1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Called from RCU critical section */ 784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 785 { 786 RAMBlock *block; 787 788 block = qatomic_rcu_read(&ram_list.mru_block); 789 if (block && addr - block->offset < block->max_length) { 790 return block; 791 } 792 RAMBLOCK_FOREACH(block) { 793 if (addr - block->offset < block->max_length) { 794 goto found; 795 } 796 } 797 798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 799 abort(); 800 801 found: 802 /* It is safe to write mru_block outside the iothread lock. This 803 * is what happens: 804 * 805 * mru_block = xxx 806 * rcu_read_unlock() 807 * xxx removed from list 808 * rcu_read_lock() 809 * read mru_block 810 * mru_block = NULL; 811 * call_rcu(reclaim_ramblock, xxx); 812 * rcu_read_unlock() 813 * 814 * qatomic_rcu_set is not needed here. The block was already published 815 * when it was placed into the list. Here we're just making an extra 816 * copy of the pointer. 817 */ 818 ram_list.mru_block = block; 819 return block; 820 } 821 822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 823 { 824 CPUState *cpu; 825 ram_addr_t start1; 826 RAMBlock *block; 827 ram_addr_t end; 828 829 assert(tcg_enabled()); 830 end = TARGET_PAGE_ALIGN(start + length); 831 start &= TARGET_PAGE_MASK; 832 833 RCU_READ_LOCK_GUARD(); 834 block = qemu_get_ram_block(start); 835 assert(block == qemu_get_ram_block(end - 1)); 836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 837 CPU_FOREACH(cpu) { 838 tlb_reset_dirty(cpu, start1, length); 839 } 840 } 841 842 /* Note: start and end must be within the same ram block. */ 843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 844 ram_addr_t length, 845 unsigned client) 846 { 847 DirtyMemoryBlocks *blocks; 848 unsigned long end, page, start_page; 849 bool dirty = false; 850 RAMBlock *ramblock; 851 uint64_t mr_offset, mr_size; 852 853 if (length == 0) { 854 return false; 855 } 856 857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 858 start_page = start >> TARGET_PAGE_BITS; 859 page = start_page; 860 861 WITH_RCU_READ_LOCK_GUARD() { 862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 863 ramblock = qemu_get_ram_block(start); 864 /* Range sanity check on the ramblock */ 865 assert(start >= ramblock->offset && 866 start + length <= ramblock->offset + ramblock->used_length); 867 868 while (page < end) { 869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long num = MIN(end - page, 872 DIRTY_MEMORY_BLOCK_SIZE - offset); 873 874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 875 offset, num); 876 page += num; 877 } 878 879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 880 mr_size = (end - start_page) << TARGET_PAGE_BITS; 881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 882 } 883 884 if (dirty && tcg_enabled()) { 885 tlb_reset_dirty_range_all(start, length); 886 } 887 888 return dirty; 889 } 890 891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 893 { 894 DirtyMemoryBlocks *blocks; 895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 899 DirtyBitmapSnapshot *snap; 900 unsigned long page, end, dest; 901 902 snap = g_malloc0(sizeof(*snap) + 903 ((last - first) >> (TARGET_PAGE_BITS + 3))); 904 snap->start = first; 905 snap->end = last; 906 907 page = first >> TARGET_PAGE_BITS; 908 end = last >> TARGET_PAGE_BITS; 909 dest = 0; 910 911 WITH_RCU_READ_LOCK_GUARD() { 912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 913 914 while (page < end) { 915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long num = MIN(end - page, 918 DIRTY_MEMORY_BLOCK_SIZE - ofs); 919 920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 922 ofs >>= BITS_PER_LEVEL; 923 924 bitmap_copy_and_clear_atomic(snap->dirty + dest, 925 blocks->blocks[idx] + ofs, 926 num); 927 page += num; 928 dest += num >> BITS_PER_LEVEL; 929 } 930 } 931 932 if (tcg_enabled()) { 933 tlb_reset_dirty_range_all(start, length); 934 } 935 936 memory_region_clear_dirty_bitmap(mr, offset, length); 937 938 return snap; 939 } 940 941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 942 ram_addr_t start, 943 ram_addr_t length) 944 { 945 unsigned long page, end; 946 947 assert(start >= snap->start); 948 assert(start + length <= snap->end); 949 950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 951 page = (start - snap->start) >> TARGET_PAGE_BITS; 952 953 while (page < end) { 954 if (test_bit(page, snap->dirty)) { 955 return true; 956 } 957 page++; 958 } 959 return false; 960 } 961 962 /* Called from RCU critical section */ 963 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 964 MemoryRegionSection *section) 965 { 966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 967 return section - d->map.sections; 968 } 969 970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 971 uint16_t section); 972 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 973 974 static uint16_t phys_section_add(PhysPageMap *map, 975 MemoryRegionSection *section) 976 { 977 /* The physical section number is ORed with a page-aligned 978 * pointer to produce the iotlb entries. Thus it should 979 * never overflow into the page-aligned value. 980 */ 981 assert(map->sections_nb < TARGET_PAGE_SIZE); 982 983 if (map->sections_nb == map->sections_nb_alloc) { 984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 985 map->sections = g_renew(MemoryRegionSection, map->sections, 986 map->sections_nb_alloc); 987 } 988 map->sections[map->sections_nb] = *section; 989 memory_region_ref(section->mr); 990 return map->sections_nb++; 991 } 992 993 static void phys_section_destroy(MemoryRegion *mr) 994 { 995 bool have_sub_page = mr->subpage; 996 997 memory_region_unref(mr); 998 999 if (have_sub_page) { 1000 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1001 object_unref(OBJECT(&subpage->iomem)); 1002 g_free(subpage); 1003 } 1004 } 1005 1006 static void phys_sections_free(PhysPageMap *map) 1007 { 1008 while (map->sections_nb > 0) { 1009 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1010 phys_section_destroy(section->mr); 1011 } 1012 g_free(map->sections); 1013 g_free(map->nodes); 1014 } 1015 1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1017 { 1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1019 subpage_t *subpage; 1020 hwaddr base = section->offset_within_address_space 1021 & TARGET_PAGE_MASK; 1022 MemoryRegionSection *existing = phys_page_find(d, base); 1023 MemoryRegionSection subsection = { 1024 .offset_within_address_space = base, 1025 .size = int128_make64(TARGET_PAGE_SIZE), 1026 }; 1027 hwaddr start, end; 1028 1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1030 1031 if (!(existing->mr->subpage)) { 1032 subpage = subpage_init(fv, base); 1033 subsection.fv = fv; 1034 subsection.mr = &subpage->iomem; 1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1036 phys_section_add(&d->map, &subsection)); 1037 } else { 1038 subpage = container_of(existing->mr, subpage_t, iomem); 1039 } 1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1041 end = start + int128_get64(section->size) - 1; 1042 subpage_register(subpage, start, end, 1043 phys_section_add(&d->map, section)); 1044 } 1045 1046 1047 static void register_multipage(FlatView *fv, 1048 MemoryRegionSection *section) 1049 { 1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1051 hwaddr start_addr = section->offset_within_address_space; 1052 uint16_t section_index = phys_section_add(&d->map, section); 1053 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1054 TARGET_PAGE_BITS)); 1055 1056 assert(num_pages); 1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1058 } 1059 1060 /* 1061 * The range in *section* may look like this: 1062 * 1063 * |s|PPPPPPP|s| 1064 * 1065 * where s stands for subpage and P for page. 1066 */ 1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1068 { 1069 MemoryRegionSection remain = *section; 1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1071 1072 /* register first subpage */ 1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1075 - remain.offset_within_address_space; 1076 1077 MemoryRegionSection now = remain; 1078 now.size = int128_min(int128_make64(left), now.size); 1079 register_subpage(fv, &now); 1080 if (int128_eq(remain.size, now.size)) { 1081 return; 1082 } 1083 remain.size = int128_sub(remain.size, now.size); 1084 remain.offset_within_address_space += int128_get64(now.size); 1085 remain.offset_within_region += int128_get64(now.size); 1086 } 1087 1088 /* register whole pages */ 1089 if (int128_ge(remain.size, page_size)) { 1090 MemoryRegionSection now = remain; 1091 now.size = int128_and(now.size, int128_neg(page_size)); 1092 register_multipage(fv, &now); 1093 if (int128_eq(remain.size, now.size)) { 1094 return; 1095 } 1096 remain.size = int128_sub(remain.size, now.size); 1097 remain.offset_within_address_space += int128_get64(now.size); 1098 remain.offset_within_region += int128_get64(now.size); 1099 } 1100 1101 /* register last subpage */ 1102 register_subpage(fv, &remain); 1103 } 1104 1105 void qemu_flush_coalesced_mmio_buffer(void) 1106 { 1107 if (kvm_enabled()) 1108 kvm_flush_coalesced_mmio_buffer(); 1109 } 1110 1111 void qemu_mutex_lock_ramlist(void) 1112 { 1113 qemu_mutex_lock(&ram_list.mutex); 1114 } 1115 1116 void qemu_mutex_unlock_ramlist(void) 1117 { 1118 qemu_mutex_unlock(&ram_list.mutex); 1119 } 1120 1121 GString *ram_block_format(void) 1122 { 1123 RAMBlock *block; 1124 char *psize; 1125 GString *buf = g_string_new(""); 1126 1127 RCU_READ_LOCK_GUARD(); 1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1129 "Block Name", "PSize", "Offset", "Used", "Total", 1130 "HVA", "RO"); 1131 1132 RAMBLOCK_FOREACH(block) { 1133 psize = size_to_str(block->page_size); 1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1136 block->idstr, psize, 1137 (uint64_t)block->offset, 1138 (uint64_t)block->used_length, 1139 (uint64_t)block->max_length, 1140 (uint64_t)(uintptr_t)block->host, 1141 block->mr->readonly ? "ro" : "rw"); 1142 1143 g_free(psize); 1144 } 1145 1146 return buf; 1147 } 1148 1149 static int find_min_backend_pagesize(Object *obj, void *opaque) 1150 { 1151 long *hpsize_min = opaque; 1152 1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1155 long hpsize = host_memory_backend_pagesize(backend); 1156 1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1158 *hpsize_min = hpsize; 1159 } 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int find_max_backend_pagesize(Object *obj, void *opaque) 1166 { 1167 long *hpsize_max = opaque; 1168 1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1171 long hpsize = host_memory_backend_pagesize(backend); 1172 1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1174 *hpsize_max = hpsize; 1175 } 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * TODO: We assume right now that all mapped host memory backends are 1183 * used as RAM, however some might be used for different purposes. 1184 */ 1185 long qemu_minrampagesize(void) 1186 { 1187 long hpsize = LONG_MAX; 1188 Object *memdev_root = object_resolve_path("/objects", NULL); 1189 1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1191 return hpsize; 1192 } 1193 1194 long qemu_maxrampagesize(void) 1195 { 1196 long pagesize = 0; 1197 Object *memdev_root = object_resolve_path("/objects", NULL); 1198 1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1200 return pagesize; 1201 } 1202 1203 #ifdef CONFIG_POSIX 1204 static int64_t get_file_size(int fd) 1205 { 1206 int64_t size; 1207 #if defined(__linux__) 1208 struct stat st; 1209 1210 if (fstat(fd, &st) < 0) { 1211 return -errno; 1212 } 1213 1214 /* Special handling for devdax character devices */ 1215 if (S_ISCHR(st.st_mode)) { 1216 g_autofree char *subsystem_path = NULL; 1217 g_autofree char *subsystem = NULL; 1218 1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1220 major(st.st_rdev), minor(st.st_rdev)); 1221 subsystem = g_file_read_link(subsystem_path, NULL); 1222 1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1224 g_autofree char *size_path = NULL; 1225 g_autofree char *size_str = NULL; 1226 1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1228 major(st.st_rdev), minor(st.st_rdev)); 1229 1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1231 return g_ascii_strtoll(size_str, NULL, 0); 1232 } 1233 } 1234 } 1235 #endif /* defined(__linux__) */ 1236 1237 /* st.st_size may be zero for special files yet lseek(2) works */ 1238 size = lseek(fd, 0, SEEK_END); 1239 if (size < 0) { 1240 return -errno; 1241 } 1242 return size; 1243 } 1244 1245 static int64_t get_file_align(int fd) 1246 { 1247 int64_t align = -1; 1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1249 struct stat st; 1250 1251 if (fstat(fd, &st) < 0) { 1252 return -errno; 1253 } 1254 1255 /* Special handling for devdax character devices */ 1256 if (S_ISCHR(st.st_mode)) { 1257 g_autofree char *path = NULL; 1258 g_autofree char *rpath = NULL; 1259 struct daxctl_ctx *ctx; 1260 struct daxctl_region *region; 1261 int rc = 0; 1262 1263 path = g_strdup_printf("/sys/dev/char/%d:%d", 1264 major(st.st_rdev), minor(st.st_rdev)); 1265 rpath = realpath(path, NULL); 1266 if (!rpath) { 1267 return -errno; 1268 } 1269 1270 rc = daxctl_new(&ctx); 1271 if (rc) { 1272 return -1; 1273 } 1274 1275 daxctl_region_foreach(ctx, region) { 1276 if (strstr(rpath, daxctl_region_get_path(region))) { 1277 align = daxctl_region_get_align(region); 1278 break; 1279 } 1280 } 1281 daxctl_unref(ctx); 1282 } 1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1284 1285 return align; 1286 } 1287 1288 static int file_ram_open(const char *path, 1289 const char *region_name, 1290 bool readonly, 1291 bool *created) 1292 { 1293 char *filename; 1294 char *sanitized_name; 1295 char *c; 1296 int fd = -1; 1297 1298 *created = false; 1299 for (;;) { 1300 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1301 if (fd >= 0) { 1302 /* 1303 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1304 * opened a directory and fail similarly to how we fail ENOENT 1305 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1306 */ 1307 if (readonly) { 1308 struct stat file_stat; 1309 1310 if (fstat(fd, &file_stat)) { 1311 close(fd); 1312 if (errno == EINTR) { 1313 continue; 1314 } 1315 return -errno; 1316 } else if (S_ISDIR(file_stat.st_mode)) { 1317 close(fd); 1318 return -EISDIR; 1319 } 1320 } 1321 /* @path names an existing file, use it */ 1322 break; 1323 } 1324 if (errno == ENOENT) { 1325 if (readonly) { 1326 /* Refuse to create new, readonly files. */ 1327 return -ENOENT; 1328 } 1329 /* @path names a file that doesn't exist, create it */ 1330 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1331 if (fd >= 0) { 1332 *created = true; 1333 break; 1334 } 1335 } else if (errno == EISDIR) { 1336 /* @path names a directory, create a file there */ 1337 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1338 sanitized_name = g_strdup(region_name); 1339 for (c = sanitized_name; *c != '\0'; c++) { 1340 if (*c == '/') { 1341 *c = '_'; 1342 } 1343 } 1344 1345 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1346 sanitized_name); 1347 g_free(sanitized_name); 1348 1349 fd = mkstemp(filename); 1350 if (fd >= 0) { 1351 unlink(filename); 1352 g_free(filename); 1353 break; 1354 } 1355 g_free(filename); 1356 } 1357 if (errno != EEXIST && errno != EINTR) { 1358 return -errno; 1359 } 1360 /* 1361 * Try again on EINTR and EEXIST. The latter happens when 1362 * something else creates the file between our two open(). 1363 */ 1364 } 1365 1366 return fd; 1367 } 1368 1369 static void *file_ram_alloc(RAMBlock *block, 1370 ram_addr_t memory, 1371 int fd, 1372 bool truncate, 1373 off_t offset, 1374 Error **errp) 1375 { 1376 uint32_t qemu_map_flags; 1377 void *area; 1378 1379 block->page_size = qemu_fd_getpagesize(fd); 1380 if (block->mr->align % block->page_size) { 1381 error_setg(errp, "alignment 0x%" PRIx64 1382 " must be multiples of page size 0x%zx", 1383 block->mr->align, block->page_size); 1384 return NULL; 1385 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1386 error_setg(errp, "alignment 0x%" PRIx64 1387 " must be a power of two", block->mr->align); 1388 return NULL; 1389 } else if (offset % block->page_size) { 1390 error_setg(errp, "offset 0x%" PRIx64 1391 " must be multiples of page size 0x%zx", 1392 offset, block->page_size); 1393 return NULL; 1394 } 1395 block->mr->align = MAX(block->page_size, block->mr->align); 1396 #if defined(__s390x__) 1397 if (kvm_enabled()) { 1398 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1399 } 1400 #endif 1401 1402 if (memory < block->page_size) { 1403 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1404 "or larger than page size 0x%zx", 1405 memory, block->page_size); 1406 return NULL; 1407 } 1408 1409 memory = ROUND_UP(memory, block->page_size); 1410 1411 /* 1412 * ftruncate is not supported by hugetlbfs in older 1413 * hosts, so don't bother bailing out on errors. 1414 * If anything goes wrong with it under other filesystems, 1415 * mmap will fail. 1416 * 1417 * Do not truncate the non-empty backend file to avoid corrupting 1418 * the existing data in the file. Disabling shrinking is not 1419 * enough. For example, the current vNVDIMM implementation stores 1420 * the guest NVDIMM labels at the end of the backend file. If the 1421 * backend file is later extended, QEMU will not be able to find 1422 * those labels. Therefore, extending the non-empty backend file 1423 * is disabled as well. 1424 */ 1425 if (truncate && ftruncate(fd, offset + memory)) { 1426 perror("ftruncate"); 1427 } 1428 1429 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1430 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1431 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1432 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1433 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1434 if (area == MAP_FAILED) { 1435 error_setg_errno(errp, errno, 1436 "unable to map backing store for guest RAM"); 1437 return NULL; 1438 } 1439 1440 block->fd = fd; 1441 block->fd_offset = offset; 1442 return area; 1443 } 1444 #endif 1445 1446 /* Allocate space within the ram_addr_t space that governs the 1447 * dirty bitmaps. 1448 * Called with the ramlist lock held. 1449 */ 1450 static ram_addr_t find_ram_offset(ram_addr_t size) 1451 { 1452 RAMBlock *block, *next_block; 1453 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1454 1455 assert(size != 0); /* it would hand out same offset multiple times */ 1456 1457 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1458 return 0; 1459 } 1460 1461 RAMBLOCK_FOREACH(block) { 1462 ram_addr_t candidate, next = RAM_ADDR_MAX; 1463 1464 /* Align blocks to start on a 'long' in the bitmap 1465 * which makes the bitmap sync'ing take the fast path. 1466 */ 1467 candidate = block->offset + block->max_length; 1468 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1469 1470 /* Search for the closest following block 1471 * and find the gap. 1472 */ 1473 RAMBLOCK_FOREACH(next_block) { 1474 if (next_block->offset >= candidate) { 1475 next = MIN(next, next_block->offset); 1476 } 1477 } 1478 1479 /* If it fits remember our place and remember the size 1480 * of gap, but keep going so that we might find a smaller 1481 * gap to fill so avoiding fragmentation. 1482 */ 1483 if (next - candidate >= size && next - candidate < mingap) { 1484 offset = candidate; 1485 mingap = next - candidate; 1486 } 1487 1488 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1489 } 1490 1491 if (offset == RAM_ADDR_MAX) { 1492 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1493 (uint64_t)size); 1494 abort(); 1495 } 1496 1497 trace_find_ram_offset(size, offset); 1498 1499 return offset; 1500 } 1501 1502 static unsigned long last_ram_page(void) 1503 { 1504 RAMBlock *block; 1505 ram_addr_t last = 0; 1506 1507 RCU_READ_LOCK_GUARD(); 1508 RAMBLOCK_FOREACH(block) { 1509 last = MAX(last, block->offset + block->max_length); 1510 } 1511 return last >> TARGET_PAGE_BITS; 1512 } 1513 1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1515 { 1516 int ret; 1517 1518 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1519 if (!machine_dump_guest_core(current_machine)) { 1520 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1521 if (ret) { 1522 perror("qemu_madvise"); 1523 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1524 "but dump_guest_core=off specified\n"); 1525 } 1526 } 1527 } 1528 1529 const char *qemu_ram_get_idstr(RAMBlock *rb) 1530 { 1531 return rb->idstr; 1532 } 1533 1534 void *qemu_ram_get_host_addr(RAMBlock *rb) 1535 { 1536 return rb->host; 1537 } 1538 1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1540 { 1541 return rb->offset; 1542 } 1543 1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1545 { 1546 return rb->used_length; 1547 } 1548 1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1550 { 1551 return rb->max_length; 1552 } 1553 1554 bool qemu_ram_is_shared(RAMBlock *rb) 1555 { 1556 return rb->flags & RAM_SHARED; 1557 } 1558 1559 bool qemu_ram_is_noreserve(RAMBlock *rb) 1560 { 1561 return rb->flags & RAM_NORESERVE; 1562 } 1563 1564 /* Note: Only set at the start of postcopy */ 1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1566 { 1567 return rb->flags & RAM_UF_ZEROPAGE; 1568 } 1569 1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1571 { 1572 rb->flags |= RAM_UF_ZEROPAGE; 1573 } 1574 1575 bool qemu_ram_is_migratable(RAMBlock *rb) 1576 { 1577 return rb->flags & RAM_MIGRATABLE; 1578 } 1579 1580 void qemu_ram_set_migratable(RAMBlock *rb) 1581 { 1582 rb->flags |= RAM_MIGRATABLE; 1583 } 1584 1585 void qemu_ram_unset_migratable(RAMBlock *rb) 1586 { 1587 rb->flags &= ~RAM_MIGRATABLE; 1588 } 1589 1590 bool qemu_ram_is_named_file(RAMBlock *rb) 1591 { 1592 return rb->flags & RAM_NAMED_FILE; 1593 } 1594 1595 int qemu_ram_get_fd(RAMBlock *rb) 1596 { 1597 return rb->fd; 1598 } 1599 1600 /* Called with iothread lock held. */ 1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1602 { 1603 RAMBlock *block; 1604 1605 assert(new_block); 1606 assert(!new_block->idstr[0]); 1607 1608 if (dev) { 1609 char *id = qdev_get_dev_path(dev); 1610 if (id) { 1611 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1612 g_free(id); 1613 } 1614 } 1615 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1616 1617 RCU_READ_LOCK_GUARD(); 1618 RAMBLOCK_FOREACH(block) { 1619 if (block != new_block && 1620 !strcmp(block->idstr, new_block->idstr)) { 1621 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1622 new_block->idstr); 1623 abort(); 1624 } 1625 } 1626 } 1627 1628 /* Called with iothread lock held. */ 1629 void qemu_ram_unset_idstr(RAMBlock *block) 1630 { 1631 /* FIXME: arch_init.c assumes that this is not called throughout 1632 * migration. Ignore the problem since hot-unplug during migration 1633 * does not work anyway. 1634 */ 1635 if (block) { 1636 memset(block->idstr, 0, sizeof(block->idstr)); 1637 } 1638 } 1639 1640 size_t qemu_ram_pagesize(RAMBlock *rb) 1641 { 1642 return rb->page_size; 1643 } 1644 1645 /* Returns the largest size of page in use */ 1646 size_t qemu_ram_pagesize_largest(void) 1647 { 1648 RAMBlock *block; 1649 size_t largest = 0; 1650 1651 RAMBLOCK_FOREACH(block) { 1652 largest = MAX(largest, qemu_ram_pagesize(block)); 1653 } 1654 1655 return largest; 1656 } 1657 1658 static int memory_try_enable_merging(void *addr, size_t len) 1659 { 1660 if (!machine_mem_merge(current_machine)) { 1661 /* disabled by the user */ 1662 return 0; 1663 } 1664 1665 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1666 } 1667 1668 /* 1669 * Resizing RAM while migrating can result in the migration being canceled. 1670 * Care has to be taken if the guest might have already detected the memory. 1671 * 1672 * As memory core doesn't know how is memory accessed, it is up to 1673 * resize callback to update device state and/or add assertions to detect 1674 * misuse, if necessary. 1675 */ 1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1677 { 1678 const ram_addr_t oldsize = block->used_length; 1679 const ram_addr_t unaligned_size = newsize; 1680 1681 assert(block); 1682 1683 newsize = HOST_PAGE_ALIGN(newsize); 1684 1685 if (block->used_length == newsize) { 1686 /* 1687 * We don't have to resize the ram block (which only knows aligned 1688 * sizes), however, we have to notify if the unaligned size changed. 1689 */ 1690 if (unaligned_size != memory_region_size(block->mr)) { 1691 memory_region_set_size(block->mr, unaligned_size); 1692 if (block->resized) { 1693 block->resized(block->idstr, unaligned_size, block->host); 1694 } 1695 } 1696 return 0; 1697 } 1698 1699 if (!(block->flags & RAM_RESIZEABLE)) { 1700 error_setg_errno(errp, EINVAL, 1701 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1702 " != 0x" RAM_ADDR_FMT, block->idstr, 1703 newsize, block->used_length); 1704 return -EINVAL; 1705 } 1706 1707 if (block->max_length < newsize) { 1708 error_setg_errno(errp, EINVAL, 1709 "Size too large: %s: 0x" RAM_ADDR_FMT 1710 " > 0x" RAM_ADDR_FMT, block->idstr, 1711 newsize, block->max_length); 1712 return -EINVAL; 1713 } 1714 1715 /* Notify before modifying the ram block and touching the bitmaps. */ 1716 if (block->host) { 1717 ram_block_notify_resize(block->host, oldsize, newsize); 1718 } 1719 1720 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1721 block->used_length = newsize; 1722 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1723 DIRTY_CLIENTS_ALL); 1724 memory_region_set_size(block->mr, unaligned_size); 1725 if (block->resized) { 1726 block->resized(block->idstr, unaligned_size, block->host); 1727 } 1728 return 0; 1729 } 1730 1731 /* 1732 * Trigger sync on the given ram block for range [start, start + length] 1733 * with the backing store if one is available. 1734 * Otherwise no-op. 1735 * @Note: this is supposed to be a synchronous op. 1736 */ 1737 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1738 { 1739 /* The requested range should fit in within the block range */ 1740 g_assert((start + length) <= block->used_length); 1741 1742 #ifdef CONFIG_LIBPMEM 1743 /* The lack of support for pmem should not block the sync */ 1744 if (ramblock_is_pmem(block)) { 1745 void *addr = ramblock_ptr(block, start); 1746 pmem_persist(addr, length); 1747 return; 1748 } 1749 #endif 1750 if (block->fd >= 0) { 1751 /** 1752 * Case there is no support for PMEM or the memory has not been 1753 * specified as persistent (or is not one) - use the msync. 1754 * Less optimal but still achieves the same goal 1755 */ 1756 void *addr = ramblock_ptr(block, start); 1757 if (qemu_msync(addr, length, block->fd)) { 1758 warn_report("%s: failed to sync memory range: start: " 1759 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1760 __func__, start, length); 1761 } 1762 } 1763 } 1764 1765 /* Called with ram_list.mutex held */ 1766 static void dirty_memory_extend(ram_addr_t old_ram_size, 1767 ram_addr_t new_ram_size) 1768 { 1769 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1770 DIRTY_MEMORY_BLOCK_SIZE); 1771 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1772 DIRTY_MEMORY_BLOCK_SIZE); 1773 int i; 1774 1775 /* Only need to extend if block count increased */ 1776 if (new_num_blocks <= old_num_blocks) { 1777 return; 1778 } 1779 1780 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1781 DirtyMemoryBlocks *old_blocks; 1782 DirtyMemoryBlocks *new_blocks; 1783 int j; 1784 1785 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1786 new_blocks = g_malloc(sizeof(*new_blocks) + 1787 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1788 1789 if (old_num_blocks) { 1790 memcpy(new_blocks->blocks, old_blocks->blocks, 1791 old_num_blocks * sizeof(old_blocks->blocks[0])); 1792 } 1793 1794 for (j = old_num_blocks; j < new_num_blocks; j++) { 1795 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1796 } 1797 1798 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1799 1800 if (old_blocks) { 1801 g_free_rcu(old_blocks, rcu); 1802 } 1803 } 1804 } 1805 1806 static void ram_block_add(RAMBlock *new_block, Error **errp) 1807 { 1808 const bool noreserve = qemu_ram_is_noreserve(new_block); 1809 const bool shared = qemu_ram_is_shared(new_block); 1810 RAMBlock *block; 1811 RAMBlock *last_block = NULL; 1812 ram_addr_t old_ram_size, new_ram_size; 1813 Error *err = NULL; 1814 1815 old_ram_size = last_ram_page(); 1816 1817 qemu_mutex_lock_ramlist(); 1818 new_block->offset = find_ram_offset(new_block->max_length); 1819 1820 if (!new_block->host) { 1821 if (xen_enabled()) { 1822 xen_ram_alloc(new_block->offset, new_block->max_length, 1823 new_block->mr, &err); 1824 if (err) { 1825 error_propagate(errp, err); 1826 qemu_mutex_unlock_ramlist(); 1827 return; 1828 } 1829 } else { 1830 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1831 &new_block->mr->align, 1832 shared, noreserve); 1833 if (!new_block->host) { 1834 error_setg_errno(errp, errno, 1835 "cannot set up guest memory '%s'", 1836 memory_region_name(new_block->mr)); 1837 qemu_mutex_unlock_ramlist(); 1838 return; 1839 } 1840 memory_try_enable_merging(new_block->host, new_block->max_length); 1841 } 1842 } 1843 1844 new_ram_size = MAX(old_ram_size, 1845 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1846 if (new_ram_size > old_ram_size) { 1847 dirty_memory_extend(old_ram_size, new_ram_size); 1848 } 1849 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1850 * QLIST (which has an RCU-friendly variant) does not have insertion at 1851 * tail, so save the last element in last_block. 1852 */ 1853 RAMBLOCK_FOREACH(block) { 1854 last_block = block; 1855 if (block->max_length < new_block->max_length) { 1856 break; 1857 } 1858 } 1859 if (block) { 1860 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1861 } else if (last_block) { 1862 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1863 } else { /* list is empty */ 1864 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1865 } 1866 ram_list.mru_block = NULL; 1867 1868 /* Write list before version */ 1869 smp_wmb(); 1870 ram_list.version++; 1871 qemu_mutex_unlock_ramlist(); 1872 1873 cpu_physical_memory_set_dirty_range(new_block->offset, 1874 new_block->used_length, 1875 DIRTY_CLIENTS_ALL); 1876 1877 if (new_block->host) { 1878 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1879 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1880 /* 1881 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1882 * Configure it unless the machine is a qtest server, in which case 1883 * KVM is not used and it may be forked (eg for fuzzing purposes). 1884 */ 1885 if (!qtest_enabled()) { 1886 qemu_madvise(new_block->host, new_block->max_length, 1887 QEMU_MADV_DONTFORK); 1888 } 1889 ram_block_notify_add(new_block->host, new_block->used_length, 1890 new_block->max_length); 1891 } 1892 } 1893 1894 #ifdef CONFIG_POSIX 1895 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1896 uint32_t ram_flags, int fd, off_t offset, 1897 Error **errp) 1898 { 1899 RAMBlock *new_block; 1900 Error *local_err = NULL; 1901 int64_t file_size, file_align; 1902 1903 /* Just support these ram flags by now. */ 1904 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1905 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1906 RAM_READONLY_FD)) == 0); 1907 1908 if (xen_enabled()) { 1909 error_setg(errp, "-mem-path not supported with Xen"); 1910 return NULL; 1911 } 1912 1913 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1914 error_setg(errp, 1915 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1916 return NULL; 1917 } 1918 1919 size = HOST_PAGE_ALIGN(size); 1920 file_size = get_file_size(fd); 1921 if (file_size > offset && file_size < (offset + size)) { 1922 error_setg(errp, "backing store size 0x%" PRIx64 1923 " does not match 'size' option 0x" RAM_ADDR_FMT, 1924 file_size, size); 1925 return NULL; 1926 } 1927 1928 file_align = get_file_align(fd); 1929 if (file_align > 0 && file_align > mr->align) { 1930 error_setg(errp, "backing store align 0x%" PRIx64 1931 " is larger than 'align' option 0x%" PRIx64, 1932 file_align, mr->align); 1933 return NULL; 1934 } 1935 1936 new_block = g_malloc0(sizeof(*new_block)); 1937 new_block->mr = mr; 1938 new_block->used_length = size; 1939 new_block->max_length = size; 1940 new_block->flags = ram_flags; 1941 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 1942 errp); 1943 if (!new_block->host) { 1944 g_free(new_block); 1945 return NULL; 1946 } 1947 1948 ram_block_add(new_block, &local_err); 1949 if (local_err) { 1950 g_free(new_block); 1951 error_propagate(errp, local_err); 1952 return NULL; 1953 } 1954 return new_block; 1955 1956 } 1957 1958 1959 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1960 uint32_t ram_flags, const char *mem_path, 1961 off_t offset, Error **errp) 1962 { 1963 int fd; 1964 bool created; 1965 RAMBlock *block; 1966 1967 fd = file_ram_open(mem_path, memory_region_name(mr), 1968 !!(ram_flags & RAM_READONLY_FD), &created); 1969 if (fd < 0) { 1970 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 1971 mem_path); 1972 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 1973 fd == -EACCES) { 1974 /* 1975 * If we can open the file R/O (note: will never create a new file) 1976 * and we are dealing with a private mapping, there are still ways 1977 * to consume such files and get RAM instead of ROM. 1978 */ 1979 fd = file_ram_open(mem_path, memory_region_name(mr), true, 1980 &created); 1981 if (fd < 0) { 1982 return NULL; 1983 } 1984 assert(!created); 1985 close(fd); 1986 error_append_hint(errp, "Consider opening the backing store" 1987 " read-only but still creating writable RAM using" 1988 " '-object memory-backend-file,readonly=on,rom=off...'" 1989 " (see \"VM templating\" documentation)\n"); 1990 } 1991 return NULL; 1992 } 1993 1994 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 1995 if (!block) { 1996 if (created) { 1997 unlink(mem_path); 1998 } 1999 close(fd); 2000 return NULL; 2001 } 2002 2003 return block; 2004 } 2005 #endif 2006 2007 static 2008 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2009 void (*resized)(const char*, 2010 uint64_t length, 2011 void *host), 2012 void *host, uint32_t ram_flags, 2013 MemoryRegion *mr, Error **errp) 2014 { 2015 RAMBlock *new_block; 2016 Error *local_err = NULL; 2017 2018 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2019 RAM_NORESERVE)) == 0); 2020 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2021 2022 size = HOST_PAGE_ALIGN(size); 2023 max_size = HOST_PAGE_ALIGN(max_size); 2024 new_block = g_malloc0(sizeof(*new_block)); 2025 new_block->mr = mr; 2026 new_block->resized = resized; 2027 new_block->used_length = size; 2028 new_block->max_length = max_size; 2029 assert(max_size >= size); 2030 new_block->fd = -1; 2031 new_block->page_size = qemu_real_host_page_size(); 2032 new_block->host = host; 2033 new_block->flags = ram_flags; 2034 ram_block_add(new_block, &local_err); 2035 if (local_err) { 2036 g_free(new_block); 2037 error_propagate(errp, local_err); 2038 return NULL; 2039 } 2040 return new_block; 2041 } 2042 2043 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2044 MemoryRegion *mr, Error **errp) 2045 { 2046 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2047 errp); 2048 } 2049 2050 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2051 MemoryRegion *mr, Error **errp) 2052 { 2053 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2054 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2055 } 2056 2057 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2058 void (*resized)(const char*, 2059 uint64_t length, 2060 void *host), 2061 MemoryRegion *mr, Error **errp) 2062 { 2063 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2064 RAM_RESIZEABLE, mr, errp); 2065 } 2066 2067 static void reclaim_ramblock(RAMBlock *block) 2068 { 2069 if (block->flags & RAM_PREALLOC) { 2070 ; 2071 } else if (xen_enabled()) { 2072 xen_invalidate_map_cache_entry(block->host); 2073 #ifndef _WIN32 2074 } else if (block->fd >= 0) { 2075 qemu_ram_munmap(block->fd, block->host, block->max_length); 2076 close(block->fd); 2077 #endif 2078 } else { 2079 qemu_anon_ram_free(block->host, block->max_length); 2080 } 2081 g_free(block); 2082 } 2083 2084 void qemu_ram_free(RAMBlock *block) 2085 { 2086 if (!block) { 2087 return; 2088 } 2089 2090 if (block->host) { 2091 ram_block_notify_remove(block->host, block->used_length, 2092 block->max_length); 2093 } 2094 2095 qemu_mutex_lock_ramlist(); 2096 QLIST_REMOVE_RCU(block, next); 2097 ram_list.mru_block = NULL; 2098 /* Write list before version */ 2099 smp_wmb(); 2100 ram_list.version++; 2101 call_rcu(block, reclaim_ramblock, rcu); 2102 qemu_mutex_unlock_ramlist(); 2103 } 2104 2105 #ifndef _WIN32 2106 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2107 { 2108 RAMBlock *block; 2109 ram_addr_t offset; 2110 int flags; 2111 void *area, *vaddr; 2112 int prot; 2113 2114 RAMBLOCK_FOREACH(block) { 2115 offset = addr - block->offset; 2116 if (offset < block->max_length) { 2117 vaddr = ramblock_ptr(block, offset); 2118 if (block->flags & RAM_PREALLOC) { 2119 ; 2120 } else if (xen_enabled()) { 2121 abort(); 2122 } else { 2123 flags = MAP_FIXED; 2124 flags |= block->flags & RAM_SHARED ? 2125 MAP_SHARED : MAP_PRIVATE; 2126 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2127 prot = PROT_READ; 2128 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2129 if (block->fd >= 0) { 2130 area = mmap(vaddr, length, prot, flags, block->fd, 2131 offset + block->fd_offset); 2132 } else { 2133 flags |= MAP_ANONYMOUS; 2134 area = mmap(vaddr, length, prot, flags, -1, 0); 2135 } 2136 if (area != vaddr) { 2137 error_report("Could not remap addr: " 2138 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2139 length, addr); 2140 exit(1); 2141 } 2142 memory_try_enable_merging(vaddr, length); 2143 qemu_ram_setup_dump(vaddr, length); 2144 } 2145 } 2146 } 2147 } 2148 #endif /* !_WIN32 */ 2149 2150 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2151 * This should not be used for general purpose DMA. Use address_space_map 2152 * or address_space_rw instead. For local memory (e.g. video ram) that the 2153 * device owns, use memory_region_get_ram_ptr. 2154 * 2155 * Called within RCU critical section. 2156 */ 2157 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2158 { 2159 RAMBlock *block = ram_block; 2160 2161 if (block == NULL) { 2162 block = qemu_get_ram_block(addr); 2163 addr -= block->offset; 2164 } 2165 2166 if (xen_enabled() && block->host == NULL) { 2167 /* We need to check if the requested address is in the RAM 2168 * because we don't want to map the entire memory in QEMU. 2169 * In that case just map until the end of the page. 2170 */ 2171 if (block->offset == 0) { 2172 return xen_map_cache(addr, 0, 0, false); 2173 } 2174 2175 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2176 } 2177 return ramblock_ptr(block, addr); 2178 } 2179 2180 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2181 * but takes a size argument. 2182 * 2183 * Called within RCU critical section. 2184 */ 2185 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2186 hwaddr *size, bool lock) 2187 { 2188 RAMBlock *block = ram_block; 2189 if (*size == 0) { 2190 return NULL; 2191 } 2192 2193 if (block == NULL) { 2194 block = qemu_get_ram_block(addr); 2195 addr -= block->offset; 2196 } 2197 *size = MIN(*size, block->max_length - addr); 2198 2199 if (xen_enabled() && block->host == NULL) { 2200 /* We need to check if the requested address is in the RAM 2201 * because we don't want to map the entire memory in QEMU. 2202 * In that case just map the requested area. 2203 */ 2204 if (block->offset == 0) { 2205 return xen_map_cache(addr, *size, lock, lock); 2206 } 2207 2208 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2209 } 2210 2211 return ramblock_ptr(block, addr); 2212 } 2213 2214 /* Return the offset of a hostpointer within a ramblock */ 2215 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2216 { 2217 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2218 assert((uintptr_t)host >= (uintptr_t)rb->host); 2219 assert(res < rb->max_length); 2220 2221 return res; 2222 } 2223 2224 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2225 ram_addr_t *offset) 2226 { 2227 RAMBlock *block; 2228 uint8_t *host = ptr; 2229 2230 if (xen_enabled()) { 2231 ram_addr_t ram_addr; 2232 RCU_READ_LOCK_GUARD(); 2233 ram_addr = xen_ram_addr_from_mapcache(ptr); 2234 block = qemu_get_ram_block(ram_addr); 2235 if (block) { 2236 *offset = ram_addr - block->offset; 2237 } 2238 return block; 2239 } 2240 2241 RCU_READ_LOCK_GUARD(); 2242 block = qatomic_rcu_read(&ram_list.mru_block); 2243 if (block && block->host && host - block->host < block->max_length) { 2244 goto found; 2245 } 2246 2247 RAMBLOCK_FOREACH(block) { 2248 /* This case append when the block is not mapped. */ 2249 if (block->host == NULL) { 2250 continue; 2251 } 2252 if (host - block->host < block->max_length) { 2253 goto found; 2254 } 2255 } 2256 2257 return NULL; 2258 2259 found: 2260 *offset = (host - block->host); 2261 if (round_offset) { 2262 *offset &= TARGET_PAGE_MASK; 2263 } 2264 return block; 2265 } 2266 2267 /* 2268 * Finds the named RAMBlock 2269 * 2270 * name: The name of RAMBlock to find 2271 * 2272 * Returns: RAMBlock (or NULL if not found) 2273 */ 2274 RAMBlock *qemu_ram_block_by_name(const char *name) 2275 { 2276 RAMBlock *block; 2277 2278 RAMBLOCK_FOREACH(block) { 2279 if (!strcmp(name, block->idstr)) { 2280 return block; 2281 } 2282 } 2283 2284 return NULL; 2285 } 2286 2287 /* 2288 * Some of the system routines need to translate from a host pointer 2289 * (typically a TLB entry) back to a ram offset. 2290 */ 2291 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2292 { 2293 RAMBlock *block; 2294 ram_addr_t offset; 2295 2296 block = qemu_ram_block_from_host(ptr, false, &offset); 2297 if (!block) { 2298 return RAM_ADDR_INVALID; 2299 } 2300 2301 return block->offset + offset; 2302 } 2303 2304 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2305 { 2306 ram_addr_t ram_addr; 2307 2308 ram_addr = qemu_ram_addr_from_host(ptr); 2309 if (ram_addr == RAM_ADDR_INVALID) { 2310 error_report("Bad ram pointer %p", ptr); 2311 abort(); 2312 } 2313 return ram_addr; 2314 } 2315 2316 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2317 MemTxAttrs attrs, void *buf, hwaddr len); 2318 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2319 const void *buf, hwaddr len); 2320 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2321 bool is_write, MemTxAttrs attrs); 2322 2323 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2324 unsigned len, MemTxAttrs attrs) 2325 { 2326 subpage_t *subpage = opaque; 2327 uint8_t buf[8]; 2328 MemTxResult res; 2329 2330 #if defined(DEBUG_SUBPAGE) 2331 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2332 subpage, len, addr); 2333 #endif 2334 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2335 if (res) { 2336 return res; 2337 } 2338 *data = ldn_p(buf, len); 2339 return MEMTX_OK; 2340 } 2341 2342 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2343 uint64_t value, unsigned len, MemTxAttrs attrs) 2344 { 2345 subpage_t *subpage = opaque; 2346 uint8_t buf[8]; 2347 2348 #if defined(DEBUG_SUBPAGE) 2349 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2350 " value %"PRIx64"\n", 2351 __func__, subpage, len, addr, value); 2352 #endif 2353 stn_p(buf, len, value); 2354 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2355 } 2356 2357 static bool subpage_accepts(void *opaque, hwaddr addr, 2358 unsigned len, bool is_write, 2359 MemTxAttrs attrs) 2360 { 2361 subpage_t *subpage = opaque; 2362 #if defined(DEBUG_SUBPAGE) 2363 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2364 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2365 #endif 2366 2367 return flatview_access_valid(subpage->fv, addr + subpage->base, 2368 len, is_write, attrs); 2369 } 2370 2371 static const MemoryRegionOps subpage_ops = { 2372 .read_with_attrs = subpage_read, 2373 .write_with_attrs = subpage_write, 2374 .impl.min_access_size = 1, 2375 .impl.max_access_size = 8, 2376 .valid.min_access_size = 1, 2377 .valid.max_access_size = 8, 2378 .valid.accepts = subpage_accepts, 2379 .endianness = DEVICE_NATIVE_ENDIAN, 2380 }; 2381 2382 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2383 uint16_t section) 2384 { 2385 int idx, eidx; 2386 2387 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2388 return -1; 2389 idx = SUBPAGE_IDX(start); 2390 eidx = SUBPAGE_IDX(end); 2391 #if defined(DEBUG_SUBPAGE) 2392 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2393 __func__, mmio, start, end, idx, eidx, section); 2394 #endif 2395 for (; idx <= eidx; idx++) { 2396 mmio->sub_section[idx] = section; 2397 } 2398 2399 return 0; 2400 } 2401 2402 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2403 { 2404 subpage_t *mmio; 2405 2406 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2407 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2408 mmio->fv = fv; 2409 mmio->base = base; 2410 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2411 NULL, TARGET_PAGE_SIZE); 2412 mmio->iomem.subpage = true; 2413 #if defined(DEBUG_SUBPAGE) 2414 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2415 mmio, base, TARGET_PAGE_SIZE); 2416 #endif 2417 2418 return mmio; 2419 } 2420 2421 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2422 { 2423 assert(fv); 2424 MemoryRegionSection section = { 2425 .fv = fv, 2426 .mr = mr, 2427 .offset_within_address_space = 0, 2428 .offset_within_region = 0, 2429 .size = int128_2_64(), 2430 }; 2431 2432 return phys_section_add(map, §ion); 2433 } 2434 2435 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2436 hwaddr index, MemTxAttrs attrs) 2437 { 2438 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2439 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2440 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2441 int section_index = index & ~TARGET_PAGE_MASK; 2442 MemoryRegionSection *ret; 2443 2444 assert(section_index < d->map.sections_nb); 2445 ret = d->map.sections + section_index; 2446 assert(ret->mr); 2447 assert(ret->mr->ops); 2448 2449 return ret; 2450 } 2451 2452 static void io_mem_init(void) 2453 { 2454 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2455 NULL, UINT64_MAX); 2456 } 2457 2458 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2459 { 2460 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2461 uint16_t n; 2462 2463 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2464 assert(n == PHYS_SECTION_UNASSIGNED); 2465 2466 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2467 2468 return d; 2469 } 2470 2471 void address_space_dispatch_free(AddressSpaceDispatch *d) 2472 { 2473 phys_sections_free(&d->map); 2474 g_free(d); 2475 } 2476 2477 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2478 { 2479 } 2480 2481 static void tcg_log_global_after_sync(MemoryListener *listener) 2482 { 2483 CPUAddressSpace *cpuas; 2484 2485 /* Wait for the CPU to end the current TB. This avoids the following 2486 * incorrect race: 2487 * 2488 * vCPU migration 2489 * ---------------------- ------------------------- 2490 * TLB check -> slow path 2491 * notdirty_mem_write 2492 * write to RAM 2493 * mark dirty 2494 * clear dirty flag 2495 * TLB check -> fast path 2496 * read memory 2497 * write to RAM 2498 * 2499 * by pushing the migration thread's memory read after the vCPU thread has 2500 * written the memory. 2501 */ 2502 if (replay_mode == REPLAY_MODE_NONE) { 2503 /* 2504 * VGA can make calls to this function while updating the screen. 2505 * In record/replay mode this causes a deadlock, because 2506 * run_on_cpu waits for rr mutex. Therefore no races are possible 2507 * in this case and no need for making run_on_cpu when 2508 * record/replay is enabled. 2509 */ 2510 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2511 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2512 } 2513 } 2514 2515 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2516 { 2517 CPUAddressSpace *cpuas = data.host_ptr; 2518 2519 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2520 tlb_flush(cpu); 2521 } 2522 2523 static void tcg_commit(MemoryListener *listener) 2524 { 2525 CPUAddressSpace *cpuas; 2526 CPUState *cpu; 2527 2528 assert(tcg_enabled()); 2529 /* since each CPU stores ram addresses in its TLB cache, we must 2530 reset the modified entries */ 2531 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2532 cpu = cpuas->cpu; 2533 2534 /* 2535 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2536 * Otherwise we race between (1) other cpu threads and (2) ongoing 2537 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2538 * 2539 * In addition, queueing the work function will kick the cpu back to 2540 * the main loop, which will end the RCU critical section and reclaim 2541 * the memory data structures. 2542 * 2543 * That said, the listener is also called during realize, before 2544 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2545 */ 2546 if (cpu->halt_cond) { 2547 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2548 } else { 2549 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2550 } 2551 } 2552 2553 static void memory_map_init(void) 2554 { 2555 system_memory = g_malloc(sizeof(*system_memory)); 2556 2557 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2558 address_space_init(&address_space_memory, system_memory, "memory"); 2559 2560 system_io = g_malloc(sizeof(*system_io)); 2561 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2562 65536); 2563 address_space_init(&address_space_io, system_io, "I/O"); 2564 } 2565 2566 MemoryRegion *get_system_memory(void) 2567 { 2568 return system_memory; 2569 } 2570 2571 MemoryRegion *get_system_io(void) 2572 { 2573 return system_io; 2574 } 2575 2576 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2577 hwaddr length) 2578 { 2579 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2580 addr += memory_region_get_ram_addr(mr); 2581 2582 /* No early return if dirty_log_mask is or becomes 0, because 2583 * cpu_physical_memory_set_dirty_range will still call 2584 * xen_modified_memory. 2585 */ 2586 if (dirty_log_mask) { 2587 dirty_log_mask = 2588 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2589 } 2590 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2591 assert(tcg_enabled()); 2592 tb_invalidate_phys_range(addr, addr + length - 1); 2593 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2594 } 2595 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2596 } 2597 2598 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2599 { 2600 /* 2601 * In principle this function would work on other memory region types too, 2602 * but the ROM device use case is the only one where this operation is 2603 * necessary. Other memory regions should use the 2604 * address_space_read/write() APIs. 2605 */ 2606 assert(memory_region_is_romd(mr)); 2607 2608 invalidate_and_set_dirty(mr, addr, size); 2609 } 2610 2611 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2612 { 2613 unsigned access_size_max = mr->ops->valid.max_access_size; 2614 2615 /* Regions are assumed to support 1-4 byte accesses unless 2616 otherwise specified. */ 2617 if (access_size_max == 0) { 2618 access_size_max = 4; 2619 } 2620 2621 /* Bound the maximum access by the alignment of the address. */ 2622 if (!mr->ops->impl.unaligned) { 2623 unsigned align_size_max = addr & -addr; 2624 if (align_size_max != 0 && align_size_max < access_size_max) { 2625 access_size_max = align_size_max; 2626 } 2627 } 2628 2629 /* Don't attempt accesses larger than the maximum. */ 2630 if (l > access_size_max) { 2631 l = access_size_max; 2632 } 2633 l = pow2floor(l); 2634 2635 return l; 2636 } 2637 2638 bool prepare_mmio_access(MemoryRegion *mr) 2639 { 2640 bool release_lock = false; 2641 2642 if (!qemu_mutex_iothread_locked()) { 2643 qemu_mutex_lock_iothread(); 2644 release_lock = true; 2645 } 2646 if (mr->flush_coalesced_mmio) { 2647 qemu_flush_coalesced_mmio_buffer(); 2648 } 2649 2650 return release_lock; 2651 } 2652 2653 /** 2654 * flatview_access_allowed 2655 * @mr: #MemoryRegion to be accessed 2656 * @attrs: memory transaction attributes 2657 * @addr: address within that memory region 2658 * @len: the number of bytes to access 2659 * 2660 * Check if a memory transaction is allowed. 2661 * 2662 * Returns: true if transaction is allowed, false if denied. 2663 */ 2664 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2665 hwaddr addr, hwaddr len) 2666 { 2667 if (likely(!attrs.memory)) { 2668 return true; 2669 } 2670 if (memory_region_is_ram(mr)) { 2671 return true; 2672 } 2673 qemu_log_mask(LOG_GUEST_ERROR, 2674 "Invalid access to non-RAM device at " 2675 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2676 "region '%s'\n", addr, len, memory_region_name(mr)); 2677 return false; 2678 } 2679 2680 /* Called within RCU critical section. */ 2681 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2682 MemTxAttrs attrs, 2683 const void *ptr, 2684 hwaddr len, hwaddr addr1, 2685 hwaddr l, MemoryRegion *mr) 2686 { 2687 uint8_t *ram_ptr; 2688 uint64_t val; 2689 MemTxResult result = MEMTX_OK; 2690 bool release_lock = false; 2691 const uint8_t *buf = ptr; 2692 2693 for (;;) { 2694 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2695 result |= MEMTX_ACCESS_ERROR; 2696 /* Keep going. */ 2697 } else if (!memory_access_is_direct(mr, true)) { 2698 release_lock |= prepare_mmio_access(mr); 2699 l = memory_access_size(mr, l, addr1); 2700 /* XXX: could force current_cpu to NULL to avoid 2701 potential bugs */ 2702 val = ldn_he_p(buf, l); 2703 result |= memory_region_dispatch_write(mr, addr1, val, 2704 size_memop(l), attrs); 2705 } else { 2706 /* RAM case */ 2707 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2708 memmove(ram_ptr, buf, l); 2709 invalidate_and_set_dirty(mr, addr1, l); 2710 } 2711 2712 if (release_lock) { 2713 qemu_mutex_unlock_iothread(); 2714 release_lock = false; 2715 } 2716 2717 len -= l; 2718 buf += l; 2719 addr += l; 2720 2721 if (!len) { 2722 break; 2723 } 2724 2725 l = len; 2726 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2727 } 2728 2729 return result; 2730 } 2731 2732 /* Called from RCU critical section. */ 2733 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2734 const void *buf, hwaddr len) 2735 { 2736 hwaddr l; 2737 hwaddr addr1; 2738 MemoryRegion *mr; 2739 2740 l = len; 2741 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2742 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2743 return MEMTX_ACCESS_ERROR; 2744 } 2745 return flatview_write_continue(fv, addr, attrs, buf, len, 2746 addr1, l, mr); 2747 } 2748 2749 /* Called within RCU critical section. */ 2750 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2751 MemTxAttrs attrs, void *ptr, 2752 hwaddr len, hwaddr addr1, hwaddr l, 2753 MemoryRegion *mr) 2754 { 2755 uint8_t *ram_ptr; 2756 uint64_t val; 2757 MemTxResult result = MEMTX_OK; 2758 bool release_lock = false; 2759 uint8_t *buf = ptr; 2760 2761 fuzz_dma_read_cb(addr, len, mr); 2762 for (;;) { 2763 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2764 result |= MEMTX_ACCESS_ERROR; 2765 /* Keep going. */ 2766 } else if (!memory_access_is_direct(mr, false)) { 2767 /* I/O case */ 2768 release_lock |= prepare_mmio_access(mr); 2769 l = memory_access_size(mr, l, addr1); 2770 result |= memory_region_dispatch_read(mr, addr1, &val, 2771 size_memop(l), attrs); 2772 stn_he_p(buf, l, val); 2773 } else { 2774 /* RAM case */ 2775 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2776 memcpy(buf, ram_ptr, l); 2777 } 2778 2779 if (release_lock) { 2780 qemu_mutex_unlock_iothread(); 2781 release_lock = false; 2782 } 2783 2784 len -= l; 2785 buf += l; 2786 addr += l; 2787 2788 if (!len) { 2789 break; 2790 } 2791 2792 l = len; 2793 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2794 } 2795 2796 return result; 2797 } 2798 2799 /* Called from RCU critical section. */ 2800 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2801 MemTxAttrs attrs, void *buf, hwaddr len) 2802 { 2803 hwaddr l; 2804 hwaddr addr1; 2805 MemoryRegion *mr; 2806 2807 l = len; 2808 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2809 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2810 return MEMTX_ACCESS_ERROR; 2811 } 2812 return flatview_read_continue(fv, addr, attrs, buf, len, 2813 addr1, l, mr); 2814 } 2815 2816 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2817 MemTxAttrs attrs, void *buf, hwaddr len) 2818 { 2819 MemTxResult result = MEMTX_OK; 2820 FlatView *fv; 2821 2822 if (len > 0) { 2823 RCU_READ_LOCK_GUARD(); 2824 fv = address_space_to_flatview(as); 2825 result = flatview_read(fv, addr, attrs, buf, len); 2826 } 2827 2828 return result; 2829 } 2830 2831 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2832 MemTxAttrs attrs, 2833 const void *buf, hwaddr len) 2834 { 2835 MemTxResult result = MEMTX_OK; 2836 FlatView *fv; 2837 2838 if (len > 0) { 2839 RCU_READ_LOCK_GUARD(); 2840 fv = address_space_to_flatview(as); 2841 result = flatview_write(fv, addr, attrs, buf, len); 2842 } 2843 2844 return result; 2845 } 2846 2847 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2848 void *buf, hwaddr len, bool is_write) 2849 { 2850 if (is_write) { 2851 return address_space_write(as, addr, attrs, buf, len); 2852 } else { 2853 return address_space_read_full(as, addr, attrs, buf, len); 2854 } 2855 } 2856 2857 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2858 uint8_t c, hwaddr len, MemTxAttrs attrs) 2859 { 2860 #define FILLBUF_SIZE 512 2861 uint8_t fillbuf[FILLBUF_SIZE]; 2862 int l; 2863 MemTxResult error = MEMTX_OK; 2864 2865 memset(fillbuf, c, FILLBUF_SIZE); 2866 while (len > 0) { 2867 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2868 error |= address_space_write(as, addr, attrs, fillbuf, l); 2869 len -= l; 2870 addr += l; 2871 } 2872 2873 return error; 2874 } 2875 2876 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2877 hwaddr len, bool is_write) 2878 { 2879 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2880 buf, len, is_write); 2881 } 2882 2883 enum write_rom_type { 2884 WRITE_DATA, 2885 FLUSH_CACHE, 2886 }; 2887 2888 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2889 hwaddr addr, 2890 MemTxAttrs attrs, 2891 const void *ptr, 2892 hwaddr len, 2893 enum write_rom_type type) 2894 { 2895 hwaddr l; 2896 uint8_t *ram_ptr; 2897 hwaddr addr1; 2898 MemoryRegion *mr; 2899 const uint8_t *buf = ptr; 2900 2901 RCU_READ_LOCK_GUARD(); 2902 while (len > 0) { 2903 l = len; 2904 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2905 2906 if (!(memory_region_is_ram(mr) || 2907 memory_region_is_romd(mr))) { 2908 l = memory_access_size(mr, l, addr1); 2909 } else { 2910 /* ROM/RAM case */ 2911 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2912 switch (type) { 2913 case WRITE_DATA: 2914 memcpy(ram_ptr, buf, l); 2915 invalidate_and_set_dirty(mr, addr1, l); 2916 break; 2917 case FLUSH_CACHE: 2918 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2919 break; 2920 } 2921 } 2922 len -= l; 2923 buf += l; 2924 addr += l; 2925 } 2926 return MEMTX_OK; 2927 } 2928 2929 /* used for ROM loading : can write in RAM and ROM */ 2930 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2931 MemTxAttrs attrs, 2932 const void *buf, hwaddr len) 2933 { 2934 return address_space_write_rom_internal(as, addr, attrs, 2935 buf, len, WRITE_DATA); 2936 } 2937 2938 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2939 { 2940 /* 2941 * This function should do the same thing as an icache flush that was 2942 * triggered from within the guest. For TCG we are always cache coherent, 2943 * so there is no need to flush anything. For KVM / Xen we need to flush 2944 * the host's instruction cache at least. 2945 */ 2946 if (tcg_enabled()) { 2947 return; 2948 } 2949 2950 address_space_write_rom_internal(&address_space_memory, 2951 start, MEMTXATTRS_UNSPECIFIED, 2952 NULL, len, FLUSH_CACHE); 2953 } 2954 2955 typedef struct { 2956 MemoryRegion *mr; 2957 void *buffer; 2958 hwaddr addr; 2959 hwaddr len; 2960 bool in_use; 2961 } BounceBuffer; 2962 2963 static BounceBuffer bounce; 2964 2965 typedef struct MapClient { 2966 QEMUBH *bh; 2967 QLIST_ENTRY(MapClient) link; 2968 } MapClient; 2969 2970 QemuMutex map_client_list_lock; 2971 static QLIST_HEAD(, MapClient) map_client_list 2972 = QLIST_HEAD_INITIALIZER(map_client_list); 2973 2974 static void cpu_unregister_map_client_do(MapClient *client) 2975 { 2976 QLIST_REMOVE(client, link); 2977 g_free(client); 2978 } 2979 2980 static void cpu_notify_map_clients_locked(void) 2981 { 2982 MapClient *client; 2983 2984 while (!QLIST_EMPTY(&map_client_list)) { 2985 client = QLIST_FIRST(&map_client_list); 2986 qemu_bh_schedule(client->bh); 2987 cpu_unregister_map_client_do(client); 2988 } 2989 } 2990 2991 void cpu_register_map_client(QEMUBH *bh) 2992 { 2993 MapClient *client = g_malloc(sizeof(*client)); 2994 2995 qemu_mutex_lock(&map_client_list_lock); 2996 client->bh = bh; 2997 QLIST_INSERT_HEAD(&map_client_list, client, link); 2998 /* Write map_client_list before reading in_use. */ 2999 smp_mb(); 3000 if (!qatomic_read(&bounce.in_use)) { 3001 cpu_notify_map_clients_locked(); 3002 } 3003 qemu_mutex_unlock(&map_client_list_lock); 3004 } 3005 3006 void cpu_exec_init_all(void) 3007 { 3008 qemu_mutex_init(&ram_list.mutex); 3009 /* The data structures we set up here depend on knowing the page size, 3010 * so no more changes can be made after this point. 3011 * In an ideal world, nothing we did before we had finished the 3012 * machine setup would care about the target page size, and we could 3013 * do this much later, rather than requiring board models to state 3014 * up front what their requirements are. 3015 */ 3016 finalize_target_page_bits(); 3017 io_mem_init(); 3018 memory_map_init(); 3019 qemu_mutex_init(&map_client_list_lock); 3020 } 3021 3022 void cpu_unregister_map_client(QEMUBH *bh) 3023 { 3024 MapClient *client; 3025 3026 qemu_mutex_lock(&map_client_list_lock); 3027 QLIST_FOREACH(client, &map_client_list, link) { 3028 if (client->bh == bh) { 3029 cpu_unregister_map_client_do(client); 3030 break; 3031 } 3032 } 3033 qemu_mutex_unlock(&map_client_list_lock); 3034 } 3035 3036 static void cpu_notify_map_clients(void) 3037 { 3038 qemu_mutex_lock(&map_client_list_lock); 3039 cpu_notify_map_clients_locked(); 3040 qemu_mutex_unlock(&map_client_list_lock); 3041 } 3042 3043 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3044 bool is_write, MemTxAttrs attrs) 3045 { 3046 MemoryRegion *mr; 3047 hwaddr l, xlat; 3048 3049 while (len > 0) { 3050 l = len; 3051 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3052 if (!memory_access_is_direct(mr, is_write)) { 3053 l = memory_access_size(mr, l, addr); 3054 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3055 return false; 3056 } 3057 } 3058 3059 len -= l; 3060 addr += l; 3061 } 3062 return true; 3063 } 3064 3065 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3066 hwaddr len, bool is_write, 3067 MemTxAttrs attrs) 3068 { 3069 FlatView *fv; 3070 3071 RCU_READ_LOCK_GUARD(); 3072 fv = address_space_to_flatview(as); 3073 return flatview_access_valid(fv, addr, len, is_write, attrs); 3074 } 3075 3076 static hwaddr 3077 flatview_extend_translation(FlatView *fv, hwaddr addr, 3078 hwaddr target_len, 3079 MemoryRegion *mr, hwaddr base, hwaddr len, 3080 bool is_write, MemTxAttrs attrs) 3081 { 3082 hwaddr done = 0; 3083 hwaddr xlat; 3084 MemoryRegion *this_mr; 3085 3086 for (;;) { 3087 target_len -= len; 3088 addr += len; 3089 done += len; 3090 if (target_len == 0) { 3091 return done; 3092 } 3093 3094 len = target_len; 3095 this_mr = flatview_translate(fv, addr, &xlat, 3096 &len, is_write, attrs); 3097 if (this_mr != mr || xlat != base + done) { 3098 return done; 3099 } 3100 } 3101 } 3102 3103 /* Map a physical memory region into a host virtual address. 3104 * May map a subset of the requested range, given by and returned in *plen. 3105 * May return NULL if resources needed to perform the mapping are exhausted. 3106 * Use only for reads OR writes - not for read-modify-write operations. 3107 * Use cpu_register_map_client() to know when retrying the map operation is 3108 * likely to succeed. 3109 */ 3110 void *address_space_map(AddressSpace *as, 3111 hwaddr addr, 3112 hwaddr *plen, 3113 bool is_write, 3114 MemTxAttrs attrs) 3115 { 3116 hwaddr len = *plen; 3117 hwaddr l, xlat; 3118 MemoryRegion *mr; 3119 FlatView *fv; 3120 3121 if (len == 0) { 3122 return NULL; 3123 } 3124 3125 l = len; 3126 RCU_READ_LOCK_GUARD(); 3127 fv = address_space_to_flatview(as); 3128 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3129 3130 if (!memory_access_is_direct(mr, is_write)) { 3131 if (qatomic_xchg(&bounce.in_use, true)) { 3132 *plen = 0; 3133 return NULL; 3134 } 3135 /* Avoid unbounded allocations */ 3136 l = MIN(l, TARGET_PAGE_SIZE); 3137 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3138 bounce.addr = addr; 3139 bounce.len = l; 3140 3141 memory_region_ref(mr); 3142 bounce.mr = mr; 3143 if (!is_write) { 3144 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3145 bounce.buffer, l); 3146 } 3147 3148 *plen = l; 3149 return bounce.buffer; 3150 } 3151 3152 3153 memory_region_ref(mr); 3154 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3155 l, is_write, attrs); 3156 fuzz_dma_read_cb(addr, *plen, mr); 3157 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3158 } 3159 3160 /* Unmaps a memory region previously mapped by address_space_map(). 3161 * Will also mark the memory as dirty if is_write is true. access_len gives 3162 * the amount of memory that was actually read or written by the caller. 3163 */ 3164 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3165 bool is_write, hwaddr access_len) 3166 { 3167 if (buffer != bounce.buffer) { 3168 MemoryRegion *mr; 3169 ram_addr_t addr1; 3170 3171 mr = memory_region_from_host(buffer, &addr1); 3172 assert(mr != NULL); 3173 if (is_write) { 3174 invalidate_and_set_dirty(mr, addr1, access_len); 3175 } 3176 if (xen_enabled()) { 3177 xen_invalidate_map_cache_entry(buffer); 3178 } 3179 memory_region_unref(mr); 3180 return; 3181 } 3182 if (is_write) { 3183 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3184 bounce.buffer, access_len); 3185 } 3186 qemu_vfree(bounce.buffer); 3187 bounce.buffer = NULL; 3188 memory_region_unref(bounce.mr); 3189 /* Clear in_use before reading map_client_list. */ 3190 qatomic_set_mb(&bounce.in_use, false); 3191 cpu_notify_map_clients(); 3192 } 3193 3194 void *cpu_physical_memory_map(hwaddr addr, 3195 hwaddr *plen, 3196 bool is_write) 3197 { 3198 return address_space_map(&address_space_memory, addr, plen, is_write, 3199 MEMTXATTRS_UNSPECIFIED); 3200 } 3201 3202 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3203 bool is_write, hwaddr access_len) 3204 { 3205 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3206 } 3207 3208 #define ARG1_DECL AddressSpace *as 3209 #define ARG1 as 3210 #define SUFFIX 3211 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3212 #define RCU_READ_LOCK(...) rcu_read_lock() 3213 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3214 #include "memory_ldst.c.inc" 3215 3216 int64_t address_space_cache_init(MemoryRegionCache *cache, 3217 AddressSpace *as, 3218 hwaddr addr, 3219 hwaddr len, 3220 bool is_write) 3221 { 3222 AddressSpaceDispatch *d; 3223 hwaddr l; 3224 MemoryRegion *mr; 3225 Int128 diff; 3226 3227 assert(len > 0); 3228 3229 l = len; 3230 cache->fv = address_space_get_flatview(as); 3231 d = flatview_to_dispatch(cache->fv); 3232 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3233 3234 /* 3235 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3236 * Take that into account to compute how many bytes are there between 3237 * cache->xlat and the end of the section. 3238 */ 3239 diff = int128_sub(cache->mrs.size, 3240 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3241 l = int128_get64(int128_min(diff, int128_make64(l))); 3242 3243 mr = cache->mrs.mr; 3244 memory_region_ref(mr); 3245 if (memory_access_is_direct(mr, is_write)) { 3246 /* We don't care about the memory attributes here as we're only 3247 * doing this if we found actual RAM, which behaves the same 3248 * regardless of attributes; so UNSPECIFIED is fine. 3249 */ 3250 l = flatview_extend_translation(cache->fv, addr, len, mr, 3251 cache->xlat, l, is_write, 3252 MEMTXATTRS_UNSPECIFIED); 3253 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3254 } else { 3255 cache->ptr = NULL; 3256 } 3257 3258 cache->len = l; 3259 cache->is_write = is_write; 3260 return l; 3261 } 3262 3263 void address_space_cache_invalidate(MemoryRegionCache *cache, 3264 hwaddr addr, 3265 hwaddr access_len) 3266 { 3267 assert(cache->is_write); 3268 if (likely(cache->ptr)) { 3269 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3270 } 3271 } 3272 3273 void address_space_cache_destroy(MemoryRegionCache *cache) 3274 { 3275 if (!cache->mrs.mr) { 3276 return; 3277 } 3278 3279 if (xen_enabled()) { 3280 xen_invalidate_map_cache_entry(cache->ptr); 3281 } 3282 memory_region_unref(cache->mrs.mr); 3283 flatview_unref(cache->fv); 3284 cache->mrs.mr = NULL; 3285 cache->fv = NULL; 3286 } 3287 3288 /* Called from RCU critical section. This function has the same 3289 * semantics as address_space_translate, but it only works on a 3290 * predefined range of a MemoryRegion that was mapped with 3291 * address_space_cache_init. 3292 */ 3293 static inline MemoryRegion *address_space_translate_cached( 3294 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3295 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3296 { 3297 MemoryRegionSection section; 3298 MemoryRegion *mr; 3299 IOMMUMemoryRegion *iommu_mr; 3300 AddressSpace *target_as; 3301 3302 assert(!cache->ptr); 3303 *xlat = addr + cache->xlat; 3304 3305 mr = cache->mrs.mr; 3306 iommu_mr = memory_region_get_iommu(mr); 3307 if (!iommu_mr) { 3308 /* MMIO region. */ 3309 return mr; 3310 } 3311 3312 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3313 NULL, is_write, true, 3314 &target_as, attrs); 3315 return section.mr; 3316 } 3317 3318 /* Called from RCU critical section. address_space_read_cached uses this 3319 * out of line function when the target is an MMIO or IOMMU region. 3320 */ 3321 MemTxResult 3322 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3323 void *buf, hwaddr len) 3324 { 3325 hwaddr addr1, l; 3326 MemoryRegion *mr; 3327 3328 l = len; 3329 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3330 MEMTXATTRS_UNSPECIFIED); 3331 return flatview_read_continue(cache->fv, 3332 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3333 addr1, l, mr); 3334 } 3335 3336 /* Called from RCU critical section. address_space_write_cached uses this 3337 * out of line function when the target is an MMIO or IOMMU region. 3338 */ 3339 MemTxResult 3340 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3341 const void *buf, hwaddr len) 3342 { 3343 hwaddr addr1, l; 3344 MemoryRegion *mr; 3345 3346 l = len; 3347 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3348 MEMTXATTRS_UNSPECIFIED); 3349 return flatview_write_continue(cache->fv, 3350 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3351 addr1, l, mr); 3352 } 3353 3354 #define ARG1_DECL MemoryRegionCache *cache 3355 #define ARG1 cache 3356 #define SUFFIX _cached_slow 3357 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3358 #define RCU_READ_LOCK() ((void)0) 3359 #define RCU_READ_UNLOCK() ((void)0) 3360 #include "memory_ldst.c.inc" 3361 3362 /* virtual memory access for debug (includes writing to ROM) */ 3363 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3364 void *ptr, size_t len, bool is_write) 3365 { 3366 hwaddr phys_addr; 3367 vaddr l, page; 3368 uint8_t *buf = ptr; 3369 3370 cpu_synchronize_state(cpu); 3371 while (len > 0) { 3372 int asidx; 3373 MemTxAttrs attrs; 3374 MemTxResult res; 3375 3376 page = addr & TARGET_PAGE_MASK; 3377 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3378 asidx = cpu_asidx_from_attrs(cpu, attrs); 3379 /* if no physical page mapped, return an error */ 3380 if (phys_addr == -1) 3381 return -1; 3382 l = (page + TARGET_PAGE_SIZE) - addr; 3383 if (l > len) 3384 l = len; 3385 phys_addr += (addr & ~TARGET_PAGE_MASK); 3386 if (is_write) { 3387 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3388 attrs, buf, l); 3389 } else { 3390 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3391 attrs, buf, l); 3392 } 3393 if (res != MEMTX_OK) { 3394 return -1; 3395 } 3396 len -= l; 3397 buf += l; 3398 addr += l; 3399 } 3400 return 0; 3401 } 3402 3403 /* 3404 * Allows code that needs to deal with migration bitmaps etc to still be built 3405 * target independent. 3406 */ 3407 size_t qemu_target_page_size(void) 3408 { 3409 return TARGET_PAGE_SIZE; 3410 } 3411 3412 int qemu_target_page_mask(void) 3413 { 3414 return TARGET_PAGE_MASK; 3415 } 3416 3417 int qemu_target_page_bits(void) 3418 { 3419 return TARGET_PAGE_BITS; 3420 } 3421 3422 int qemu_target_page_bits_min(void) 3423 { 3424 return TARGET_PAGE_BITS_MIN; 3425 } 3426 3427 /* Convert target pages to MiB (2**20). */ 3428 size_t qemu_target_pages_to_MiB(size_t pages) 3429 { 3430 int page_bits = TARGET_PAGE_BITS; 3431 3432 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3433 g_assert(page_bits < 20); 3434 3435 return pages >> (20 - page_bits); 3436 } 3437 3438 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3439 { 3440 MemoryRegion*mr; 3441 hwaddr l = 1; 3442 3443 RCU_READ_LOCK_GUARD(); 3444 mr = address_space_translate(&address_space_memory, 3445 phys_addr, &phys_addr, &l, false, 3446 MEMTXATTRS_UNSPECIFIED); 3447 3448 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3449 } 3450 3451 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3452 { 3453 RAMBlock *block; 3454 int ret = 0; 3455 3456 RCU_READ_LOCK_GUARD(); 3457 RAMBLOCK_FOREACH(block) { 3458 ret = func(block, opaque); 3459 if (ret) { 3460 break; 3461 } 3462 } 3463 return ret; 3464 } 3465 3466 /* 3467 * Unmap pages of memory from start to start+length such that 3468 * they a) read as 0, b) Trigger whatever fault mechanism 3469 * the OS provides for postcopy. 3470 * The pages must be unmapped by the end of the function. 3471 * Returns: 0 on success, none-0 on failure 3472 * 3473 */ 3474 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3475 { 3476 int ret = -1; 3477 3478 uint8_t *host_startaddr = rb->host + start; 3479 3480 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3481 error_report("ram_block_discard_range: Unaligned start address: %p", 3482 host_startaddr); 3483 goto err; 3484 } 3485 3486 if ((start + length) <= rb->max_length) { 3487 bool need_madvise, need_fallocate; 3488 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3489 error_report("ram_block_discard_range: Unaligned length: %zx", 3490 length); 3491 goto err; 3492 } 3493 3494 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3495 3496 /* The logic here is messy; 3497 * madvise DONTNEED fails for hugepages 3498 * fallocate works on hugepages and shmem 3499 * shared anonymous memory requires madvise REMOVE 3500 */ 3501 need_madvise = (rb->page_size == qemu_host_page_size); 3502 need_fallocate = rb->fd != -1; 3503 if (need_fallocate) { 3504 /* For a file, this causes the area of the file to be zero'd 3505 * if read, and for hugetlbfs also causes it to be unmapped 3506 * so a userfault will trigger. 3507 */ 3508 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3509 /* 3510 * fallocate() will fail with readonly files. Let's print a 3511 * proper error message. 3512 */ 3513 if (rb->flags & RAM_READONLY_FD) { 3514 error_report("ram_block_discard_range: Discarding RAM" 3515 " with readonly files is not supported"); 3516 goto err; 3517 3518 } 3519 /* 3520 * We'll discard data from the actual file, even though we only 3521 * have a MAP_PRIVATE mapping, possibly messing with other 3522 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3523 * change that behavior whithout violating the promised 3524 * semantics of ram_block_discard_range(). 3525 * 3526 * Only warn, because it works as long as nobody else uses that 3527 * file. 3528 */ 3529 if (!qemu_ram_is_shared(rb)) { 3530 warn_report_once("ram_block_discard_range: Discarding RAM" 3531 " in private file mappings is possibly" 3532 " dangerous, because it will modify the" 3533 " underlying file and will affect other" 3534 " users of the file"); 3535 } 3536 3537 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3538 start, length); 3539 if (ret) { 3540 ret = -errno; 3541 error_report("ram_block_discard_range: Failed to fallocate " 3542 "%s:%" PRIx64 " +%zx (%d)", 3543 rb->idstr, start, length, ret); 3544 goto err; 3545 } 3546 #else 3547 ret = -ENOSYS; 3548 error_report("ram_block_discard_range: fallocate not available/file" 3549 "%s:%" PRIx64 " +%zx (%d)", 3550 rb->idstr, start, length, ret); 3551 goto err; 3552 #endif 3553 } 3554 if (need_madvise) { 3555 /* For normal RAM this causes it to be unmapped, 3556 * for shared memory it causes the local mapping to disappear 3557 * and to fall back on the file contents (which we just 3558 * fallocate'd away). 3559 */ 3560 #if defined(CONFIG_MADVISE) 3561 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3562 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3563 } else { 3564 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3565 } 3566 if (ret) { 3567 ret = -errno; 3568 error_report("ram_block_discard_range: Failed to discard range " 3569 "%s:%" PRIx64 " +%zx (%d)", 3570 rb->idstr, start, length, ret); 3571 goto err; 3572 } 3573 #else 3574 ret = -ENOSYS; 3575 error_report("ram_block_discard_range: MADVISE not available" 3576 "%s:%" PRIx64 " +%zx (%d)", 3577 rb->idstr, start, length, ret); 3578 goto err; 3579 #endif 3580 } 3581 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3582 need_madvise, need_fallocate, ret); 3583 } else { 3584 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3585 "/%zx/" RAM_ADDR_FMT")", 3586 rb->idstr, start, length, rb->max_length); 3587 } 3588 3589 err: 3590 return ret; 3591 } 3592 3593 bool ramblock_is_pmem(RAMBlock *rb) 3594 { 3595 return rb->flags & RAM_PMEM; 3596 } 3597 3598 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3599 { 3600 if (start == end - 1) { 3601 qemu_printf("\t%3d ", start); 3602 } else { 3603 qemu_printf("\t%3d..%-3d ", start, end - 1); 3604 } 3605 qemu_printf(" skip=%d ", skip); 3606 if (ptr == PHYS_MAP_NODE_NIL) { 3607 qemu_printf(" ptr=NIL"); 3608 } else if (!skip) { 3609 qemu_printf(" ptr=#%d", ptr); 3610 } else { 3611 qemu_printf(" ptr=[%d]", ptr); 3612 } 3613 qemu_printf("\n"); 3614 } 3615 3616 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3617 int128_sub((size), int128_one())) : 0) 3618 3619 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3620 { 3621 int i; 3622 3623 qemu_printf(" Dispatch\n"); 3624 qemu_printf(" Physical sections\n"); 3625 3626 for (i = 0; i < d->map.sections_nb; ++i) { 3627 MemoryRegionSection *s = d->map.sections + i; 3628 const char *names[] = { " [unassigned]", " [not dirty]", 3629 " [ROM]", " [watch]" }; 3630 3631 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3632 " %s%s%s%s%s", 3633 i, 3634 s->offset_within_address_space, 3635 s->offset_within_address_space + MR_SIZE(s->size), 3636 s->mr->name ? s->mr->name : "(noname)", 3637 i < ARRAY_SIZE(names) ? names[i] : "", 3638 s->mr == root ? " [ROOT]" : "", 3639 s == d->mru_section ? " [MRU]" : "", 3640 s->mr->is_iommu ? " [iommu]" : ""); 3641 3642 if (s->mr->alias) { 3643 qemu_printf(" alias=%s", s->mr->alias->name ? 3644 s->mr->alias->name : "noname"); 3645 } 3646 qemu_printf("\n"); 3647 } 3648 3649 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3650 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3651 for (i = 0; i < d->map.nodes_nb; ++i) { 3652 int j, jprev; 3653 PhysPageEntry prev; 3654 Node *n = d->map.nodes + i; 3655 3656 qemu_printf(" [%d]\n", i); 3657 3658 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3659 PhysPageEntry *pe = *n + j; 3660 3661 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3662 continue; 3663 } 3664 3665 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3666 3667 jprev = j; 3668 prev = *pe; 3669 } 3670 3671 if (jprev != ARRAY_SIZE(*n)) { 3672 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3673 } 3674 } 3675 } 3676 3677 /* Require any discards to work. */ 3678 static unsigned int ram_block_discard_required_cnt; 3679 /* Require only coordinated discards to work. */ 3680 static unsigned int ram_block_coordinated_discard_required_cnt; 3681 /* Disable any discards. */ 3682 static unsigned int ram_block_discard_disabled_cnt; 3683 /* Disable only uncoordinated discards. */ 3684 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3685 static QemuMutex ram_block_discard_disable_mutex; 3686 3687 static void ram_block_discard_disable_mutex_lock(void) 3688 { 3689 static gsize initialized; 3690 3691 if (g_once_init_enter(&initialized)) { 3692 qemu_mutex_init(&ram_block_discard_disable_mutex); 3693 g_once_init_leave(&initialized, 1); 3694 } 3695 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3696 } 3697 3698 static void ram_block_discard_disable_mutex_unlock(void) 3699 { 3700 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3701 } 3702 3703 int ram_block_discard_disable(bool state) 3704 { 3705 int ret = 0; 3706 3707 ram_block_discard_disable_mutex_lock(); 3708 if (!state) { 3709 ram_block_discard_disabled_cnt--; 3710 } else if (ram_block_discard_required_cnt || 3711 ram_block_coordinated_discard_required_cnt) { 3712 ret = -EBUSY; 3713 } else { 3714 ram_block_discard_disabled_cnt++; 3715 } 3716 ram_block_discard_disable_mutex_unlock(); 3717 return ret; 3718 } 3719 3720 int ram_block_uncoordinated_discard_disable(bool state) 3721 { 3722 int ret = 0; 3723 3724 ram_block_discard_disable_mutex_lock(); 3725 if (!state) { 3726 ram_block_uncoordinated_discard_disabled_cnt--; 3727 } else if (ram_block_discard_required_cnt) { 3728 ret = -EBUSY; 3729 } else { 3730 ram_block_uncoordinated_discard_disabled_cnt++; 3731 } 3732 ram_block_discard_disable_mutex_unlock(); 3733 return ret; 3734 } 3735 3736 int ram_block_discard_require(bool state) 3737 { 3738 int ret = 0; 3739 3740 ram_block_discard_disable_mutex_lock(); 3741 if (!state) { 3742 ram_block_discard_required_cnt--; 3743 } else if (ram_block_discard_disabled_cnt || 3744 ram_block_uncoordinated_discard_disabled_cnt) { 3745 ret = -EBUSY; 3746 } else { 3747 ram_block_discard_required_cnt++; 3748 } 3749 ram_block_discard_disable_mutex_unlock(); 3750 return ret; 3751 } 3752 3753 int ram_block_coordinated_discard_require(bool state) 3754 { 3755 int ret = 0; 3756 3757 ram_block_discard_disable_mutex_lock(); 3758 if (!state) { 3759 ram_block_coordinated_discard_required_cnt--; 3760 } else if (ram_block_discard_disabled_cnt) { 3761 ret = -EBUSY; 3762 } else { 3763 ram_block_coordinated_discard_required_cnt++; 3764 } 3765 ram_block_discard_disable_mutex_unlock(); 3766 return ret; 3767 } 3768 3769 bool ram_block_discard_is_disabled(void) 3770 { 3771 return qatomic_read(&ram_block_discard_disabled_cnt) || 3772 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3773 } 3774 3775 bool ram_block_discard_is_required(void) 3776 { 3777 return qatomic_read(&ram_block_discard_required_cnt) || 3778 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3779 } 3780