1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "accel/tcg/cpu-ops.h" 32 #include "accel/tcg/iommu.h" 33 #endif /* CONFIG_TCG */ 34 35 #include "exec/cputlb.h" 36 #include "exec/page-protection.h" 37 #include "exec/target_page.h" 38 #include "exec/translation-block.h" 39 #include "hw/qdev-core.h" 40 #include "hw/qdev-properties.h" 41 #include "hw/boards.h" 42 #include "system/xen.h" 43 #include "system/kvm.h" 44 #include "system/tcg.h" 45 #include "system/qtest.h" 46 #include "qemu/timer.h" 47 #include "qemu/config-file.h" 48 #include "qemu/error-report.h" 49 #include "qemu/qemu-print.h" 50 #include "qemu/log.h" 51 #include "qemu/memalign.h" 52 #include "qemu/memfd.h" 53 #include "system/memory.h" 54 #include "system/ioport.h" 55 #include "system/dma.h" 56 #include "system/hostmem.h" 57 #include "system/hw_accel.h" 58 #include "system/xen-mapcache.h" 59 #include "trace.h" 60 61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 62 #include <linux/falloc.h> 63 #endif 64 65 #include "qemu/rcu_queue.h" 66 #include "qemu/main-loop.h" 67 #include "system/replay.h" 68 69 #include "system/ram_addr.h" 70 71 #include "qemu/pmem.h" 72 73 #include "qapi/qapi-types-migration.h" 74 #include "migration/blocker.h" 75 #include "migration/cpr.h" 76 #include "migration/options.h" 77 #include "migration/vmstate.h" 78 79 #include "qemu/range.h" 80 #ifndef _WIN32 81 #include "qemu/mmap-alloc.h" 82 #endif 83 84 #include "monitor/monitor.h" 85 86 #ifdef CONFIG_LIBDAXCTL 87 #include <daxctl/libdaxctl.h> 88 #endif 89 90 #include "memory-internal.h" 91 92 //#define DEBUG_SUBPAGE 93 94 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 95 * are protected by the ramlist lock. 96 */ 97 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 98 99 static MemoryRegion *system_memory; 100 static MemoryRegion *system_io; 101 102 AddressSpace address_space_io; 103 AddressSpace address_space_memory; 104 105 static MemoryRegion io_mem_unassigned; 106 107 typedef struct PhysPageEntry PhysPageEntry; 108 109 struct PhysPageEntry { 110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 111 uint32_t skip : 6; 112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 113 uint32_t ptr : 26; 114 }; 115 116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 117 118 /* Size of the L2 (and L3, etc) page tables. */ 119 #define ADDR_SPACE_BITS 64 120 121 #define P_L2_BITS 9 122 #define P_L2_SIZE (1 << P_L2_BITS) 123 124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 125 126 typedef PhysPageEntry Node[P_L2_SIZE]; 127 128 typedef struct PhysPageMap { 129 struct rcu_head rcu; 130 131 unsigned sections_nb; 132 unsigned sections_nb_alloc; 133 unsigned nodes_nb; 134 unsigned nodes_nb_alloc; 135 Node *nodes; 136 MemoryRegionSection *sections; 137 } PhysPageMap; 138 139 struct AddressSpaceDispatch { 140 MemoryRegionSection *mru_section; 141 /* This is a multi-level map on the physical address space. 142 * The bottom level has pointers to MemoryRegionSections. 143 */ 144 PhysPageEntry phys_map; 145 PhysPageMap map; 146 }; 147 148 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 149 typedef struct subpage_t { 150 MemoryRegion iomem; 151 FlatView *fv; 152 hwaddr base; 153 uint16_t sub_section[]; 154 } subpage_t; 155 156 #define PHYS_SECTION_UNASSIGNED 0 157 158 static void io_mem_init(void); 159 static void memory_map_init(void); 160 static void tcg_log_global_after_sync(MemoryListener *listener); 161 static void tcg_commit(MemoryListener *listener); 162 static bool ram_is_cpr_compatible(RAMBlock *rb); 163 164 /** 165 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 166 * @cpu: the CPU whose AddressSpace this is 167 * @as: the AddressSpace itself 168 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 169 * @tcg_as_listener: listener for tracking changes to the AddressSpace 170 */ 171 typedef struct CPUAddressSpace { 172 CPUState *cpu; 173 AddressSpace *as; 174 struct AddressSpaceDispatch *memory_dispatch; 175 MemoryListener tcg_as_listener; 176 } CPUAddressSpace; 177 178 struct DirtyBitmapSnapshot { 179 ram_addr_t start; 180 ram_addr_t end; 181 unsigned long dirty[]; 182 }; 183 184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 185 { 186 static unsigned alloc_hint = 16; 187 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 188 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 190 alloc_hint = map->nodes_nb_alloc; 191 } 192 } 193 194 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 195 { 196 unsigned i; 197 uint32_t ret; 198 PhysPageEntry e; 199 PhysPageEntry *p; 200 201 ret = map->nodes_nb++; 202 p = map->nodes[ret]; 203 assert(ret != PHYS_MAP_NODE_NIL); 204 assert(ret != map->nodes_nb_alloc); 205 206 e.skip = leaf ? 0 : 1; 207 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 208 for (i = 0; i < P_L2_SIZE; ++i) { 209 memcpy(&p[i], &e, sizeof(e)); 210 } 211 return ret; 212 } 213 214 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 215 hwaddr *index, uint64_t *nb, uint16_t leaf, 216 int level) 217 { 218 PhysPageEntry *p; 219 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 220 221 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 222 lp->ptr = phys_map_node_alloc(map, level == 0); 223 } 224 p = map->nodes[lp->ptr]; 225 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 226 227 while (*nb && lp < &p[P_L2_SIZE]) { 228 if ((*index & (step - 1)) == 0 && *nb >= step) { 229 lp->skip = 0; 230 lp->ptr = leaf; 231 *index += step; 232 *nb -= step; 233 } else { 234 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 235 } 236 ++lp; 237 } 238 } 239 240 static void phys_page_set(AddressSpaceDispatch *d, 241 hwaddr index, uint64_t nb, 242 uint16_t leaf) 243 { 244 /* Wildly overreserve - it doesn't matter much. */ 245 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 246 247 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 248 } 249 250 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 251 * and update our entry so we can skip it and go directly to the destination. 252 */ 253 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 254 { 255 unsigned valid_ptr = P_L2_SIZE; 256 int valid = 0; 257 PhysPageEntry *p; 258 int i; 259 260 if (lp->ptr == PHYS_MAP_NODE_NIL) { 261 return; 262 } 263 264 p = nodes[lp->ptr]; 265 for (i = 0; i < P_L2_SIZE; i++) { 266 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 267 continue; 268 } 269 270 valid_ptr = i; 271 valid++; 272 if (p[i].skip) { 273 phys_page_compact(&p[i], nodes); 274 } 275 } 276 277 /* We can only compress if there's only one child. */ 278 if (valid != 1) { 279 return; 280 } 281 282 assert(valid_ptr < P_L2_SIZE); 283 284 /* Don't compress if it won't fit in the # of bits we have. */ 285 if (P_L2_LEVELS >= (1 << 6) && 286 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 287 return; 288 } 289 290 lp->ptr = p[valid_ptr].ptr; 291 if (!p[valid_ptr].skip) { 292 /* If our only child is a leaf, make this a leaf. */ 293 /* By design, we should have made this node a leaf to begin with so we 294 * should never reach here. 295 * But since it's so simple to handle this, let's do it just in case we 296 * change this rule. 297 */ 298 lp->skip = 0; 299 } else { 300 lp->skip += p[valid_ptr].skip; 301 } 302 } 303 304 void address_space_dispatch_compact(AddressSpaceDispatch *d) 305 { 306 if (d->phys_map.skip) { 307 phys_page_compact(&d->phys_map, d->map.nodes); 308 } 309 } 310 311 static inline bool section_covers_addr(const MemoryRegionSection *section, 312 hwaddr addr) 313 { 314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 315 * the section must cover the entire address space. 316 */ 317 return int128_gethi(section->size) || 318 range_covers_byte(section->offset_within_address_space, 319 int128_getlo(section->size), addr); 320 } 321 322 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 323 { 324 PhysPageEntry lp = d->phys_map, *p; 325 Node *nodes = d->map.nodes; 326 MemoryRegionSection *sections = d->map.sections; 327 hwaddr index = addr >> TARGET_PAGE_BITS; 328 int i; 329 330 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 331 if (lp.ptr == PHYS_MAP_NODE_NIL) { 332 return §ions[PHYS_SECTION_UNASSIGNED]; 333 } 334 p = nodes[lp.ptr]; 335 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 336 } 337 338 if (section_covers_addr(§ions[lp.ptr], addr)) { 339 return §ions[lp.ptr]; 340 } else { 341 return §ions[PHYS_SECTION_UNASSIGNED]; 342 } 343 } 344 345 /* Called from RCU critical section */ 346 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 347 hwaddr addr, 348 bool resolve_subpage) 349 { 350 MemoryRegionSection *section = qatomic_read(&d->mru_section); 351 subpage_t *subpage; 352 353 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 354 !section_covers_addr(section, addr)) { 355 section = phys_page_find(d, addr); 356 qatomic_set(&d->mru_section, section); 357 } 358 if (resolve_subpage && section->mr->subpage) { 359 subpage = container_of(section->mr, subpage_t, iomem); 360 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 361 } 362 return section; 363 } 364 365 /* Called from RCU critical section */ 366 static MemoryRegionSection * 367 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 368 hwaddr *plen, bool resolve_subpage) 369 { 370 MemoryRegionSection *section; 371 MemoryRegion *mr; 372 Int128 diff; 373 374 section = address_space_lookup_region(d, addr, resolve_subpage); 375 /* Compute offset within MemoryRegionSection */ 376 addr -= section->offset_within_address_space; 377 378 /* Compute offset within MemoryRegion */ 379 *xlat = addr + section->offset_within_region; 380 381 mr = section->mr; 382 383 /* MMIO registers can be expected to perform full-width accesses based only 384 * on their address, without considering adjacent registers that could 385 * decode to completely different MemoryRegions. When such registers 386 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 387 * regions overlap wildly. For this reason we cannot clamp the accesses 388 * here. 389 * 390 * If the length is small (as is the case for address_space_ldl/stl), 391 * everything works fine. If the incoming length is large, however, 392 * the caller really has to do the clamping through memory_access_size. 393 */ 394 if (memory_region_is_ram(mr)) { 395 diff = int128_sub(section->size, int128_make64(addr)); 396 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 397 } 398 return section; 399 } 400 401 /** 402 * address_space_translate_iommu - translate an address through an IOMMU 403 * memory region and then through the target address space. 404 * 405 * @iommu_mr: the IOMMU memory region that we start the translation from 406 * @addr: the address to be translated through the MMU 407 * @xlat: the translated address offset within the destination memory region. 408 * It cannot be %NULL. 409 * @plen_out: valid read/write length of the translated address. It 410 * cannot be %NULL. 411 * @page_mask_out: page mask for the translated address. This 412 * should only be meaningful for IOMMU translated 413 * addresses, since there may be huge pages that this bit 414 * would tell. It can be %NULL if we don't care about it. 415 * @is_write: whether the translation operation is for write 416 * @is_mmio: whether this can be MMIO, set true if it can 417 * @target_as: the address space targeted by the IOMMU 418 * @attrs: transaction attributes 419 * 420 * This function is called from RCU critical section. It is the common 421 * part of flatview_do_translate and address_space_translate_cached. 422 */ 423 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 424 hwaddr *xlat, 425 hwaddr *plen_out, 426 hwaddr *page_mask_out, 427 bool is_write, 428 bool is_mmio, 429 AddressSpace **target_as, 430 MemTxAttrs attrs) 431 { 432 MemoryRegionSection *section; 433 hwaddr page_mask = (hwaddr)-1; 434 435 do { 436 hwaddr addr = *xlat; 437 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 438 int iommu_idx = 0; 439 IOMMUTLBEntry iotlb; 440 441 if (imrc->attrs_to_index) { 442 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 443 } 444 445 iotlb = imrc->translate(iommu_mr, addr, is_write ? 446 IOMMU_WO : IOMMU_RO, iommu_idx); 447 448 if (!(iotlb.perm & (1 << is_write))) { 449 goto unassigned; 450 } 451 452 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 453 | (addr & iotlb.addr_mask)); 454 page_mask &= iotlb.addr_mask; 455 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 456 *target_as = iotlb.target_as; 457 458 section = address_space_translate_internal( 459 address_space_to_dispatch(iotlb.target_as), addr, xlat, 460 plen_out, is_mmio); 461 462 iommu_mr = memory_region_get_iommu(section->mr); 463 } while (unlikely(iommu_mr)); 464 465 if (page_mask_out) { 466 *page_mask_out = page_mask; 467 } 468 return *section; 469 470 unassigned: 471 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 472 } 473 474 /** 475 * flatview_do_translate - translate an address in FlatView 476 * 477 * @fv: the flat view that we want to translate on 478 * @addr: the address to be translated in above address space 479 * @xlat: the translated address offset within memory region. It 480 * cannot be @NULL. 481 * @plen_out: valid read/write length of the translated address. It 482 * can be @NULL when we don't care about it. 483 * @page_mask_out: page mask for the translated address. This 484 * should only be meaningful for IOMMU translated 485 * addresses, since there may be huge pages that this bit 486 * would tell. It can be @NULL if we don't care about it. 487 * @is_write: whether the translation operation is for write 488 * @is_mmio: whether this can be MMIO, set true if it can 489 * @target_as: the address space targeted by the IOMMU 490 * @attrs: memory transaction attributes 491 * 492 * This function is called from RCU critical section 493 */ 494 static MemoryRegionSection flatview_do_translate(FlatView *fv, 495 hwaddr addr, 496 hwaddr *xlat, 497 hwaddr *plen_out, 498 hwaddr *page_mask_out, 499 bool is_write, 500 bool is_mmio, 501 AddressSpace **target_as, 502 MemTxAttrs attrs) 503 { 504 MemoryRegionSection *section; 505 IOMMUMemoryRegion *iommu_mr; 506 hwaddr plen = (hwaddr)(-1); 507 508 if (!plen_out) { 509 plen_out = &plen; 510 } 511 512 section = address_space_translate_internal( 513 flatview_to_dispatch(fv), addr, xlat, 514 plen_out, is_mmio); 515 516 iommu_mr = memory_region_get_iommu(section->mr); 517 if (unlikely(iommu_mr)) { 518 return address_space_translate_iommu(iommu_mr, xlat, 519 plen_out, page_mask_out, 520 is_write, is_mmio, 521 target_as, attrs); 522 } 523 if (page_mask_out) { 524 /* Not behind an IOMMU, use default page size. */ 525 *page_mask_out = ~TARGET_PAGE_MASK; 526 } 527 528 return *section; 529 } 530 531 /* Called from RCU critical section */ 532 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 533 bool is_write, MemTxAttrs attrs) 534 { 535 MemoryRegionSection section; 536 hwaddr xlat, page_mask; 537 538 /* 539 * This can never be MMIO, and we don't really care about plen, 540 * but page mask. 541 */ 542 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 543 NULL, &page_mask, is_write, false, &as, 544 attrs); 545 546 /* Illegal translation */ 547 if (section.mr == &io_mem_unassigned) { 548 goto iotlb_fail; 549 } 550 551 /* Convert memory region offset into address space offset */ 552 xlat += section.offset_within_address_space - 553 section.offset_within_region; 554 555 return (IOMMUTLBEntry) { 556 .target_as = as, 557 .iova = addr & ~page_mask, 558 .translated_addr = xlat & ~page_mask, 559 .addr_mask = page_mask, 560 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 561 .perm = IOMMU_RW, 562 }; 563 564 iotlb_fail: 565 return (IOMMUTLBEntry) {0}; 566 } 567 568 /* Called from RCU critical section */ 569 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 570 hwaddr *plen, bool is_write, 571 MemTxAttrs attrs) 572 { 573 MemoryRegion *mr; 574 MemoryRegionSection section; 575 AddressSpace *as = NULL; 576 577 /* This can be MMIO, so setup MMIO bit. */ 578 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 579 is_write, true, &as, attrs); 580 mr = section.mr; 581 582 if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) { 583 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 584 *plen = MIN(page, *plen); 585 } 586 587 return mr; 588 } 589 590 #ifdef CONFIG_TCG 591 592 typedef struct TCGIOMMUNotifier { 593 IOMMUNotifier n; 594 MemoryRegion *mr; 595 CPUState *cpu; 596 int iommu_idx; 597 bool active; 598 } TCGIOMMUNotifier; 599 600 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 601 { 602 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 603 604 if (!notifier->active) { 605 return; 606 } 607 tlb_flush(notifier->cpu); 608 notifier->active = false; 609 /* We leave the notifier struct on the list to avoid reallocating it later. 610 * Generally the number of IOMMUs a CPU deals with will be small. 611 * In any case we can't unregister the iommu notifier from a notify 612 * callback. 613 */ 614 } 615 616 static void tcg_register_iommu_notifier(CPUState *cpu, 617 IOMMUMemoryRegion *iommu_mr, 618 int iommu_idx) 619 { 620 /* Make sure this CPU has an IOMMU notifier registered for this 621 * IOMMU/IOMMU index combination, so that we can flush its TLB 622 * when the IOMMU tells us the mappings we've cached have changed. 623 */ 624 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 625 TCGIOMMUNotifier *notifier = NULL; 626 int i; 627 628 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 629 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 630 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 631 break; 632 } 633 } 634 if (i == cpu->iommu_notifiers->len) { 635 /* Not found, add a new entry at the end of the array */ 636 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 637 notifier = g_new0(TCGIOMMUNotifier, 1); 638 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 639 640 notifier->mr = mr; 641 notifier->iommu_idx = iommu_idx; 642 notifier->cpu = cpu; 643 /* Rather than trying to register interest in the specific part 644 * of the iommu's address space that we've accessed and then 645 * expand it later as subsequent accesses touch more of it, we 646 * just register interest in the whole thing, on the assumption 647 * that iommu reconfiguration will be rare. 648 */ 649 iommu_notifier_init(¬ifier->n, 650 tcg_iommu_unmap_notify, 651 IOMMU_NOTIFIER_UNMAP, 652 0, 653 HWADDR_MAX, 654 iommu_idx); 655 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 656 &error_fatal); 657 } 658 659 if (!notifier->active) { 660 notifier->active = true; 661 } 662 } 663 664 void tcg_iommu_free_notifier_list(CPUState *cpu) 665 { 666 /* Destroy the CPU's notifier list */ 667 int i; 668 TCGIOMMUNotifier *notifier; 669 670 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 671 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 672 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 673 g_free(notifier); 674 } 675 g_array_free(cpu->iommu_notifiers, true); 676 } 677 678 void tcg_iommu_init_notifier_list(CPUState *cpu) 679 { 680 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 681 } 682 683 /* Called from RCU critical section */ 684 MemoryRegionSection * 685 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 686 hwaddr *xlat, hwaddr *plen, 687 MemTxAttrs attrs, int *prot) 688 { 689 MemoryRegionSection *section; 690 IOMMUMemoryRegion *iommu_mr; 691 IOMMUMemoryRegionClass *imrc; 692 IOMMUTLBEntry iotlb; 693 int iommu_idx; 694 hwaddr addr = orig_addr; 695 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 696 697 for (;;) { 698 section = address_space_translate_internal(d, addr, &addr, plen, false); 699 700 iommu_mr = memory_region_get_iommu(section->mr); 701 if (!iommu_mr) { 702 break; 703 } 704 705 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 706 707 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 708 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 709 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 710 * doesn't short-cut its translation table walk. 711 */ 712 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 713 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 714 | (addr & iotlb.addr_mask)); 715 /* Update the caller's prot bits to remove permissions the IOMMU 716 * is giving us a failure response for. If we get down to no 717 * permissions left at all we can give up now. 718 */ 719 if (!(iotlb.perm & IOMMU_RO)) { 720 *prot &= ~(PAGE_READ | PAGE_EXEC); 721 } 722 if (!(iotlb.perm & IOMMU_WO)) { 723 *prot &= ~PAGE_WRITE; 724 } 725 726 if (!*prot) { 727 goto translate_fail; 728 } 729 730 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 731 } 732 733 assert(!memory_region_is_iommu(section->mr)); 734 *xlat = addr; 735 return section; 736 737 translate_fail: 738 /* 739 * We should be given a page-aligned address -- certainly 740 * tlb_set_page_with_attrs() does so. The page offset of xlat 741 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 742 * The page portion of xlat will be logged by memory_region_access_valid() 743 * when this memory access is rejected, so use the original untranslated 744 * physical address. 745 */ 746 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 747 *xlat = orig_addr; 748 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 749 } 750 751 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 752 hwaddr index, MemTxAttrs attrs) 753 { 754 int asidx = cpu_asidx_from_attrs(cpu, attrs); 755 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 756 AddressSpaceDispatch *d = cpuas->memory_dispatch; 757 int section_index = index & ~TARGET_PAGE_MASK; 758 MemoryRegionSection *ret; 759 760 assert(section_index < d->map.sections_nb); 761 ret = d->map.sections + section_index; 762 assert(ret->mr); 763 assert(ret->mr->ops); 764 765 return ret; 766 } 767 768 /* Called from RCU critical section */ 769 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 770 MemoryRegionSection *section) 771 { 772 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 773 return section - d->map.sections; 774 } 775 776 #endif /* CONFIG_TCG */ 777 778 void cpu_address_space_init(CPUState *cpu, int asidx, 779 const char *prefix, MemoryRegion *mr) 780 { 781 CPUAddressSpace *newas; 782 AddressSpace *as = g_new0(AddressSpace, 1); 783 char *as_name; 784 785 assert(mr); 786 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 787 address_space_init(as, mr, as_name); 788 g_free(as_name); 789 790 /* Target code should have set num_ases before calling us */ 791 assert(asidx < cpu->num_ases); 792 793 if (asidx == 0) { 794 /* address space 0 gets the convenience alias */ 795 cpu->as = as; 796 } 797 798 /* KVM cannot currently support multiple address spaces. */ 799 assert(asidx == 0 || !kvm_enabled()); 800 801 if (!cpu->cpu_ases) { 802 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 803 cpu->cpu_ases_count = cpu->num_ases; 804 } 805 806 newas = &cpu->cpu_ases[asidx]; 807 newas->cpu = cpu; 808 newas->as = as; 809 if (tcg_enabled()) { 810 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 811 newas->tcg_as_listener.commit = tcg_commit; 812 newas->tcg_as_listener.name = "tcg"; 813 memory_listener_register(&newas->tcg_as_listener, as); 814 } 815 } 816 817 void cpu_address_space_destroy(CPUState *cpu, int asidx) 818 { 819 CPUAddressSpace *cpuas; 820 821 assert(cpu->cpu_ases); 822 assert(asidx >= 0 && asidx < cpu->num_ases); 823 /* KVM cannot currently support multiple address spaces. */ 824 assert(asidx == 0 || !kvm_enabled()); 825 826 cpuas = &cpu->cpu_ases[asidx]; 827 if (tcg_enabled()) { 828 memory_listener_unregister(&cpuas->tcg_as_listener); 829 } 830 831 address_space_destroy(cpuas->as); 832 g_free_rcu(cpuas->as, rcu); 833 834 if (asidx == 0) { 835 /* reset the convenience alias for address space 0 */ 836 cpu->as = NULL; 837 } 838 839 if (--cpu->cpu_ases_count == 0) { 840 g_free(cpu->cpu_ases); 841 cpu->cpu_ases = NULL; 842 } 843 } 844 845 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 846 { 847 /* Return the AddressSpace corresponding to the specified index */ 848 return cpu->cpu_ases[asidx].as; 849 } 850 851 /* Called from RCU critical section */ 852 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 853 { 854 RAMBlock *block; 855 856 block = qatomic_rcu_read(&ram_list.mru_block); 857 if (block && addr - block->offset < block->max_length) { 858 return block; 859 } 860 RAMBLOCK_FOREACH(block) { 861 if (addr - block->offset < block->max_length) { 862 goto found; 863 } 864 } 865 866 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 867 abort(); 868 869 found: 870 /* It is safe to write mru_block outside the BQL. This 871 * is what happens: 872 * 873 * mru_block = xxx 874 * rcu_read_unlock() 875 * xxx removed from list 876 * rcu_read_lock() 877 * read mru_block 878 * mru_block = NULL; 879 * call_rcu(reclaim_ramblock, xxx); 880 * rcu_read_unlock() 881 * 882 * qatomic_rcu_set is not needed here. The block was already published 883 * when it was placed into the list. Here we're just making an extra 884 * copy of the pointer. 885 */ 886 ram_list.mru_block = block; 887 return block; 888 } 889 890 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 891 { 892 CPUState *cpu; 893 ram_addr_t start1; 894 RAMBlock *block; 895 ram_addr_t end; 896 897 assert(tcg_enabled()); 898 end = TARGET_PAGE_ALIGN(start + length); 899 start &= TARGET_PAGE_MASK; 900 901 RCU_READ_LOCK_GUARD(); 902 block = qemu_get_ram_block(start); 903 assert(block == qemu_get_ram_block(end - 1)); 904 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 905 CPU_FOREACH(cpu) { 906 tlb_reset_dirty(cpu, start1, length); 907 } 908 } 909 910 /* Note: start and end must be within the same ram block. */ 911 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 912 ram_addr_t length, 913 unsigned client) 914 { 915 DirtyMemoryBlocks *blocks; 916 unsigned long end, page, start_page; 917 bool dirty = false; 918 RAMBlock *ramblock; 919 uint64_t mr_offset, mr_size; 920 921 if (length == 0) { 922 return false; 923 } 924 925 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 926 start_page = start >> TARGET_PAGE_BITS; 927 page = start_page; 928 929 WITH_RCU_READ_LOCK_GUARD() { 930 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 931 ramblock = qemu_get_ram_block(start); 932 /* Range sanity check on the ramblock */ 933 assert(start >= ramblock->offset && 934 start + length <= ramblock->offset + ramblock->used_length); 935 936 while (page < end) { 937 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 938 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 939 unsigned long num = MIN(end - page, 940 DIRTY_MEMORY_BLOCK_SIZE - offset); 941 942 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 943 offset, num); 944 page += num; 945 } 946 947 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 948 mr_size = (end - start_page) << TARGET_PAGE_BITS; 949 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 950 } 951 952 if (dirty) { 953 cpu_physical_memory_dirty_bits_cleared(start, length); 954 } 955 956 return dirty; 957 } 958 959 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 960 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 961 { 962 DirtyMemoryBlocks *blocks; 963 ram_addr_t start, first, last; 964 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 965 DirtyBitmapSnapshot *snap; 966 unsigned long page, end, dest; 967 968 start = memory_region_get_ram_addr(mr); 969 /* We know we're only called for RAM MemoryRegions */ 970 assert(start != RAM_ADDR_INVALID); 971 start += offset; 972 973 first = QEMU_ALIGN_DOWN(start, align); 974 last = QEMU_ALIGN_UP(start + length, align); 975 976 snap = g_malloc0(sizeof(*snap) + 977 ((last - first) >> (TARGET_PAGE_BITS + 3))); 978 snap->start = first; 979 snap->end = last; 980 981 page = first >> TARGET_PAGE_BITS; 982 end = last >> TARGET_PAGE_BITS; 983 dest = 0; 984 985 WITH_RCU_READ_LOCK_GUARD() { 986 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 987 988 while (page < end) { 989 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 990 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 991 unsigned long num = MIN(end - page, 992 DIRTY_MEMORY_BLOCK_SIZE - ofs); 993 994 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 995 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 996 ofs >>= BITS_PER_LEVEL; 997 998 bitmap_copy_and_clear_atomic(snap->dirty + dest, 999 blocks->blocks[idx] + ofs, 1000 num); 1001 page += num; 1002 dest += num >> BITS_PER_LEVEL; 1003 } 1004 } 1005 1006 cpu_physical_memory_dirty_bits_cleared(start, length); 1007 1008 memory_region_clear_dirty_bitmap(mr, offset, length); 1009 1010 return snap; 1011 } 1012 1013 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 1014 ram_addr_t start, 1015 ram_addr_t length) 1016 { 1017 unsigned long page, end; 1018 1019 assert(start >= snap->start); 1020 assert(start + length <= snap->end); 1021 1022 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 1023 page = (start - snap->start) >> TARGET_PAGE_BITS; 1024 1025 while (page < end) { 1026 if (test_bit(page, snap->dirty)) { 1027 return true; 1028 } 1029 page++; 1030 } 1031 return false; 1032 } 1033 1034 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1035 uint16_t section); 1036 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1037 1038 static uint16_t phys_section_add(PhysPageMap *map, 1039 MemoryRegionSection *section) 1040 { 1041 /* The physical section number is ORed with a page-aligned 1042 * pointer to produce the iotlb entries. Thus it should 1043 * never overflow into the page-aligned value. 1044 */ 1045 assert(map->sections_nb < TARGET_PAGE_SIZE); 1046 1047 if (map->sections_nb == map->sections_nb_alloc) { 1048 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1049 map->sections = g_renew(MemoryRegionSection, map->sections, 1050 map->sections_nb_alloc); 1051 } 1052 map->sections[map->sections_nb] = *section; 1053 memory_region_ref(section->mr); 1054 return map->sections_nb++; 1055 } 1056 1057 static void phys_section_destroy(MemoryRegion *mr) 1058 { 1059 bool have_sub_page = mr->subpage; 1060 1061 memory_region_unref(mr); 1062 1063 if (have_sub_page) { 1064 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1065 object_unref(OBJECT(&subpage->iomem)); 1066 g_free(subpage); 1067 } 1068 } 1069 1070 static void phys_sections_free(PhysPageMap *map) 1071 { 1072 while (map->sections_nb > 0) { 1073 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1074 phys_section_destroy(section->mr); 1075 } 1076 g_free(map->sections); 1077 g_free(map->nodes); 1078 } 1079 1080 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1081 { 1082 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1083 subpage_t *subpage; 1084 hwaddr base = section->offset_within_address_space 1085 & TARGET_PAGE_MASK; 1086 MemoryRegionSection *existing = phys_page_find(d, base); 1087 MemoryRegionSection subsection = { 1088 .offset_within_address_space = base, 1089 .size = int128_make64(TARGET_PAGE_SIZE), 1090 }; 1091 hwaddr start, end; 1092 1093 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1094 1095 if (!(existing->mr->subpage)) { 1096 subpage = subpage_init(fv, base); 1097 subsection.fv = fv; 1098 subsection.mr = &subpage->iomem; 1099 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1100 phys_section_add(&d->map, &subsection)); 1101 } else { 1102 subpage = container_of(existing->mr, subpage_t, iomem); 1103 } 1104 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1105 end = start + int128_get64(section->size) - 1; 1106 subpage_register(subpage, start, end, 1107 phys_section_add(&d->map, section)); 1108 } 1109 1110 1111 static void register_multipage(FlatView *fv, 1112 MemoryRegionSection *section) 1113 { 1114 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1115 hwaddr start_addr = section->offset_within_address_space; 1116 uint16_t section_index = phys_section_add(&d->map, section); 1117 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1118 TARGET_PAGE_BITS)); 1119 1120 assert(num_pages); 1121 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1122 } 1123 1124 /* 1125 * The range in *section* may look like this: 1126 * 1127 * |s|PPPPPPP|s| 1128 * 1129 * where s stands for subpage and P for page. 1130 */ 1131 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1132 { 1133 MemoryRegionSection remain = *section; 1134 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1135 1136 /* register first subpage */ 1137 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1138 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1139 - remain.offset_within_address_space; 1140 1141 MemoryRegionSection now = remain; 1142 now.size = int128_min(int128_make64(left), now.size); 1143 register_subpage(fv, &now); 1144 if (int128_eq(remain.size, now.size)) { 1145 return; 1146 } 1147 remain.size = int128_sub(remain.size, now.size); 1148 remain.offset_within_address_space += int128_get64(now.size); 1149 remain.offset_within_region += int128_get64(now.size); 1150 } 1151 1152 /* register whole pages */ 1153 if (int128_ge(remain.size, page_size)) { 1154 MemoryRegionSection now = remain; 1155 now.size = int128_and(now.size, int128_neg(page_size)); 1156 register_multipage(fv, &now); 1157 if (int128_eq(remain.size, now.size)) { 1158 return; 1159 } 1160 remain.size = int128_sub(remain.size, now.size); 1161 remain.offset_within_address_space += int128_get64(now.size); 1162 remain.offset_within_region += int128_get64(now.size); 1163 } 1164 1165 /* register last subpage */ 1166 register_subpage(fv, &remain); 1167 } 1168 1169 void qemu_flush_coalesced_mmio_buffer(void) 1170 { 1171 if (kvm_enabled()) 1172 kvm_flush_coalesced_mmio_buffer(); 1173 } 1174 1175 void qemu_mutex_lock_ramlist(void) 1176 { 1177 qemu_mutex_lock(&ram_list.mutex); 1178 } 1179 1180 void qemu_mutex_unlock_ramlist(void) 1181 { 1182 qemu_mutex_unlock(&ram_list.mutex); 1183 } 1184 1185 GString *ram_block_format(void) 1186 { 1187 RAMBlock *block; 1188 char *psize; 1189 GString *buf = g_string_new(""); 1190 1191 RCU_READ_LOCK_GUARD(); 1192 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1193 "Block Name", "PSize", "Offset", "Used", "Total", 1194 "HVA", "RO"); 1195 1196 RAMBLOCK_FOREACH(block) { 1197 psize = size_to_str(block->page_size); 1198 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1199 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1200 block->idstr, psize, 1201 (uint64_t)block->offset, 1202 (uint64_t)block->used_length, 1203 (uint64_t)block->max_length, 1204 (uint64_t)(uintptr_t)block->host, 1205 block->mr->readonly ? "ro" : "rw"); 1206 1207 g_free(psize); 1208 } 1209 1210 return buf; 1211 } 1212 1213 static int find_min_backend_pagesize(Object *obj, void *opaque) 1214 { 1215 long *hpsize_min = opaque; 1216 1217 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1218 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1219 long hpsize = host_memory_backend_pagesize(backend); 1220 1221 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1222 *hpsize_min = hpsize; 1223 } 1224 } 1225 1226 return 0; 1227 } 1228 1229 static int find_max_backend_pagesize(Object *obj, void *opaque) 1230 { 1231 long *hpsize_max = opaque; 1232 1233 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1234 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1235 long hpsize = host_memory_backend_pagesize(backend); 1236 1237 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1238 *hpsize_max = hpsize; 1239 } 1240 } 1241 1242 return 0; 1243 } 1244 1245 /* 1246 * TODO: We assume right now that all mapped host memory backends are 1247 * used as RAM, however some might be used for different purposes. 1248 */ 1249 long qemu_minrampagesize(void) 1250 { 1251 long hpsize = LONG_MAX; 1252 Object *memdev_root = object_resolve_path("/objects", NULL); 1253 1254 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1255 return hpsize; 1256 } 1257 1258 long qemu_maxrampagesize(void) 1259 { 1260 long pagesize = 0; 1261 Object *memdev_root = object_resolve_path("/objects", NULL); 1262 1263 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1264 return pagesize; 1265 } 1266 1267 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN) 1268 static int64_t get_file_size(int fd) 1269 { 1270 int64_t size; 1271 #if defined(__linux__) 1272 struct stat st; 1273 1274 if (fstat(fd, &st) < 0) { 1275 return -errno; 1276 } 1277 1278 /* Special handling for devdax character devices */ 1279 if (S_ISCHR(st.st_mode)) { 1280 g_autofree char *subsystem_path = NULL; 1281 g_autofree char *subsystem = NULL; 1282 1283 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1284 major(st.st_rdev), minor(st.st_rdev)); 1285 subsystem = g_file_read_link(subsystem_path, NULL); 1286 1287 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1288 g_autofree char *size_path = NULL; 1289 g_autofree char *size_str = NULL; 1290 1291 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1292 major(st.st_rdev), minor(st.st_rdev)); 1293 1294 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1295 return g_ascii_strtoll(size_str, NULL, 0); 1296 } 1297 } 1298 } 1299 #endif /* defined(__linux__) */ 1300 1301 /* st.st_size may be zero for special files yet lseek(2) works */ 1302 size = lseek(fd, 0, SEEK_END); 1303 if (size < 0) { 1304 return -errno; 1305 } 1306 return size; 1307 } 1308 1309 static int64_t get_file_align(int fd) 1310 { 1311 int64_t align = -1; 1312 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1313 struct stat st; 1314 1315 if (fstat(fd, &st) < 0) { 1316 return -errno; 1317 } 1318 1319 /* Special handling for devdax character devices */ 1320 if (S_ISCHR(st.st_mode)) { 1321 g_autofree char *path = NULL; 1322 g_autofree char *rpath = NULL; 1323 struct daxctl_ctx *ctx; 1324 struct daxctl_region *region; 1325 int rc = 0; 1326 1327 path = g_strdup_printf("/sys/dev/char/%d:%d", 1328 major(st.st_rdev), minor(st.st_rdev)); 1329 rpath = realpath(path, NULL); 1330 if (!rpath) { 1331 return -errno; 1332 } 1333 1334 rc = daxctl_new(&ctx); 1335 if (rc) { 1336 return -1; 1337 } 1338 1339 daxctl_region_foreach(ctx, region) { 1340 if (strstr(rpath, daxctl_region_get_path(region))) { 1341 align = daxctl_region_get_align(region); 1342 break; 1343 } 1344 } 1345 daxctl_unref(ctx); 1346 } 1347 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1348 1349 return align; 1350 } 1351 1352 static int file_ram_open(const char *path, 1353 const char *region_name, 1354 bool readonly, 1355 bool *created) 1356 { 1357 char *filename; 1358 char *sanitized_name; 1359 char *c; 1360 int fd = -1; 1361 1362 *created = false; 1363 for (;;) { 1364 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1365 if (fd >= 0) { 1366 /* 1367 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1368 * opened a directory and fail similarly to how we fail ENOENT 1369 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1370 */ 1371 if (readonly) { 1372 struct stat file_stat; 1373 1374 if (fstat(fd, &file_stat)) { 1375 close(fd); 1376 if (errno == EINTR) { 1377 continue; 1378 } 1379 return -errno; 1380 } else if (S_ISDIR(file_stat.st_mode)) { 1381 close(fd); 1382 return -EISDIR; 1383 } 1384 } 1385 /* @path names an existing file, use it */ 1386 break; 1387 } 1388 if (errno == ENOENT) { 1389 if (readonly) { 1390 /* Refuse to create new, readonly files. */ 1391 return -ENOENT; 1392 } 1393 /* @path names a file that doesn't exist, create it */ 1394 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1395 if (fd >= 0) { 1396 *created = true; 1397 break; 1398 } 1399 } else if (errno == EISDIR) { 1400 /* @path names a directory, create a file there */ 1401 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1402 sanitized_name = g_strdup(region_name); 1403 for (c = sanitized_name; *c != '\0'; c++) { 1404 if (*c == '/') { 1405 *c = '_'; 1406 } 1407 } 1408 1409 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1410 sanitized_name); 1411 g_free(sanitized_name); 1412 1413 fd = mkstemp(filename); 1414 if (fd >= 0) { 1415 unlink(filename); 1416 g_free(filename); 1417 break; 1418 } 1419 g_free(filename); 1420 } 1421 if (errno != EEXIST && errno != EINTR) { 1422 return -errno; 1423 } 1424 /* 1425 * Try again on EINTR and EEXIST. The latter happens when 1426 * something else creates the file between our two open(). 1427 */ 1428 } 1429 1430 return fd; 1431 } 1432 1433 static void *file_ram_alloc(RAMBlock *block, 1434 ram_addr_t memory, 1435 int fd, 1436 bool truncate, 1437 off_t offset, 1438 Error **errp) 1439 { 1440 uint32_t qemu_map_flags; 1441 void *area; 1442 1443 block->page_size = qemu_fd_getpagesize(fd); 1444 if (block->mr->align % block->page_size) { 1445 error_setg(errp, "alignment 0x%" PRIx64 1446 " must be multiples of page size 0x%zx", 1447 block->mr->align, block->page_size); 1448 return NULL; 1449 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1450 error_setg(errp, "alignment 0x%" PRIx64 1451 " must be a power of two", block->mr->align); 1452 return NULL; 1453 } else if (offset % block->page_size) { 1454 error_setg(errp, "offset 0x%" PRIx64 1455 " must be multiples of page size 0x%zx", 1456 offset, block->page_size); 1457 return NULL; 1458 } 1459 block->mr->align = MAX(block->page_size, block->mr->align); 1460 #if defined(__s390x__) 1461 if (kvm_enabled()) { 1462 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1463 } 1464 #endif 1465 1466 if (memory < block->page_size) { 1467 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1468 "or larger than page size 0x%zx", 1469 memory, block->page_size); 1470 return NULL; 1471 } 1472 1473 memory = ROUND_UP(memory, block->page_size); 1474 1475 /* 1476 * ftruncate is not supported by hugetlbfs in older 1477 * hosts, so don't bother bailing out on errors. 1478 * If anything goes wrong with it under other filesystems, 1479 * mmap will fail. 1480 * 1481 * Do not truncate the non-empty backend file to avoid corrupting 1482 * the existing data in the file. Disabling shrinking is not 1483 * enough. For example, the current vNVDIMM implementation stores 1484 * the guest NVDIMM labels at the end of the backend file. If the 1485 * backend file is later extended, QEMU will not be able to find 1486 * those labels. Therefore, extending the non-empty backend file 1487 * is disabled as well. 1488 */ 1489 if (truncate && ftruncate(fd, offset + memory)) { 1490 perror("ftruncate"); 1491 } 1492 1493 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1494 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1495 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1496 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1497 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1498 if (area == MAP_FAILED) { 1499 error_setg_errno(errp, errno, 1500 "unable to map backing store for guest RAM"); 1501 return NULL; 1502 } 1503 1504 block->fd = fd; 1505 block->fd_offset = offset; 1506 return area; 1507 } 1508 #endif 1509 1510 /* Allocate space within the ram_addr_t space that governs the 1511 * dirty bitmaps. 1512 * Called with the ramlist lock held. 1513 */ 1514 static ram_addr_t find_ram_offset(ram_addr_t size) 1515 { 1516 RAMBlock *block, *next_block; 1517 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1518 1519 assert(size != 0); /* it would hand out same offset multiple times */ 1520 1521 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1522 return 0; 1523 } 1524 1525 RAMBLOCK_FOREACH(block) { 1526 ram_addr_t candidate, next = RAM_ADDR_MAX; 1527 1528 /* Align blocks to start on a 'long' in the bitmap 1529 * which makes the bitmap sync'ing take the fast path. 1530 */ 1531 candidate = block->offset + block->max_length; 1532 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1533 1534 /* Search for the closest following block 1535 * and find the gap. 1536 */ 1537 RAMBLOCK_FOREACH(next_block) { 1538 if (next_block->offset >= candidate) { 1539 next = MIN(next, next_block->offset); 1540 } 1541 } 1542 1543 /* If it fits remember our place and remember the size 1544 * of gap, but keep going so that we might find a smaller 1545 * gap to fill so avoiding fragmentation. 1546 */ 1547 if (next - candidate >= size && next - candidate < mingap) { 1548 offset = candidate; 1549 mingap = next - candidate; 1550 } 1551 1552 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1553 } 1554 1555 if (offset == RAM_ADDR_MAX) { 1556 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1557 (uint64_t)size); 1558 abort(); 1559 } 1560 1561 trace_find_ram_offset(size, offset); 1562 1563 return offset; 1564 } 1565 1566 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1567 { 1568 int ret; 1569 1570 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1571 if (!machine_dump_guest_core(current_machine)) { 1572 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1573 if (ret) { 1574 perror("qemu_madvise"); 1575 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1576 "but dump-guest-core=off specified\n"); 1577 } 1578 } 1579 } 1580 1581 const char *qemu_ram_get_idstr(RAMBlock *rb) 1582 { 1583 return rb->idstr; 1584 } 1585 1586 void *qemu_ram_get_host_addr(RAMBlock *rb) 1587 { 1588 return rb->host; 1589 } 1590 1591 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1592 { 1593 return rb->offset; 1594 } 1595 1596 ram_addr_t qemu_ram_get_fd_offset(RAMBlock *rb) 1597 { 1598 return rb->fd_offset; 1599 } 1600 1601 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1602 { 1603 return rb->used_length; 1604 } 1605 1606 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1607 { 1608 return rb->max_length; 1609 } 1610 1611 bool qemu_ram_is_shared(RAMBlock *rb) 1612 { 1613 return rb->flags & RAM_SHARED; 1614 } 1615 1616 bool qemu_ram_is_noreserve(RAMBlock *rb) 1617 { 1618 return rb->flags & RAM_NORESERVE; 1619 } 1620 1621 /* Note: Only set at the start of postcopy */ 1622 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1623 { 1624 return rb->flags & RAM_UF_ZEROPAGE; 1625 } 1626 1627 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1628 { 1629 rb->flags |= RAM_UF_ZEROPAGE; 1630 } 1631 1632 bool qemu_ram_is_migratable(RAMBlock *rb) 1633 { 1634 return rb->flags & RAM_MIGRATABLE; 1635 } 1636 1637 void qemu_ram_set_migratable(RAMBlock *rb) 1638 { 1639 rb->flags |= RAM_MIGRATABLE; 1640 } 1641 1642 void qemu_ram_unset_migratable(RAMBlock *rb) 1643 { 1644 rb->flags &= ~RAM_MIGRATABLE; 1645 } 1646 1647 bool qemu_ram_is_named_file(RAMBlock *rb) 1648 { 1649 return rb->flags & RAM_NAMED_FILE; 1650 } 1651 1652 int qemu_ram_get_fd(RAMBlock *rb) 1653 { 1654 return rb->fd; 1655 } 1656 1657 /* Called with the BQL held. */ 1658 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1659 { 1660 RAMBlock *block; 1661 1662 assert(new_block); 1663 assert(!new_block->idstr[0]); 1664 1665 if (dev) { 1666 char *id = qdev_get_dev_path(dev); 1667 if (id) { 1668 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1669 g_free(id); 1670 } 1671 } 1672 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1673 1674 RCU_READ_LOCK_GUARD(); 1675 RAMBLOCK_FOREACH(block) { 1676 if (block != new_block && 1677 !strcmp(block->idstr, new_block->idstr)) { 1678 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1679 new_block->idstr); 1680 abort(); 1681 } 1682 } 1683 } 1684 1685 /* Called with the BQL held. */ 1686 void qemu_ram_unset_idstr(RAMBlock *block) 1687 { 1688 /* FIXME: arch_init.c assumes that this is not called throughout 1689 * migration. Ignore the problem since hot-unplug during migration 1690 * does not work anyway. 1691 */ 1692 if (block) { 1693 memset(block->idstr, 0, sizeof(block->idstr)); 1694 } 1695 } 1696 1697 static char *cpr_name(MemoryRegion *mr) 1698 { 1699 const char *mr_name = memory_region_name(mr); 1700 g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL; 1701 1702 if (id) { 1703 return g_strdup_printf("%s/%s", id, mr_name); 1704 } else { 1705 return g_strdup(mr_name); 1706 } 1707 } 1708 1709 size_t qemu_ram_pagesize(RAMBlock *rb) 1710 { 1711 return rb->page_size; 1712 } 1713 1714 /* Returns the largest size of page in use */ 1715 size_t qemu_ram_pagesize_largest(void) 1716 { 1717 RAMBlock *block; 1718 size_t largest = 0; 1719 1720 RAMBLOCK_FOREACH(block) { 1721 largest = MAX(largest, qemu_ram_pagesize(block)); 1722 } 1723 1724 return largest; 1725 } 1726 1727 static int memory_try_enable_merging(void *addr, size_t len) 1728 { 1729 if (!machine_mem_merge(current_machine)) { 1730 /* disabled by the user */ 1731 return 0; 1732 } 1733 1734 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1735 } 1736 1737 /* 1738 * Resizing RAM while migrating can result in the migration being canceled. 1739 * Care has to be taken if the guest might have already detected the memory. 1740 * 1741 * As memory core doesn't know how is memory accessed, it is up to 1742 * resize callback to update device state and/or add assertions to detect 1743 * misuse, if necessary. 1744 */ 1745 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1746 { 1747 const ram_addr_t oldsize = block->used_length; 1748 const ram_addr_t unaligned_size = newsize; 1749 1750 assert(block); 1751 1752 newsize = TARGET_PAGE_ALIGN(newsize); 1753 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1754 1755 if (block->used_length == newsize) { 1756 /* 1757 * We don't have to resize the ram block (which only knows aligned 1758 * sizes), however, we have to notify if the unaligned size changed. 1759 */ 1760 if (unaligned_size != memory_region_size(block->mr)) { 1761 memory_region_set_size(block->mr, unaligned_size); 1762 if (block->resized) { 1763 block->resized(block->idstr, unaligned_size, block->host); 1764 } 1765 } 1766 return 0; 1767 } 1768 1769 if (!(block->flags & RAM_RESIZEABLE)) { 1770 error_setg_errno(errp, EINVAL, 1771 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1772 " != 0x" RAM_ADDR_FMT, block->idstr, 1773 newsize, block->used_length); 1774 return -EINVAL; 1775 } 1776 1777 if (block->max_length < newsize) { 1778 error_setg_errno(errp, EINVAL, 1779 "Size too large: %s: 0x" RAM_ADDR_FMT 1780 " > 0x" RAM_ADDR_FMT, block->idstr, 1781 newsize, block->max_length); 1782 return -EINVAL; 1783 } 1784 1785 /* Notify before modifying the ram block and touching the bitmaps. */ 1786 if (block->host) { 1787 ram_block_notify_resize(block->host, oldsize, newsize); 1788 } 1789 1790 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1791 block->used_length = newsize; 1792 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1793 DIRTY_CLIENTS_ALL); 1794 memory_region_set_size(block->mr, unaligned_size); 1795 if (block->resized) { 1796 block->resized(block->idstr, unaligned_size, block->host); 1797 } 1798 return 0; 1799 } 1800 1801 /* 1802 * Trigger sync on the given ram block for range [start, start + length] 1803 * with the backing store if one is available. 1804 * Otherwise no-op. 1805 * @Note: this is supposed to be a synchronous op. 1806 */ 1807 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1808 { 1809 /* The requested range should fit in within the block range */ 1810 g_assert((start + length) <= block->used_length); 1811 1812 #ifdef CONFIG_LIBPMEM 1813 /* The lack of support for pmem should not block the sync */ 1814 if (ramblock_is_pmem(block)) { 1815 void *addr = ramblock_ptr(block, start); 1816 pmem_persist(addr, length); 1817 return; 1818 } 1819 #endif 1820 if (block->fd >= 0) { 1821 /** 1822 * Case there is no support for PMEM or the memory has not been 1823 * specified as persistent (or is not one) - use the msync. 1824 * Less optimal but still achieves the same goal 1825 */ 1826 void *addr = ramblock_ptr(block, start); 1827 if (qemu_msync(addr, length, block->fd)) { 1828 warn_report("%s: failed to sync memory range: start: " 1829 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1830 __func__, start, length); 1831 } 1832 } 1833 } 1834 1835 /* Called with ram_list.mutex held */ 1836 static void dirty_memory_extend(ram_addr_t new_ram_size) 1837 { 1838 unsigned int old_num_blocks = ram_list.num_dirty_blocks; 1839 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size, 1840 DIRTY_MEMORY_BLOCK_SIZE); 1841 int i; 1842 1843 /* Only need to extend if block count increased */ 1844 if (new_num_blocks <= old_num_blocks) { 1845 return; 1846 } 1847 1848 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1849 DirtyMemoryBlocks *old_blocks; 1850 DirtyMemoryBlocks *new_blocks; 1851 int j; 1852 1853 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1854 new_blocks = g_malloc(sizeof(*new_blocks) + 1855 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1856 1857 if (old_num_blocks) { 1858 memcpy(new_blocks->blocks, old_blocks->blocks, 1859 old_num_blocks * sizeof(old_blocks->blocks[0])); 1860 } 1861 1862 for (j = old_num_blocks; j < new_num_blocks; j++) { 1863 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1864 } 1865 1866 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1867 1868 if (old_blocks) { 1869 g_free_rcu(old_blocks, rcu); 1870 } 1871 } 1872 1873 ram_list.num_dirty_blocks = new_num_blocks; 1874 } 1875 1876 static void ram_block_add(RAMBlock *new_block, Error **errp) 1877 { 1878 const bool noreserve = qemu_ram_is_noreserve(new_block); 1879 const bool shared = qemu_ram_is_shared(new_block); 1880 RAMBlock *block; 1881 RAMBlock *last_block = NULL; 1882 bool free_on_error = false; 1883 ram_addr_t ram_size; 1884 Error *err = NULL; 1885 1886 qemu_mutex_lock_ramlist(); 1887 new_block->offset = find_ram_offset(new_block->max_length); 1888 1889 if (!new_block->host) { 1890 if (xen_enabled()) { 1891 xen_ram_alloc(new_block->offset, new_block->max_length, 1892 new_block->mr, &err); 1893 if (err) { 1894 error_propagate(errp, err); 1895 qemu_mutex_unlock_ramlist(); 1896 return; 1897 } 1898 } else { 1899 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1900 &new_block->mr->align, 1901 shared, noreserve); 1902 if (!new_block->host) { 1903 error_setg_errno(errp, errno, 1904 "cannot set up guest memory '%s'", 1905 memory_region_name(new_block->mr)); 1906 qemu_mutex_unlock_ramlist(); 1907 return; 1908 } 1909 memory_try_enable_merging(new_block->host, new_block->max_length); 1910 free_on_error = true; 1911 } 1912 } 1913 1914 if (new_block->flags & RAM_GUEST_MEMFD) { 1915 int ret; 1916 1917 if (!kvm_enabled()) { 1918 error_setg(errp, "cannot set up private guest memory for %s: KVM required", 1919 object_get_typename(OBJECT(current_machine->cgs))); 1920 goto out_free; 1921 } 1922 assert(new_block->guest_memfd < 0); 1923 1924 ret = ram_block_coordinated_discard_require(true); 1925 if (ret < 0) { 1926 error_setg_errno(errp, -ret, 1927 "cannot set up private guest memory: discard currently blocked"); 1928 error_append_hint(errp, "Are you using assigned devices?\n"); 1929 goto out_free; 1930 } 1931 1932 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1933 0, errp); 1934 if (new_block->guest_memfd < 0) { 1935 qemu_mutex_unlock_ramlist(); 1936 goto out_free; 1937 } 1938 1939 /* 1940 * The attribute bitmap of the RamBlockAttributes is default to 1941 * discarded, which mimics the behavior of kvm_set_phys_mem() when it 1942 * calls kvm_set_memory_attributes_private(). This leads to a brief 1943 * period of inconsistency between the creation of the RAMBlock and its 1944 * mapping into the physical address space. However, this is not 1945 * problematic, as no users rely on the attribute status to perform 1946 * any actions during this interval. 1947 */ 1948 new_block->attributes = ram_block_attributes_create(new_block); 1949 if (!new_block->attributes) { 1950 error_setg(errp, "Failed to create ram block attribute"); 1951 close(new_block->guest_memfd); 1952 ram_block_coordinated_discard_require(false); 1953 qemu_mutex_unlock_ramlist(); 1954 goto out_free; 1955 } 1956 1957 /* 1958 * Add a specific guest_memfd blocker if a generic one would not be 1959 * added by ram_block_add_cpr_blocker. 1960 */ 1961 if (ram_is_cpr_compatible(new_block)) { 1962 error_setg(&new_block->cpr_blocker, 1963 "Memory region %s uses guest_memfd, " 1964 "which is not supported with CPR.", 1965 memory_region_name(new_block->mr)); 1966 migrate_add_blocker_modes(&new_block->cpr_blocker, errp, 1967 MIG_MODE_CPR_TRANSFER, -1); 1968 } 1969 } 1970 1971 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS; 1972 dirty_memory_extend(ram_size); 1973 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1974 * QLIST (which has an RCU-friendly variant) does not have insertion at 1975 * tail, so save the last element in last_block. 1976 */ 1977 RAMBLOCK_FOREACH(block) { 1978 last_block = block; 1979 if (block->max_length < new_block->max_length) { 1980 break; 1981 } 1982 } 1983 if (block) { 1984 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1985 } else if (last_block) { 1986 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1987 } else { /* list is empty */ 1988 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1989 } 1990 ram_list.mru_block = NULL; 1991 1992 /* Write list before version */ 1993 smp_wmb(); 1994 ram_list.version++; 1995 qemu_mutex_unlock_ramlist(); 1996 1997 cpu_physical_memory_set_dirty_range(new_block->offset, 1998 new_block->used_length, 1999 DIRTY_CLIENTS_ALL); 2000 2001 if (new_block->host) { 2002 qemu_ram_setup_dump(new_block->host, new_block->max_length); 2003 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 2004 /* 2005 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 2006 * Configure it unless the machine is a qtest server, in which case 2007 * KVM is not used and it may be forked (eg for fuzzing purposes). 2008 */ 2009 if (!qtest_enabled()) { 2010 qemu_madvise(new_block->host, new_block->max_length, 2011 QEMU_MADV_DONTFORK); 2012 } 2013 ram_block_notify_add(new_block->host, new_block->used_length, 2014 new_block->max_length); 2015 } 2016 return; 2017 2018 out_free: 2019 if (free_on_error) { 2020 qemu_anon_ram_free(new_block->host, new_block->max_length); 2021 new_block->host = NULL; 2022 } 2023 } 2024 2025 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN) 2026 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size, 2027 qemu_ram_resize_cb resized, MemoryRegion *mr, 2028 uint32_t ram_flags, int fd, off_t offset, 2029 bool grow, 2030 Error **errp) 2031 { 2032 ERRP_GUARD(); 2033 RAMBlock *new_block; 2034 Error *local_err = NULL; 2035 int64_t file_size, file_align, share_flags; 2036 2037 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 2038 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 2039 ram_flags &= ~RAM_PRIVATE; 2040 2041 /* Just support these ram flags by now. */ 2042 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 2043 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 2044 RAM_READONLY_FD | RAM_GUEST_MEMFD | 2045 RAM_RESIZEABLE)) == 0); 2046 assert(max_size >= size); 2047 2048 if (xen_enabled()) { 2049 error_setg(errp, "-mem-path not supported with Xen"); 2050 return NULL; 2051 } 2052 2053 if (kvm_enabled() && !kvm_has_sync_mmu()) { 2054 error_setg(errp, 2055 "host lacks kvm mmu notifiers, -mem-path unsupported"); 2056 return NULL; 2057 } 2058 2059 size = TARGET_PAGE_ALIGN(size); 2060 size = REAL_HOST_PAGE_ALIGN(size); 2061 max_size = TARGET_PAGE_ALIGN(max_size); 2062 max_size = REAL_HOST_PAGE_ALIGN(max_size); 2063 2064 file_size = get_file_size(fd); 2065 if (file_size && file_size < offset + max_size && !grow) { 2066 error_setg(errp, "%s backing store size 0x%" PRIx64 2067 " is too small for 'size' option 0x" RAM_ADDR_FMT 2068 " plus 'offset' option 0x%" PRIx64, 2069 memory_region_name(mr), file_size, max_size, 2070 (uint64_t)offset); 2071 return NULL; 2072 } 2073 2074 file_align = get_file_align(fd); 2075 if (file_align > 0 && file_align > mr->align) { 2076 error_setg(errp, "backing store align 0x%" PRIx64 2077 " is larger than 'align' option 0x%" PRIx64, 2078 file_align, mr->align); 2079 return NULL; 2080 } 2081 2082 new_block = g_malloc0(sizeof(*new_block)); 2083 new_block->mr = mr; 2084 new_block->used_length = size; 2085 new_block->max_length = max_size; 2086 new_block->resized = resized; 2087 new_block->flags = ram_flags; 2088 new_block->guest_memfd = -1; 2089 new_block->host = file_ram_alloc(new_block, max_size, fd, 2090 file_size < offset + max_size, 2091 offset, errp); 2092 if (!new_block->host) { 2093 g_free(new_block); 2094 return NULL; 2095 } 2096 2097 ram_block_add(new_block, &local_err); 2098 if (local_err) { 2099 g_free(new_block); 2100 error_propagate(errp, local_err); 2101 return NULL; 2102 } 2103 return new_block; 2104 2105 } 2106 2107 2108 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2109 uint32_t ram_flags, const char *mem_path, 2110 off_t offset, Error **errp) 2111 { 2112 int fd; 2113 bool created; 2114 RAMBlock *block; 2115 2116 fd = file_ram_open(mem_path, memory_region_name(mr), 2117 !!(ram_flags & RAM_READONLY_FD), &created); 2118 if (fd < 0) { 2119 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2120 mem_path); 2121 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2122 fd == -EACCES) { 2123 /* 2124 * If we can open the file R/O (note: will never create a new file) 2125 * and we are dealing with a private mapping, there are still ways 2126 * to consume such files and get RAM instead of ROM. 2127 */ 2128 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2129 &created); 2130 if (fd < 0) { 2131 return NULL; 2132 } 2133 assert(!created); 2134 close(fd); 2135 error_append_hint(errp, "Consider opening the backing store" 2136 " read-only but still creating writable RAM using" 2137 " '-object memory-backend-file,readonly=on,rom=off...'" 2138 " (see \"VM templating\" documentation)\n"); 2139 } 2140 return NULL; 2141 } 2142 2143 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset, 2144 false, errp); 2145 if (!block) { 2146 if (created) { 2147 unlink(mem_path); 2148 } 2149 close(fd); 2150 return NULL; 2151 } 2152 2153 return block; 2154 } 2155 #endif 2156 2157 #ifdef CONFIG_POSIX 2158 /* 2159 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be 2160 * shared with another process if CPR is being used. Use memfd if available 2161 * because it has no size limits, else use POSIX shm. 2162 */ 2163 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp) 2164 { 2165 int fd = cpr_find_fd(name, 0); 2166 2167 if (fd >= 0) { 2168 *reused = true; 2169 return fd; 2170 } 2171 2172 if (qemu_memfd_check(0)) { 2173 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp); 2174 } else { 2175 fd = qemu_shm_alloc(0, errp); 2176 } 2177 2178 if (fd >= 0) { 2179 cpr_save_fd(name, 0, fd); 2180 } 2181 *reused = false; 2182 return fd; 2183 } 2184 #endif 2185 2186 static 2187 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2188 qemu_ram_resize_cb resized, 2189 void *host, uint32_t ram_flags, 2190 MemoryRegion *mr, Error **errp) 2191 { 2192 RAMBlock *new_block; 2193 Error *local_err = NULL; 2194 int align, share_flags; 2195 2196 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 2197 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 2198 ram_flags &= ~RAM_PRIVATE; 2199 2200 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2201 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2202 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2203 assert(max_size >= size); 2204 2205 /* ignore RAM_SHARED for Windows and emscripten*/ 2206 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN) 2207 if (!host) { 2208 if (!share_flags && current_machine->aux_ram_share) { 2209 ram_flags |= RAM_SHARED; 2210 } 2211 if (ram_flags & RAM_SHARED) { 2212 bool reused; 2213 g_autofree char *name = cpr_name(mr); 2214 int fd = qemu_ram_get_shared_fd(name, &reused, errp); 2215 2216 if (fd < 0) { 2217 return NULL; 2218 } 2219 2220 /* Use same alignment as qemu_anon_ram_alloc */ 2221 mr->align = QEMU_VMALLOC_ALIGN; 2222 2223 /* 2224 * This can fail if the shm mount size is too small, or alloc from 2225 * fd is not supported, but previous QEMU versions that called 2226 * qemu_anon_ram_alloc for anonymous shared memory could have 2227 * succeeded. Quietly fail and fall back. 2228 * 2229 * After cpr-transfer, new QEMU could create a memory region 2230 * with a larger max size than old, so pass reused to grow the 2231 * region if necessary. The extra space will be usable after a 2232 * guest reset. 2233 */ 2234 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr, 2235 ram_flags, fd, 0, reused, NULL); 2236 if (new_block) { 2237 trace_qemu_ram_alloc_shared(name, new_block->used_length, 2238 new_block->max_length, fd, 2239 new_block->host); 2240 return new_block; 2241 } 2242 2243 cpr_delete_fd(name, 0); 2244 close(fd); 2245 /* fall back to anon allocation */ 2246 } 2247 } 2248 #endif 2249 2250 align = qemu_real_host_page_size(); 2251 align = MAX(align, TARGET_PAGE_SIZE); 2252 size = ROUND_UP(size, align); 2253 max_size = ROUND_UP(max_size, align); 2254 2255 new_block = g_malloc0(sizeof(*new_block)); 2256 new_block->mr = mr; 2257 new_block->resized = resized; 2258 new_block->used_length = size; 2259 new_block->max_length = max_size; 2260 new_block->fd = -1; 2261 new_block->guest_memfd = -1; 2262 new_block->page_size = qemu_real_host_page_size(); 2263 new_block->host = host; 2264 new_block->flags = ram_flags; 2265 ram_block_add(new_block, &local_err); 2266 if (local_err) { 2267 g_free(new_block); 2268 error_propagate(errp, local_err); 2269 return NULL; 2270 } 2271 return new_block; 2272 } 2273 2274 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2275 MemoryRegion *mr, Error **errp) 2276 { 2277 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2278 errp); 2279 } 2280 2281 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2282 MemoryRegion *mr, Error **errp) 2283 { 2284 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD | 2285 RAM_PRIVATE)) == 0); 2286 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2287 } 2288 2289 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2290 qemu_ram_resize_cb resized, 2291 MemoryRegion *mr, Error **errp) 2292 { 2293 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2294 RAM_RESIZEABLE, mr, errp); 2295 } 2296 2297 static void reclaim_ramblock(RAMBlock *block) 2298 { 2299 if (block->flags & RAM_PREALLOC) { 2300 ; 2301 } else if (xen_enabled()) { 2302 xen_invalidate_map_cache_entry(block->host); 2303 #if !defined(_WIN32) && !defined(EMSCRIPTEN) 2304 } else if (block->fd >= 0) { 2305 qemu_ram_munmap(block->fd, block->host, block->max_length); 2306 close(block->fd); 2307 #endif 2308 } else { 2309 qemu_anon_ram_free(block->host, block->max_length); 2310 } 2311 2312 if (block->guest_memfd >= 0) { 2313 ram_block_attributes_destroy(block->attributes); 2314 close(block->guest_memfd); 2315 ram_block_coordinated_discard_require(false); 2316 } 2317 2318 g_free(block); 2319 } 2320 2321 void qemu_ram_free(RAMBlock *block) 2322 { 2323 g_autofree char *name = NULL; 2324 2325 if (!block) { 2326 return; 2327 } 2328 2329 if (block->host) { 2330 ram_block_notify_remove(block->host, block->used_length, 2331 block->max_length); 2332 } 2333 2334 qemu_mutex_lock_ramlist(); 2335 name = cpr_name(block->mr); 2336 cpr_delete_fd(name, 0); 2337 QLIST_REMOVE_RCU(block, next); 2338 ram_list.mru_block = NULL; 2339 /* Write list before version */ 2340 smp_wmb(); 2341 ram_list.version++; 2342 call_rcu(block, reclaim_ramblock, rcu); 2343 qemu_mutex_unlock_ramlist(); 2344 } 2345 2346 #ifndef _WIN32 2347 /* Simply remap the given VM memory location from start to start+length */ 2348 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length) 2349 { 2350 int flags, prot; 2351 void *area; 2352 void *host_startaddr = block->host + start; 2353 2354 assert(block->fd < 0); 2355 flags = MAP_FIXED | MAP_ANONYMOUS; 2356 flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE; 2357 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2358 prot = PROT_READ; 2359 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2360 area = mmap(host_startaddr, length, prot, flags, -1, 0); 2361 return area != host_startaddr ? -errno : 0; 2362 } 2363 2364 /* 2365 * qemu_ram_remap - remap a single RAM page 2366 * 2367 * @addr: address in ram_addr_t address space. 2368 * 2369 * This function will try remapping a single page of guest RAM identified by 2370 * @addr, essentially discarding memory to recover from previously poisoned 2371 * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr 2372 * does not have to point at the start of the page. 2373 * 2374 * This function is only to be used during system resets; it will kill the 2375 * VM if remapping failed. 2376 */ 2377 void qemu_ram_remap(ram_addr_t addr) 2378 { 2379 RAMBlock *block; 2380 uint64_t offset; 2381 void *vaddr; 2382 size_t page_size; 2383 2384 RAMBLOCK_FOREACH(block) { 2385 offset = addr - block->offset; 2386 if (offset < block->max_length) { 2387 /* Respect the pagesize of our RAMBlock */ 2388 page_size = qemu_ram_pagesize(block); 2389 offset = QEMU_ALIGN_DOWN(offset, page_size); 2390 2391 vaddr = ramblock_ptr(block, offset); 2392 if (block->flags & RAM_PREALLOC) { 2393 ; 2394 } else if (xen_enabled()) { 2395 abort(); 2396 } else { 2397 if (ram_block_discard_range(block, offset, page_size) != 0) { 2398 /* 2399 * Fall back to using mmap() only for anonymous mapping, 2400 * as if a backing file is associated we may not be able 2401 * to recover the memory in all cases. 2402 * So don't take the risk of using only mmap and fail now. 2403 */ 2404 if (block->fd >= 0) { 2405 error_report("Could not remap RAM %s:%" PRIx64 "+%" 2406 PRIx64 " +%zx", block->idstr, offset, 2407 block->fd_offset, page_size); 2408 exit(1); 2409 } 2410 if (qemu_ram_remap_mmap(block, offset, page_size) != 0) { 2411 error_report("Could not remap RAM %s:%" PRIx64 " +%zx", 2412 block->idstr, offset, page_size); 2413 exit(1); 2414 } 2415 } 2416 memory_try_enable_merging(vaddr, page_size); 2417 qemu_ram_setup_dump(vaddr, page_size); 2418 } 2419 2420 break; 2421 } 2422 } 2423 } 2424 #endif /* !_WIN32 */ 2425 2426 /* 2427 * Return a host pointer to guest's ram. 2428 * For Xen, foreign mappings get created if they don't already exist. 2429 * 2430 * @block: block for the RAM to lookup (optional and may be NULL). 2431 * @addr: address within the memory region. 2432 * @size: pointer to requested size (optional and may be NULL). 2433 * size may get modified and return a value smaller than 2434 * what was requested. 2435 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2436 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2437 * (optional and may always be set to true). 2438 * 2439 * Called within RCU critical section. 2440 */ 2441 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2442 hwaddr *size, bool lock, 2443 bool is_write) 2444 { 2445 hwaddr len = 0; 2446 2447 if (size && *size == 0) { 2448 return NULL; 2449 } 2450 2451 if (block == NULL) { 2452 block = qemu_get_ram_block(addr); 2453 addr -= block->offset; 2454 } 2455 if (size) { 2456 *size = MIN(*size, block->max_length - addr); 2457 len = *size; 2458 } 2459 2460 if (xen_enabled() && block->host == NULL) { 2461 /* We need to check if the requested address is in the RAM 2462 * because we don't want to map the entire memory in QEMU. 2463 * In that case just map the requested area. 2464 */ 2465 if (xen_mr_is_memory(block->mr)) { 2466 return xen_map_cache(block->mr, block->offset + addr, 2467 len, block->offset, 2468 lock, lock, is_write); 2469 } 2470 2471 block->host = xen_map_cache(block->mr, block->offset, 2472 block->max_length, 2473 block->offset, 2474 1, lock, is_write); 2475 } 2476 2477 return ramblock_ptr(block, addr); 2478 } 2479 2480 /* 2481 * Return a host pointer to ram allocated with qemu_ram_alloc. 2482 * This should not be used for general purpose DMA. Use address_space_map 2483 * or address_space_rw instead. For local memory (e.g. video ram) that the 2484 * device owns, use memory_region_get_ram_ptr. 2485 * 2486 * Called within RCU critical section. 2487 */ 2488 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2489 { 2490 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2491 } 2492 2493 /* Return the offset of a hostpointer within a ramblock */ 2494 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2495 { 2496 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2497 assert((uintptr_t)host >= (uintptr_t)rb->host); 2498 assert(res < rb->max_length); 2499 2500 return res; 2501 } 2502 2503 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2504 ram_addr_t *offset) 2505 { 2506 RAMBlock *block; 2507 uint8_t *host = ptr; 2508 2509 if (xen_enabled()) { 2510 ram_addr_t ram_addr; 2511 RCU_READ_LOCK_GUARD(); 2512 ram_addr = xen_ram_addr_from_mapcache(ptr); 2513 if (ram_addr == RAM_ADDR_INVALID) { 2514 return NULL; 2515 } 2516 2517 block = qemu_get_ram_block(ram_addr); 2518 if (block) { 2519 *offset = ram_addr - block->offset; 2520 } 2521 return block; 2522 } 2523 2524 RCU_READ_LOCK_GUARD(); 2525 block = qatomic_rcu_read(&ram_list.mru_block); 2526 if (block && block->host && host - block->host < block->max_length) { 2527 goto found; 2528 } 2529 2530 RAMBLOCK_FOREACH(block) { 2531 /* This case append when the block is not mapped. */ 2532 if (block->host == NULL) { 2533 continue; 2534 } 2535 if (host - block->host < block->max_length) { 2536 goto found; 2537 } 2538 } 2539 2540 return NULL; 2541 2542 found: 2543 *offset = (host - block->host); 2544 if (round_offset) { 2545 *offset &= TARGET_PAGE_MASK; 2546 } 2547 return block; 2548 } 2549 2550 /* 2551 * Finds the named RAMBlock 2552 * 2553 * name: The name of RAMBlock to find 2554 * 2555 * Returns: RAMBlock (or NULL if not found) 2556 */ 2557 RAMBlock *qemu_ram_block_by_name(const char *name) 2558 { 2559 RAMBlock *block; 2560 2561 RAMBLOCK_FOREACH(block) { 2562 if (!strcmp(name, block->idstr)) { 2563 return block; 2564 } 2565 } 2566 2567 return NULL; 2568 } 2569 2570 /* 2571 * Some of the system routines need to translate from a host pointer 2572 * (typically a TLB entry) back to a ram offset. 2573 */ 2574 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2575 { 2576 RAMBlock *block; 2577 ram_addr_t offset; 2578 2579 block = qemu_ram_block_from_host(ptr, false, &offset); 2580 if (!block) { 2581 return RAM_ADDR_INVALID; 2582 } 2583 2584 return block->offset + offset; 2585 } 2586 2587 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2588 { 2589 ram_addr_t ram_addr; 2590 2591 ram_addr = qemu_ram_addr_from_host(ptr); 2592 if (ram_addr == RAM_ADDR_INVALID) { 2593 error_report("Bad ram pointer %p", ptr); 2594 abort(); 2595 } 2596 return ram_addr; 2597 } 2598 2599 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2600 MemTxAttrs attrs, void *buf, hwaddr len); 2601 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2602 const void *buf, hwaddr len); 2603 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2604 bool is_write, MemTxAttrs attrs); 2605 2606 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2607 unsigned len, MemTxAttrs attrs) 2608 { 2609 subpage_t *subpage = opaque; 2610 uint8_t buf[8]; 2611 MemTxResult res; 2612 2613 #if defined(DEBUG_SUBPAGE) 2614 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2615 subpage, len, addr); 2616 #endif 2617 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2618 if (res) { 2619 return res; 2620 } 2621 *data = ldn_p(buf, len); 2622 return MEMTX_OK; 2623 } 2624 2625 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2626 uint64_t value, unsigned len, MemTxAttrs attrs) 2627 { 2628 subpage_t *subpage = opaque; 2629 uint8_t buf[8]; 2630 2631 #if defined(DEBUG_SUBPAGE) 2632 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2633 " value %"PRIx64"\n", 2634 __func__, subpage, len, addr, value); 2635 #endif 2636 stn_p(buf, len, value); 2637 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2638 } 2639 2640 static bool subpage_accepts(void *opaque, hwaddr addr, 2641 unsigned len, bool is_write, 2642 MemTxAttrs attrs) 2643 { 2644 subpage_t *subpage = opaque; 2645 #if defined(DEBUG_SUBPAGE) 2646 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2647 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2648 #endif 2649 2650 return flatview_access_valid(subpage->fv, addr + subpage->base, 2651 len, is_write, attrs); 2652 } 2653 2654 static const MemoryRegionOps subpage_ops = { 2655 .read_with_attrs = subpage_read, 2656 .write_with_attrs = subpage_write, 2657 .impl.min_access_size = 1, 2658 .impl.max_access_size = 8, 2659 .valid.min_access_size = 1, 2660 .valid.max_access_size = 8, 2661 .valid.accepts = subpage_accepts, 2662 .endianness = DEVICE_NATIVE_ENDIAN, 2663 }; 2664 2665 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2666 uint16_t section) 2667 { 2668 int idx, eidx; 2669 2670 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2671 return -1; 2672 idx = SUBPAGE_IDX(start); 2673 eidx = SUBPAGE_IDX(end); 2674 #if defined(DEBUG_SUBPAGE) 2675 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2676 __func__, mmio, start, end, idx, eidx, section); 2677 #endif 2678 for (; idx <= eidx; idx++) { 2679 mmio->sub_section[idx] = section; 2680 } 2681 2682 return 0; 2683 } 2684 2685 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2686 { 2687 subpage_t *mmio; 2688 2689 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2690 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2691 mmio->fv = fv; 2692 mmio->base = base; 2693 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2694 NULL, TARGET_PAGE_SIZE); 2695 mmio->iomem.subpage = true; 2696 #if defined(DEBUG_SUBPAGE) 2697 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2698 mmio, base, TARGET_PAGE_SIZE); 2699 #endif 2700 2701 return mmio; 2702 } 2703 2704 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2705 { 2706 assert(fv); 2707 MemoryRegionSection section = { 2708 .fv = fv, 2709 .mr = mr, 2710 .offset_within_address_space = 0, 2711 .offset_within_region = 0, 2712 .size = int128_2_64(), 2713 }; 2714 2715 return phys_section_add(map, §ion); 2716 } 2717 2718 static void io_mem_init(void) 2719 { 2720 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2721 NULL, UINT64_MAX); 2722 } 2723 2724 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2725 { 2726 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2727 uint16_t n; 2728 2729 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2730 assert(n == PHYS_SECTION_UNASSIGNED); 2731 2732 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2733 2734 return d; 2735 } 2736 2737 void address_space_dispatch_free(AddressSpaceDispatch *d) 2738 { 2739 phys_sections_free(&d->map); 2740 g_free(d); 2741 } 2742 2743 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2744 { 2745 } 2746 2747 static void tcg_log_global_after_sync(MemoryListener *listener) 2748 { 2749 CPUAddressSpace *cpuas; 2750 2751 /* Wait for the CPU to end the current TB. This avoids the following 2752 * incorrect race: 2753 * 2754 * vCPU migration 2755 * ---------------------- ------------------------- 2756 * TLB check -> slow path 2757 * notdirty_mem_write 2758 * write to RAM 2759 * mark dirty 2760 * clear dirty flag 2761 * TLB check -> fast path 2762 * read memory 2763 * write to RAM 2764 * 2765 * by pushing the migration thread's memory read after the vCPU thread has 2766 * written the memory. 2767 */ 2768 if (replay_mode == REPLAY_MODE_NONE) { 2769 /* 2770 * VGA can make calls to this function while updating the screen. 2771 * In record/replay mode this causes a deadlock, because 2772 * run_on_cpu waits for rr mutex. Therefore no races are possible 2773 * in this case and no need for making run_on_cpu when 2774 * record/replay is enabled. 2775 */ 2776 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2777 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2778 } 2779 } 2780 2781 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2782 { 2783 CPUAddressSpace *cpuas = data.host_ptr; 2784 2785 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2786 tlb_flush(cpu); 2787 } 2788 2789 static void tcg_commit(MemoryListener *listener) 2790 { 2791 CPUAddressSpace *cpuas; 2792 CPUState *cpu; 2793 2794 assert(tcg_enabled()); 2795 /* since each CPU stores ram addresses in its TLB cache, we must 2796 reset the modified entries */ 2797 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2798 cpu = cpuas->cpu; 2799 2800 /* 2801 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2802 * Otherwise we race between (1) other cpu threads and (2) ongoing 2803 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2804 * 2805 * In addition, queueing the work function will kick the cpu back to 2806 * the main loop, which will end the RCU critical section and reclaim 2807 * the memory data structures. 2808 * 2809 * That said, the listener is also called during realize, before 2810 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2811 */ 2812 if (cpu->halt_cond) { 2813 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2814 } else { 2815 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2816 } 2817 } 2818 2819 static void memory_map_init(void) 2820 { 2821 system_memory = g_malloc(sizeof(*system_memory)); 2822 2823 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2824 address_space_init(&address_space_memory, system_memory, "memory"); 2825 2826 system_io = g_malloc(sizeof(*system_io)); 2827 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2828 65536); 2829 address_space_init(&address_space_io, system_io, "I/O"); 2830 } 2831 2832 MemoryRegion *get_system_memory(void) 2833 { 2834 return system_memory; 2835 } 2836 2837 MemoryRegion *get_system_io(void) 2838 { 2839 return system_io; 2840 } 2841 2842 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2843 hwaddr length) 2844 { 2845 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2846 ram_addr_t ramaddr = memory_region_get_ram_addr(mr); 2847 2848 /* We know we're only called for RAM MemoryRegions */ 2849 assert(ramaddr != RAM_ADDR_INVALID); 2850 addr += ramaddr; 2851 2852 /* No early return if dirty_log_mask is or becomes 0, because 2853 * cpu_physical_memory_set_dirty_range will still call 2854 * xen_modified_memory. 2855 */ 2856 if (dirty_log_mask) { 2857 dirty_log_mask = 2858 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2859 } 2860 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2861 assert(tcg_enabled()); 2862 tb_invalidate_phys_range(NULL, addr, addr + length - 1); 2863 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2864 } 2865 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2866 } 2867 2868 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2869 { 2870 /* 2871 * In principle this function would work on other memory region types too, 2872 * but the ROM device use case is the only one where this operation is 2873 * necessary. Other memory regions should use the 2874 * address_space_read/write() APIs. 2875 */ 2876 assert(memory_region_is_romd(mr)); 2877 2878 invalidate_and_set_dirty(mr, addr, size); 2879 } 2880 2881 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2882 { 2883 unsigned access_size_max = mr->ops->valid.max_access_size; 2884 2885 /* Regions are assumed to support 1-4 byte accesses unless 2886 otherwise specified. */ 2887 if (access_size_max == 0) { 2888 access_size_max = 4; 2889 } 2890 2891 /* Bound the maximum access by the alignment of the address. */ 2892 if (!mr->ops->impl.unaligned) { 2893 unsigned align_size_max = addr & -addr; 2894 if (align_size_max != 0 && align_size_max < access_size_max) { 2895 access_size_max = align_size_max; 2896 } 2897 } 2898 2899 /* Don't attempt accesses larger than the maximum. */ 2900 if (l > access_size_max) { 2901 l = access_size_max; 2902 } 2903 l = pow2floor(l); 2904 2905 return l; 2906 } 2907 2908 bool prepare_mmio_access(MemoryRegion *mr) 2909 { 2910 bool release_lock = false; 2911 2912 if (!bql_locked()) { 2913 bql_lock(); 2914 release_lock = true; 2915 } 2916 if (mr->flush_coalesced_mmio) { 2917 qemu_flush_coalesced_mmio_buffer(); 2918 } 2919 2920 return release_lock; 2921 } 2922 2923 /** 2924 * flatview_access_allowed 2925 * @mr: #MemoryRegion to be accessed 2926 * @attrs: memory transaction attributes 2927 * @addr: address within that memory region 2928 * @len: the number of bytes to access 2929 * 2930 * Check if a memory transaction is allowed. 2931 * 2932 * Returns: true if transaction is allowed, false if denied. 2933 */ 2934 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2935 hwaddr addr, hwaddr len) 2936 { 2937 if (likely(!attrs.memory)) { 2938 return true; 2939 } 2940 if (memory_region_is_ram(mr)) { 2941 return true; 2942 } 2943 qemu_log_mask(LOG_INVALID_MEM, 2944 "Invalid access to non-RAM device at " 2945 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2946 "region '%s'\n", addr, len, memory_region_name(mr)); 2947 return false; 2948 } 2949 2950 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2951 const uint8_t *buf, 2952 hwaddr len, hwaddr mr_addr, 2953 hwaddr *l, MemoryRegion *mr) 2954 { 2955 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2956 return MEMTX_ACCESS_ERROR; 2957 } 2958 2959 if (!memory_access_is_direct(mr, true, attrs)) { 2960 uint64_t val; 2961 MemTxResult result; 2962 bool release_lock = prepare_mmio_access(mr); 2963 2964 *l = memory_access_size(mr, *l, mr_addr); 2965 /* 2966 * XXX: could force current_cpu to NULL to avoid 2967 * potential bugs 2968 */ 2969 2970 /* 2971 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2972 * the buffer by following ldn_he_p(). 2973 */ 2974 #ifdef QEMU_STATIC_ANALYSIS 2975 assert((*l == 1 && len >= 1) || 2976 (*l == 2 && len >= 2) || 2977 (*l == 4 && len >= 4) || 2978 (*l == 8 && len >= 8)); 2979 #endif 2980 val = ldn_he_p(buf, *l); 2981 result = memory_region_dispatch_write(mr, mr_addr, val, 2982 size_memop(*l), attrs); 2983 if (release_lock) { 2984 bql_unlock(); 2985 } 2986 2987 return result; 2988 } else { 2989 /* RAM case */ 2990 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2991 false, true); 2992 2993 memmove(ram_ptr, buf, *l); 2994 invalidate_and_set_dirty(mr, mr_addr, *l); 2995 2996 return MEMTX_OK; 2997 } 2998 } 2999 3000 /* Called within RCU critical section. */ 3001 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 3002 MemTxAttrs attrs, 3003 const void *ptr, 3004 hwaddr len, hwaddr mr_addr, 3005 hwaddr l, MemoryRegion *mr) 3006 { 3007 MemTxResult result = MEMTX_OK; 3008 const uint8_t *buf = ptr; 3009 3010 for (;;) { 3011 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3012 mr); 3013 3014 len -= l; 3015 buf += l; 3016 addr += l; 3017 3018 if (!len) { 3019 break; 3020 } 3021 3022 l = len; 3023 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 3024 } 3025 3026 return result; 3027 } 3028 3029 /* Called from RCU critical section. */ 3030 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 3031 const void *buf, hwaddr len) 3032 { 3033 hwaddr l; 3034 hwaddr mr_addr; 3035 MemoryRegion *mr; 3036 3037 l = len; 3038 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 3039 if (!flatview_access_allowed(mr, attrs, addr, len)) { 3040 return MEMTX_ACCESS_ERROR; 3041 } 3042 return flatview_write_continue(fv, addr, attrs, buf, len, 3043 mr_addr, l, mr); 3044 } 3045 3046 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 3047 hwaddr len, hwaddr mr_addr, 3048 hwaddr *l, 3049 MemoryRegion *mr) 3050 { 3051 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 3052 return MEMTX_ACCESS_ERROR; 3053 } 3054 3055 if (!memory_access_is_direct(mr, false, attrs)) { 3056 /* I/O case */ 3057 uint64_t val; 3058 MemTxResult result; 3059 bool release_lock = prepare_mmio_access(mr); 3060 3061 *l = memory_access_size(mr, *l, mr_addr); 3062 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 3063 attrs); 3064 3065 /* 3066 * Assure Coverity (and ourselves) that we are not going to OVERRUN 3067 * the buffer by following stn_he_p(). 3068 */ 3069 #ifdef QEMU_STATIC_ANALYSIS 3070 assert((*l == 1 && len >= 1) || 3071 (*l == 2 && len >= 2) || 3072 (*l == 4 && len >= 4) || 3073 (*l == 8 && len >= 8)); 3074 #endif 3075 stn_he_p(buf, *l, val); 3076 3077 if (release_lock) { 3078 bql_unlock(); 3079 } 3080 return result; 3081 } else { 3082 /* RAM case */ 3083 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 3084 false, false); 3085 3086 memcpy(buf, ram_ptr, *l); 3087 3088 return MEMTX_OK; 3089 } 3090 } 3091 3092 /* Called within RCU critical section. */ 3093 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 3094 MemTxAttrs attrs, void *ptr, 3095 hwaddr len, hwaddr mr_addr, hwaddr l, 3096 MemoryRegion *mr) 3097 { 3098 MemTxResult result = MEMTX_OK; 3099 uint8_t *buf = ptr; 3100 3101 fuzz_dma_read_cb(addr, len, mr); 3102 for (;;) { 3103 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3104 3105 len -= l; 3106 buf += l; 3107 addr += l; 3108 3109 if (!len) { 3110 break; 3111 } 3112 3113 l = len; 3114 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3115 } 3116 3117 return result; 3118 } 3119 3120 /* Called from RCU critical section. */ 3121 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 3122 MemTxAttrs attrs, void *buf, hwaddr len) 3123 { 3124 hwaddr l; 3125 hwaddr mr_addr; 3126 MemoryRegion *mr; 3127 3128 l = len; 3129 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3130 if (!flatview_access_allowed(mr, attrs, addr, len)) { 3131 return MEMTX_ACCESS_ERROR; 3132 } 3133 return flatview_read_continue(fv, addr, attrs, buf, len, 3134 mr_addr, l, mr); 3135 } 3136 3137 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 3138 MemTxAttrs attrs, void *buf, hwaddr len) 3139 { 3140 MemTxResult result = MEMTX_OK; 3141 FlatView *fv; 3142 3143 if (len > 0) { 3144 RCU_READ_LOCK_GUARD(); 3145 fv = address_space_to_flatview(as); 3146 result = flatview_read(fv, addr, attrs, buf, len); 3147 } 3148 3149 return result; 3150 } 3151 3152 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 3153 MemTxAttrs attrs, 3154 const void *buf, hwaddr len) 3155 { 3156 MemTxResult result = MEMTX_OK; 3157 FlatView *fv; 3158 3159 if (len > 0) { 3160 RCU_READ_LOCK_GUARD(); 3161 fv = address_space_to_flatview(as); 3162 result = flatview_write(fv, addr, attrs, buf, len); 3163 } 3164 3165 return result; 3166 } 3167 3168 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 3169 void *buf, hwaddr len, bool is_write) 3170 { 3171 if (is_write) { 3172 return address_space_write(as, addr, attrs, buf, len); 3173 } else { 3174 return address_space_read_full(as, addr, attrs, buf, len); 3175 } 3176 } 3177 3178 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3179 uint8_t c, hwaddr len, MemTxAttrs attrs) 3180 { 3181 #define FILLBUF_SIZE 512 3182 uint8_t fillbuf[FILLBUF_SIZE]; 3183 int l; 3184 MemTxResult error = MEMTX_OK; 3185 3186 memset(fillbuf, c, FILLBUF_SIZE); 3187 while (len > 0) { 3188 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 3189 error |= address_space_write(as, addr, attrs, fillbuf, l); 3190 len -= l; 3191 addr += l; 3192 } 3193 3194 return error; 3195 } 3196 3197 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3198 hwaddr len, bool is_write) 3199 { 3200 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3201 buf, len, is_write); 3202 } 3203 3204 enum write_rom_type { 3205 WRITE_DATA, 3206 FLUSH_CACHE, 3207 }; 3208 3209 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3210 hwaddr addr, 3211 MemTxAttrs attrs, 3212 const void *ptr, 3213 hwaddr len, 3214 enum write_rom_type type) 3215 { 3216 hwaddr l; 3217 uint8_t *ram_ptr; 3218 hwaddr addr1; 3219 MemoryRegion *mr; 3220 const uint8_t *buf = ptr; 3221 3222 RCU_READ_LOCK_GUARD(); 3223 while (len > 0) { 3224 l = len; 3225 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3226 3227 if (!memory_region_supports_direct_access(mr)) { 3228 l = memory_access_size(mr, l, addr1); 3229 } else { 3230 /* ROM/RAM case */ 3231 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3232 switch (type) { 3233 case WRITE_DATA: 3234 memcpy(ram_ptr, buf, l); 3235 invalidate_and_set_dirty(mr, addr1, l); 3236 break; 3237 case FLUSH_CACHE: 3238 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3239 break; 3240 } 3241 } 3242 len -= l; 3243 buf += l; 3244 addr += l; 3245 } 3246 return MEMTX_OK; 3247 } 3248 3249 /* used for ROM loading : can write in RAM and ROM */ 3250 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3251 MemTxAttrs attrs, 3252 const void *buf, hwaddr len) 3253 { 3254 return address_space_write_rom_internal(as, addr, attrs, 3255 buf, len, WRITE_DATA); 3256 } 3257 3258 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3259 { 3260 /* 3261 * This function should do the same thing as an icache flush that was 3262 * triggered from within the guest. For TCG we are always cache coherent, 3263 * so there is no need to flush anything. For KVM / Xen we need to flush 3264 * the host's instruction cache at least. 3265 */ 3266 if (tcg_enabled()) { 3267 return; 3268 } 3269 3270 address_space_write_rom_internal(&address_space_memory, 3271 start, MEMTXATTRS_UNSPECIFIED, 3272 NULL, len, FLUSH_CACHE); 3273 } 3274 3275 /* 3276 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used 3277 * to detect illegal pointers passed to address_space_unmap. 3278 */ 3279 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed 3280 3281 typedef struct { 3282 uint64_t magic; 3283 MemoryRegion *mr; 3284 hwaddr addr; 3285 size_t len; 3286 uint8_t buffer[]; 3287 } BounceBuffer; 3288 3289 static void 3290 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3291 { 3292 QLIST_REMOVE(client, link); 3293 g_free(client); 3294 } 3295 3296 static void address_space_notify_map_clients_locked(AddressSpace *as) 3297 { 3298 AddressSpaceMapClient *client; 3299 3300 while (!QLIST_EMPTY(&as->map_client_list)) { 3301 client = QLIST_FIRST(&as->map_client_list); 3302 qemu_bh_schedule(client->bh); 3303 address_space_unregister_map_client_do(client); 3304 } 3305 } 3306 3307 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3308 { 3309 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3310 3311 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3312 client->bh = bh; 3313 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3314 /* Write map_client_list before reading bounce_buffer_size. */ 3315 smp_mb(); 3316 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) { 3317 address_space_notify_map_clients_locked(as); 3318 } 3319 } 3320 3321 void cpu_exec_init_all(void) 3322 { 3323 qemu_mutex_init(&ram_list.mutex); 3324 /* The data structures we set up here depend on knowing the page size, 3325 * so no more changes can be made after this point. 3326 * In an ideal world, nothing we did before we had finished the 3327 * machine setup would care about the target page size, and we could 3328 * do this much later, rather than requiring board models to state 3329 * up front what their requirements are. 3330 */ 3331 finalize_target_page_bits(); 3332 io_mem_init(); 3333 memory_map_init(); 3334 } 3335 3336 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3337 { 3338 AddressSpaceMapClient *client; 3339 3340 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3341 QLIST_FOREACH(client, &as->map_client_list, link) { 3342 if (client->bh == bh) { 3343 address_space_unregister_map_client_do(client); 3344 break; 3345 } 3346 } 3347 } 3348 3349 static void address_space_notify_map_clients(AddressSpace *as) 3350 { 3351 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3352 address_space_notify_map_clients_locked(as); 3353 } 3354 3355 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3356 bool is_write, MemTxAttrs attrs) 3357 { 3358 MemoryRegion *mr; 3359 hwaddr l, xlat; 3360 3361 while (len > 0) { 3362 l = len; 3363 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3364 if (!memory_access_is_direct(mr, is_write, attrs)) { 3365 l = memory_access_size(mr, l, addr); 3366 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3367 return false; 3368 } 3369 } 3370 3371 len -= l; 3372 addr += l; 3373 } 3374 return true; 3375 } 3376 3377 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3378 hwaddr len, bool is_write, 3379 MemTxAttrs attrs) 3380 { 3381 FlatView *fv; 3382 3383 RCU_READ_LOCK_GUARD(); 3384 fv = address_space_to_flatview(as); 3385 return flatview_access_valid(fv, addr, len, is_write, attrs); 3386 } 3387 3388 static hwaddr 3389 flatview_extend_translation(FlatView *fv, hwaddr addr, 3390 hwaddr target_len, 3391 MemoryRegion *mr, hwaddr base, hwaddr len, 3392 bool is_write, MemTxAttrs attrs) 3393 { 3394 hwaddr done = 0; 3395 hwaddr xlat; 3396 MemoryRegion *this_mr; 3397 3398 for (;;) { 3399 target_len -= len; 3400 addr += len; 3401 done += len; 3402 if (target_len == 0) { 3403 return done; 3404 } 3405 3406 len = target_len; 3407 this_mr = flatview_translate(fv, addr, &xlat, 3408 &len, is_write, attrs); 3409 if (this_mr != mr || xlat != base + done) { 3410 return done; 3411 } 3412 } 3413 } 3414 3415 /* Map a physical memory region into a host virtual address. 3416 * May map a subset of the requested range, given by and returned in *plen. 3417 * May return NULL if resources needed to perform the mapping are exhausted. 3418 * Use only for reads OR writes - not for read-modify-write operations. 3419 * Use address_space_register_map_client() to know when retrying the map 3420 * operation is likely to succeed. 3421 */ 3422 void *address_space_map(AddressSpace *as, 3423 hwaddr addr, 3424 hwaddr *plen, 3425 bool is_write, 3426 MemTxAttrs attrs) 3427 { 3428 hwaddr len = *plen; 3429 hwaddr l, xlat; 3430 MemoryRegion *mr; 3431 FlatView *fv; 3432 3433 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3434 3435 if (len == 0) { 3436 return NULL; 3437 } 3438 3439 l = len; 3440 RCU_READ_LOCK_GUARD(); 3441 fv = address_space_to_flatview(as); 3442 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3443 3444 if (!memory_access_is_direct(mr, is_write, attrs)) { 3445 size_t used = qatomic_read(&as->bounce_buffer_size); 3446 for (;;) { 3447 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l); 3448 size_t new_size = used + alloc; 3449 size_t actual = 3450 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size); 3451 if (actual == used) { 3452 l = alloc; 3453 break; 3454 } 3455 used = actual; 3456 } 3457 3458 if (l == 0) { 3459 *plen = 0; 3460 return NULL; 3461 } 3462 3463 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer)); 3464 bounce->magic = BOUNCE_BUFFER_MAGIC; 3465 memory_region_ref(mr); 3466 bounce->mr = mr; 3467 bounce->addr = addr; 3468 bounce->len = l; 3469 3470 if (!is_write) { 3471 flatview_read(fv, addr, attrs, 3472 bounce->buffer, l); 3473 } 3474 3475 *plen = l; 3476 return bounce->buffer; 3477 } 3478 3479 memory_region_ref(mr); 3480 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3481 l, is_write, attrs); 3482 fuzz_dma_read_cb(addr, *plen, mr); 3483 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3484 } 3485 3486 /* Unmaps a memory region previously mapped by address_space_map(). 3487 * Will also mark the memory as dirty if is_write is true. access_len gives 3488 * the amount of memory that was actually read or written by the caller. 3489 */ 3490 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3491 bool is_write, hwaddr access_len) 3492 { 3493 MemoryRegion *mr; 3494 ram_addr_t addr1; 3495 3496 mr = memory_region_from_host(buffer, &addr1); 3497 if (mr != NULL) { 3498 if (is_write) { 3499 invalidate_and_set_dirty(mr, addr1, access_len); 3500 } 3501 if (xen_enabled()) { 3502 xen_invalidate_map_cache_entry(buffer); 3503 } 3504 memory_region_unref(mr); 3505 return; 3506 } 3507 3508 3509 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer); 3510 assert(bounce->magic == BOUNCE_BUFFER_MAGIC); 3511 3512 if (is_write) { 3513 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED, 3514 bounce->buffer, access_len); 3515 } 3516 3517 qatomic_sub(&as->bounce_buffer_size, bounce->len); 3518 bounce->magic = ~BOUNCE_BUFFER_MAGIC; 3519 memory_region_unref(bounce->mr); 3520 g_free(bounce); 3521 /* Write bounce_buffer_size before reading map_client_list. */ 3522 smp_mb(); 3523 address_space_notify_map_clients(as); 3524 } 3525 3526 void *cpu_physical_memory_map(hwaddr addr, 3527 hwaddr *plen, 3528 bool is_write) 3529 { 3530 return address_space_map(&address_space_memory, addr, plen, is_write, 3531 MEMTXATTRS_UNSPECIFIED); 3532 } 3533 3534 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3535 bool is_write, hwaddr access_len) 3536 { 3537 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3538 } 3539 3540 #define ARG1_DECL AddressSpace *as 3541 #define ARG1 as 3542 #define SUFFIX 3543 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3544 #define RCU_READ_LOCK(...) rcu_read_lock() 3545 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3546 #include "memory_ldst.c.inc" 3547 3548 int64_t address_space_cache_init(MemoryRegionCache *cache, 3549 AddressSpace *as, 3550 hwaddr addr, 3551 hwaddr len, 3552 bool is_write) 3553 { 3554 AddressSpaceDispatch *d; 3555 hwaddr l; 3556 MemoryRegion *mr; 3557 Int128 diff; 3558 3559 assert(len > 0); 3560 3561 l = len; 3562 cache->fv = address_space_get_flatview(as); 3563 d = flatview_to_dispatch(cache->fv); 3564 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3565 3566 /* 3567 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3568 * Take that into account to compute how many bytes are there between 3569 * cache->xlat and the end of the section. 3570 */ 3571 diff = int128_sub(cache->mrs.size, 3572 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3573 l = int128_get64(int128_min(diff, int128_make64(l))); 3574 3575 mr = cache->mrs.mr; 3576 memory_region_ref(mr); 3577 if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) { 3578 /* We don't care about the memory attributes here as we're only 3579 * doing this if we found actual RAM, which behaves the same 3580 * regardless of attributes; so UNSPECIFIED is fine. 3581 */ 3582 l = flatview_extend_translation(cache->fv, addr, len, mr, 3583 cache->xlat, l, is_write, 3584 MEMTXATTRS_UNSPECIFIED); 3585 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3586 is_write); 3587 } else { 3588 cache->ptr = NULL; 3589 } 3590 3591 cache->len = l; 3592 cache->is_write = is_write; 3593 return l; 3594 } 3595 3596 void address_space_cache_invalidate(MemoryRegionCache *cache, 3597 hwaddr addr, 3598 hwaddr access_len) 3599 { 3600 assert(cache->is_write); 3601 if (likely(cache->ptr)) { 3602 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3603 } 3604 } 3605 3606 void address_space_cache_destroy(MemoryRegionCache *cache) 3607 { 3608 if (!cache->mrs.mr) { 3609 return; 3610 } 3611 3612 if (xen_enabled()) { 3613 xen_invalidate_map_cache_entry(cache->ptr); 3614 } 3615 memory_region_unref(cache->mrs.mr); 3616 flatview_unref(cache->fv); 3617 cache->mrs.mr = NULL; 3618 cache->fv = NULL; 3619 } 3620 3621 /* Called from RCU critical section. This function has the same 3622 * semantics as address_space_translate, but it only works on a 3623 * predefined range of a MemoryRegion that was mapped with 3624 * address_space_cache_init. 3625 */ 3626 static inline MemoryRegion *address_space_translate_cached( 3627 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3628 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3629 { 3630 MemoryRegionSection section; 3631 MemoryRegion *mr; 3632 IOMMUMemoryRegion *iommu_mr; 3633 AddressSpace *target_as; 3634 3635 assert(!cache->ptr); 3636 *xlat = addr + cache->xlat; 3637 3638 mr = cache->mrs.mr; 3639 iommu_mr = memory_region_get_iommu(mr); 3640 if (!iommu_mr) { 3641 /* MMIO region. */ 3642 return mr; 3643 } 3644 3645 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3646 NULL, is_write, true, 3647 &target_as, attrs); 3648 return section.mr; 3649 } 3650 3651 /* Called within RCU critical section. */ 3652 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3653 const void *ptr, 3654 hwaddr len, 3655 hwaddr mr_addr, 3656 hwaddr l, 3657 MemoryRegion *mr) 3658 { 3659 MemTxResult result = MEMTX_OK; 3660 const uint8_t *buf = ptr; 3661 3662 for (;;) { 3663 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3664 mr); 3665 3666 len -= l; 3667 buf += l; 3668 mr_addr += l; 3669 3670 if (!len) { 3671 break; 3672 } 3673 3674 l = len; 3675 } 3676 3677 return result; 3678 } 3679 3680 /* Called within RCU critical section. */ 3681 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3682 void *ptr, hwaddr len, 3683 hwaddr mr_addr, hwaddr l, 3684 MemoryRegion *mr) 3685 { 3686 MemTxResult result = MEMTX_OK; 3687 uint8_t *buf = ptr; 3688 3689 for (;;) { 3690 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3691 len -= l; 3692 buf += l; 3693 mr_addr += l; 3694 3695 if (!len) { 3696 break; 3697 } 3698 l = len; 3699 } 3700 3701 return result; 3702 } 3703 3704 /* Called from RCU critical section. address_space_read_cached uses this 3705 * out of line function when the target is an MMIO or IOMMU region. 3706 */ 3707 MemTxResult 3708 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3709 void *buf, hwaddr len) 3710 { 3711 hwaddr mr_addr, l; 3712 MemoryRegion *mr; 3713 3714 l = len; 3715 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3716 MEMTXATTRS_UNSPECIFIED); 3717 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3718 buf, len, mr_addr, l, mr); 3719 } 3720 3721 /* Called from RCU critical section. address_space_write_cached uses this 3722 * out of line function when the target is an MMIO or IOMMU region. 3723 */ 3724 MemTxResult 3725 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3726 const void *buf, hwaddr len) 3727 { 3728 hwaddr mr_addr, l; 3729 MemoryRegion *mr; 3730 3731 l = len; 3732 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3733 MEMTXATTRS_UNSPECIFIED); 3734 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3735 buf, len, mr_addr, l, mr); 3736 } 3737 3738 #define ARG1_DECL MemoryRegionCache *cache 3739 #define ARG1 cache 3740 #define SUFFIX _cached_slow 3741 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3742 #define RCU_READ_LOCK() ((void)0) 3743 #define RCU_READ_UNLOCK() ((void)0) 3744 #include "memory_ldst.c.inc" 3745 3746 /* virtual memory access for debug (includes writing to ROM) */ 3747 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3748 void *ptr, size_t len, bool is_write) 3749 { 3750 hwaddr phys_addr; 3751 vaddr l, page; 3752 uint8_t *buf = ptr; 3753 3754 cpu_synchronize_state(cpu); 3755 while (len > 0) { 3756 int asidx; 3757 MemTxAttrs attrs; 3758 MemTxResult res; 3759 3760 page = addr & TARGET_PAGE_MASK; 3761 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3762 asidx = cpu_asidx_from_attrs(cpu, attrs); 3763 /* if no physical page mapped, return an error */ 3764 if (phys_addr == -1) 3765 return -1; 3766 l = (page + TARGET_PAGE_SIZE) - addr; 3767 if (l > len) 3768 l = len; 3769 phys_addr += (addr & ~TARGET_PAGE_MASK); 3770 res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf, 3771 l, is_write); 3772 if (res != MEMTX_OK) { 3773 return -1; 3774 } 3775 len -= l; 3776 buf += l; 3777 addr += l; 3778 } 3779 return 0; 3780 } 3781 3782 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3783 { 3784 MemoryRegion*mr; 3785 hwaddr l = 1; 3786 3787 RCU_READ_LOCK_GUARD(); 3788 mr = address_space_translate(&address_space_memory, 3789 phys_addr, &phys_addr, &l, false, 3790 MEMTXATTRS_UNSPECIFIED); 3791 3792 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3793 } 3794 3795 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3796 { 3797 RAMBlock *block; 3798 int ret = 0; 3799 3800 RCU_READ_LOCK_GUARD(); 3801 RAMBLOCK_FOREACH(block) { 3802 ret = func(block, opaque); 3803 if (ret) { 3804 break; 3805 } 3806 } 3807 return ret; 3808 } 3809 3810 /* 3811 * Unmap pages of memory from start to start+length such that 3812 * they a) read as 0, b) Trigger whatever fault mechanism 3813 * the OS provides for postcopy. 3814 * The pages must be unmapped by the end of the function. 3815 * Returns: 0 on success, none-0 on failure 3816 * 3817 */ 3818 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3819 { 3820 int ret = -1; 3821 3822 uint8_t *host_startaddr = rb->host + start; 3823 3824 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3825 error_report("%s: Unaligned start address: %p", 3826 __func__, host_startaddr); 3827 goto err; 3828 } 3829 3830 if ((start + length) <= rb->max_length) { 3831 bool need_madvise, need_fallocate; 3832 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3833 error_report("%s: Unaligned length: %zx", __func__, length); 3834 goto err; 3835 } 3836 3837 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3838 3839 /* The logic here is messy; 3840 * madvise DONTNEED fails for hugepages 3841 * fallocate works on hugepages and shmem 3842 * shared anonymous memory requires madvise REMOVE 3843 */ 3844 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3845 need_fallocate = rb->fd != -1; 3846 if (need_fallocate) { 3847 /* For a file, this causes the area of the file to be zero'd 3848 * if read, and for hugetlbfs also causes it to be unmapped 3849 * so a userfault will trigger. 3850 */ 3851 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3852 /* 3853 * fallocate() will fail with readonly files. Let's print a 3854 * proper error message. 3855 */ 3856 if (rb->flags & RAM_READONLY_FD) { 3857 error_report("%s: Discarding RAM with readonly files is not" 3858 " supported", __func__); 3859 goto err; 3860 3861 } 3862 /* 3863 * We'll discard data from the actual file, even though we only 3864 * have a MAP_PRIVATE mapping, possibly messing with other 3865 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3866 * change that behavior whithout violating the promised 3867 * semantics of ram_block_discard_range(). 3868 * 3869 * Only warn, because it works as long as nobody else uses that 3870 * file. 3871 */ 3872 if (!qemu_ram_is_shared(rb)) { 3873 warn_report_once("%s: Discarding RAM" 3874 " in private file mappings is possibly" 3875 " dangerous, because it will modify the" 3876 " underlying file and will affect other" 3877 " users of the file", __func__); 3878 } 3879 3880 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3881 start + rb->fd_offset, length); 3882 if (ret) { 3883 ret = -errno; 3884 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64 3885 " +%zx (%d)", __func__, rb->idstr, start, 3886 rb->fd_offset, length, ret); 3887 goto err; 3888 } 3889 #else 3890 ret = -ENOSYS; 3891 error_report("%s: fallocate not available/file" 3892 "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__, 3893 rb->idstr, start, rb->fd_offset, length, ret); 3894 goto err; 3895 #endif 3896 } 3897 if (need_madvise) { 3898 /* For normal RAM this causes it to be unmapped, 3899 * for shared memory it causes the local mapping to disappear 3900 * and to fall back on the file contents (which we just 3901 * fallocate'd away). 3902 */ 3903 #if defined(CONFIG_MADVISE) 3904 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3905 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3906 } else { 3907 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3908 } 3909 if (ret) { 3910 ret = -errno; 3911 error_report("%s: Failed to discard range " 3912 "%s:%" PRIx64 " +%zx (%d)", 3913 __func__, rb->idstr, start, length, ret); 3914 goto err; 3915 } 3916 #else 3917 ret = -ENOSYS; 3918 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3919 __func__, rb->idstr, start, length, ret); 3920 goto err; 3921 #endif 3922 } 3923 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3924 need_madvise, need_fallocate, ret); 3925 } else { 3926 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3927 __func__, rb->idstr, start, length, rb->max_length); 3928 } 3929 3930 err: 3931 return ret; 3932 } 3933 3934 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3935 size_t length) 3936 { 3937 int ret = -1; 3938 3939 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3940 /* ignore fd_offset with guest_memfd */ 3941 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3942 start, length); 3943 3944 if (ret) { 3945 ret = -errno; 3946 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3947 __func__, rb->idstr, start, length, ret); 3948 } 3949 #else 3950 ret = -ENOSYS; 3951 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3952 __func__, rb->idstr, start, length, ret); 3953 #endif 3954 3955 return ret; 3956 } 3957 3958 bool ramblock_is_pmem(RAMBlock *rb) 3959 { 3960 return rb->flags & RAM_PMEM; 3961 } 3962 3963 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3964 { 3965 if (start == end - 1) { 3966 qemu_printf("\t%3d ", start); 3967 } else { 3968 qemu_printf("\t%3d..%-3d ", start, end - 1); 3969 } 3970 qemu_printf(" skip=%d ", skip); 3971 if (ptr == PHYS_MAP_NODE_NIL) { 3972 qemu_printf(" ptr=NIL"); 3973 } else if (!skip) { 3974 qemu_printf(" ptr=#%d", ptr); 3975 } else { 3976 qemu_printf(" ptr=[%d]", ptr); 3977 } 3978 qemu_printf("\n"); 3979 } 3980 3981 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3982 int128_sub((size), int128_one())) : 0) 3983 3984 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3985 { 3986 int i; 3987 3988 qemu_printf(" Dispatch\n"); 3989 qemu_printf(" Physical sections\n"); 3990 3991 for (i = 0; i < d->map.sections_nb; ++i) { 3992 MemoryRegionSection *s = d->map.sections + i; 3993 const char *names[] = { " [unassigned]", " [not dirty]", 3994 " [ROM]", " [watch]" }; 3995 3996 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3997 " %s%s%s%s%s", 3998 i, 3999 s->offset_within_address_space, 4000 s->offset_within_address_space + MR_SIZE(s->size), 4001 s->mr->name ? s->mr->name : "(noname)", 4002 i < ARRAY_SIZE(names) ? names[i] : "", 4003 s->mr == root ? " [ROOT]" : "", 4004 s == d->mru_section ? " [MRU]" : "", 4005 s->mr->is_iommu ? " [iommu]" : ""); 4006 4007 if (s->mr->alias) { 4008 qemu_printf(" alias=%s", s->mr->alias->name ? 4009 s->mr->alias->name : "noname"); 4010 } 4011 qemu_printf("\n"); 4012 } 4013 4014 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 4015 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 4016 for (i = 0; i < d->map.nodes_nb; ++i) { 4017 int j, jprev; 4018 PhysPageEntry prev; 4019 Node *n = d->map.nodes + i; 4020 4021 qemu_printf(" [%d]\n", i); 4022 4023 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 4024 PhysPageEntry *pe = *n + j; 4025 4026 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 4027 continue; 4028 } 4029 4030 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 4031 4032 jprev = j; 4033 prev = *pe; 4034 } 4035 4036 if (jprev != ARRAY_SIZE(*n)) { 4037 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 4038 } 4039 } 4040 } 4041 4042 /* Require any discards to work. */ 4043 static unsigned int ram_block_discard_required_cnt; 4044 /* Require only coordinated discards to work. */ 4045 static unsigned int ram_block_coordinated_discard_required_cnt; 4046 /* Disable any discards. */ 4047 static unsigned int ram_block_discard_disabled_cnt; 4048 /* Disable only uncoordinated discards. */ 4049 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 4050 static QemuMutex ram_block_discard_disable_mutex; 4051 4052 static void ram_block_discard_disable_mutex_lock(void) 4053 { 4054 static gsize initialized; 4055 4056 if (g_once_init_enter(&initialized)) { 4057 qemu_mutex_init(&ram_block_discard_disable_mutex); 4058 g_once_init_leave(&initialized, 1); 4059 } 4060 qemu_mutex_lock(&ram_block_discard_disable_mutex); 4061 } 4062 4063 static void ram_block_discard_disable_mutex_unlock(void) 4064 { 4065 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 4066 } 4067 4068 int ram_block_discard_disable(bool state) 4069 { 4070 int ret = 0; 4071 4072 ram_block_discard_disable_mutex_lock(); 4073 if (!state) { 4074 ram_block_discard_disabled_cnt--; 4075 } else if (ram_block_discard_required_cnt || 4076 ram_block_coordinated_discard_required_cnt) { 4077 ret = -EBUSY; 4078 } else { 4079 ram_block_discard_disabled_cnt++; 4080 } 4081 ram_block_discard_disable_mutex_unlock(); 4082 return ret; 4083 } 4084 4085 int ram_block_uncoordinated_discard_disable(bool state) 4086 { 4087 int ret = 0; 4088 4089 ram_block_discard_disable_mutex_lock(); 4090 if (!state) { 4091 ram_block_uncoordinated_discard_disabled_cnt--; 4092 } else if (ram_block_discard_required_cnt) { 4093 ret = -EBUSY; 4094 } else { 4095 ram_block_uncoordinated_discard_disabled_cnt++; 4096 } 4097 ram_block_discard_disable_mutex_unlock(); 4098 return ret; 4099 } 4100 4101 int ram_block_discard_require(bool state) 4102 { 4103 int ret = 0; 4104 4105 ram_block_discard_disable_mutex_lock(); 4106 if (!state) { 4107 ram_block_discard_required_cnt--; 4108 } else if (ram_block_discard_disabled_cnt || 4109 ram_block_uncoordinated_discard_disabled_cnt) { 4110 ret = -EBUSY; 4111 } else { 4112 ram_block_discard_required_cnt++; 4113 } 4114 ram_block_discard_disable_mutex_unlock(); 4115 return ret; 4116 } 4117 4118 int ram_block_coordinated_discard_require(bool state) 4119 { 4120 int ret = 0; 4121 4122 ram_block_discard_disable_mutex_lock(); 4123 if (!state) { 4124 ram_block_coordinated_discard_required_cnt--; 4125 } else if (ram_block_discard_disabled_cnt) { 4126 ret = -EBUSY; 4127 } else { 4128 ram_block_coordinated_discard_required_cnt++; 4129 } 4130 ram_block_discard_disable_mutex_unlock(); 4131 return ret; 4132 } 4133 4134 bool ram_block_discard_is_disabled(void) 4135 { 4136 return qatomic_read(&ram_block_discard_disabled_cnt) || 4137 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 4138 } 4139 4140 bool ram_block_discard_is_required(void) 4141 { 4142 return qatomic_read(&ram_block_discard_required_cnt) || 4143 qatomic_read(&ram_block_coordinated_discard_required_cnt); 4144 } 4145 4146 /* 4147 * Return true if ram is compatible with CPR. Do not exclude rom, 4148 * because the rom file could change in new QEMU. 4149 */ 4150 static bool ram_is_cpr_compatible(RAMBlock *rb) 4151 { 4152 MemoryRegion *mr = rb->mr; 4153 4154 if (!mr || !memory_region_is_ram(mr)) { 4155 return true; 4156 } 4157 4158 /* Ram device is remapped in new QEMU */ 4159 if (memory_region_is_ram_device(mr)) { 4160 return true; 4161 } 4162 4163 /* 4164 * A file descriptor is passed to new QEMU and remapped, or its backing 4165 * file is reopened and mapped. It must be shared to avoid COW. 4166 */ 4167 if (rb->fd >= 0 && qemu_ram_is_shared(rb)) { 4168 return true; 4169 } 4170 4171 return false; 4172 } 4173 4174 /* 4175 * Add a blocker for each volatile ram block. This function should only be 4176 * called after we know that the block is migratable. Non-migratable blocks 4177 * are either re-created in new QEMU, or are handled specially, or are covered 4178 * by a device-level CPR blocker. 4179 */ 4180 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp) 4181 { 4182 assert(qemu_ram_is_migratable(rb)); 4183 4184 if (ram_is_cpr_compatible(rb)) { 4185 return; 4186 } 4187 4188 error_setg(&rb->cpr_blocker, 4189 "Memory region %s is not compatible with CPR. share=on is " 4190 "required for memory-backend objects, and aux-ram-share=on is " 4191 "required.", memory_region_name(rb->mr)); 4192 migrate_add_blocker_modes(&rb->cpr_blocker, errp, MIG_MODE_CPR_TRANSFER, 4193 -1); 4194 } 4195 4196 void ram_block_del_cpr_blocker(RAMBlock *rb) 4197 { 4198 migrate_del_blocker(&rb->cpr_blocker); 4199 } 4200