839     CPU_FOREACH(cpu) {
840         tlb_reset_dirty(cpu, start1, length);
841     }
842 }
843 
844 /* Note: start and end must be within the same ram block.  */
845 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
846                                               ram_addr_t length,
847                                               unsigned client)
848 {
849     DirtyMemoryBlocks *blocks;
850     unsigned long end, page, start_page;
851     bool dirty = false;
852     RAMBlock *ramblock;
853     uint64_t mr_offset, mr_size;
854 
855     if (length == 0) {
856         return false;
857     }
858 
859     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
860     start_page = start >> TARGET_PAGE_BITS;
861     page = start_page;
862 
863     WITH_RCU_READ_LOCK_GUARD() {
864         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
865         ramblock = qemu_get_ram_block(start);
866         /* Range sanity check on the ramblock */
867         assert(start >= ramblock->offset &&
868                start + length <= ramblock->offset + ramblock->used_length);
869 
870         while (page < end) {
871             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
872             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
873             unsigned long num = MIN(end - page,
874                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
875 
876             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
877                                                   offset, num);
878             page += num;
879         }
880 
881         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
882         mr_size = (end - start_page) << TARGET_PAGE_BITS;
883         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
884     }
885 
886     if (dirty) {
887         cpu_physical_memory_dirty_bits_cleared(start, length);
888     }
889 
890     return dirty;
891 }
892 
893 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
894     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
895 {
896     DirtyMemoryBlocks *blocks;
897     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
898     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
899     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
900     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
901     DirtyBitmapSnapshot *snap;
902     unsigned long page, end, dest;
903 
904     snap = g_malloc0(sizeof(*snap) +
905                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
906     snap->start = first;
907     snap->end   = last;
908 
909     page = first >> TARGET_PAGE_BITS;
910     end  = last  >> TARGET_PAGE_BITS;
911     dest = 0;
912 
913     WITH_RCU_READ_LOCK_GUARD() {
914         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
915 
916         while (page < end) {
917             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
918             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
919             unsigned long num = MIN(end - page,
920                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
921 
922             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
923             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
924             ofs >>= BITS_PER_LEVEL;
925 
926             bitmap_copy_and_clear_atomic(snap->dirty + dest,
927                                          blocks->blocks[idx] + ofs,
928                                          num);
929             page += num;
930             dest += num >> BITS_PER_LEVEL;
931         }
932     }
933 
934     cpu_physical_memory_dirty_bits_cleared(start, length);
935 
936     memory_region_clear_dirty_bitmap(mr, offset, length);
937 
938     return snap;
939 }
940 
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942                                             ram_addr_t start,
943                                             ram_addr_t length)
944 {
945     unsigned long page, end;
946 
947     assert(start >= snap->start);
948     assert(start + length <= snap->end);
949 
950     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951     page = (start - snap->start) >> TARGET_PAGE_BITS;
952 
953     while (page < end) {
954         if (test_bit(page, snap->dirty)) {
955             return true;
956         }
957         page++;
958     }
959     return false;
960 }
961 
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964                                        MemoryRegionSection *section)
965 {
966     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967     return section - d->map.sections;
968 }
969 
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971                             uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973 
974 static uint16_t phys_section_add(PhysPageMap *map,
975                                  MemoryRegionSection *section)
976 {
977     /* The physical section number is ORed with a page-aligned
978      * pointer to produce the iotlb entries.  Thus it should
979      * never overflow into the page-aligned value.
980      */
981     assert(map->sections_nb < TARGET_PAGE_SIZE);
982 
983     if (map->sections_nb == map->sections_nb_alloc) {
984         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985         map->sections = g_renew(MemoryRegionSection, map->sections,
986                                 map->sections_nb_alloc);
987     }
988     map->sections[map->sections_nb] = *section;
989     memory_region_ref(section->mr);
990     return map->sections_nb++;
991 }
992 
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995     bool have_sub_page = mr->subpage;
996 
997     memory_region_unref(mr);
998 
999     if (have_sub_page) {
1000         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001         object_unref(OBJECT(&subpage->iomem));
1002         g_free(subpage);
1003     }
1004 }
1005 
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008     while (map->sections_nb > 0) {
1009         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010         phys_section_destroy(section->mr);
1011     }
1012     g_free(map->sections);
1013     g_free(map->nodes);
1014 }
1015 
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019     subpage_t *subpage;
1020     hwaddr base = section->offset_within_address_space
1021         & TARGET_PAGE_MASK;
1022     MemoryRegionSection *existing = phys_page_find(d, base);
1023     MemoryRegionSection subsection = {
1024         .offset_within_address_space = base,
1025         .size = int128_make64(TARGET_PAGE_SIZE),
1026     };
1027     hwaddr start, end;
1028 
1029     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030 
1031     if (!(existing->mr->subpage)) {
1032         subpage = subpage_init(fv, base);
1033         subsection.fv = fv;
1034         subsection.mr = &subpage->iomem;
1035         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036                       phys_section_add(&d->map, &subsection));
1037     } else {
1038         subpage = container_of(existing->mr, subpage_t, iomem);
1039     }
1040     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041     end = start + int128_get64(section->size) - 1;
1042     subpage_register(subpage, start, end,
1043                      phys_section_add(&d->map, section));
1044 }
1045 
1046 
1047 static void register_multipage(FlatView *fv,
1048                                MemoryRegionSection *section)
1049 {
1050     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051     hwaddr start_addr = section->offset_within_address_space;
1052     uint16_t section_index = phys_section_add(&d->map, section);
1053     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054                                                     TARGET_PAGE_BITS));
1055 
1056     assert(num_pages);
1057     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059 
1060 /*
1061  * The range in *section* may look like this:
1062  *
1063  *      |s|PPPPPPP|s|
1064  *
1065  * where s stands for subpage and P for page.
1066  */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069     MemoryRegionSection remain = *section;
1070     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071 
1072     /* register first subpage */
1073     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075                         - remain.offset_within_address_space;
1076 
1077         MemoryRegionSection now = remain;
1078         now.size = int128_min(int128_make64(left), now.size);
1079         register_subpage(fv, &now);
1080         if (int128_eq(remain.size, now.size)) {
1081             return;
1082         }
1083         remain.size = int128_sub(remain.size, now.size);
1084         remain.offset_within_address_space += int128_get64(now.size);
1085         remain.offset_within_region += int128_get64(now.size);
1086     }
1087 
1088     /* register whole pages */
1089     if (int128_ge(remain.size, page_size)) {
1090         MemoryRegionSection now = remain;
1091         now.size = int128_and(now.size, int128_neg(page_size));
1092         register_multipage(fv, &now);
1093         if (int128_eq(remain.size, now.size)) {
1094             return;
1095         }
1096         remain.size = int128_sub(remain.size, now.size);
1097         remain.offset_within_address_space += int128_get64(now.size);
1098         remain.offset_within_region += int128_get64(now.size);
1099     }
1100 
1101     /* register last subpage */
1102     register_subpage(fv, &remain);
1103 }
1104 
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107     if (kvm_enabled())
1108         kvm_flush_coalesced_mmio_buffer();
1109 }
1110 
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113     qemu_mutex_lock(&ram_list.mutex);
1114 }
1115 
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118     qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120 
1121 GString *ram_block_format(void)
1122 {
1123     RAMBlock *block;
1124     char *psize;
1125     GString *buf = g_string_new("");
1126 
1127     RCU_READ_LOCK_GUARD();
1128     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1129                            "Block Name", "PSize", "Offset", "Used", "Total",
1130                            "HVA", "RO");
1131 
1132     RAMBLOCK_FOREACH(block) {
1133         psize = size_to_str(block->page_size);
1134         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1135                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136                                block->idstr, psize,
1137                                (uint64_t)block->offset,
1138                                (uint64_t)block->used_length,
1139                                (uint64_t)block->max_length,
1140                                (uint64_t)(uintptr_t)block->host,
1141                                block->mr->readonly ? "ro" : "rw");
1142 
1143         g_free(psize);
1144     }
1145 
1146     return buf;
1147 }
1148 
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151     long *hpsize_min = opaque;
1152 
1153     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155         long hpsize = host_memory_backend_pagesize(backend);
1156 
1157         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158             *hpsize_min = hpsize;
1159         }
1160     }
1161 
1162     return 0;
1163 }
1164 
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167     long *hpsize_max = opaque;
1168 
1169     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171         long hpsize = host_memory_backend_pagesize(backend);
1172 
1173         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174             *hpsize_max = hpsize;
1175         }
1176     }
1177 
1178     return 0;
1179 }
1180 
1181 /*
1182  * TODO: We assume right now that all mapped host memory backends are
1183  * used as RAM, however some might be used for different purposes.
1184  */
1185 long qemu_minrampagesize(void)
1186 {
1187     long hpsize = LONG_MAX;
1188     Object *memdev_root = object_resolve_path("/objects", NULL);
1189 
1190     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191     return hpsize;
1192 }
1193 
1194 long qemu_maxrampagesize(void)
1195 {
1196     long pagesize = 0;
1197     Object *memdev_root = object_resolve_path("/objects", NULL);
1198 
1199     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200     return pagesize;
1201 }
1202 
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206     int64_t size;
1207 #if defined(__linux__)
1208     struct stat st;
1209 
1210     if (fstat(fd, &st) < 0) {
1211         return -errno;
1212     }
1213 
1214     /* Special handling for devdax character devices */
1215     if (S_ISCHR(st.st_mode)) {
1216         g_autofree char *subsystem_path = NULL;
1217         g_autofree char *subsystem = NULL;
1218 
1219         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220                                          major(st.st_rdev), minor(st.st_rdev));
1221         subsystem = g_file_read_link(subsystem_path, NULL);
1222 
1223         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224             g_autofree char *size_path = NULL;
1225             g_autofree char *size_str = NULL;
1226 
1227             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228                                     major(st.st_rdev), minor(st.st_rdev));
1229 
1230             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231                 return g_ascii_strtoll(size_str, NULL, 0);
1232             }
1233         }
1234     }
1235 #endif /* defined(__linux__) */
1236 
1237     /* st.st_size may be zero for special files yet lseek(2) works */
1238     size = lseek(fd, 0, SEEK_END);
1239     if (size < 0) {
1240         return -errno;
1241     }
1242     return size;
1243 }
1244 
1245 static int64_t get_file_align(int fd)
1246 {
1247     int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249     struct stat st;
1250 
1251     if (fstat(fd, &st) < 0) {
1252         return -errno;
1253     }
1254 
1255     /* Special handling for devdax character devices */
1256     if (S_ISCHR(st.st_mode)) {
1257         g_autofree char *path = NULL;
1258         g_autofree char *rpath = NULL;
1259         struct daxctl_ctx *ctx;
1260         struct daxctl_region *region;
1261         int rc = 0;
1262 
1263         path = g_strdup_printf("/sys/dev/char/%d:%d",
1264                     major(st.st_rdev), minor(st.st_rdev));
1265         rpath = realpath(path, NULL);
1266         if (!rpath) {
1267             return -errno;
1268         }
1269 
1270         rc = daxctl_new(&ctx);
1271         if (rc) {
1272             return -1;
1273         }
1274 
1275         daxctl_region_foreach(ctx, region) {
1276             if (strstr(rpath, daxctl_region_get_path(region))) {
1277                 align = daxctl_region_get_align(region);
1278                 break;
1279             }
1280         }
1281         daxctl_unref(ctx);
1282     }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284 
1285     return align;
1286 }
1287 
1288 static int file_ram_open(const char *path,
1289                          const char *region_name,
1290                          bool readonly,
1291                          bool *created)
1292 {
1293     char *filename;
1294     char *sanitized_name;
1295     char *c;
1296     int fd = -1;
1297 
1298     *created = false;
1299     for (;;) {
1300         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301         if (fd >= 0) {
1302             /*
1303              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1304              * opened a directory and fail similarly to how we fail ENOENT
1305              * in readonly mode. Note that mkstemp() would imply O_RDWR.
1306              */
1307             if (readonly) {
1308                 struct stat file_stat;
1309 
1310                 if (fstat(fd, &file_stat)) {
1311                     close(fd);
1312                     if (errno == EINTR) {
1313                         continue;
1314                     }
1315                     return -errno;
1316                 } else if (S_ISDIR(file_stat.st_mode)) {
1317                     close(fd);
1318                     return -EISDIR;
1319                 }
1320             }
1321             /* @path names an existing file, use it */
1322             break;
1323         }
1324         if (errno == ENOENT) {
1325             if (readonly) {
1326                 /* Refuse to create new, readonly files. */
1327                 return -ENOENT;
1328             }
1329             /* @path names a file that doesn't exist, create it */
1330             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1331             if (fd >= 0) {
1332                 *created = true;
1333                 break;
1334             }
1335         } else if (errno == EISDIR) {
1336             /* @path names a directory, create a file there */
1337             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1338             sanitized_name = g_strdup(region_name);
1339             for (c = sanitized_name; *c != '\0'; c++) {
1340                 if (*c == '/') {
1341                     *c = '_';
1342                 }
1343             }
1344 
1345             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1346                                        sanitized_name);
1347             g_free(sanitized_name);
1348 
1349             fd = mkstemp(filename);
1350             if (fd >= 0) {
1351                 unlink(filename);
1352                 g_free(filename);
1353                 break;
1354             }
1355             g_free(filename);
1356         }
1357         if (errno != EEXIST && errno != EINTR) {
1358             return -errno;
1359         }
1360         /*
1361          * Try again on EINTR and EEXIST.  The latter happens when
1362          * something else creates the file between our two open().
1363          */
1364     }
1365 
1366     return fd;
1367 }
1368 
1369 static void *file_ram_alloc(RAMBlock *block,
1370                             ram_addr_t memory,
1371                             int fd,
1372                             bool truncate,
1373                             off_t offset,
1374                             Error **errp)
1375 {
1376     uint32_t qemu_map_flags;
1377     void *area;
1378 
1379     block->page_size = qemu_fd_getpagesize(fd);
1380     if (block->mr->align % block->page_size) {
1381         error_setg(errp, "alignment 0x%" PRIx64
1382                    " must be multiples of page size 0x%zx",
1383                    block->mr->align, block->page_size);
1384         return NULL;
1385     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1386         error_setg(errp, "alignment 0x%" PRIx64
1387                    " must be a power of two", block->mr->align);
1388         return NULL;
1389     } else if (offset % block->page_size) {
1390         error_setg(errp, "offset 0x%" PRIx64
1391                    " must be multiples of page size 0x%zx",
1392                    offset, block->page_size);
1393         return NULL;
1394     }
1395     block->mr->align = MAX(block->page_size, block->mr->align);
1396 #if defined(__s390x__)
1397     if (kvm_enabled()) {
1398         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1399     }
1400 #endif
1401 
1402     if (memory < block->page_size) {
1403         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1404                    "or larger than page size 0x%zx",
1405                    memory, block->page_size);
1406         return NULL;
1407     }
1408 
1409     memory = ROUND_UP(memory, block->page_size);
1410 
1411     /*
1412      * ftruncate is not supported by hugetlbfs in older
1413      * hosts, so don't bother bailing out on errors.
1414      * If anything goes wrong with it under other filesystems,
1415      * mmap will fail.
1416      *
1417      * Do not truncate the non-empty backend file to avoid corrupting
1418      * the existing data in the file. Disabling shrinking is not
1419      * enough. For example, the current vNVDIMM implementation stores
1420      * the guest NVDIMM labels at the end of the backend file. If the
1421      * backend file is later extended, QEMU will not be able to find
1422      * those labels. Therefore, extending the non-empty backend file
1423      * is disabled as well.
1424      */
1425     if (truncate && ftruncate(fd, offset + memory)) {
1426         perror("ftruncate");
1427     }
1428 
1429     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1430     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1431     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1432     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1433     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1434     if (area == MAP_FAILED) {
1435         error_setg_errno(errp, errno,
1436                          "unable to map backing store for guest RAM");
1437         return NULL;
1438     }
1439 
1440     block->fd = fd;
1441     block->fd_offset = offset;
1442     return area;
1443 }
1444 #endif
1445 
1446 /* Allocate space within the ram_addr_t space that governs the
1447  * dirty bitmaps.
1448  * Called with the ramlist lock held.
1449  */
1450 static ram_addr_t find_ram_offset(ram_addr_t size)
1451 {
1452     RAMBlock *block, *next_block;
1453     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1454 
1455     assert(size != 0); /* it would hand out same offset multiple times */
1456 
1457     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1458         return 0;
1459     }
1460 
1461     RAMBLOCK_FOREACH(block) {
1462         ram_addr_t candidate, next = RAM_ADDR_MAX;
1463 
1464         /* Align blocks to start on a 'long' in the bitmap
1465          * which makes the bitmap sync'ing take the fast path.
1466          */
1467         candidate = block->offset + block->max_length;
1468         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1469 
1470         /* Search for the closest following block
1471          * and find the gap.
1472          */
1473         RAMBLOCK_FOREACH(next_block) {
1474             if (next_block->offset >= candidate) {
1475                 next = MIN(next, next_block->offset);
1476             }
1477         }
1478 
1479         /* If it fits remember our place and remember the size
1480          * of gap, but keep going so that we might find a smaller
1481          * gap to fill so avoiding fragmentation.
1482          */
1483         if (next - candidate >= size && next - candidate < mingap) {
1484             offset = candidate;
1485             mingap = next - candidate;
1486         }
1487 
1488         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1489     }
1490 
1491     if (offset == RAM_ADDR_MAX) {
1492         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1493                 (uint64_t)size);
1494         abort();
1495     }
1496 
1497     trace_find_ram_offset(size, offset);
1498 
1499     return offset;
1500 }
1501 
1502 static unsigned long last_ram_page(void)
1503 {
1504     RAMBlock *block;
1505     ram_addr_t last = 0;
1506 
1507     RCU_READ_LOCK_GUARD();
1508     RAMBLOCK_FOREACH(block) {
1509         last = MAX(last, block->offset + block->max_length);
1510     }
1511     return last >> TARGET_PAGE_BITS;
1512 }
1513 
1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1515 {
1516     int ret;
1517 
1518     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1519     if (!machine_dump_guest_core(current_machine)) {
1520         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1521         if (ret) {
1522             perror("qemu_madvise");
1523             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1524                             "but dump_guest_core=off specified\n");
1525         }
1526     }
1527 }
1528 
1529 const char *qemu_ram_get_idstr(RAMBlock *rb)
1530 {
1531     return rb->idstr;
1532 }
1533 
1534 void *qemu_ram_get_host_addr(RAMBlock *rb)
1535 {
1536     return rb->host;
1537 }
1538 
1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1540 {
1541     return rb->offset;
1542 }
1543 
1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1545 {
1546     return rb->used_length;
1547 }
1548 
1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1550 {
1551     return rb->max_length;
1552 }
1553 
1554 bool qemu_ram_is_shared(RAMBlock *rb)
1555 {
1556     return rb->flags & RAM_SHARED;
1557 }
1558 
1559 bool qemu_ram_is_noreserve(RAMBlock *rb)
1560 {
1561     return rb->flags & RAM_NORESERVE;
1562 }
1563 
1564 /* Note: Only set at the start of postcopy */
1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1566 {
1567     return rb->flags & RAM_UF_ZEROPAGE;
1568 }
1569 
1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1571 {
1572     rb->flags |= RAM_UF_ZEROPAGE;
1573 }
1574 
1575 bool qemu_ram_is_migratable(RAMBlock *rb)
1576 {
1577     return rb->flags & RAM_MIGRATABLE;
1578 }
1579 
1580 void qemu_ram_set_migratable(RAMBlock *rb)
1581 {
1582     rb->flags |= RAM_MIGRATABLE;
1583 }
1584 
1585 void qemu_ram_unset_migratable(RAMBlock *rb)
1586 {
1587     rb->flags &= ~RAM_MIGRATABLE;
1588 }
1589 
1590 bool qemu_ram_is_named_file(RAMBlock *rb)
1591 {
1592     return rb->flags & RAM_NAMED_FILE;
1593 }
1594 
1595 int qemu_ram_get_fd(RAMBlock *rb)
1596 {
1597     return rb->fd;
1598 }
1599 
1600 /* Called with the BQL held.  */
1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1602 {
1603     RAMBlock *block;
1604 
1605     assert(new_block);
1606     assert(!new_block->idstr[0]);
1607 
1608     if (dev) {
1609         char *id = qdev_get_dev_path(dev);
1610         if (id) {
1611             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1612             g_free(id);
1613         }
1614     }
1615     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1616 
1617     RCU_READ_LOCK_GUARD();
1618     RAMBLOCK_FOREACH(block) {
1619         if (block != new_block &&
1620             !strcmp(block->idstr, new_block->idstr)) {
1621             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1622                     new_block->idstr);
1623             abort();
1624         }
1625     }
1626 }
1627 
1628 /* Called with the BQL held.  */
1629 void qemu_ram_unset_idstr(RAMBlock *block)
1630 {
1631     /* FIXME: arch_init.c assumes that this is not called throughout
1632      * migration.  Ignore the problem since hot-unplug during migration
1633      * does not work anyway.
1634      */
1635     if (block) {
1636         memset(block->idstr, 0, sizeof(block->idstr));
1637     }
1638 }
1639 
1640 size_t qemu_ram_pagesize(RAMBlock *rb)
1641 {
1642     return rb->page_size;
1643 }
1644 
1645 /* Returns the largest size of page in use */
1646 size_t qemu_ram_pagesize_largest(void)
1647 {
1648     RAMBlock *block;
1649     size_t largest = 0;
1650 
1651     RAMBLOCK_FOREACH(block) {
1652         largest = MAX(largest, qemu_ram_pagesize(block));
1653     }
1654 
1655     return largest;
1656 }
1657 
1658 static int memory_try_enable_merging(void *addr, size_t len)
1659 {
1660     if (!machine_mem_merge(current_machine)) {
1661         /* disabled by the user */
1662         return 0;
1663     }
1664 
1665     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1666 }
1667 
1668 /*
1669  * Resizing RAM while migrating can result in the migration being canceled.
1670  * Care has to be taken if the guest might have already detected the memory.
1671  *
1672  * As memory core doesn't know how is memory accessed, it is up to
1673  * resize callback to update device state and/or add assertions to detect
1674  * misuse, if necessary.
1675  */
1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1677 {
1678     const ram_addr_t oldsize = block->used_length;
1679     const ram_addr_t unaligned_size = newsize;
1680 
1681     assert(block);
1682 
1683     newsize = TARGET_PAGE_ALIGN(newsize);
1684     newsize = REAL_HOST_PAGE_ALIGN(newsize);
1685 
1686     if (block->used_length == newsize) {
1687         /*
1688          * We don't have to resize the ram block (which only knows aligned
1689          * sizes), however, we have to notify if the unaligned size changed.
1690          */
1691         if (unaligned_size != memory_region_size(block->mr)) {
1692             memory_region_set_size(block->mr, unaligned_size);
1693             if (block->resized) {
1694                 block->resized(block->idstr, unaligned_size, block->host);
1695             }
1696         }
1697         return 0;
1698     }
1699 
1700     if (!(block->flags & RAM_RESIZEABLE)) {
1701         error_setg_errno(errp, EINVAL,
1702                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1703                          " != 0x" RAM_ADDR_FMT, block->idstr,
1704                          newsize, block->used_length);
1705         return -EINVAL;
1706     }
1707 
1708     if (block->max_length < newsize) {
1709         error_setg_errno(errp, EINVAL,
1710                          "Size too large: %s: 0x" RAM_ADDR_FMT
1711                          " > 0x" RAM_ADDR_FMT, block->idstr,
1712                          newsize, block->max_length);
1713         return -EINVAL;
1714     }
1715 
1716     /* Notify before modifying the ram block and touching the bitmaps. */
1717     if (block->host) {
1718         ram_block_notify_resize(block->host, oldsize, newsize);
1719     }
1720 
1721     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1722     block->used_length = newsize;
1723     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1724                                         DIRTY_CLIENTS_ALL);
1725     memory_region_set_size(block->mr, unaligned_size);
1726     if (block->resized) {
1727         block->resized(block->idstr, unaligned_size, block->host);
1728     }
1729     return 0;
1730 }
1731 
1732 /*
1733  * Trigger sync on the given ram block for range [start, start + length]
1734  * with the backing store if one is available.
1735  * Otherwise no-op.
1736  * @Note: this is supposed to be a synchronous op.
1737  */
1738 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1739 {
1740     /* The requested range should fit in within the block range */
1741     g_assert((start + length) <= block->used_length);
1742 
1743 #ifdef CONFIG_LIBPMEM
1744     /* The lack of support for pmem should not block the sync */
1745     if (ramblock_is_pmem(block)) {
1746         void *addr = ramblock_ptr(block, start);
1747         pmem_persist(addr, length);
1748         return;
1749     }
1750 #endif
1751     if (block->fd >= 0) {
1752         /**
1753          * Case there is no support for PMEM or the memory has not been
1754          * specified as persistent (or is not one) - use the msync.
1755          * Less optimal but still achieves the same goal
1756          */
1757         void *addr = ramblock_ptr(block, start);
1758         if (qemu_msync(addr, length, block->fd)) {
1759             warn_report("%s: failed to sync memory range: start: "
1760                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1761                     __func__, start, length);
1762         }
1763     }
1764 }
1765 
1766 /* Called with ram_list.mutex held */
1767 static void dirty_memory_extend(ram_addr_t old_ram_size,
1768                                 ram_addr_t new_ram_size)
1769 {
1770     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1771                                              DIRTY_MEMORY_BLOCK_SIZE);
1772     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1773                                              DIRTY_MEMORY_BLOCK_SIZE);
1774     int i;
1775 
1776     /* Only need to extend if block count increased */
1777     if (new_num_blocks <= old_num_blocks) {
1778         return;
1779     }
1780 
1781     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1782         DirtyMemoryBlocks *old_blocks;
1783         DirtyMemoryBlocks *new_blocks;
1784         int j;
1785 
1786         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1787         new_blocks = g_malloc(sizeof(*new_blocks) +
1788                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1789 
1790         if (old_num_blocks) {
1791             memcpy(new_blocks->blocks, old_blocks->blocks,
1792                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1793         }
1794 
1795         for (j = old_num_blocks; j < new_num_blocks; j++) {
1796             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1797         }
1798 
1799         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1800 
1801         if (old_blocks) {
1802             g_free_rcu(old_blocks, rcu);
1803         }
1804     }
1805 }
1806 
1807 static void ram_block_add(RAMBlock *new_block, Error **errp)
1808 {
1809     const bool noreserve = qemu_ram_is_noreserve(new_block);
1810     const bool shared = qemu_ram_is_shared(new_block);
1811     RAMBlock *block;
1812     RAMBlock *last_block = NULL;
1813     bool free_on_error = false;
1814     ram_addr_t old_ram_size, new_ram_size;
1815     Error *err = NULL;
1816 
1817     old_ram_size = last_ram_page();
1818 
1819     qemu_mutex_lock_ramlist();
1820     new_block->offset = find_ram_offset(new_block->max_length);
1821 
1822     if (!new_block->host) {
1823         if (xen_enabled()) {
1824             xen_ram_alloc(new_block->offset, new_block->max_length,
1825                           new_block->mr, &err);
1826             if (err) {
1827                 error_propagate(errp, err);
1828                 qemu_mutex_unlock_ramlist();
1829                 return;
1830             }
1831         } else {
1832             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1833                                                   &new_block->mr->align,
1834                                                   shared, noreserve);
1835             if (!new_block->host) {
1836                 error_setg_errno(errp, errno,
1837                                  "cannot set up guest memory '%s'",
1838                                  memory_region_name(new_block->mr));
1839                 qemu_mutex_unlock_ramlist();
1840                 return;
1841             }
1842             memory_try_enable_merging(new_block->host, new_block->max_length);
1843             free_on_error = true;
1844         }
1845     }
1846 
1847     if (new_block->flags & RAM_GUEST_MEMFD) {
1848         assert(kvm_enabled());
1849         assert(new_block->guest_memfd < 0);
1850 
1851         if (ram_block_discard_require(true) < 0) {
1852             error_setg_errno(errp, errno,
1853                              "cannot set up private guest memory: discard currently blocked");
1854             error_append_hint(errp, "Are you using assigned devices?\n");
1855             goto out_free;
1856         }
1857 
1858         new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1859                                                         0, errp);
1860         if (new_block->guest_memfd < 0) {
1861             qemu_mutex_unlock_ramlist();
1862             goto out_free;
1863         }
1864     }
1865 
1866     new_ram_size = MAX(old_ram_size,
1867               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1868     if (new_ram_size > old_ram_size) {
1869         dirty_memory_extend(old_ram_size, new_ram_size);
1870     }
1871     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1872      * QLIST (which has an RCU-friendly variant) does not have insertion at
1873      * tail, so save the last element in last_block.
1874      */
1875     RAMBLOCK_FOREACH(block) {
1876         last_block = block;
1877         if (block->max_length < new_block->max_length) {
1878             break;
1879         }
1880     }
1881     if (block) {
1882         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1883     } else if (last_block) {
1884         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1885     } else { /* list is empty */
1886         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1887     }
1888     ram_list.mru_block = NULL;
1889 
1890     /* Write list before version */
1891     smp_wmb();
1892     ram_list.version++;
1893     qemu_mutex_unlock_ramlist();
1894 
1895     cpu_physical_memory_set_dirty_range(new_block->offset,
1896                                         new_block->used_length,
1897                                         DIRTY_CLIENTS_ALL);
1898 
1899     if (new_block->host) {
1900         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1901         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1902         /*
1903          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1904          * Configure it unless the machine is a qtest server, in which case
1905          * KVM is not used and it may be forked (eg for fuzzing purposes).
1906          */
1907         if (!qtest_enabled()) {
1908             qemu_madvise(new_block->host, new_block->max_length,
1909                          QEMU_MADV_DONTFORK);
1910         }
1911         ram_block_notify_add(new_block->host, new_block->used_length,
1912                              new_block->max_length);
1913     }
1914     return;
1915 
1916 out_free:
1917     if (free_on_error) {
1918         qemu_anon_ram_free(new_block->host, new_block->max_length);
1919         new_block->host = NULL;
1920     }
1921 }
1922 
1923 #ifdef CONFIG_POSIX
1924 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1925                                  uint32_t ram_flags, int fd, off_t offset,
1926                                  Error **errp)
1927 {
1928     RAMBlock *new_block;
1929     Error *local_err = NULL;
1930     int64_t file_size, file_align;
1931 
1932     /* Just support these ram flags by now. */
1933     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1934                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1935                           RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1936 
1937     if (xen_enabled()) {
1938         error_setg(errp, "-mem-path not supported with Xen");
1939         return NULL;
1940     }
1941 
1942     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1943         error_setg(errp,
1944                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1945         return NULL;
1946     }
1947 
1948     size = TARGET_PAGE_ALIGN(size);
1949     size = REAL_HOST_PAGE_ALIGN(size);
1950 
1951     file_size = get_file_size(fd);
1952     if (file_size > offset && file_size < (offset + size)) {
1953         error_setg(errp, "backing store size 0x%" PRIx64
1954                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1955                    file_size, size);
1956         return NULL;
1957     }
1958 
1959     file_align = get_file_align(fd);
1960     if (file_align > 0 && file_align > mr->align) {
1961         error_setg(errp, "backing store align 0x%" PRIx64
1962                    " is larger than 'align' option 0x%" PRIx64,
1963                    file_align, mr->align);
1964         return NULL;
1965     }
1966 
1967     new_block = g_malloc0(sizeof(*new_block));
1968     new_block->mr = mr;
1969     new_block->used_length = size;
1970     new_block->max_length = size;
1971     new_block->flags = ram_flags;
1972     new_block->guest_memfd = -1;
1973     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1974                                      errp);
1975     if (!new_block->host) {
1976         g_free(new_block);
1977         return NULL;
1978     }
1979 
1980     ram_block_add(new_block, &local_err);
1981     if (local_err) {
1982         g_free(new_block);
1983         error_propagate(errp, local_err);
1984         return NULL;
1985     }
1986     return new_block;
1987 
1988 }
1989 
1990 
1991 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1992                                    uint32_t ram_flags, const char *mem_path,
1993                                    off_t offset, Error **errp)
1994 {
1995     int fd;
1996     bool created;
1997     RAMBlock *block;
1998 
1999     fd = file_ram_open(mem_path, memory_region_name(mr),
2000                        !!(ram_flags & RAM_READONLY_FD), &created);
2001     if (fd < 0) {
2002         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2003                          mem_path);
2004         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2005             fd == -EACCES) {
2006             /*
2007              * If we can open the file R/O (note: will never create a new file)
2008              * and we are dealing with a private mapping, there are still ways
2009              * to consume such files and get RAM instead of ROM.
2010              */
2011             fd = file_ram_open(mem_path, memory_region_name(mr), true,
2012                                &created);
2013             if (fd < 0) {
2014                 return NULL;
2015             }
2016             assert(!created);
2017             close(fd);
2018             error_append_hint(errp, "Consider opening the backing store"
2019                 " read-only but still creating writable RAM using"
2020                 " '-object memory-backend-file,readonly=on,rom=off...'"
2021                 " (see \"VM templating\" documentation)\n");
2022         }
2023         return NULL;
2024     }
2025 
2026     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2027     if (!block) {
2028         if (created) {
2029             unlink(mem_path);
2030         }
2031         close(fd);
2032         return NULL;
2033     }
2034 
2035     return block;
2036 }
2037 #endif
2038 
2039 static
2040 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2041                                   void (*resized)(const char*,
2042                                                   uint64_t length,
2043                                                   void *host),
2044                                   void *host, uint32_t ram_flags,
2045                                   MemoryRegion *mr, Error **errp)
2046 {
2047     RAMBlock *new_block;
2048     Error *local_err = NULL;
2049     int align;
2050 
2051     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2052                           RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2053     assert(!host ^ (ram_flags & RAM_PREALLOC));
2054 
2055     align = qemu_real_host_page_size();
2056     align = MAX(align, TARGET_PAGE_SIZE);
2057     size = ROUND_UP(size, align);
2058     max_size = ROUND_UP(max_size, align);
2059 
2060     new_block = g_malloc0(sizeof(*new_block));
2061     new_block->mr = mr;
2062     new_block->resized = resized;
2063     new_block->used_length = size;
2064     new_block->max_length = max_size;
2065     assert(max_size >= size);
2066     new_block->fd = -1;
2067     new_block->guest_memfd = -1;
2068     new_block->page_size = qemu_real_host_page_size();
2069     new_block->host = host;
2070     new_block->flags = ram_flags;
2071     ram_block_add(new_block, &local_err);
2072     if (local_err) {
2073         g_free(new_block);
2074         error_propagate(errp, local_err);
2075         return NULL;
2076     }
2077     return new_block;
2078 }
2079 
2080 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2081                                    MemoryRegion *mr, Error **errp)
2082 {
2083     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2084                                    errp);
2085 }
2086 
2087 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2088                          MemoryRegion *mr, Error **errp)
2089 {
2090     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2091     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2092 }
2093 
2094 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2095                                      void (*resized)(const char*,
2096                                                      uint64_t length,
2097                                                      void *host),
2098                                      MemoryRegion *mr, Error **errp)
2099 {
2100     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2101                                    RAM_RESIZEABLE, mr, errp);
2102 }
2103 
2104 static void reclaim_ramblock(RAMBlock *block)
2105 {
2106     if (block->flags & RAM_PREALLOC) {
2107         ;
2108     } else if (xen_enabled()) {
2109         xen_invalidate_map_cache_entry(block->host);
2110 #ifndef _WIN32
2111     } else if (block->fd >= 0) {
2112         qemu_ram_munmap(block->fd, block->host, block->max_length);
2113         close(block->fd);
2114 #endif
2115     } else {
2116         qemu_anon_ram_free(block->host, block->max_length);
2117     }
2118 
2119     if (block->guest_memfd >= 0) {
2120         close(block->guest_memfd);
2121         ram_block_discard_require(false);
2122     }
2123 
2124     g_free(block);
2125 }
2126 
2127 void qemu_ram_free(RAMBlock *block)
2128 {
2129     if (!block) {
2130         return;
2131     }
2132 
2133     if (block->host) {
2134         ram_block_notify_remove(block->host, block->used_length,
2135                                 block->max_length);
2136     }
2137 
2138     qemu_mutex_lock_ramlist();
2139     QLIST_REMOVE_RCU(block, next);
2140     ram_list.mru_block = NULL;
2141     /* Write list before version */
2142     smp_wmb();
2143     ram_list.version++;
2144     call_rcu(block, reclaim_ramblock, rcu);
2145     qemu_mutex_unlock_ramlist();
2146 }
2147 
2148 #ifndef _WIN32
2149 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2150 {
2151     RAMBlock *block;
2152     ram_addr_t offset;
2153     int flags;
2154     void *area, *vaddr;
2155     int prot;
2156 
2157     RAMBLOCK_FOREACH(block) {
2158         offset = addr - block->offset;
2159         if (offset < block->max_length) {
2160             vaddr = ramblock_ptr(block, offset);
2161             if (block->flags & RAM_PREALLOC) {
2162                 ;
2163             } else if (xen_enabled()) {
2164                 abort();
2165             } else {
2166                 flags = MAP_FIXED;
2167                 flags |= block->flags & RAM_SHARED ?
2168                          MAP_SHARED : MAP_PRIVATE;
2169                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2170                 prot = PROT_READ;
2171                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2172                 if (block->fd >= 0) {
2173                     area = mmap(vaddr, length, prot, flags, block->fd,
2174                                 offset + block->fd_offset);
2175                 } else {
2176                     flags |= MAP_ANONYMOUS;
2177                     area = mmap(vaddr, length, prot, flags, -1, 0);
2178                 }
2179                 if (area != vaddr) {
2180                     error_report("Could not remap addr: "
2181                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2182                                  length, addr);
2183                     exit(1);
2184                 }
2185                 memory_try_enable_merging(vaddr, length);
2186                 qemu_ram_setup_dump(vaddr, length);
2187             }
2188         }
2189     }
2190 }
2191 #endif /* !_WIN32 */
2192 
2193 /*
2194  * Return a host pointer to guest's ram.
2195  * For Xen, foreign mappings get created if they don't already exist.
2196  *
2197  * @block: block for the RAM to lookup (optional and may be NULL).
2198  * @addr: address within the memory region.
2199  * @size: pointer to requested size (optional and may be NULL).
2200  *        size may get modified and return a value smaller than
2201  *        what was requested.
2202  * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2203  * @is_write: hint wether to map RW or RO in the xen-mapcache.
2204  *            (optional and may always be set to true).
2205  *
2206  * Called within RCU critical section.
2207  */
2208 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2209                                  hwaddr *size, bool lock,
2210                                  bool is_write)
2211 {
2212     hwaddr len = 0;
2213 
2214     if (size && *size == 0) {
2215         return NULL;
2216     }
2217 
2218     if (block == NULL) {
2219         block = qemu_get_ram_block(addr);
2220         addr -= block->offset;
2221     }
2222     if (size) {
2223         *size = MIN(*size, block->max_length - addr);
2224         len = *size;
2225     }
2226 
2227     if (xen_enabled() && block->host == NULL) {
2228         /* We need to check if the requested address is in the RAM
2229          * because we don't want to map the entire memory in QEMU.
2230          * In that case just map the requested area.
2231          */
2232         if (block->offset == 0) {
2233             return xen_map_cache(block->mr, addr, len, lock, lock,
2234                                  is_write);
2235         }
2236 
2237         block->host = xen_map_cache(block->mr, block->offset,
2238                                     block->max_length, 1,
2239                                     lock, is_write);
2240     }
2241 
2242     return ramblock_ptr(block, addr);
2243 }
2244 
2245 /*
2246  * Return a host pointer to ram allocated with qemu_ram_alloc.
2247  * This should not be used for general purpose DMA.  Use address_space_map
2248  * or address_space_rw instead. For local memory (e.g. video ram) that the
2249  * device owns, use memory_region_get_ram_ptr.
2250  *
2251  * Called within RCU critical section.
2252  */
2253 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2254 {
2255     return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2256 }
2257 
2258 /* Return the offset of a hostpointer within a ramblock */
2259 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2260 {
2261     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2262     assert((uintptr_t)host >= (uintptr_t)rb->host);
2263     assert(res < rb->max_length);
2264 
2265     return res;
2266 }
2267 
2268 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2269                                    ram_addr_t *offset)
2270 {
2271     RAMBlock *block;
2272     uint8_t *host = ptr;
2273 
2274     if (xen_enabled()) {
2275         ram_addr_t ram_addr;
2276         RCU_READ_LOCK_GUARD();
2277         ram_addr = xen_ram_addr_from_mapcache(ptr);
2278         block = qemu_get_ram_block(ram_addr);
2279         if (block) {
2280             *offset = ram_addr - block->offset;
2281         }
2282         return block;
2283     }
2284 
2285     RCU_READ_LOCK_GUARD();
2286     block = qatomic_rcu_read(&ram_list.mru_block);
2287     if (block && block->host && host - block->host < block->max_length) {
2288         goto found;
2289     }
2290 
2291     RAMBLOCK_FOREACH(block) {
2292         /* This case append when the block is not mapped. */
2293         if (block->host == NULL) {
2294             continue;
2295         }
2296         if (host - block->host < block->max_length) {
2297             goto found;
2298         }
2299     }
2300 
2301     return NULL;
2302 
2303 found:
2304     *offset = (host - block->host);
2305     if (round_offset) {
2306         *offset &= TARGET_PAGE_MASK;
2307     }
2308     return block;
2309 }
2310 
2311 /*
2312  * Finds the named RAMBlock
2313  *
2314  * name: The name of RAMBlock to find
2315  *
2316  * Returns: RAMBlock (or NULL if not found)
2317  */
2318 RAMBlock *qemu_ram_block_by_name(const char *name)
2319 {
2320     RAMBlock *block;
2321 
2322     RAMBLOCK_FOREACH(block) {
2323         if (!strcmp(name, block->idstr)) {
2324             return block;
2325         }
2326     }
2327 
2328     return NULL;
2329 }
2330 
2331 /*
2332  * Some of the system routines need to translate from a host pointer
2333  * (typically a TLB entry) back to a ram offset.
2334  */
2335 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2336 {
2337     RAMBlock *block;
2338     ram_addr_t offset;
2339 
2340     block = qemu_ram_block_from_host(ptr, false, &offset);
2341     if (!block) {
2342         return RAM_ADDR_INVALID;
2343     }
2344 
2345     return block->offset + offset;
2346 }
2347 
2348 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2349 {
2350     ram_addr_t ram_addr;
2351 
2352     ram_addr = qemu_ram_addr_from_host(ptr);
2353     if (ram_addr == RAM_ADDR_INVALID) {
2354         error_report("Bad ram pointer %p", ptr);
2355         abort();
2356     }
2357     return ram_addr;
2358 }
2359 
2360 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2361                                  MemTxAttrs attrs, void *buf, hwaddr len);
2362 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2363                                   const void *buf, hwaddr len);
2364 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2365                                   bool is_write, MemTxAttrs attrs);
2366 
2367 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2368                                 unsigned len, MemTxAttrs attrs)
2369 {
2370     subpage_t *subpage = opaque;
2371     uint8_t buf[8];
2372     MemTxResult res;
2373 
2374 #if defined(DEBUG_SUBPAGE)
2375     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2376            subpage, len, addr);
2377 #endif
2378     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2379     if (res) {
2380         return res;
2381     }
2382     *data = ldn_p(buf, len);
2383     return MEMTX_OK;
2384 }
2385 
2386 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2387                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2388 {
2389     subpage_t *subpage = opaque;
2390     uint8_t buf[8];
2391 
2392 #if defined(DEBUG_SUBPAGE)
2393     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2394            " value %"PRIx64"\n",
2395            __func__, subpage, len, addr, value);
2396 #endif
2397     stn_p(buf, len, value);
2398     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2399 }
2400 
2401 static bool subpage_accepts(void *opaque, hwaddr addr,
2402                             unsigned len, bool is_write,
2403                             MemTxAttrs attrs)
2404 {
2405     subpage_t *subpage = opaque;
2406 #if defined(DEBUG_SUBPAGE)
2407     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2408            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2409 #endif
2410 
2411     return flatview_access_valid(subpage->fv, addr + subpage->base,
2412                                  len, is_write, attrs);
2413 }
2414 
2415 static const MemoryRegionOps subpage_ops = {
2416     .read_with_attrs = subpage_read,
2417     .write_with_attrs = subpage_write,
2418     .impl.min_access_size = 1,
2419     .impl.max_access_size = 8,
2420     .valid.min_access_size = 1,
2421     .valid.max_access_size = 8,
2422     .valid.accepts = subpage_accepts,
2423     .endianness = DEVICE_NATIVE_ENDIAN,
2424 };
2425 
2426 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2427                             uint16_t section)
2428 {
2429     int idx, eidx;
2430 
2431     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2432         return -1;
2433     idx = SUBPAGE_IDX(start);
2434     eidx = SUBPAGE_IDX(end);
2435 #if defined(DEBUG_SUBPAGE)
2436     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2437            __func__, mmio, start, end, idx, eidx, section);
2438 #endif
2439     for (; idx <= eidx; idx++) {
2440         mmio->sub_section[idx] = section;
2441     }
2442 
2443     return 0;
2444 }
2445 
2446 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2447 {
2448     subpage_t *mmio;
2449 
2450     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2451     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2452     mmio->fv = fv;
2453     mmio->base = base;
2454     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2455                           NULL, TARGET_PAGE_SIZE);
2456     mmio->iomem.subpage = true;
2457 #if defined(DEBUG_SUBPAGE)
2458     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2459            mmio, base, TARGET_PAGE_SIZE);
2460 #endif
2461 
2462     return mmio;
2463 }
2464 
2465 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2466 {
2467     assert(fv);
2468     MemoryRegionSection section = {
2469         .fv = fv,
2470         .mr = mr,
2471         .offset_within_address_space = 0,
2472         .offset_within_region = 0,
2473         .size = int128_2_64(),
2474     };
2475 
2476     return phys_section_add(map, &section);
2477 }
2478 
2479 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2480                                       hwaddr index, MemTxAttrs attrs)
2481 {
2482     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2483     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2484     AddressSpaceDispatch *d = cpuas->memory_dispatch;
2485     int section_index = index & ~TARGET_PAGE_MASK;
2486     MemoryRegionSection *ret;
2487 
2488     assert(section_index < d->map.sections_nb);
2489     ret = d->map.sections + section_index;
2490     assert(ret->mr);
2491     assert(ret->mr->ops);
2492 
2493     return ret;
2494 }
2495 
2496 static void io_mem_init(void)
2497 {
2498     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2499                           NULL, UINT64_MAX);
2500 }
2501 
2502 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2503 {
2504     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2505     uint16_t n;
2506 
2507     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2508     assert(n == PHYS_SECTION_UNASSIGNED);
2509 
2510     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2511 
2512     return d;
2513 }
2514 
2515 void address_space_dispatch_free(AddressSpaceDispatch *d)
2516 {
2517     phys_sections_free(&d->map);
2518     g_free(d);
2519 }
2520 
2521 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2522 {
2523 }
2524 
2525 static void tcg_log_global_after_sync(MemoryListener *listener)
2526 {
2527     CPUAddressSpace *cpuas;
2528 
2529     /* Wait for the CPU to end the current TB.  This avoids the following
2530      * incorrect race:
2531      *
2532      *      vCPU                         migration
2533      *      ----------------------       -------------------------
2534      *      TLB check -> slow path
2535      *        notdirty_mem_write
2536      *          write to RAM
2537      *          mark dirty
2538      *                                   clear dirty flag
2539      *      TLB check -> fast path
2540      *                                   read memory
2541      *        write to RAM
2542      *
2543      * by pushing the migration thread's memory read after the vCPU thread has
2544      * written the memory.
2545      */
2546     if (replay_mode == REPLAY_MODE_NONE) {
2547         /*
2548          * VGA can make calls to this function while updating the screen.
2549          * In record/replay mode this causes a deadlock, because
2550          * run_on_cpu waits for rr mutex. Therefore no races are possible
2551          * in this case and no need for making run_on_cpu when
2552          * record/replay is enabled.
2553          */
2554         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2555         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2556     }
2557 }
2558 
2559 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2560 {
2561     CPUAddressSpace *cpuas = data.host_ptr;
2562 
2563     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2564     tlb_flush(cpu);
2565 }
2566 
2567 static void tcg_commit(MemoryListener *listener)
2568 {
2569     CPUAddressSpace *cpuas;
2570     CPUState *cpu;
2571 
2572     assert(tcg_enabled());
2573     /* since each CPU stores ram addresses in its TLB cache, we must
2574        reset the modified entries */
2575     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2576     cpu = cpuas->cpu;
2577 
2578     /*
2579      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2580      * Otherwise we race between (1) other cpu threads and (2) ongoing
2581      * i/o for the current cpu thread, with data cached by mmu_lookup().
2582      *
2583      * In addition, queueing the work function will kick the cpu back to
2584      * the main loop, which will end the RCU critical section and reclaim
2585      * the memory data structures.
2586      *
2587      * That said, the listener is also called during realize, before
2588      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2589      */
2590     if (cpu->halt_cond) {
2591         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2592     } else {
2593         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2594     }
2595 }
2596 
2597 static void memory_map_init(void)
2598 {
2599     system_memory = g_malloc(sizeof(*system_memory));
2600 
2601     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2602     address_space_init(&address_space_memory, system_memory, "memory");
2603 
2604     system_io = g_malloc(sizeof(*system_io));
2605     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2606                           65536);
2607     address_space_init(&address_space_io, system_io, "I/O");
2608 }
2609 
2610 MemoryRegion *get_system_memory(void)
2611 {
2612     return system_memory;
2613 }
2614 
2615 MemoryRegion *get_system_io(void)
2616 {
2617     return system_io;
2618 }
2619 
2620 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2621                                      hwaddr length)
2622 {
2623     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2624     addr += memory_region_get_ram_addr(mr);
2625 
2626     /* No early return if dirty_log_mask is or becomes 0, because
2627      * cpu_physical_memory_set_dirty_range will still call
2628      * xen_modified_memory.
2629      */
2630     if (dirty_log_mask) {
2631         dirty_log_mask =
2632             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2633     }
2634     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2635         assert(tcg_enabled());
2636         tb_invalidate_phys_range(addr, addr + length - 1);
2637         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2638     }
2639     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2640 }
2641 
2642 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2643 {
2644     /*
2645      * In principle this function would work on other memory region types too,
2646      * but the ROM device use case is the only one where this operation is
2647      * necessary.  Other memory regions should use the
2648      * address_space_read/write() APIs.
2649      */
2650     assert(memory_region_is_romd(mr));
2651 
2652     invalidate_and_set_dirty(mr, addr, size);
2653 }
2654 
2655 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2656 {
2657     unsigned access_size_max = mr->ops->valid.max_access_size;
2658 
2659     /* Regions are assumed to support 1-4 byte accesses unless
2660        otherwise specified.  */
2661     if (access_size_max == 0) {
2662         access_size_max = 4;
2663     }
2664 
2665     /* Bound the maximum access by the alignment of the address.  */
2666     if (!mr->ops->impl.unaligned) {
2667         unsigned align_size_max = addr & -addr;
2668         if (align_size_max != 0 && align_size_max < access_size_max) {
2669             access_size_max = align_size_max;
2670         }
2671     }
2672 
2673     /* Don't attempt accesses larger than the maximum.  */
2674     if (l > access_size_max) {
2675         l = access_size_max;
2676     }
2677     l = pow2floor(l);
2678 
2679     return l;
2680 }
2681 
2682 bool prepare_mmio_access(MemoryRegion *mr)
2683 {
2684     bool release_lock = false;
2685 
2686     if (!bql_locked()) {
2687         bql_lock();
2688         release_lock = true;
2689     }
2690     if (mr->flush_coalesced_mmio) {
2691         qemu_flush_coalesced_mmio_buffer();
2692     }
2693 
2694     return release_lock;
2695 }
2696 
2697 /**
2698  * flatview_access_allowed
2699  * @mr: #MemoryRegion to be accessed
2700  * @attrs: memory transaction attributes
2701  * @addr: address within that memory region
2702  * @len: the number of bytes to access
2703  *
2704  * Check if a memory transaction is allowed.
2705  *
2706  * Returns: true if transaction is allowed, false if denied.
2707  */
2708 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2709                                     hwaddr addr, hwaddr len)
2710 {
2711     if (likely(!attrs.memory)) {
2712         return true;
2713     }
2714     if (memory_region_is_ram(mr)) {
2715         return true;
2716     }
2717     qemu_log_mask(LOG_GUEST_ERROR,
2718                   "Invalid access to non-RAM device at "
2719                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2720                   "region '%s'\n", addr, len, memory_region_name(mr));
2721     return false;
2722 }
2723 
2724 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2725                                                 const uint8_t *buf,
2726                                                 hwaddr len, hwaddr mr_addr,
2727                                                 hwaddr *l, MemoryRegion *mr)
2728 {
2729     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2730         return MEMTX_ACCESS_ERROR;
2731     }
2732 
2733     if (!memory_access_is_direct(mr, true)) {
2734         uint64_t val;
2735         MemTxResult result;
2736         bool release_lock = prepare_mmio_access(mr);
2737 
2738         *l = memory_access_size(mr, *l, mr_addr);
2739         /*
2740          * XXX: could force current_cpu to NULL to avoid
2741          * potential bugs
2742          */
2743 
2744         /*
2745          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2746          * the buffer by following ldn_he_p().
2747          */
2748 #ifdef QEMU_STATIC_ANALYSIS
2749         assert((*l == 1 && len >= 1) ||
2750                (*l == 2 && len >= 2) ||
2751                (*l == 4 && len >= 4) ||
2752                (*l == 8 && len >= 8));
2753 #endif
2754         val = ldn_he_p(buf, *l);
2755         result = memory_region_dispatch_write(mr, mr_addr, val,
2756                                               size_memop(*l), attrs);
2757         if (release_lock) {
2758             bql_unlock();
2759         }
2760 
2761         return result;
2762     } else {
2763         /* RAM case */
2764         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2765                                                false, true);
2766 
2767         memmove(ram_ptr, buf, *l);
2768         invalidate_and_set_dirty(mr, mr_addr, *l);
2769 
2770         return MEMTX_OK;
2771     }
2772 }
2773 
2774 /* Called within RCU critical section.  */
2775 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2776                                            MemTxAttrs attrs,
2777                                            const void *ptr,
2778                                            hwaddr len, hwaddr mr_addr,
2779                                            hwaddr l, MemoryRegion *mr)
2780 {
2781     MemTxResult result = MEMTX_OK;
2782     const uint8_t *buf = ptr;
2783 
2784     for (;;) {
2785         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2786                                                mr);
2787 
2788         len -= l;
2789         buf += l;
2790         addr += l;
2791 
2792         if (!len) {
2793             break;
2794         }
2795 
2796         l = len;
2797         mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2798     }
2799 
2800     return result;
2801 }
2802 
2803 /* Called from RCU critical section.  */
2804 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2805                                   const void *buf, hwaddr len)
2806 {
2807     hwaddr l;
2808     hwaddr mr_addr;
2809     MemoryRegion *mr;
2810 
2811     l = len;
2812     mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2813     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2814         return MEMTX_ACCESS_ERROR;
2815     }
2816     return flatview_write_continue(fv, addr, attrs, buf, len,
2817                                    mr_addr, l, mr);
2818 }
2819 
2820 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2821                                                hwaddr len, hwaddr mr_addr,
2822                                                hwaddr *l,
2823                                                MemoryRegion *mr)
2824 {
2825     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2826         return MEMTX_ACCESS_ERROR;
2827     }
2828 
2829     if (!memory_access_is_direct(mr, false)) {
2830         /* I/O case */
2831         uint64_t val;
2832         MemTxResult result;
2833         bool release_lock = prepare_mmio_access(mr);
2834 
2835         *l = memory_access_size(mr, *l, mr_addr);
2836         result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2837                                              attrs);
2838 
2839         /*
2840          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2841          * the buffer by following stn_he_p().
2842          */
2843 #ifdef QEMU_STATIC_ANALYSIS
2844         assert((*l == 1 && len >= 1) ||
2845                (*l == 2 && len >= 2) ||
2846                (*l == 4 && len >= 4) ||
2847                (*l == 8 && len >= 8));
2848 #endif
2849         stn_he_p(buf, *l, val);
2850 
2851         if (release_lock) {
2852             bql_unlock();
2853         }
2854         return result;
2855     } else {
2856         /* RAM case */
2857         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2858                                                false, false);
2859 
2860         memcpy(buf, ram_ptr, *l);
2861 
2862         return MEMTX_OK;
2863     }
2864 }
2865 
2866 /* Called within RCU critical section.  */
2867 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2868                                    MemTxAttrs attrs, void *ptr,
2869                                    hwaddr len, hwaddr mr_addr, hwaddr l,
2870                                    MemoryRegion *mr)
2871 {
2872     MemTxResult result = MEMTX_OK;
2873     uint8_t *buf = ptr;
2874 
2875     fuzz_dma_read_cb(addr, len, mr);
2876     for (;;) {
2877         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2878 
2879         len -= l;
2880         buf += l;
2881         addr += l;
2882 
2883         if (!len) {
2884             break;
2885         }
2886 
2887         l = len;
2888         mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2889     }
2890 
2891     return result;
2892 }
2893 
2894 /* Called from RCU critical section.  */
2895 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2896                                  MemTxAttrs attrs, void *buf, hwaddr len)
2897 {
2898     hwaddr l;
2899     hwaddr mr_addr;
2900     MemoryRegion *mr;
2901 
2902     l = len;
2903     mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2904     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2905         return MEMTX_ACCESS_ERROR;
2906     }
2907     return flatview_read_continue(fv, addr, attrs, buf, len,
2908                                   mr_addr, l, mr);
2909 }
2910 
2911 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2912                                     MemTxAttrs attrs, void *buf, hwaddr len)
2913 {
2914     MemTxResult result = MEMTX_OK;
2915     FlatView *fv;
2916 
2917     if (len > 0) {
2918         RCU_READ_LOCK_GUARD();
2919         fv = address_space_to_flatview(as);
2920         result = flatview_read(fv, addr, attrs, buf, len);
2921     }
2922 
2923     return result;
2924 }
2925 
2926 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2927                                 MemTxAttrs attrs,
2928                                 const void *buf, hwaddr len)
2929 {
2930     MemTxResult result = MEMTX_OK;
2931     FlatView *fv;
2932 
2933     if (len > 0) {
2934         RCU_READ_LOCK_GUARD();
2935         fv = address_space_to_flatview(as);
2936         result = flatview_write(fv, addr, attrs, buf, len);
2937     }
2938 
2939     return result;
2940 }
2941 
2942 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2943                              void *buf, hwaddr len, bool is_write)
2944 {
2945     if (is_write) {
2946         return address_space_write(as, addr, attrs, buf, len);
2947     } else {
2948         return address_space_read_full(as, addr, attrs, buf, len);
2949     }
2950 }
2951 
2952 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2953                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2954 {
2955 #define FILLBUF_SIZE 512
2956     uint8_t fillbuf[FILLBUF_SIZE];
2957     int l;
2958     MemTxResult error = MEMTX_OK;
2959 
2960     memset(fillbuf, c, FILLBUF_SIZE);
2961     while (len > 0) {
2962         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2963         error |= address_space_write(as, addr, attrs, fillbuf, l);
2964         len -= l;
2965         addr += l;
2966     }
2967 
2968     return error;
2969 }
2970 
2971 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2972                             hwaddr len, bool is_write)
2973 {
2974     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2975                      buf, len, is_write);
2976 }
2977 
2978 enum write_rom_type {
2979     WRITE_DATA,
2980     FLUSH_CACHE,
2981 };
2982 
2983 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2984                                                            hwaddr addr,
2985                                                            MemTxAttrs attrs,
2986                                                            const void *ptr,
2987                                                            hwaddr len,
2988                                                            enum write_rom_type type)
2989 {
2990     hwaddr l;
2991     uint8_t *ram_ptr;
2992     hwaddr addr1;
2993     MemoryRegion *mr;
2994     const uint8_t *buf = ptr;
2995 
2996     RCU_READ_LOCK_GUARD();
2997     while (len > 0) {
2998         l = len;
2999         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3000 
3001         if (!(memory_region_is_ram(mr) ||
3002               memory_region_is_romd(mr))) {
3003             l = memory_access_size(mr, l, addr1);
3004         } else {
3005             /* ROM/RAM case */
3006             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3007             switch (type) {
3008             case WRITE_DATA:
3009                 memcpy(ram_ptr, buf, l);
3010                 invalidate_and_set_dirty(mr, addr1, l);
3011                 break;
3012             case FLUSH_CACHE:
3013                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3014                 break;
3015             }
3016         }
3017         len -= l;
3018         buf += l;
3019         addr += l;
3020     }
3021     return MEMTX_OK;
3022 }
3023 
3024 /* used for ROM loading : can write in RAM and ROM */
3025 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3026                                     MemTxAttrs attrs,
3027                                     const void *buf, hwaddr len)
3028 {
3029     return address_space_write_rom_internal(as, addr, attrs,
3030                                             buf, len, WRITE_DATA);
3031 }
3032 
3033 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3034 {
3035     /*
3036      * This function should do the same thing as an icache flush that was
3037      * triggered from within the guest. For TCG we are always cache coherent,
3038      * so there is no need to flush anything. For KVM / Xen we need to flush
3039      * the host's instruction cache at least.
3040      */
3041     if (tcg_enabled()) {
3042         return;
3043     }
3044 
3045     address_space_write_rom_internal(&address_space_memory,
3046                                      start, MEMTXATTRS_UNSPECIFIED,
3047                                      NULL, len, FLUSH_CACHE);
3048 }
3049 
3050 static void
3051 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3052 {
3053     QLIST_REMOVE(client, link);
3054     g_free(client);
3055 }
3056 
3057 static void address_space_notify_map_clients_locked(AddressSpace *as)
3058 {
3059     AddressSpaceMapClient *client;
3060 
3061     while (!QLIST_EMPTY(&as->map_client_list)) {
3062         client = QLIST_FIRST(&as->map_client_list);
3063         qemu_bh_schedule(client->bh);
3064         address_space_unregister_map_client_do(client);
3065     }
3066 }
3067 
3068 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3069 {
3070     AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3071 
3072     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3073     client->bh = bh;
3074     QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3075     /* Write map_client_list before reading in_use.  */
3076     smp_mb();
3077     if (!qatomic_read(&as->bounce.in_use)) {
3078         address_space_notify_map_clients_locked(as);
3079     }
3080 }
3081 
3082 void cpu_exec_init_all(void)
3083 {
3084     qemu_mutex_init(&ram_list.mutex);
3085     /* The data structures we set up here depend on knowing the page size,
3086      * so no more changes can be made after this point.
3087      * In an ideal world, nothing we did before we had finished the
3088      * machine setup would care about the target page size, and we could
3089      * do this much later, rather than requiring board models to state
3090      * up front what their requirements are.
3091      */
3092     finalize_target_page_bits();
3093     io_mem_init();
3094     memory_map_init();
3095 }
3096 
3097 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3098 {
3099     AddressSpaceMapClient *client;
3100 
3101     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3102     QLIST_FOREACH(client, &as->map_client_list, link) {
3103         if (client->bh == bh) {
3104             address_space_unregister_map_client_do(client);
3105             break;
3106         }
3107     }
3108 }
3109 
3110 static void address_space_notify_map_clients(AddressSpace *as)
3111 {
3112     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3113     address_space_notify_map_clients_locked(as);
3114 }
3115 
3116 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3117                                   bool is_write, MemTxAttrs attrs)
3118 {
3119     MemoryRegion *mr;
3120     hwaddr l, xlat;
3121 
3122     while (len > 0) {
3123         l = len;
3124         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3125         if (!memory_access_is_direct(mr, is_write)) {
3126             l = memory_access_size(mr, l, addr);
3127             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3128                 return false;
3129             }
3130         }
3131 
3132         len -= l;
3133         addr += l;
3134     }
3135     return true;
3136 }
3137 
3138 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3139                                 hwaddr len, bool is_write,
3140                                 MemTxAttrs attrs)
3141 {
3142     FlatView *fv;
3143 
3144     RCU_READ_LOCK_GUARD();
3145     fv = address_space_to_flatview(as);
3146     return flatview_access_valid(fv, addr, len, is_write, attrs);
3147 }
3148 
3149 static hwaddr
3150 flatview_extend_translation(FlatView *fv, hwaddr addr,
3151                             hwaddr target_len,
3152                             MemoryRegion *mr, hwaddr base, hwaddr len,
3153                             bool is_write, MemTxAttrs attrs)
3154 {
3155     hwaddr done = 0;
3156     hwaddr xlat;
3157     MemoryRegion *this_mr;
3158 
3159     for (;;) {
3160         target_len -= len;
3161         addr += len;
3162         done += len;
3163         if (target_len == 0) {
3164             return done;
3165         }
3166 
3167         len = target_len;
3168         this_mr = flatview_translate(fv, addr, &xlat,
3169                                      &len, is_write, attrs);
3170         if (this_mr != mr || xlat != base + done) {
3171             return done;
3172         }
3173     }
3174 }
3175 
3176 /* Map a physical memory region into a host virtual address.
3177  * May map a subset of the requested range, given by and returned in *plen.
3178  * May return NULL if resources needed to perform the mapping are exhausted.
3179  * Use only for reads OR writes - not for read-modify-write operations.
3180  * Use address_space_register_map_client() to know when retrying the map
3181  * operation is likely to succeed.
3182  */
3183 void *address_space_map(AddressSpace *as,
3184                         hwaddr addr,
3185                         hwaddr *plen,
3186                         bool is_write,
3187                         MemTxAttrs attrs)
3188 {
3189     hwaddr len = *plen;
3190     hwaddr l, xlat;
3191     MemoryRegion *mr;
3192     FlatView *fv;
3193 
3194     if (len == 0) {
3195         return NULL;
3196     }
3197 
3198     l = len;
3199     RCU_READ_LOCK_GUARD();
3200     fv = address_space_to_flatview(as);
3201     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3202 
3203     if (!memory_access_is_direct(mr, is_write)) {
3204         if (qatomic_xchg(&as->bounce.in_use, true)) {
3205             *plen = 0;
3206             return NULL;
3207         }
3208         /* Avoid unbounded allocations */
3209         l = MIN(l, TARGET_PAGE_SIZE);
3210         as->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3211         as->bounce.addr = addr;
3212         as->bounce.len = l;
3213 
3214         memory_region_ref(mr);
3215         as->bounce.mr = mr;
3216         if (!is_write) {
3217             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3218                           as->bounce.buffer, l);
3219         }
3220 
3221         *plen = l;
3222         return as->bounce.buffer;
3223     }
3224 
3225 
3226     memory_region_ref(mr);
3227     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3228                                         l, is_write, attrs);
3229     fuzz_dma_read_cb(addr, *plen, mr);
3230     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3231 }
3232 
3233 /* Unmaps a memory region previously mapped by address_space_map().
3234  * Will also mark the memory as dirty if is_write is true.  access_len gives
3235  * the amount of memory that was actually read or written by the caller.
3236  */
3237 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3238                          bool is_write, hwaddr access_len)
3239 {
3240     if (buffer != as->bounce.buffer) {
3241         MemoryRegion *mr;
3242         ram_addr_t addr1;
3243 
3244         mr = memory_region_from_host(buffer, &addr1);
3245         assert(mr != NULL);
3246         if (is_write) {
3247             invalidate_and_set_dirty(mr, addr1, access_len);
3248         }
3249         if (xen_enabled()) {
3250             xen_invalidate_map_cache_entry(buffer);
3251         }
3252         memory_region_unref(mr);
3253         return;
3254     }
3255     if (is_write) {
3256         address_space_write(as, as->bounce.addr, MEMTXATTRS_UNSPECIFIED,
3257                             as->bounce.buffer, access_len);
3258     }
3259     qemu_vfree(as->bounce.buffer);
3260     as->bounce.buffer = NULL;
3261     memory_region_unref(as->bounce.mr);
3262     /* Clear in_use before reading map_client_list.  */
3263     qatomic_set_mb(&as->bounce.in_use, false);
3264     address_space_notify_map_clients(as);
3265 }
3266 
3267 void *cpu_physical_memory_map(hwaddr addr,
3268                               hwaddr *plen,
3269                               bool is_write)
3270 {
3271     return address_space_map(&address_space_memory, addr, plen, is_write,
3272                              MEMTXATTRS_UNSPECIFIED);
3273 }
3274 
3275 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3276                                bool is_write, hwaddr access_len)
3277 {
3278     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3279 }
3280 
3281 #define ARG1_DECL                AddressSpace *as
3282 #define ARG1                     as
3283 #define SUFFIX
3284 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3285 #define RCU_READ_LOCK(...)       rcu_read_lock()
3286 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3287 #include "memory_ldst.c.inc"
3288 
3289 int64_t address_space_cache_init(MemoryRegionCache *cache,
3290                                  AddressSpace *as,
3291                                  hwaddr addr,
3292                                  hwaddr len,
3293                                  bool is_write)
3294 {
3295     AddressSpaceDispatch *d;
3296     hwaddr l;
3297     MemoryRegion *mr;
3298     Int128 diff;
3299 
3300     assert(len > 0);
3301 
3302     l = len;
3303     cache->fv = address_space_get_flatview(as);
3304     d = flatview_to_dispatch(cache->fv);
3305     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3306 
3307     /*
3308      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3309      * Take that into account to compute how many bytes are there between
3310      * cache->xlat and the end of the section.
3311      */
3312     diff = int128_sub(cache->mrs.size,
3313                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3314     l = int128_get64(int128_min(diff, int128_make64(l)));
3315 
3316     mr = cache->mrs.mr;
3317     memory_region_ref(mr);
3318     if (memory_access_is_direct(mr, is_write)) {
3319         /* We don't care about the memory attributes here as we're only
3320          * doing this if we found actual RAM, which behaves the same
3321          * regardless of attributes; so UNSPECIFIED is fine.
3322          */
3323         l = flatview_extend_translation(cache->fv, addr, len, mr,
3324                                         cache->xlat, l, is_write,
3325                                         MEMTXATTRS_UNSPECIFIED);
3326         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3327                                          is_write);
3328     } else {
3329         cache->ptr = NULL;
3330     }
3331 
3332     cache->len = l;
3333     cache->is_write = is_write;
3334     return l;
3335 }
3336 
3337 void address_space_cache_invalidate(MemoryRegionCache *cache,
3338                                     hwaddr addr,
3339                                     hwaddr access_len)
3340 {
3341     assert(cache->is_write);
3342     if (likely(cache->ptr)) {
3343         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3344     }
3345 }
3346 
3347 void address_space_cache_destroy(MemoryRegionCache *cache)
3348 {
3349     if (!cache->mrs.mr) {
3350         return;
3351     }
3352 
3353     if (xen_enabled()) {
3354         xen_invalidate_map_cache_entry(cache->ptr);
3355     }
3356     memory_region_unref(cache->mrs.mr);
3357     flatview_unref(cache->fv);
3358     cache->mrs.mr = NULL;
3359     cache->fv = NULL;
3360 }
3361 
3362 /* Called from RCU critical section.  This function has the same
3363  * semantics as address_space_translate, but it only works on a
3364  * predefined range of a MemoryRegion that was mapped with
3365  * address_space_cache_init.
3366  */
3367 static inline MemoryRegion *address_space_translate_cached(
3368     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3369     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3370 {
3371     MemoryRegionSection section;
3372     MemoryRegion *mr;
3373     IOMMUMemoryRegion *iommu_mr;
3374     AddressSpace *target_as;
3375 
3376     assert(!cache->ptr);
3377     *xlat = addr + cache->xlat;
3378 
3379     mr = cache->mrs.mr;
3380     iommu_mr = memory_region_get_iommu(mr);
3381     if (!iommu_mr) {
3382         /* MMIO region.  */
3383         return mr;
3384     }
3385 
3386     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3387                                             NULL, is_write, true,
3388                                             &target_as, attrs);
3389     return section.mr;
3390 }
3391 
3392 /* Called within RCU critical section.  */
3393 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3394                                                        const void *ptr,
3395                                                        hwaddr len,
3396                                                        hwaddr mr_addr,
3397                                                        hwaddr l,
3398                                                        MemoryRegion *mr)
3399 {
3400     MemTxResult result = MEMTX_OK;
3401     const uint8_t *buf = ptr;
3402 
3403     for (;;) {
3404         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3405                                                mr);
3406 
3407         len -= l;
3408         buf += l;
3409         mr_addr += l;
3410 
3411         if (!len) {
3412             break;
3413         }
3414 
3415         l = len;
3416     }
3417 
3418     return result;
3419 }
3420 
3421 /* Called within RCU critical section.  */
3422 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3423                                                       void *ptr, hwaddr len,
3424                                                       hwaddr mr_addr, hwaddr l,
3425                                                       MemoryRegion *mr)
3426 {
3427     MemTxResult result = MEMTX_OK;
3428     uint8_t *buf = ptr;
3429 
3430     for (;;) {
3431         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3432         len -= l;
3433         buf += l;
3434         mr_addr += l;
3435 
3436         if (!len) {
3437             break;
3438         }
3439         l = len;
3440     }
3441 
3442     return result;
3443 }
3444 
3445 /* Called from RCU critical section. address_space_read_cached uses this
3446  * out of line function when the target is an MMIO or IOMMU region.
3447  */
3448 MemTxResult
3449 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3450                                    void *buf, hwaddr len)
3451 {
3452     hwaddr mr_addr, l;
3453     MemoryRegion *mr;
3454 
3455     l = len;
3456     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3457                                         MEMTXATTRS_UNSPECIFIED);
3458     return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3459                                               buf, len, mr_addr, l, mr);
3460 }
3461 
3462 /* Called from RCU critical section. address_space_write_cached uses this
3463  * out of line function when the target is an MMIO or IOMMU region.
3464  */
3465 MemTxResult
3466 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3467                                     const void *buf, hwaddr len)
3468 {
3469     hwaddr mr_addr, l;
3470     MemoryRegion *mr;
3471 
3472     l = len;
3473     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3474                                         MEMTXATTRS_UNSPECIFIED);
3475     return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3476                                                buf, len, mr_addr, l, mr);
3477 }
3478 
3479 #define ARG1_DECL                MemoryRegionCache *cache
3480 #define ARG1                     cache
3481 #define SUFFIX                   _cached_slow
3482 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3483 #define RCU_READ_LOCK()          ((void)0)
3484 #define RCU_READ_UNLOCK()        ((void)0)
3485 #include "memory_ldst.c.inc"
3486 
3487 /* virtual memory access for debug (includes writing to ROM) */
3488 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3489                         void *ptr, size_t len, bool is_write)
3490 {
3491     hwaddr phys_addr;
3492     vaddr l, page;
3493     uint8_t *buf = ptr;
3494 
3495     cpu_synchronize_state(cpu);
3496     while (len > 0) {
3497         int asidx;
3498         MemTxAttrs attrs;
3499         MemTxResult res;
3500 
3501         page = addr & TARGET_PAGE_MASK;
3502         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3503         asidx = cpu_asidx_from_attrs(cpu, attrs);
3504         /* if no physical page mapped, return an error */
3505         if (phys_addr == -1)
3506             return -1;
3507         l = (page + TARGET_PAGE_SIZE) - addr;
3508         if (l > len)
3509             l = len;
3510         phys_addr += (addr & ~TARGET_PAGE_MASK);
3511         if (is_write) {
3512             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3513                                           attrs, buf, l);
3514         } else {
3515             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3516                                      attrs, buf, l);
3517         }
3518         if (res != MEMTX_OK) {
3519             return -1;
3520         }
3521         len -= l;
3522         buf += l;
3523         addr += l;
3524     }
3525     return 0;
3526 }
3527 
3528 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3529 {
3530     MemoryRegion*mr;
3531     hwaddr l = 1;
3532 
3533     RCU_READ_LOCK_GUARD();
3534     mr = address_space_translate(&address_space_memory,
3535                                  phys_addr, &phys_addr, &l, false,
3536                                  MEMTXATTRS_UNSPECIFIED);
3537 
3538     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3539 }
3540 
3541 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3542 {
3543     RAMBlock *block;
3544     int ret = 0;
3545 
3546     RCU_READ_LOCK_GUARD();
3547     RAMBLOCK_FOREACH(block) {
3548         ret = func(block, opaque);
3549         if (ret) {
3550             break;
3551         }
3552     }
3553     return ret;
3554 }
3555 
3556 /*
3557  * Unmap pages of memory from start to start+length such that
3558  * they a) read as 0, b) Trigger whatever fault mechanism
3559  * the OS provides for postcopy.
3560  * The pages must be unmapped by the end of the function.
3561  * Returns: 0 on success, none-0 on failure
3562  *
3563  */
3564 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3565 {
3566     int ret = -1;
3567 
3568     uint8_t *host_startaddr = rb->host + start;
3569 
3570     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3571         error_report("%s: Unaligned start address: %p",
3572                      __func__, host_startaddr);
3573         goto err;
3574     }
3575 
3576     if ((start + length) <= rb->max_length) {
3577         bool need_madvise, need_fallocate;
3578         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3579             error_report("%s: Unaligned length: %zx", __func__, length);
3580             goto err;
3581         }
3582 
3583         errno = ENOTSUP; /* If we are missing MADVISE etc */
3584 
3585         /* The logic here is messy;
3586          *    madvise DONTNEED fails for hugepages
3587          *    fallocate works on hugepages and shmem
3588          *    shared anonymous memory requires madvise REMOVE
3589          */
3590         need_madvise = (rb->page_size == qemu_real_host_page_size());
3591         need_fallocate = rb->fd != -1;
3592         if (need_fallocate) {
3593             /* For a file, this causes the area of the file to be zero'd
3594              * if read, and for hugetlbfs also causes it to be unmapped
3595              * so a userfault will trigger.
3596              */
3597 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3598             /*
3599              * fallocate() will fail with readonly files. Let's print a
3600              * proper error message.
3601              */
3602             if (rb->flags & RAM_READONLY_FD) {
3603                 error_report("%s: Discarding RAM with readonly files is not"
3604                              " supported", __func__);
3605                 goto err;
3606 
3607             }
3608             /*
3609              * We'll discard data from the actual file, even though we only
3610              * have a MAP_PRIVATE mapping, possibly messing with other
3611              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3612              * change that behavior whithout violating the promised
3613              * semantics of ram_block_discard_range().
3614              *
3615              * Only warn, because it works as long as nobody else uses that
3616              * file.
3617              */
3618             if (!qemu_ram_is_shared(rb)) {
3619                 warn_report_once("%s: Discarding RAM"
3620                                  " in private file mappings is possibly"
3621                                  " dangerous, because it will modify the"
3622                                  " underlying file and will affect other"
3623                                  " users of the file", __func__);
3624             }
3625 
3626             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3627                             start, length);
3628             if (ret) {
3629                 ret = -errno;
3630                 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3631                              __func__, rb->idstr, start, length, ret);
3632                 goto err;
3633             }
3634 #else
3635             ret = -ENOSYS;
3636             error_report("%s: fallocate not available/file"
3637                          "%s:%" PRIx64 " +%zx (%d)",
3638                          __func__, rb->idstr, start, length, ret);
3639             goto err;
3640 #endif
3641         }
3642         if (need_madvise) {
3643             /* For normal RAM this causes it to be unmapped,
3644              * for shared memory it causes the local mapping to disappear
3645              * and to fall back on the file contents (which we just
3646              * fallocate'd away).
3647              */
3648 #if defined(CONFIG_MADVISE)
3649             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3650                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3651             } else {
3652                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3653             }
3654             if (ret) {
3655                 ret = -errno;
3656                 error_report("%s: Failed to discard range "
3657                              "%s:%" PRIx64 " +%zx (%d)",
3658                              __func__, rb->idstr, start, length, ret);
3659                 goto err;
3660             }
3661 #else
3662             ret = -ENOSYS;
3663             error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3664                          __func__, rb->idstr, start, length, ret);
3665             goto err;
3666 #endif
3667         }
3668         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3669                                       need_madvise, need_fallocate, ret);
3670     } else {
3671         error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3672                      __func__, rb->idstr, start, length, rb->max_length);
3673     }
3674 
3675 err:
3676     return ret;
3677 }
3678 
3679 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3680                                         size_t length)
3681 {
3682     int ret = -1;
3683 
3684 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3685     ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3686                     start, length);
3687 
3688     if (ret) {
3689         ret = -errno;
3690         error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3691                      __func__, rb->idstr, start, length, ret);
3692     }
3693 #else
3694     ret = -ENOSYS;
3695     error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3696                  __func__, rb->idstr, start, length, ret);
3697 #endif
3698 
3699     return ret;
3700 }
3701 
3702 bool ramblock_is_pmem(RAMBlock *rb)
3703 {
3704     return rb->flags & RAM_PMEM;
3705 }
3706 
3707 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3708 {
3709     if (start == end - 1) {
3710         qemu_printf("\t%3d      ", start);
3711     } else {
3712         qemu_printf("\t%3d..%-3d ", start, end - 1);
3713     }
3714     qemu_printf(" skip=%d ", skip);
3715     if (ptr == PHYS_MAP_NODE_NIL) {
3716         qemu_printf(" ptr=NIL");
3717     } else if (!skip) {
3718         qemu_printf(" ptr=#%d", ptr);
3719     } else {
3720         qemu_printf(" ptr=[%d]", ptr);
3721     }
3722     qemu_printf("\n");
3723 }
3724 
3725 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3726                            int128_sub((size), int128_one())) : 0)
3727 
3728 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3729 {
3730     int i;
3731 
3732     qemu_printf("  Dispatch\n");
3733     qemu_printf("    Physical sections\n");
3734 
3735     for (i = 0; i < d->map.sections_nb; ++i) {
3736         MemoryRegionSection *s = d->map.sections + i;
3737         const char *names[] = { " [unassigned]", " [not dirty]",
3738                                 " [ROM]", " [watch]" };
3739 
3740         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3741                     " %s%s%s%s%s",
3742             i,
3743             s->offset_within_address_space,
3744             s->offset_within_address_space + MR_SIZE(s->size),
3745             s->mr->name ? s->mr->name : "(noname)",
3746             i < ARRAY_SIZE(names) ? names[i] : "",
3747             s->mr == root ? " [ROOT]" : "",
3748             s == d->mru_section ? " [MRU]" : "",
3749             s->mr->is_iommu ? " [iommu]" : "");
3750 
3751         if (s->mr->alias) {
3752             qemu_printf(" alias=%s", s->mr->alias->name ?
3753                     s->mr->alias->name : "noname");
3754         }
3755         qemu_printf("\n");
3756     }
3757 
3758     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3759                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3760     for (i = 0; i < d->map.nodes_nb; ++i) {
3761         int j, jprev;
3762         PhysPageEntry prev;
3763         Node *n = d->map.nodes + i;
3764 
3765         qemu_printf("      [%d]\n", i);
3766 
3767         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3768             PhysPageEntry *pe = *n + j;
3769 
3770             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3771                 continue;
3772             }
3773 
3774             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3775 
3776             jprev = j;
3777             prev = *pe;
3778         }
3779 
3780         if (jprev != ARRAY_SIZE(*n)) {
3781             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3782         }
3783     }
3784 }
3785 
3786 /* Require any discards to work. */
3787 static unsigned int ram_block_discard_required_cnt;
3788 /* Require only coordinated discards to work. */
3789 static unsigned int ram_block_coordinated_discard_required_cnt;
3790 /* Disable any discards. */
3791 static unsigned int ram_block_discard_disabled_cnt;
3792 /* Disable only uncoordinated discards. */
3793 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3794 static QemuMutex ram_block_discard_disable_mutex;
3795 
3796 static void ram_block_discard_disable_mutex_lock(void)
3797 {
3798     static gsize initialized;
3799 
3800     if (g_once_init_enter(&initialized)) {
3801         qemu_mutex_init(&ram_block_discard_disable_mutex);
3802         g_once_init_leave(&initialized, 1);
3803     }
3804     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3805 }
3806 
3807 static void ram_block_discard_disable_mutex_unlock(void)
3808 {
3809     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3810 }
3811 
3812 int ram_block_discard_disable(bool state)
3813 {
3814     int ret = 0;
3815 
3816     ram_block_discard_disable_mutex_lock();
3817     if (!state) {
3818         ram_block_discard_disabled_cnt--;
3819     } else if (ram_block_discard_required_cnt ||
3820                ram_block_coordinated_discard_required_cnt) {
3821         ret = -EBUSY;
3822     } else {
3823         ram_block_discard_disabled_cnt++;
3824     }
3825     ram_block_discard_disable_mutex_unlock();
3826     return ret;
3827 }
3828 
3829 int ram_block_uncoordinated_discard_disable(bool state)
3830 {
3831     int ret = 0;
3832 
3833     ram_block_discard_disable_mutex_lock();
3834     if (!state) {
3835         ram_block_uncoordinated_discard_disabled_cnt--;
3836     } else if (ram_block_discard_required_cnt) {
3837         ret = -EBUSY;
3838     } else {
3839         ram_block_uncoordinated_discard_disabled_cnt++;
3840     }
3841     ram_block_discard_disable_mutex_unlock();
3842     return ret;
3843 }
3844 
3845 int ram_block_discard_require(bool state)
3846 {
3847     int ret = 0;
3848 
3849     ram_block_discard_disable_mutex_lock();
3850     if (!state) {
3851         ram_block_discard_required_cnt--;
3852     } else if (ram_block_discard_disabled_cnt ||
3853                ram_block_uncoordinated_discard_disabled_cnt) {
3854         ret = -EBUSY;
3855     } else {
3856         ram_block_discard_required_cnt++;
3857     }
3858     ram_block_discard_disable_mutex_unlock();
3859     return ret;
3860 }
3861 
3862 int ram_block_coordinated_discard_require(bool state)
3863 {
3864     int ret = 0;
3865 
3866     ram_block_discard_disable_mutex_lock();
3867     if (!state) {
3868         ram_block_coordinated_discard_required_cnt--;
3869     } else if (ram_block_discard_disabled_cnt) {
3870         ret = -EBUSY;
3871     } else {
3872         ram_block_coordinated_discard_required_cnt++;
3873     }
3874     ram_block_discard_disable_mutex_unlock();
3875     return ret;
3876 }
3877 
3878 bool ram_block_discard_is_disabled(void)
3879 {
3880     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3881            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3882 }
3883 
3884 bool ram_block_discard_is_required(void)
3885 {
3886     return qatomic_read(&ram_block_discard_required_cnt) ||
3887            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3888 }
3889