1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "sysemu/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Called from RCU critical section */ 784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 785 { 786 RAMBlock *block; 787 788 block = qatomic_rcu_read(&ram_list.mru_block); 789 if (block && addr - block->offset < block->max_length) { 790 return block; 791 } 792 RAMBLOCK_FOREACH(block) { 793 if (addr - block->offset < block->max_length) { 794 goto found; 795 } 796 } 797 798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 799 abort(); 800 801 found: 802 /* It is safe to write mru_block outside the BQL. This 803 * is what happens: 804 * 805 * mru_block = xxx 806 * rcu_read_unlock() 807 * xxx removed from list 808 * rcu_read_lock() 809 * read mru_block 810 * mru_block = NULL; 811 * call_rcu(reclaim_ramblock, xxx); 812 * rcu_read_unlock() 813 * 814 * qatomic_rcu_set is not needed here. The block was already published 815 * when it was placed into the list. Here we're just making an extra 816 * copy of the pointer. 817 */ 818 ram_list.mru_block = block; 819 return block; 820 } 821 822 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 823 { 824 CPUState *cpu; 825 ram_addr_t start1; 826 RAMBlock *block; 827 ram_addr_t end; 828 829 assert(tcg_enabled()); 830 end = TARGET_PAGE_ALIGN(start + length); 831 start &= TARGET_PAGE_MASK; 832 833 RCU_READ_LOCK_GUARD(); 834 block = qemu_get_ram_block(start); 835 assert(block == qemu_get_ram_block(end - 1)); 836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 837 CPU_FOREACH(cpu) { 838 tlb_reset_dirty(cpu, start1, length); 839 } 840 } 841 842 /* Note: start and end must be within the same ram block. */ 843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 844 ram_addr_t length, 845 unsigned client) 846 { 847 DirtyMemoryBlocks *blocks; 848 unsigned long end, page, start_page; 849 bool dirty = false; 850 RAMBlock *ramblock; 851 uint64_t mr_offset, mr_size; 852 853 if (length == 0) { 854 return false; 855 } 856 857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 858 start_page = start >> TARGET_PAGE_BITS; 859 page = start_page; 860 861 WITH_RCU_READ_LOCK_GUARD() { 862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 863 ramblock = qemu_get_ram_block(start); 864 /* Range sanity check on the ramblock */ 865 assert(start >= ramblock->offset && 866 start + length <= ramblock->offset + ramblock->used_length); 867 868 while (page < end) { 869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long num = MIN(end - page, 872 DIRTY_MEMORY_BLOCK_SIZE - offset); 873 874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 875 offset, num); 876 page += num; 877 } 878 879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 880 mr_size = (end - start_page) << TARGET_PAGE_BITS; 881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 882 } 883 884 if (dirty) { 885 cpu_physical_memory_dirty_bits_cleared(start, length); 886 } 887 888 return dirty; 889 } 890 891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 893 { 894 DirtyMemoryBlocks *blocks; 895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 899 DirtyBitmapSnapshot *snap; 900 unsigned long page, end, dest; 901 902 snap = g_malloc0(sizeof(*snap) + 903 ((last - first) >> (TARGET_PAGE_BITS + 3))); 904 snap->start = first; 905 snap->end = last; 906 907 page = first >> TARGET_PAGE_BITS; 908 end = last >> TARGET_PAGE_BITS; 909 dest = 0; 910 911 WITH_RCU_READ_LOCK_GUARD() { 912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 913 914 while (page < end) { 915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long num = MIN(end - page, 918 DIRTY_MEMORY_BLOCK_SIZE - ofs); 919 920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 922 ofs >>= BITS_PER_LEVEL; 923 924 bitmap_copy_and_clear_atomic(snap->dirty + dest, 925 blocks->blocks[idx] + ofs, 926 num); 927 page += num; 928 dest += num >> BITS_PER_LEVEL; 929 } 930 } 931 932 cpu_physical_memory_dirty_bits_cleared(start, length); 933 934 memory_region_clear_dirty_bitmap(mr, offset, length); 935 936 return snap; 937 } 938 939 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 940 ram_addr_t start, 941 ram_addr_t length) 942 { 943 unsigned long page, end; 944 945 assert(start >= snap->start); 946 assert(start + length <= snap->end); 947 948 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 949 page = (start - snap->start) >> TARGET_PAGE_BITS; 950 951 while (page < end) { 952 if (test_bit(page, snap->dirty)) { 953 return true; 954 } 955 page++; 956 } 957 return false; 958 } 959 960 /* Called from RCU critical section */ 961 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 962 MemoryRegionSection *section) 963 { 964 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 965 return section - d->map.sections; 966 } 967 968 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 969 uint16_t section); 970 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 971 972 static uint16_t phys_section_add(PhysPageMap *map, 973 MemoryRegionSection *section) 974 { 975 /* The physical section number is ORed with a page-aligned 976 * pointer to produce the iotlb entries. Thus it should 977 * never overflow into the page-aligned value. 978 */ 979 assert(map->sections_nb < TARGET_PAGE_SIZE); 980 981 if (map->sections_nb == map->sections_nb_alloc) { 982 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 983 map->sections = g_renew(MemoryRegionSection, map->sections, 984 map->sections_nb_alloc); 985 } 986 map->sections[map->sections_nb] = *section; 987 memory_region_ref(section->mr); 988 return map->sections_nb++; 989 } 990 991 static void phys_section_destroy(MemoryRegion *mr) 992 { 993 bool have_sub_page = mr->subpage; 994 995 memory_region_unref(mr); 996 997 if (have_sub_page) { 998 subpage_t *subpage = container_of(mr, subpage_t, iomem); 999 object_unref(OBJECT(&subpage->iomem)); 1000 g_free(subpage); 1001 } 1002 } 1003 1004 static void phys_sections_free(PhysPageMap *map) 1005 { 1006 while (map->sections_nb > 0) { 1007 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1008 phys_section_destroy(section->mr); 1009 } 1010 g_free(map->sections); 1011 g_free(map->nodes); 1012 } 1013 1014 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1015 { 1016 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1017 subpage_t *subpage; 1018 hwaddr base = section->offset_within_address_space 1019 & TARGET_PAGE_MASK; 1020 MemoryRegionSection *existing = phys_page_find(d, base); 1021 MemoryRegionSection subsection = { 1022 .offset_within_address_space = base, 1023 .size = int128_make64(TARGET_PAGE_SIZE), 1024 }; 1025 hwaddr start, end; 1026 1027 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1028 1029 if (!(existing->mr->subpage)) { 1030 subpage = subpage_init(fv, base); 1031 subsection.fv = fv; 1032 subsection.mr = &subpage->iomem; 1033 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1034 phys_section_add(&d->map, &subsection)); 1035 } else { 1036 subpage = container_of(existing->mr, subpage_t, iomem); 1037 } 1038 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1039 end = start + int128_get64(section->size) - 1; 1040 subpage_register(subpage, start, end, 1041 phys_section_add(&d->map, section)); 1042 } 1043 1044 1045 static void register_multipage(FlatView *fv, 1046 MemoryRegionSection *section) 1047 { 1048 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1049 hwaddr start_addr = section->offset_within_address_space; 1050 uint16_t section_index = phys_section_add(&d->map, section); 1051 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1052 TARGET_PAGE_BITS)); 1053 1054 assert(num_pages); 1055 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1056 } 1057 1058 /* 1059 * The range in *section* may look like this: 1060 * 1061 * |s|PPPPPPP|s| 1062 * 1063 * where s stands for subpage and P for page. 1064 */ 1065 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1066 { 1067 MemoryRegionSection remain = *section; 1068 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1069 1070 /* register first subpage */ 1071 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1072 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1073 - remain.offset_within_address_space; 1074 1075 MemoryRegionSection now = remain; 1076 now.size = int128_min(int128_make64(left), now.size); 1077 register_subpage(fv, &now); 1078 if (int128_eq(remain.size, now.size)) { 1079 return; 1080 } 1081 remain.size = int128_sub(remain.size, now.size); 1082 remain.offset_within_address_space += int128_get64(now.size); 1083 remain.offset_within_region += int128_get64(now.size); 1084 } 1085 1086 /* register whole pages */ 1087 if (int128_ge(remain.size, page_size)) { 1088 MemoryRegionSection now = remain; 1089 now.size = int128_and(now.size, int128_neg(page_size)); 1090 register_multipage(fv, &now); 1091 if (int128_eq(remain.size, now.size)) { 1092 return; 1093 } 1094 remain.size = int128_sub(remain.size, now.size); 1095 remain.offset_within_address_space += int128_get64(now.size); 1096 remain.offset_within_region += int128_get64(now.size); 1097 } 1098 1099 /* register last subpage */ 1100 register_subpage(fv, &remain); 1101 } 1102 1103 void qemu_flush_coalesced_mmio_buffer(void) 1104 { 1105 if (kvm_enabled()) 1106 kvm_flush_coalesced_mmio_buffer(); 1107 } 1108 1109 void qemu_mutex_lock_ramlist(void) 1110 { 1111 qemu_mutex_lock(&ram_list.mutex); 1112 } 1113 1114 void qemu_mutex_unlock_ramlist(void) 1115 { 1116 qemu_mutex_unlock(&ram_list.mutex); 1117 } 1118 1119 GString *ram_block_format(void) 1120 { 1121 RAMBlock *block; 1122 char *psize; 1123 GString *buf = g_string_new(""); 1124 1125 RCU_READ_LOCK_GUARD(); 1126 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1127 "Block Name", "PSize", "Offset", "Used", "Total", 1128 "HVA", "RO"); 1129 1130 RAMBLOCK_FOREACH(block) { 1131 psize = size_to_str(block->page_size); 1132 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1133 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1134 block->idstr, psize, 1135 (uint64_t)block->offset, 1136 (uint64_t)block->used_length, 1137 (uint64_t)block->max_length, 1138 (uint64_t)(uintptr_t)block->host, 1139 block->mr->readonly ? "ro" : "rw"); 1140 1141 g_free(psize); 1142 } 1143 1144 return buf; 1145 } 1146 1147 static int find_min_backend_pagesize(Object *obj, void *opaque) 1148 { 1149 long *hpsize_min = opaque; 1150 1151 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1152 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1153 long hpsize = host_memory_backend_pagesize(backend); 1154 1155 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1156 *hpsize_min = hpsize; 1157 } 1158 } 1159 1160 return 0; 1161 } 1162 1163 static int find_max_backend_pagesize(Object *obj, void *opaque) 1164 { 1165 long *hpsize_max = opaque; 1166 1167 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1168 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1169 long hpsize = host_memory_backend_pagesize(backend); 1170 1171 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1172 *hpsize_max = hpsize; 1173 } 1174 } 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * TODO: We assume right now that all mapped host memory backends are 1181 * used as RAM, however some might be used for different purposes. 1182 */ 1183 long qemu_minrampagesize(void) 1184 { 1185 long hpsize = LONG_MAX; 1186 Object *memdev_root = object_resolve_path("/objects", NULL); 1187 1188 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1189 return hpsize; 1190 } 1191 1192 long qemu_maxrampagesize(void) 1193 { 1194 long pagesize = 0; 1195 Object *memdev_root = object_resolve_path("/objects", NULL); 1196 1197 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1198 return pagesize; 1199 } 1200 1201 #ifdef CONFIG_POSIX 1202 static int64_t get_file_size(int fd) 1203 { 1204 int64_t size; 1205 #if defined(__linux__) 1206 struct stat st; 1207 1208 if (fstat(fd, &st) < 0) { 1209 return -errno; 1210 } 1211 1212 /* Special handling for devdax character devices */ 1213 if (S_ISCHR(st.st_mode)) { 1214 g_autofree char *subsystem_path = NULL; 1215 g_autofree char *subsystem = NULL; 1216 1217 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1218 major(st.st_rdev), minor(st.st_rdev)); 1219 subsystem = g_file_read_link(subsystem_path, NULL); 1220 1221 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1222 g_autofree char *size_path = NULL; 1223 g_autofree char *size_str = NULL; 1224 1225 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1226 major(st.st_rdev), minor(st.st_rdev)); 1227 1228 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1229 return g_ascii_strtoll(size_str, NULL, 0); 1230 } 1231 } 1232 } 1233 #endif /* defined(__linux__) */ 1234 1235 /* st.st_size may be zero for special files yet lseek(2) works */ 1236 size = lseek(fd, 0, SEEK_END); 1237 if (size < 0) { 1238 return -errno; 1239 } 1240 return size; 1241 } 1242 1243 static int64_t get_file_align(int fd) 1244 { 1245 int64_t align = -1; 1246 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1247 struct stat st; 1248 1249 if (fstat(fd, &st) < 0) { 1250 return -errno; 1251 } 1252 1253 /* Special handling for devdax character devices */ 1254 if (S_ISCHR(st.st_mode)) { 1255 g_autofree char *path = NULL; 1256 g_autofree char *rpath = NULL; 1257 struct daxctl_ctx *ctx; 1258 struct daxctl_region *region; 1259 int rc = 0; 1260 1261 path = g_strdup_printf("/sys/dev/char/%d:%d", 1262 major(st.st_rdev), minor(st.st_rdev)); 1263 rpath = realpath(path, NULL); 1264 if (!rpath) { 1265 return -errno; 1266 } 1267 1268 rc = daxctl_new(&ctx); 1269 if (rc) { 1270 return -1; 1271 } 1272 1273 daxctl_region_foreach(ctx, region) { 1274 if (strstr(rpath, daxctl_region_get_path(region))) { 1275 align = daxctl_region_get_align(region); 1276 break; 1277 } 1278 } 1279 daxctl_unref(ctx); 1280 } 1281 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1282 1283 return align; 1284 } 1285 1286 static int file_ram_open(const char *path, 1287 const char *region_name, 1288 bool readonly, 1289 bool *created) 1290 { 1291 char *filename; 1292 char *sanitized_name; 1293 char *c; 1294 int fd = -1; 1295 1296 *created = false; 1297 for (;;) { 1298 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1299 if (fd >= 0) { 1300 /* 1301 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1302 * opened a directory and fail similarly to how we fail ENOENT 1303 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1304 */ 1305 if (readonly) { 1306 struct stat file_stat; 1307 1308 if (fstat(fd, &file_stat)) { 1309 close(fd); 1310 if (errno == EINTR) { 1311 continue; 1312 } 1313 return -errno; 1314 } else if (S_ISDIR(file_stat.st_mode)) { 1315 close(fd); 1316 return -EISDIR; 1317 } 1318 } 1319 /* @path names an existing file, use it */ 1320 break; 1321 } 1322 if (errno == ENOENT) { 1323 if (readonly) { 1324 /* Refuse to create new, readonly files. */ 1325 return -ENOENT; 1326 } 1327 /* @path names a file that doesn't exist, create it */ 1328 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1329 if (fd >= 0) { 1330 *created = true; 1331 break; 1332 } 1333 } else if (errno == EISDIR) { 1334 /* @path names a directory, create a file there */ 1335 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1336 sanitized_name = g_strdup(region_name); 1337 for (c = sanitized_name; *c != '\0'; c++) { 1338 if (*c == '/') { 1339 *c = '_'; 1340 } 1341 } 1342 1343 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1344 sanitized_name); 1345 g_free(sanitized_name); 1346 1347 fd = mkstemp(filename); 1348 if (fd >= 0) { 1349 unlink(filename); 1350 g_free(filename); 1351 break; 1352 } 1353 g_free(filename); 1354 } 1355 if (errno != EEXIST && errno != EINTR) { 1356 return -errno; 1357 } 1358 /* 1359 * Try again on EINTR and EEXIST. The latter happens when 1360 * something else creates the file between our two open(). 1361 */ 1362 } 1363 1364 return fd; 1365 } 1366 1367 static void *file_ram_alloc(RAMBlock *block, 1368 ram_addr_t memory, 1369 int fd, 1370 bool truncate, 1371 off_t offset, 1372 Error **errp) 1373 { 1374 uint32_t qemu_map_flags; 1375 void *area; 1376 1377 block->page_size = qemu_fd_getpagesize(fd); 1378 if (block->mr->align % block->page_size) { 1379 error_setg(errp, "alignment 0x%" PRIx64 1380 " must be multiples of page size 0x%zx", 1381 block->mr->align, block->page_size); 1382 return NULL; 1383 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1384 error_setg(errp, "alignment 0x%" PRIx64 1385 " must be a power of two", block->mr->align); 1386 return NULL; 1387 } else if (offset % block->page_size) { 1388 error_setg(errp, "offset 0x%" PRIx64 1389 " must be multiples of page size 0x%zx", 1390 offset, block->page_size); 1391 return NULL; 1392 } 1393 block->mr->align = MAX(block->page_size, block->mr->align); 1394 #if defined(__s390x__) 1395 if (kvm_enabled()) { 1396 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1397 } 1398 #endif 1399 1400 if (memory < block->page_size) { 1401 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1402 "or larger than page size 0x%zx", 1403 memory, block->page_size); 1404 return NULL; 1405 } 1406 1407 memory = ROUND_UP(memory, block->page_size); 1408 1409 /* 1410 * ftruncate is not supported by hugetlbfs in older 1411 * hosts, so don't bother bailing out on errors. 1412 * If anything goes wrong with it under other filesystems, 1413 * mmap will fail. 1414 * 1415 * Do not truncate the non-empty backend file to avoid corrupting 1416 * the existing data in the file. Disabling shrinking is not 1417 * enough. For example, the current vNVDIMM implementation stores 1418 * the guest NVDIMM labels at the end of the backend file. If the 1419 * backend file is later extended, QEMU will not be able to find 1420 * those labels. Therefore, extending the non-empty backend file 1421 * is disabled as well. 1422 */ 1423 if (truncate && ftruncate(fd, offset + memory)) { 1424 perror("ftruncate"); 1425 } 1426 1427 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1428 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1429 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1430 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1431 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1432 if (area == MAP_FAILED) { 1433 error_setg_errno(errp, errno, 1434 "unable to map backing store for guest RAM"); 1435 return NULL; 1436 } 1437 1438 block->fd = fd; 1439 block->fd_offset = offset; 1440 return area; 1441 } 1442 #endif 1443 1444 /* Allocate space within the ram_addr_t space that governs the 1445 * dirty bitmaps. 1446 * Called with the ramlist lock held. 1447 */ 1448 static ram_addr_t find_ram_offset(ram_addr_t size) 1449 { 1450 RAMBlock *block, *next_block; 1451 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1452 1453 assert(size != 0); /* it would hand out same offset multiple times */ 1454 1455 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1456 return 0; 1457 } 1458 1459 RAMBLOCK_FOREACH(block) { 1460 ram_addr_t candidate, next = RAM_ADDR_MAX; 1461 1462 /* Align blocks to start on a 'long' in the bitmap 1463 * which makes the bitmap sync'ing take the fast path. 1464 */ 1465 candidate = block->offset + block->max_length; 1466 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1467 1468 /* Search for the closest following block 1469 * and find the gap. 1470 */ 1471 RAMBLOCK_FOREACH(next_block) { 1472 if (next_block->offset >= candidate) { 1473 next = MIN(next, next_block->offset); 1474 } 1475 } 1476 1477 /* If it fits remember our place and remember the size 1478 * of gap, but keep going so that we might find a smaller 1479 * gap to fill so avoiding fragmentation. 1480 */ 1481 if (next - candidate >= size && next - candidate < mingap) { 1482 offset = candidate; 1483 mingap = next - candidate; 1484 } 1485 1486 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1487 } 1488 1489 if (offset == RAM_ADDR_MAX) { 1490 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1491 (uint64_t)size); 1492 abort(); 1493 } 1494 1495 trace_find_ram_offset(size, offset); 1496 1497 return offset; 1498 } 1499 1500 static unsigned long last_ram_page(void) 1501 { 1502 RAMBlock *block; 1503 ram_addr_t last = 0; 1504 1505 RCU_READ_LOCK_GUARD(); 1506 RAMBLOCK_FOREACH(block) { 1507 last = MAX(last, block->offset + block->max_length); 1508 } 1509 return last >> TARGET_PAGE_BITS; 1510 } 1511 1512 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1513 { 1514 int ret; 1515 1516 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1517 if (!machine_dump_guest_core(current_machine)) { 1518 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1519 if (ret) { 1520 perror("qemu_madvise"); 1521 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1522 "but dump_guest_core=off specified\n"); 1523 } 1524 } 1525 } 1526 1527 const char *qemu_ram_get_idstr(RAMBlock *rb) 1528 { 1529 return rb->idstr; 1530 } 1531 1532 void *qemu_ram_get_host_addr(RAMBlock *rb) 1533 { 1534 return rb->host; 1535 } 1536 1537 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1538 { 1539 return rb->offset; 1540 } 1541 1542 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1543 { 1544 return rb->used_length; 1545 } 1546 1547 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1548 { 1549 return rb->max_length; 1550 } 1551 1552 bool qemu_ram_is_shared(RAMBlock *rb) 1553 { 1554 return rb->flags & RAM_SHARED; 1555 } 1556 1557 bool qemu_ram_is_noreserve(RAMBlock *rb) 1558 { 1559 return rb->flags & RAM_NORESERVE; 1560 } 1561 1562 /* Note: Only set at the start of postcopy */ 1563 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1564 { 1565 return rb->flags & RAM_UF_ZEROPAGE; 1566 } 1567 1568 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1569 { 1570 rb->flags |= RAM_UF_ZEROPAGE; 1571 } 1572 1573 bool qemu_ram_is_migratable(RAMBlock *rb) 1574 { 1575 return rb->flags & RAM_MIGRATABLE; 1576 } 1577 1578 void qemu_ram_set_migratable(RAMBlock *rb) 1579 { 1580 rb->flags |= RAM_MIGRATABLE; 1581 } 1582 1583 void qemu_ram_unset_migratable(RAMBlock *rb) 1584 { 1585 rb->flags &= ~RAM_MIGRATABLE; 1586 } 1587 1588 bool qemu_ram_is_named_file(RAMBlock *rb) 1589 { 1590 return rb->flags & RAM_NAMED_FILE; 1591 } 1592 1593 int qemu_ram_get_fd(RAMBlock *rb) 1594 { 1595 return rb->fd; 1596 } 1597 1598 /* Called with the BQL held. */ 1599 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1600 { 1601 RAMBlock *block; 1602 1603 assert(new_block); 1604 assert(!new_block->idstr[0]); 1605 1606 if (dev) { 1607 char *id = qdev_get_dev_path(dev); 1608 if (id) { 1609 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1610 g_free(id); 1611 } 1612 } 1613 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1614 1615 RCU_READ_LOCK_GUARD(); 1616 RAMBLOCK_FOREACH(block) { 1617 if (block != new_block && 1618 !strcmp(block->idstr, new_block->idstr)) { 1619 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1620 new_block->idstr); 1621 abort(); 1622 } 1623 } 1624 } 1625 1626 /* Called with the BQL held. */ 1627 void qemu_ram_unset_idstr(RAMBlock *block) 1628 { 1629 /* FIXME: arch_init.c assumes that this is not called throughout 1630 * migration. Ignore the problem since hot-unplug during migration 1631 * does not work anyway. 1632 */ 1633 if (block) { 1634 memset(block->idstr, 0, sizeof(block->idstr)); 1635 } 1636 } 1637 1638 size_t qemu_ram_pagesize(RAMBlock *rb) 1639 { 1640 return rb->page_size; 1641 } 1642 1643 /* Returns the largest size of page in use */ 1644 size_t qemu_ram_pagesize_largest(void) 1645 { 1646 RAMBlock *block; 1647 size_t largest = 0; 1648 1649 RAMBLOCK_FOREACH(block) { 1650 largest = MAX(largest, qemu_ram_pagesize(block)); 1651 } 1652 1653 return largest; 1654 } 1655 1656 static int memory_try_enable_merging(void *addr, size_t len) 1657 { 1658 if (!machine_mem_merge(current_machine)) { 1659 /* disabled by the user */ 1660 return 0; 1661 } 1662 1663 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1664 } 1665 1666 /* 1667 * Resizing RAM while migrating can result in the migration being canceled. 1668 * Care has to be taken if the guest might have already detected the memory. 1669 * 1670 * As memory core doesn't know how is memory accessed, it is up to 1671 * resize callback to update device state and/or add assertions to detect 1672 * misuse, if necessary. 1673 */ 1674 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1675 { 1676 const ram_addr_t oldsize = block->used_length; 1677 const ram_addr_t unaligned_size = newsize; 1678 1679 assert(block); 1680 1681 newsize = TARGET_PAGE_ALIGN(newsize); 1682 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1683 1684 if (block->used_length == newsize) { 1685 /* 1686 * We don't have to resize the ram block (which only knows aligned 1687 * sizes), however, we have to notify if the unaligned size changed. 1688 */ 1689 if (unaligned_size != memory_region_size(block->mr)) { 1690 memory_region_set_size(block->mr, unaligned_size); 1691 if (block->resized) { 1692 block->resized(block->idstr, unaligned_size, block->host); 1693 } 1694 } 1695 return 0; 1696 } 1697 1698 if (!(block->flags & RAM_RESIZEABLE)) { 1699 error_setg_errno(errp, EINVAL, 1700 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1701 " != 0x" RAM_ADDR_FMT, block->idstr, 1702 newsize, block->used_length); 1703 return -EINVAL; 1704 } 1705 1706 if (block->max_length < newsize) { 1707 error_setg_errno(errp, EINVAL, 1708 "Size too large: %s: 0x" RAM_ADDR_FMT 1709 " > 0x" RAM_ADDR_FMT, block->idstr, 1710 newsize, block->max_length); 1711 return -EINVAL; 1712 } 1713 1714 /* Notify before modifying the ram block and touching the bitmaps. */ 1715 if (block->host) { 1716 ram_block_notify_resize(block->host, oldsize, newsize); 1717 } 1718 1719 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1720 block->used_length = newsize; 1721 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1722 DIRTY_CLIENTS_ALL); 1723 memory_region_set_size(block->mr, unaligned_size); 1724 if (block->resized) { 1725 block->resized(block->idstr, unaligned_size, block->host); 1726 } 1727 return 0; 1728 } 1729 1730 /* 1731 * Trigger sync on the given ram block for range [start, start + length] 1732 * with the backing store if one is available. 1733 * Otherwise no-op. 1734 * @Note: this is supposed to be a synchronous op. 1735 */ 1736 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1737 { 1738 /* The requested range should fit in within the block range */ 1739 g_assert((start + length) <= block->used_length); 1740 1741 #ifdef CONFIG_LIBPMEM 1742 /* The lack of support for pmem should not block the sync */ 1743 if (ramblock_is_pmem(block)) { 1744 void *addr = ramblock_ptr(block, start); 1745 pmem_persist(addr, length); 1746 return; 1747 } 1748 #endif 1749 if (block->fd >= 0) { 1750 /** 1751 * Case there is no support for PMEM or the memory has not been 1752 * specified as persistent (or is not one) - use the msync. 1753 * Less optimal but still achieves the same goal 1754 */ 1755 void *addr = ramblock_ptr(block, start); 1756 if (qemu_msync(addr, length, block->fd)) { 1757 warn_report("%s: failed to sync memory range: start: " 1758 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1759 __func__, start, length); 1760 } 1761 } 1762 } 1763 1764 /* Called with ram_list.mutex held */ 1765 static void dirty_memory_extend(ram_addr_t old_ram_size, 1766 ram_addr_t new_ram_size) 1767 { 1768 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1769 DIRTY_MEMORY_BLOCK_SIZE); 1770 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1771 DIRTY_MEMORY_BLOCK_SIZE); 1772 int i; 1773 1774 /* Only need to extend if block count increased */ 1775 if (new_num_blocks <= old_num_blocks) { 1776 return; 1777 } 1778 1779 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1780 DirtyMemoryBlocks *old_blocks; 1781 DirtyMemoryBlocks *new_blocks; 1782 int j; 1783 1784 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1785 new_blocks = g_malloc(sizeof(*new_blocks) + 1786 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1787 1788 if (old_num_blocks) { 1789 memcpy(new_blocks->blocks, old_blocks->blocks, 1790 old_num_blocks * sizeof(old_blocks->blocks[0])); 1791 } 1792 1793 for (j = old_num_blocks; j < new_num_blocks; j++) { 1794 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1795 } 1796 1797 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1798 1799 if (old_blocks) { 1800 g_free_rcu(old_blocks, rcu); 1801 } 1802 } 1803 } 1804 1805 static void ram_block_add(RAMBlock *new_block, Error **errp) 1806 { 1807 const bool noreserve = qemu_ram_is_noreserve(new_block); 1808 const bool shared = qemu_ram_is_shared(new_block); 1809 RAMBlock *block; 1810 RAMBlock *last_block = NULL; 1811 bool free_on_error = false; 1812 ram_addr_t old_ram_size, new_ram_size; 1813 Error *err = NULL; 1814 1815 old_ram_size = last_ram_page(); 1816 1817 qemu_mutex_lock_ramlist(); 1818 new_block->offset = find_ram_offset(new_block->max_length); 1819 1820 if (!new_block->host) { 1821 if (xen_enabled()) { 1822 xen_ram_alloc(new_block->offset, new_block->max_length, 1823 new_block->mr, &err); 1824 if (err) { 1825 error_propagate(errp, err); 1826 qemu_mutex_unlock_ramlist(); 1827 return; 1828 } 1829 } else { 1830 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1831 &new_block->mr->align, 1832 shared, noreserve); 1833 if (!new_block->host) { 1834 error_setg_errno(errp, errno, 1835 "cannot set up guest memory '%s'", 1836 memory_region_name(new_block->mr)); 1837 qemu_mutex_unlock_ramlist(); 1838 return; 1839 } 1840 memory_try_enable_merging(new_block->host, new_block->max_length); 1841 free_on_error = true; 1842 } 1843 } 1844 1845 if (new_block->flags & RAM_GUEST_MEMFD) { 1846 assert(kvm_enabled()); 1847 assert(new_block->guest_memfd < 0); 1848 1849 if (ram_block_discard_require(true) < 0) { 1850 error_setg_errno(errp, errno, 1851 "cannot set up private guest memory: discard currently blocked"); 1852 error_append_hint(errp, "Are you using assigned devices?\n"); 1853 goto out_free; 1854 } 1855 1856 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1857 0, errp); 1858 if (new_block->guest_memfd < 0) { 1859 qemu_mutex_unlock_ramlist(); 1860 goto out_free; 1861 } 1862 } 1863 1864 new_ram_size = MAX(old_ram_size, 1865 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1866 if (new_ram_size > old_ram_size) { 1867 dirty_memory_extend(old_ram_size, new_ram_size); 1868 } 1869 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1870 * QLIST (which has an RCU-friendly variant) does not have insertion at 1871 * tail, so save the last element in last_block. 1872 */ 1873 RAMBLOCK_FOREACH(block) { 1874 last_block = block; 1875 if (block->max_length < new_block->max_length) { 1876 break; 1877 } 1878 } 1879 if (block) { 1880 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1881 } else if (last_block) { 1882 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1883 } else { /* list is empty */ 1884 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1885 } 1886 ram_list.mru_block = NULL; 1887 1888 /* Write list before version */ 1889 smp_wmb(); 1890 ram_list.version++; 1891 qemu_mutex_unlock_ramlist(); 1892 1893 cpu_physical_memory_set_dirty_range(new_block->offset, 1894 new_block->used_length, 1895 DIRTY_CLIENTS_ALL); 1896 1897 if (new_block->host) { 1898 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1899 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1900 /* 1901 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1902 * Configure it unless the machine is a qtest server, in which case 1903 * KVM is not used and it may be forked (eg for fuzzing purposes). 1904 */ 1905 if (!qtest_enabled()) { 1906 qemu_madvise(new_block->host, new_block->max_length, 1907 QEMU_MADV_DONTFORK); 1908 } 1909 ram_block_notify_add(new_block->host, new_block->used_length, 1910 new_block->max_length); 1911 } 1912 return; 1913 1914 out_free: 1915 if (free_on_error) { 1916 qemu_anon_ram_free(new_block->host, new_block->max_length); 1917 new_block->host = NULL; 1918 } 1919 } 1920 1921 #ifdef CONFIG_POSIX 1922 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1923 uint32_t ram_flags, int fd, off_t offset, 1924 Error **errp) 1925 { 1926 RAMBlock *new_block; 1927 Error *local_err = NULL; 1928 int64_t file_size, file_align; 1929 1930 /* Just support these ram flags by now. */ 1931 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1932 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1933 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0); 1934 1935 if (xen_enabled()) { 1936 error_setg(errp, "-mem-path not supported with Xen"); 1937 return NULL; 1938 } 1939 1940 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1941 error_setg(errp, 1942 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1943 return NULL; 1944 } 1945 1946 size = TARGET_PAGE_ALIGN(size); 1947 size = REAL_HOST_PAGE_ALIGN(size); 1948 1949 file_size = get_file_size(fd); 1950 if (file_size > offset && file_size < (offset + size)) { 1951 error_setg(errp, "backing store size 0x%" PRIx64 1952 " does not match 'size' option 0x" RAM_ADDR_FMT, 1953 file_size, size); 1954 return NULL; 1955 } 1956 1957 file_align = get_file_align(fd); 1958 if (file_align > 0 && file_align > mr->align) { 1959 error_setg(errp, "backing store align 0x%" PRIx64 1960 " is larger than 'align' option 0x%" PRIx64, 1961 file_align, mr->align); 1962 return NULL; 1963 } 1964 1965 new_block = g_malloc0(sizeof(*new_block)); 1966 new_block->mr = mr; 1967 new_block->used_length = size; 1968 new_block->max_length = size; 1969 new_block->flags = ram_flags; 1970 new_block->guest_memfd = -1; 1971 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 1972 errp); 1973 if (!new_block->host) { 1974 g_free(new_block); 1975 return NULL; 1976 } 1977 1978 ram_block_add(new_block, &local_err); 1979 if (local_err) { 1980 g_free(new_block); 1981 error_propagate(errp, local_err); 1982 return NULL; 1983 } 1984 return new_block; 1985 1986 } 1987 1988 1989 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1990 uint32_t ram_flags, const char *mem_path, 1991 off_t offset, Error **errp) 1992 { 1993 int fd; 1994 bool created; 1995 RAMBlock *block; 1996 1997 fd = file_ram_open(mem_path, memory_region_name(mr), 1998 !!(ram_flags & RAM_READONLY_FD), &created); 1999 if (fd < 0) { 2000 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2001 mem_path); 2002 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2003 fd == -EACCES) { 2004 /* 2005 * If we can open the file R/O (note: will never create a new file) 2006 * and we are dealing with a private mapping, there are still ways 2007 * to consume such files and get RAM instead of ROM. 2008 */ 2009 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2010 &created); 2011 if (fd < 0) { 2012 return NULL; 2013 } 2014 assert(!created); 2015 close(fd); 2016 error_append_hint(errp, "Consider opening the backing store" 2017 " read-only but still creating writable RAM using" 2018 " '-object memory-backend-file,readonly=on,rom=off...'" 2019 " (see \"VM templating\" documentation)\n"); 2020 } 2021 return NULL; 2022 } 2023 2024 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 2025 if (!block) { 2026 if (created) { 2027 unlink(mem_path); 2028 } 2029 close(fd); 2030 return NULL; 2031 } 2032 2033 return block; 2034 } 2035 #endif 2036 2037 static 2038 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2039 void (*resized)(const char*, 2040 uint64_t length, 2041 void *host), 2042 void *host, uint32_t ram_flags, 2043 MemoryRegion *mr, Error **errp) 2044 { 2045 RAMBlock *new_block; 2046 Error *local_err = NULL; 2047 int align; 2048 2049 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2050 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2051 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2052 2053 align = qemu_real_host_page_size(); 2054 align = MAX(align, TARGET_PAGE_SIZE); 2055 size = ROUND_UP(size, align); 2056 max_size = ROUND_UP(max_size, align); 2057 2058 new_block = g_malloc0(sizeof(*new_block)); 2059 new_block->mr = mr; 2060 new_block->resized = resized; 2061 new_block->used_length = size; 2062 new_block->max_length = max_size; 2063 assert(max_size >= size); 2064 new_block->fd = -1; 2065 new_block->guest_memfd = -1; 2066 new_block->page_size = qemu_real_host_page_size(); 2067 new_block->host = host; 2068 new_block->flags = ram_flags; 2069 ram_block_add(new_block, &local_err); 2070 if (local_err) { 2071 g_free(new_block); 2072 error_propagate(errp, local_err); 2073 return NULL; 2074 } 2075 return new_block; 2076 } 2077 2078 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2079 MemoryRegion *mr, Error **errp) 2080 { 2081 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2082 errp); 2083 } 2084 2085 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2086 MemoryRegion *mr, Error **errp) 2087 { 2088 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2089 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2090 } 2091 2092 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2093 void (*resized)(const char*, 2094 uint64_t length, 2095 void *host), 2096 MemoryRegion *mr, Error **errp) 2097 { 2098 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2099 RAM_RESIZEABLE, mr, errp); 2100 } 2101 2102 static void reclaim_ramblock(RAMBlock *block) 2103 { 2104 if (block->flags & RAM_PREALLOC) { 2105 ; 2106 } else if (xen_enabled()) { 2107 xen_invalidate_map_cache_entry(block->host); 2108 #ifndef _WIN32 2109 } else if (block->fd >= 0) { 2110 qemu_ram_munmap(block->fd, block->host, block->max_length); 2111 close(block->fd); 2112 #endif 2113 } else { 2114 qemu_anon_ram_free(block->host, block->max_length); 2115 } 2116 2117 if (block->guest_memfd >= 0) { 2118 close(block->guest_memfd); 2119 ram_block_discard_require(false); 2120 } 2121 2122 g_free(block); 2123 } 2124 2125 void qemu_ram_free(RAMBlock *block) 2126 { 2127 if (!block) { 2128 return; 2129 } 2130 2131 if (block->host) { 2132 ram_block_notify_remove(block->host, block->used_length, 2133 block->max_length); 2134 } 2135 2136 qemu_mutex_lock_ramlist(); 2137 QLIST_REMOVE_RCU(block, next); 2138 ram_list.mru_block = NULL; 2139 /* Write list before version */ 2140 smp_wmb(); 2141 ram_list.version++; 2142 call_rcu(block, reclaim_ramblock, rcu); 2143 qemu_mutex_unlock_ramlist(); 2144 } 2145 2146 #ifndef _WIN32 2147 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2148 { 2149 RAMBlock *block; 2150 ram_addr_t offset; 2151 int flags; 2152 void *area, *vaddr; 2153 int prot; 2154 2155 RAMBLOCK_FOREACH(block) { 2156 offset = addr - block->offset; 2157 if (offset < block->max_length) { 2158 vaddr = ramblock_ptr(block, offset); 2159 if (block->flags & RAM_PREALLOC) { 2160 ; 2161 } else if (xen_enabled()) { 2162 abort(); 2163 } else { 2164 flags = MAP_FIXED; 2165 flags |= block->flags & RAM_SHARED ? 2166 MAP_SHARED : MAP_PRIVATE; 2167 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2168 prot = PROT_READ; 2169 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2170 if (block->fd >= 0) { 2171 area = mmap(vaddr, length, prot, flags, block->fd, 2172 offset + block->fd_offset); 2173 } else { 2174 flags |= MAP_ANONYMOUS; 2175 area = mmap(vaddr, length, prot, flags, -1, 0); 2176 } 2177 if (area != vaddr) { 2178 error_report("Could not remap addr: " 2179 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2180 length, addr); 2181 exit(1); 2182 } 2183 memory_try_enable_merging(vaddr, length); 2184 qemu_ram_setup_dump(vaddr, length); 2185 } 2186 } 2187 } 2188 } 2189 #endif /* !_WIN32 */ 2190 2191 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2192 * This should not be used for general purpose DMA. Use address_space_map 2193 * or address_space_rw instead. For local memory (e.g. video ram) that the 2194 * device owns, use memory_region_get_ram_ptr. 2195 * 2196 * Called within RCU critical section. 2197 */ 2198 void *qemu_map_ram_ptr(RAMBlock *block, ram_addr_t addr) 2199 { 2200 if (block == NULL) { 2201 block = qemu_get_ram_block(addr); 2202 addr -= block->offset; 2203 } 2204 2205 if (xen_enabled() && block->host == NULL) { 2206 /* We need to check if the requested address is in the RAM 2207 * because we don't want to map the entire memory in QEMU. 2208 * In that case just map until the end of the page. 2209 */ 2210 if (block->offset == 0) { 2211 return xen_map_cache(addr, 0, 0, false); 2212 } 2213 2214 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2215 } 2216 return ramblock_ptr(block, addr); 2217 } 2218 2219 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2220 * but takes a size argument. 2221 * 2222 * Called within RCU critical section. 2223 */ 2224 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2225 hwaddr *size, bool lock) 2226 { 2227 if (*size == 0) { 2228 return NULL; 2229 } 2230 2231 if (block == NULL) { 2232 block = qemu_get_ram_block(addr); 2233 addr -= block->offset; 2234 } 2235 *size = MIN(*size, block->max_length - addr); 2236 2237 if (xen_enabled() && block->host == NULL) { 2238 /* We need to check if the requested address is in the RAM 2239 * because we don't want to map the entire memory in QEMU. 2240 * In that case just map the requested area. 2241 */ 2242 if (block->offset == 0) { 2243 return xen_map_cache(addr, *size, lock, lock); 2244 } 2245 2246 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2247 } 2248 2249 return ramblock_ptr(block, addr); 2250 } 2251 2252 /* Return the offset of a hostpointer within a ramblock */ 2253 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2254 { 2255 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2256 assert((uintptr_t)host >= (uintptr_t)rb->host); 2257 assert(res < rb->max_length); 2258 2259 return res; 2260 } 2261 2262 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2263 ram_addr_t *offset) 2264 { 2265 RAMBlock *block; 2266 uint8_t *host = ptr; 2267 2268 if (xen_enabled()) { 2269 ram_addr_t ram_addr; 2270 RCU_READ_LOCK_GUARD(); 2271 ram_addr = xen_ram_addr_from_mapcache(ptr); 2272 block = qemu_get_ram_block(ram_addr); 2273 if (block) { 2274 *offset = ram_addr - block->offset; 2275 } 2276 return block; 2277 } 2278 2279 RCU_READ_LOCK_GUARD(); 2280 block = qatomic_rcu_read(&ram_list.mru_block); 2281 if (block && block->host && host - block->host < block->max_length) { 2282 goto found; 2283 } 2284 2285 RAMBLOCK_FOREACH(block) { 2286 /* This case append when the block is not mapped. */ 2287 if (block->host == NULL) { 2288 continue; 2289 } 2290 if (host - block->host < block->max_length) { 2291 goto found; 2292 } 2293 } 2294 2295 return NULL; 2296 2297 found: 2298 *offset = (host - block->host); 2299 if (round_offset) { 2300 *offset &= TARGET_PAGE_MASK; 2301 } 2302 return block; 2303 } 2304 2305 /* 2306 * Finds the named RAMBlock 2307 * 2308 * name: The name of RAMBlock to find 2309 * 2310 * Returns: RAMBlock (or NULL if not found) 2311 */ 2312 RAMBlock *qemu_ram_block_by_name(const char *name) 2313 { 2314 RAMBlock *block; 2315 2316 RAMBLOCK_FOREACH(block) { 2317 if (!strcmp(name, block->idstr)) { 2318 return block; 2319 } 2320 } 2321 2322 return NULL; 2323 } 2324 2325 /* 2326 * Some of the system routines need to translate from a host pointer 2327 * (typically a TLB entry) back to a ram offset. 2328 */ 2329 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2330 { 2331 RAMBlock *block; 2332 ram_addr_t offset; 2333 2334 block = qemu_ram_block_from_host(ptr, false, &offset); 2335 if (!block) { 2336 return RAM_ADDR_INVALID; 2337 } 2338 2339 return block->offset + offset; 2340 } 2341 2342 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2343 { 2344 ram_addr_t ram_addr; 2345 2346 ram_addr = qemu_ram_addr_from_host(ptr); 2347 if (ram_addr == RAM_ADDR_INVALID) { 2348 error_report("Bad ram pointer %p", ptr); 2349 abort(); 2350 } 2351 return ram_addr; 2352 } 2353 2354 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2355 MemTxAttrs attrs, void *buf, hwaddr len); 2356 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2357 const void *buf, hwaddr len); 2358 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2359 bool is_write, MemTxAttrs attrs); 2360 2361 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2362 unsigned len, MemTxAttrs attrs) 2363 { 2364 subpage_t *subpage = opaque; 2365 uint8_t buf[8]; 2366 MemTxResult res; 2367 2368 #if defined(DEBUG_SUBPAGE) 2369 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2370 subpage, len, addr); 2371 #endif 2372 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2373 if (res) { 2374 return res; 2375 } 2376 *data = ldn_p(buf, len); 2377 return MEMTX_OK; 2378 } 2379 2380 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2381 uint64_t value, unsigned len, MemTxAttrs attrs) 2382 { 2383 subpage_t *subpage = opaque; 2384 uint8_t buf[8]; 2385 2386 #if defined(DEBUG_SUBPAGE) 2387 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2388 " value %"PRIx64"\n", 2389 __func__, subpage, len, addr, value); 2390 #endif 2391 stn_p(buf, len, value); 2392 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2393 } 2394 2395 static bool subpage_accepts(void *opaque, hwaddr addr, 2396 unsigned len, bool is_write, 2397 MemTxAttrs attrs) 2398 { 2399 subpage_t *subpage = opaque; 2400 #if defined(DEBUG_SUBPAGE) 2401 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2402 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2403 #endif 2404 2405 return flatview_access_valid(subpage->fv, addr + subpage->base, 2406 len, is_write, attrs); 2407 } 2408 2409 static const MemoryRegionOps subpage_ops = { 2410 .read_with_attrs = subpage_read, 2411 .write_with_attrs = subpage_write, 2412 .impl.min_access_size = 1, 2413 .impl.max_access_size = 8, 2414 .valid.min_access_size = 1, 2415 .valid.max_access_size = 8, 2416 .valid.accepts = subpage_accepts, 2417 .endianness = DEVICE_NATIVE_ENDIAN, 2418 }; 2419 2420 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2421 uint16_t section) 2422 { 2423 int idx, eidx; 2424 2425 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2426 return -1; 2427 idx = SUBPAGE_IDX(start); 2428 eidx = SUBPAGE_IDX(end); 2429 #if defined(DEBUG_SUBPAGE) 2430 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2431 __func__, mmio, start, end, idx, eidx, section); 2432 #endif 2433 for (; idx <= eidx; idx++) { 2434 mmio->sub_section[idx] = section; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2441 { 2442 subpage_t *mmio; 2443 2444 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2445 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2446 mmio->fv = fv; 2447 mmio->base = base; 2448 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2449 NULL, TARGET_PAGE_SIZE); 2450 mmio->iomem.subpage = true; 2451 #if defined(DEBUG_SUBPAGE) 2452 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2453 mmio, base, TARGET_PAGE_SIZE); 2454 #endif 2455 2456 return mmio; 2457 } 2458 2459 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2460 { 2461 assert(fv); 2462 MemoryRegionSection section = { 2463 .fv = fv, 2464 .mr = mr, 2465 .offset_within_address_space = 0, 2466 .offset_within_region = 0, 2467 .size = int128_2_64(), 2468 }; 2469 2470 return phys_section_add(map, §ion); 2471 } 2472 2473 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2474 hwaddr index, MemTxAttrs attrs) 2475 { 2476 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2477 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2478 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2479 int section_index = index & ~TARGET_PAGE_MASK; 2480 MemoryRegionSection *ret; 2481 2482 assert(section_index < d->map.sections_nb); 2483 ret = d->map.sections + section_index; 2484 assert(ret->mr); 2485 assert(ret->mr->ops); 2486 2487 return ret; 2488 } 2489 2490 static void io_mem_init(void) 2491 { 2492 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2493 NULL, UINT64_MAX); 2494 } 2495 2496 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2497 { 2498 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2499 uint16_t n; 2500 2501 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2502 assert(n == PHYS_SECTION_UNASSIGNED); 2503 2504 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2505 2506 return d; 2507 } 2508 2509 void address_space_dispatch_free(AddressSpaceDispatch *d) 2510 { 2511 phys_sections_free(&d->map); 2512 g_free(d); 2513 } 2514 2515 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2516 { 2517 } 2518 2519 static void tcg_log_global_after_sync(MemoryListener *listener) 2520 { 2521 CPUAddressSpace *cpuas; 2522 2523 /* Wait for the CPU to end the current TB. This avoids the following 2524 * incorrect race: 2525 * 2526 * vCPU migration 2527 * ---------------------- ------------------------- 2528 * TLB check -> slow path 2529 * notdirty_mem_write 2530 * write to RAM 2531 * mark dirty 2532 * clear dirty flag 2533 * TLB check -> fast path 2534 * read memory 2535 * write to RAM 2536 * 2537 * by pushing the migration thread's memory read after the vCPU thread has 2538 * written the memory. 2539 */ 2540 if (replay_mode == REPLAY_MODE_NONE) { 2541 /* 2542 * VGA can make calls to this function while updating the screen. 2543 * In record/replay mode this causes a deadlock, because 2544 * run_on_cpu waits for rr mutex. Therefore no races are possible 2545 * in this case and no need for making run_on_cpu when 2546 * record/replay is enabled. 2547 */ 2548 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2549 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2550 } 2551 } 2552 2553 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2554 { 2555 CPUAddressSpace *cpuas = data.host_ptr; 2556 2557 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2558 tlb_flush(cpu); 2559 } 2560 2561 static void tcg_commit(MemoryListener *listener) 2562 { 2563 CPUAddressSpace *cpuas; 2564 CPUState *cpu; 2565 2566 assert(tcg_enabled()); 2567 /* since each CPU stores ram addresses in its TLB cache, we must 2568 reset the modified entries */ 2569 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2570 cpu = cpuas->cpu; 2571 2572 /* 2573 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2574 * Otherwise we race between (1) other cpu threads and (2) ongoing 2575 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2576 * 2577 * In addition, queueing the work function will kick the cpu back to 2578 * the main loop, which will end the RCU critical section and reclaim 2579 * the memory data structures. 2580 * 2581 * That said, the listener is also called during realize, before 2582 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2583 */ 2584 if (cpu->halt_cond) { 2585 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2586 } else { 2587 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2588 } 2589 } 2590 2591 static void memory_map_init(void) 2592 { 2593 system_memory = g_malloc(sizeof(*system_memory)); 2594 2595 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2596 address_space_init(&address_space_memory, system_memory, "memory"); 2597 2598 system_io = g_malloc(sizeof(*system_io)); 2599 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2600 65536); 2601 address_space_init(&address_space_io, system_io, "I/O"); 2602 } 2603 2604 MemoryRegion *get_system_memory(void) 2605 { 2606 return system_memory; 2607 } 2608 2609 MemoryRegion *get_system_io(void) 2610 { 2611 return system_io; 2612 } 2613 2614 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2615 hwaddr length) 2616 { 2617 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2618 addr += memory_region_get_ram_addr(mr); 2619 2620 /* No early return if dirty_log_mask is or becomes 0, because 2621 * cpu_physical_memory_set_dirty_range will still call 2622 * xen_modified_memory. 2623 */ 2624 if (dirty_log_mask) { 2625 dirty_log_mask = 2626 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2627 } 2628 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2629 assert(tcg_enabled()); 2630 tb_invalidate_phys_range(addr, addr + length - 1); 2631 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2632 } 2633 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2634 } 2635 2636 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2637 { 2638 /* 2639 * In principle this function would work on other memory region types too, 2640 * but the ROM device use case is the only one where this operation is 2641 * necessary. Other memory regions should use the 2642 * address_space_read/write() APIs. 2643 */ 2644 assert(memory_region_is_romd(mr)); 2645 2646 invalidate_and_set_dirty(mr, addr, size); 2647 } 2648 2649 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2650 { 2651 unsigned access_size_max = mr->ops->valid.max_access_size; 2652 2653 /* Regions are assumed to support 1-4 byte accesses unless 2654 otherwise specified. */ 2655 if (access_size_max == 0) { 2656 access_size_max = 4; 2657 } 2658 2659 /* Bound the maximum access by the alignment of the address. */ 2660 if (!mr->ops->impl.unaligned) { 2661 unsigned align_size_max = addr & -addr; 2662 if (align_size_max != 0 && align_size_max < access_size_max) { 2663 access_size_max = align_size_max; 2664 } 2665 } 2666 2667 /* Don't attempt accesses larger than the maximum. */ 2668 if (l > access_size_max) { 2669 l = access_size_max; 2670 } 2671 l = pow2floor(l); 2672 2673 return l; 2674 } 2675 2676 bool prepare_mmio_access(MemoryRegion *mr) 2677 { 2678 bool release_lock = false; 2679 2680 if (!bql_locked()) { 2681 bql_lock(); 2682 release_lock = true; 2683 } 2684 if (mr->flush_coalesced_mmio) { 2685 qemu_flush_coalesced_mmio_buffer(); 2686 } 2687 2688 return release_lock; 2689 } 2690 2691 /** 2692 * flatview_access_allowed 2693 * @mr: #MemoryRegion to be accessed 2694 * @attrs: memory transaction attributes 2695 * @addr: address within that memory region 2696 * @len: the number of bytes to access 2697 * 2698 * Check if a memory transaction is allowed. 2699 * 2700 * Returns: true if transaction is allowed, false if denied. 2701 */ 2702 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2703 hwaddr addr, hwaddr len) 2704 { 2705 if (likely(!attrs.memory)) { 2706 return true; 2707 } 2708 if (memory_region_is_ram(mr)) { 2709 return true; 2710 } 2711 qemu_log_mask(LOG_GUEST_ERROR, 2712 "Invalid access to non-RAM device at " 2713 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2714 "region '%s'\n", addr, len, memory_region_name(mr)); 2715 return false; 2716 } 2717 2718 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2719 const uint8_t *buf, 2720 hwaddr len, hwaddr mr_addr, 2721 hwaddr *l, MemoryRegion *mr) 2722 { 2723 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2724 return MEMTX_ACCESS_ERROR; 2725 } 2726 2727 if (!memory_access_is_direct(mr, true)) { 2728 uint64_t val; 2729 MemTxResult result; 2730 bool release_lock = prepare_mmio_access(mr); 2731 2732 *l = memory_access_size(mr, *l, mr_addr); 2733 /* 2734 * XXX: could force current_cpu to NULL to avoid 2735 * potential bugs 2736 */ 2737 2738 /* 2739 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2740 * the buffer by following ldn_he_p(). 2741 */ 2742 #ifdef QEMU_STATIC_ANALYSIS 2743 assert((*l == 1 && len >= 1) || 2744 (*l == 2 && len >= 2) || 2745 (*l == 4 && len >= 4) || 2746 (*l == 8 && len >= 8)); 2747 #endif 2748 val = ldn_he_p(buf, *l); 2749 result = memory_region_dispatch_write(mr, mr_addr, val, 2750 size_memop(*l), attrs); 2751 if (release_lock) { 2752 bql_unlock(); 2753 } 2754 2755 return result; 2756 } else { 2757 /* RAM case */ 2758 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2759 false); 2760 2761 memmove(ram_ptr, buf, *l); 2762 invalidate_and_set_dirty(mr, mr_addr, *l); 2763 2764 return MEMTX_OK; 2765 } 2766 } 2767 2768 /* Called within RCU critical section. */ 2769 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2770 MemTxAttrs attrs, 2771 const void *ptr, 2772 hwaddr len, hwaddr mr_addr, 2773 hwaddr l, MemoryRegion *mr) 2774 { 2775 MemTxResult result = MEMTX_OK; 2776 const uint8_t *buf = ptr; 2777 2778 for (;;) { 2779 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2780 mr); 2781 2782 len -= l; 2783 buf += l; 2784 addr += l; 2785 2786 if (!len) { 2787 break; 2788 } 2789 2790 l = len; 2791 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2792 } 2793 2794 return result; 2795 } 2796 2797 /* Called from RCU critical section. */ 2798 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2799 const void *buf, hwaddr len) 2800 { 2801 hwaddr l; 2802 hwaddr mr_addr; 2803 MemoryRegion *mr; 2804 2805 l = len; 2806 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2807 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2808 return MEMTX_ACCESS_ERROR; 2809 } 2810 return flatview_write_continue(fv, addr, attrs, buf, len, 2811 mr_addr, l, mr); 2812 } 2813 2814 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2815 hwaddr len, hwaddr mr_addr, 2816 hwaddr *l, 2817 MemoryRegion *mr) 2818 { 2819 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2820 return MEMTX_ACCESS_ERROR; 2821 } 2822 2823 if (!memory_access_is_direct(mr, false)) { 2824 /* I/O case */ 2825 uint64_t val; 2826 MemTxResult result; 2827 bool release_lock = prepare_mmio_access(mr); 2828 2829 *l = memory_access_size(mr, *l, mr_addr); 2830 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2831 attrs); 2832 2833 /* 2834 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2835 * the buffer by following stn_he_p(). 2836 */ 2837 #ifdef QEMU_STATIC_ANALYSIS 2838 assert((*l == 1 && len >= 1) || 2839 (*l == 2 && len >= 2) || 2840 (*l == 4 && len >= 4) || 2841 (*l == 8 && len >= 8)); 2842 #endif 2843 stn_he_p(buf, *l, val); 2844 2845 if (release_lock) { 2846 bql_unlock(); 2847 } 2848 return result; 2849 } else { 2850 /* RAM case */ 2851 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2852 false); 2853 2854 memcpy(buf, ram_ptr, *l); 2855 2856 return MEMTX_OK; 2857 } 2858 } 2859 2860 /* Called within RCU critical section. */ 2861 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2862 MemTxAttrs attrs, void *ptr, 2863 hwaddr len, hwaddr mr_addr, hwaddr l, 2864 MemoryRegion *mr) 2865 { 2866 MemTxResult result = MEMTX_OK; 2867 uint8_t *buf = ptr; 2868 2869 fuzz_dma_read_cb(addr, len, mr); 2870 for (;;) { 2871 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2872 2873 len -= l; 2874 buf += l; 2875 addr += l; 2876 2877 if (!len) { 2878 break; 2879 } 2880 2881 l = len; 2882 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2883 } 2884 2885 return result; 2886 } 2887 2888 /* Called from RCU critical section. */ 2889 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2890 MemTxAttrs attrs, void *buf, hwaddr len) 2891 { 2892 hwaddr l; 2893 hwaddr mr_addr; 2894 MemoryRegion *mr; 2895 2896 l = len; 2897 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2898 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2899 return MEMTX_ACCESS_ERROR; 2900 } 2901 return flatview_read_continue(fv, addr, attrs, buf, len, 2902 mr_addr, l, mr); 2903 } 2904 2905 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2906 MemTxAttrs attrs, void *buf, hwaddr len) 2907 { 2908 MemTxResult result = MEMTX_OK; 2909 FlatView *fv; 2910 2911 if (len > 0) { 2912 RCU_READ_LOCK_GUARD(); 2913 fv = address_space_to_flatview(as); 2914 result = flatview_read(fv, addr, attrs, buf, len); 2915 } 2916 2917 return result; 2918 } 2919 2920 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2921 MemTxAttrs attrs, 2922 const void *buf, hwaddr len) 2923 { 2924 MemTxResult result = MEMTX_OK; 2925 FlatView *fv; 2926 2927 if (len > 0) { 2928 RCU_READ_LOCK_GUARD(); 2929 fv = address_space_to_flatview(as); 2930 result = flatview_write(fv, addr, attrs, buf, len); 2931 } 2932 2933 return result; 2934 } 2935 2936 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2937 void *buf, hwaddr len, bool is_write) 2938 { 2939 if (is_write) { 2940 return address_space_write(as, addr, attrs, buf, len); 2941 } else { 2942 return address_space_read_full(as, addr, attrs, buf, len); 2943 } 2944 } 2945 2946 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2947 uint8_t c, hwaddr len, MemTxAttrs attrs) 2948 { 2949 #define FILLBUF_SIZE 512 2950 uint8_t fillbuf[FILLBUF_SIZE]; 2951 int l; 2952 MemTxResult error = MEMTX_OK; 2953 2954 memset(fillbuf, c, FILLBUF_SIZE); 2955 while (len > 0) { 2956 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2957 error |= address_space_write(as, addr, attrs, fillbuf, l); 2958 len -= l; 2959 addr += l; 2960 } 2961 2962 return error; 2963 } 2964 2965 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2966 hwaddr len, bool is_write) 2967 { 2968 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2969 buf, len, is_write); 2970 } 2971 2972 enum write_rom_type { 2973 WRITE_DATA, 2974 FLUSH_CACHE, 2975 }; 2976 2977 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2978 hwaddr addr, 2979 MemTxAttrs attrs, 2980 const void *ptr, 2981 hwaddr len, 2982 enum write_rom_type type) 2983 { 2984 hwaddr l; 2985 uint8_t *ram_ptr; 2986 hwaddr addr1; 2987 MemoryRegion *mr; 2988 const uint8_t *buf = ptr; 2989 2990 RCU_READ_LOCK_GUARD(); 2991 while (len > 0) { 2992 l = len; 2993 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2994 2995 if (!(memory_region_is_ram(mr) || 2996 memory_region_is_romd(mr))) { 2997 l = memory_access_size(mr, l, addr1); 2998 } else { 2999 /* ROM/RAM case */ 3000 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3001 switch (type) { 3002 case WRITE_DATA: 3003 memcpy(ram_ptr, buf, l); 3004 invalidate_and_set_dirty(mr, addr1, l); 3005 break; 3006 case FLUSH_CACHE: 3007 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3008 break; 3009 } 3010 } 3011 len -= l; 3012 buf += l; 3013 addr += l; 3014 } 3015 return MEMTX_OK; 3016 } 3017 3018 /* used for ROM loading : can write in RAM and ROM */ 3019 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3020 MemTxAttrs attrs, 3021 const void *buf, hwaddr len) 3022 { 3023 return address_space_write_rom_internal(as, addr, attrs, 3024 buf, len, WRITE_DATA); 3025 } 3026 3027 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3028 { 3029 /* 3030 * This function should do the same thing as an icache flush that was 3031 * triggered from within the guest. For TCG we are always cache coherent, 3032 * so there is no need to flush anything. For KVM / Xen we need to flush 3033 * the host's instruction cache at least. 3034 */ 3035 if (tcg_enabled()) { 3036 return; 3037 } 3038 3039 address_space_write_rom_internal(&address_space_memory, 3040 start, MEMTXATTRS_UNSPECIFIED, 3041 NULL, len, FLUSH_CACHE); 3042 } 3043 3044 typedef struct { 3045 MemoryRegion *mr; 3046 void *buffer; 3047 hwaddr addr; 3048 hwaddr len; 3049 bool in_use; 3050 } BounceBuffer; 3051 3052 static BounceBuffer bounce; 3053 3054 typedef struct MapClient { 3055 QEMUBH *bh; 3056 QLIST_ENTRY(MapClient) link; 3057 } MapClient; 3058 3059 QemuMutex map_client_list_lock; 3060 static QLIST_HEAD(, MapClient) map_client_list 3061 = QLIST_HEAD_INITIALIZER(map_client_list); 3062 3063 static void cpu_unregister_map_client_do(MapClient *client) 3064 { 3065 QLIST_REMOVE(client, link); 3066 g_free(client); 3067 } 3068 3069 static void cpu_notify_map_clients_locked(void) 3070 { 3071 MapClient *client; 3072 3073 while (!QLIST_EMPTY(&map_client_list)) { 3074 client = QLIST_FIRST(&map_client_list); 3075 qemu_bh_schedule(client->bh); 3076 cpu_unregister_map_client_do(client); 3077 } 3078 } 3079 3080 void cpu_register_map_client(QEMUBH *bh) 3081 { 3082 MapClient *client = g_malloc(sizeof(*client)); 3083 3084 qemu_mutex_lock(&map_client_list_lock); 3085 client->bh = bh; 3086 QLIST_INSERT_HEAD(&map_client_list, client, link); 3087 /* Write map_client_list before reading in_use. */ 3088 smp_mb(); 3089 if (!qatomic_read(&bounce.in_use)) { 3090 cpu_notify_map_clients_locked(); 3091 } 3092 qemu_mutex_unlock(&map_client_list_lock); 3093 } 3094 3095 void cpu_exec_init_all(void) 3096 { 3097 qemu_mutex_init(&ram_list.mutex); 3098 /* The data structures we set up here depend on knowing the page size, 3099 * so no more changes can be made after this point. 3100 * In an ideal world, nothing we did before we had finished the 3101 * machine setup would care about the target page size, and we could 3102 * do this much later, rather than requiring board models to state 3103 * up front what their requirements are. 3104 */ 3105 finalize_target_page_bits(); 3106 io_mem_init(); 3107 memory_map_init(); 3108 qemu_mutex_init(&map_client_list_lock); 3109 } 3110 3111 void cpu_unregister_map_client(QEMUBH *bh) 3112 { 3113 MapClient *client; 3114 3115 qemu_mutex_lock(&map_client_list_lock); 3116 QLIST_FOREACH(client, &map_client_list, link) { 3117 if (client->bh == bh) { 3118 cpu_unregister_map_client_do(client); 3119 break; 3120 } 3121 } 3122 qemu_mutex_unlock(&map_client_list_lock); 3123 } 3124 3125 static void cpu_notify_map_clients(void) 3126 { 3127 qemu_mutex_lock(&map_client_list_lock); 3128 cpu_notify_map_clients_locked(); 3129 qemu_mutex_unlock(&map_client_list_lock); 3130 } 3131 3132 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3133 bool is_write, MemTxAttrs attrs) 3134 { 3135 MemoryRegion *mr; 3136 hwaddr l, xlat; 3137 3138 while (len > 0) { 3139 l = len; 3140 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3141 if (!memory_access_is_direct(mr, is_write)) { 3142 l = memory_access_size(mr, l, addr); 3143 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3144 return false; 3145 } 3146 } 3147 3148 len -= l; 3149 addr += l; 3150 } 3151 return true; 3152 } 3153 3154 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3155 hwaddr len, bool is_write, 3156 MemTxAttrs attrs) 3157 { 3158 FlatView *fv; 3159 3160 RCU_READ_LOCK_GUARD(); 3161 fv = address_space_to_flatview(as); 3162 return flatview_access_valid(fv, addr, len, is_write, attrs); 3163 } 3164 3165 static hwaddr 3166 flatview_extend_translation(FlatView *fv, hwaddr addr, 3167 hwaddr target_len, 3168 MemoryRegion *mr, hwaddr base, hwaddr len, 3169 bool is_write, MemTxAttrs attrs) 3170 { 3171 hwaddr done = 0; 3172 hwaddr xlat; 3173 MemoryRegion *this_mr; 3174 3175 for (;;) { 3176 target_len -= len; 3177 addr += len; 3178 done += len; 3179 if (target_len == 0) { 3180 return done; 3181 } 3182 3183 len = target_len; 3184 this_mr = flatview_translate(fv, addr, &xlat, 3185 &len, is_write, attrs); 3186 if (this_mr != mr || xlat != base + done) { 3187 return done; 3188 } 3189 } 3190 } 3191 3192 /* Map a physical memory region into a host virtual address. 3193 * May map a subset of the requested range, given by and returned in *plen. 3194 * May return NULL if resources needed to perform the mapping are exhausted. 3195 * Use only for reads OR writes - not for read-modify-write operations. 3196 * Use cpu_register_map_client() to know when retrying the map operation is 3197 * likely to succeed. 3198 */ 3199 void *address_space_map(AddressSpace *as, 3200 hwaddr addr, 3201 hwaddr *plen, 3202 bool is_write, 3203 MemTxAttrs attrs) 3204 { 3205 hwaddr len = *plen; 3206 hwaddr l, xlat; 3207 MemoryRegion *mr; 3208 FlatView *fv; 3209 3210 if (len == 0) { 3211 return NULL; 3212 } 3213 3214 l = len; 3215 RCU_READ_LOCK_GUARD(); 3216 fv = address_space_to_flatview(as); 3217 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3218 3219 if (!memory_access_is_direct(mr, is_write)) { 3220 if (qatomic_xchg(&bounce.in_use, true)) { 3221 *plen = 0; 3222 return NULL; 3223 } 3224 /* Avoid unbounded allocations */ 3225 l = MIN(l, TARGET_PAGE_SIZE); 3226 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3227 bounce.addr = addr; 3228 bounce.len = l; 3229 3230 memory_region_ref(mr); 3231 bounce.mr = mr; 3232 if (!is_write) { 3233 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3234 bounce.buffer, l); 3235 } 3236 3237 *plen = l; 3238 return bounce.buffer; 3239 } 3240 3241 3242 memory_region_ref(mr); 3243 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3244 l, is_write, attrs); 3245 fuzz_dma_read_cb(addr, *plen, mr); 3246 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3247 } 3248 3249 /* Unmaps a memory region previously mapped by address_space_map(). 3250 * Will also mark the memory as dirty if is_write is true. access_len gives 3251 * the amount of memory that was actually read or written by the caller. 3252 */ 3253 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3254 bool is_write, hwaddr access_len) 3255 { 3256 if (buffer != bounce.buffer) { 3257 MemoryRegion *mr; 3258 ram_addr_t addr1; 3259 3260 mr = memory_region_from_host(buffer, &addr1); 3261 assert(mr != NULL); 3262 if (is_write) { 3263 invalidate_and_set_dirty(mr, addr1, access_len); 3264 } 3265 if (xen_enabled()) { 3266 xen_invalidate_map_cache_entry(buffer); 3267 } 3268 memory_region_unref(mr); 3269 return; 3270 } 3271 if (is_write) { 3272 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3273 bounce.buffer, access_len); 3274 } 3275 qemu_vfree(bounce.buffer); 3276 bounce.buffer = NULL; 3277 memory_region_unref(bounce.mr); 3278 /* Clear in_use before reading map_client_list. */ 3279 qatomic_set_mb(&bounce.in_use, false); 3280 cpu_notify_map_clients(); 3281 } 3282 3283 void *cpu_physical_memory_map(hwaddr addr, 3284 hwaddr *plen, 3285 bool is_write) 3286 { 3287 return address_space_map(&address_space_memory, addr, plen, is_write, 3288 MEMTXATTRS_UNSPECIFIED); 3289 } 3290 3291 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3292 bool is_write, hwaddr access_len) 3293 { 3294 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3295 } 3296 3297 #define ARG1_DECL AddressSpace *as 3298 #define ARG1 as 3299 #define SUFFIX 3300 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3301 #define RCU_READ_LOCK(...) rcu_read_lock() 3302 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3303 #include "memory_ldst.c.inc" 3304 3305 int64_t address_space_cache_init(MemoryRegionCache *cache, 3306 AddressSpace *as, 3307 hwaddr addr, 3308 hwaddr len, 3309 bool is_write) 3310 { 3311 AddressSpaceDispatch *d; 3312 hwaddr l; 3313 MemoryRegion *mr; 3314 Int128 diff; 3315 3316 assert(len > 0); 3317 3318 l = len; 3319 cache->fv = address_space_get_flatview(as); 3320 d = flatview_to_dispatch(cache->fv); 3321 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3322 3323 /* 3324 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3325 * Take that into account to compute how many bytes are there between 3326 * cache->xlat and the end of the section. 3327 */ 3328 diff = int128_sub(cache->mrs.size, 3329 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3330 l = int128_get64(int128_min(diff, int128_make64(l))); 3331 3332 mr = cache->mrs.mr; 3333 memory_region_ref(mr); 3334 if (memory_access_is_direct(mr, is_write)) { 3335 /* We don't care about the memory attributes here as we're only 3336 * doing this if we found actual RAM, which behaves the same 3337 * regardless of attributes; so UNSPECIFIED is fine. 3338 */ 3339 l = flatview_extend_translation(cache->fv, addr, len, mr, 3340 cache->xlat, l, is_write, 3341 MEMTXATTRS_UNSPECIFIED); 3342 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3343 } else { 3344 cache->ptr = NULL; 3345 } 3346 3347 cache->len = l; 3348 cache->is_write = is_write; 3349 return l; 3350 } 3351 3352 void address_space_cache_invalidate(MemoryRegionCache *cache, 3353 hwaddr addr, 3354 hwaddr access_len) 3355 { 3356 assert(cache->is_write); 3357 if (likely(cache->ptr)) { 3358 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3359 } 3360 } 3361 3362 void address_space_cache_destroy(MemoryRegionCache *cache) 3363 { 3364 if (!cache->mrs.mr) { 3365 return; 3366 } 3367 3368 if (xen_enabled()) { 3369 xen_invalidate_map_cache_entry(cache->ptr); 3370 } 3371 memory_region_unref(cache->mrs.mr); 3372 flatview_unref(cache->fv); 3373 cache->mrs.mr = NULL; 3374 cache->fv = NULL; 3375 } 3376 3377 /* Called from RCU critical section. This function has the same 3378 * semantics as address_space_translate, but it only works on a 3379 * predefined range of a MemoryRegion that was mapped with 3380 * address_space_cache_init. 3381 */ 3382 static inline MemoryRegion *address_space_translate_cached( 3383 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3384 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3385 { 3386 MemoryRegionSection section; 3387 MemoryRegion *mr; 3388 IOMMUMemoryRegion *iommu_mr; 3389 AddressSpace *target_as; 3390 3391 assert(!cache->ptr); 3392 *xlat = addr + cache->xlat; 3393 3394 mr = cache->mrs.mr; 3395 iommu_mr = memory_region_get_iommu(mr); 3396 if (!iommu_mr) { 3397 /* MMIO region. */ 3398 return mr; 3399 } 3400 3401 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3402 NULL, is_write, true, 3403 &target_as, attrs); 3404 return section.mr; 3405 } 3406 3407 /* Called within RCU critical section. */ 3408 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3409 const void *ptr, 3410 hwaddr len, 3411 hwaddr mr_addr, 3412 hwaddr l, 3413 MemoryRegion *mr) 3414 { 3415 MemTxResult result = MEMTX_OK; 3416 const uint8_t *buf = ptr; 3417 3418 for (;;) { 3419 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3420 mr); 3421 3422 len -= l; 3423 buf += l; 3424 mr_addr += l; 3425 3426 if (!len) { 3427 break; 3428 } 3429 3430 l = len; 3431 } 3432 3433 return result; 3434 } 3435 3436 /* Called within RCU critical section. */ 3437 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3438 void *ptr, hwaddr len, 3439 hwaddr mr_addr, hwaddr l, 3440 MemoryRegion *mr) 3441 { 3442 MemTxResult result = MEMTX_OK; 3443 uint8_t *buf = ptr; 3444 3445 for (;;) { 3446 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3447 len -= l; 3448 buf += l; 3449 mr_addr += l; 3450 3451 if (!len) { 3452 break; 3453 } 3454 l = len; 3455 } 3456 3457 return result; 3458 } 3459 3460 /* Called from RCU critical section. address_space_read_cached uses this 3461 * out of line function when the target is an MMIO or IOMMU region. 3462 */ 3463 MemTxResult 3464 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3465 void *buf, hwaddr len) 3466 { 3467 hwaddr mr_addr, l; 3468 MemoryRegion *mr; 3469 3470 l = len; 3471 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3472 MEMTXATTRS_UNSPECIFIED); 3473 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3474 buf, len, mr_addr, l, mr); 3475 } 3476 3477 /* Called from RCU critical section. address_space_write_cached uses this 3478 * out of line function when the target is an MMIO or IOMMU region. 3479 */ 3480 MemTxResult 3481 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3482 const void *buf, hwaddr len) 3483 { 3484 hwaddr mr_addr, l; 3485 MemoryRegion *mr; 3486 3487 l = len; 3488 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3489 MEMTXATTRS_UNSPECIFIED); 3490 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3491 buf, len, mr_addr, l, mr); 3492 } 3493 3494 #define ARG1_DECL MemoryRegionCache *cache 3495 #define ARG1 cache 3496 #define SUFFIX _cached_slow 3497 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3498 #define RCU_READ_LOCK() ((void)0) 3499 #define RCU_READ_UNLOCK() ((void)0) 3500 #include "memory_ldst.c.inc" 3501 3502 /* virtual memory access for debug (includes writing to ROM) */ 3503 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3504 void *ptr, size_t len, bool is_write) 3505 { 3506 hwaddr phys_addr; 3507 vaddr l, page; 3508 uint8_t *buf = ptr; 3509 3510 cpu_synchronize_state(cpu); 3511 while (len > 0) { 3512 int asidx; 3513 MemTxAttrs attrs; 3514 MemTxResult res; 3515 3516 page = addr & TARGET_PAGE_MASK; 3517 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3518 asidx = cpu_asidx_from_attrs(cpu, attrs); 3519 /* if no physical page mapped, return an error */ 3520 if (phys_addr == -1) 3521 return -1; 3522 l = (page + TARGET_PAGE_SIZE) - addr; 3523 if (l > len) 3524 l = len; 3525 phys_addr += (addr & ~TARGET_PAGE_MASK); 3526 if (is_write) { 3527 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3528 attrs, buf, l); 3529 } else { 3530 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3531 attrs, buf, l); 3532 } 3533 if (res != MEMTX_OK) { 3534 return -1; 3535 } 3536 len -= l; 3537 buf += l; 3538 addr += l; 3539 } 3540 return 0; 3541 } 3542 3543 /* 3544 * Allows code that needs to deal with migration bitmaps etc to still be built 3545 * target independent. 3546 */ 3547 size_t qemu_target_page_size(void) 3548 { 3549 return TARGET_PAGE_SIZE; 3550 } 3551 3552 int qemu_target_page_bits(void) 3553 { 3554 return TARGET_PAGE_BITS; 3555 } 3556 3557 int qemu_target_page_bits_min(void) 3558 { 3559 return TARGET_PAGE_BITS_MIN; 3560 } 3561 3562 /* Convert target pages to MiB (2**20). */ 3563 size_t qemu_target_pages_to_MiB(size_t pages) 3564 { 3565 int page_bits = TARGET_PAGE_BITS; 3566 3567 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3568 g_assert(page_bits < 20); 3569 3570 return pages >> (20 - page_bits); 3571 } 3572 3573 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3574 { 3575 MemoryRegion*mr; 3576 hwaddr l = 1; 3577 3578 RCU_READ_LOCK_GUARD(); 3579 mr = address_space_translate(&address_space_memory, 3580 phys_addr, &phys_addr, &l, false, 3581 MEMTXATTRS_UNSPECIFIED); 3582 3583 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3584 } 3585 3586 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3587 { 3588 RAMBlock *block; 3589 int ret = 0; 3590 3591 RCU_READ_LOCK_GUARD(); 3592 RAMBLOCK_FOREACH(block) { 3593 ret = func(block, opaque); 3594 if (ret) { 3595 break; 3596 } 3597 } 3598 return ret; 3599 } 3600 3601 /* 3602 * Unmap pages of memory from start to start+length such that 3603 * they a) read as 0, b) Trigger whatever fault mechanism 3604 * the OS provides for postcopy. 3605 * The pages must be unmapped by the end of the function. 3606 * Returns: 0 on success, none-0 on failure 3607 * 3608 */ 3609 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3610 { 3611 int ret = -1; 3612 3613 uint8_t *host_startaddr = rb->host + start; 3614 3615 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3616 error_report("%s: Unaligned start address: %p", 3617 __func__, host_startaddr); 3618 goto err; 3619 } 3620 3621 if ((start + length) <= rb->max_length) { 3622 bool need_madvise, need_fallocate; 3623 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3624 error_report("%s: Unaligned length: %zx", __func__, length); 3625 goto err; 3626 } 3627 3628 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3629 3630 /* The logic here is messy; 3631 * madvise DONTNEED fails for hugepages 3632 * fallocate works on hugepages and shmem 3633 * shared anonymous memory requires madvise REMOVE 3634 */ 3635 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3636 need_fallocate = rb->fd != -1; 3637 if (need_fallocate) { 3638 /* For a file, this causes the area of the file to be zero'd 3639 * if read, and for hugetlbfs also causes it to be unmapped 3640 * so a userfault will trigger. 3641 */ 3642 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3643 /* 3644 * fallocate() will fail with readonly files. Let's print a 3645 * proper error message. 3646 */ 3647 if (rb->flags & RAM_READONLY_FD) { 3648 error_report("%s: Discarding RAM with readonly files is not" 3649 " supported", __func__); 3650 goto err; 3651 3652 } 3653 /* 3654 * We'll discard data from the actual file, even though we only 3655 * have a MAP_PRIVATE mapping, possibly messing with other 3656 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3657 * change that behavior whithout violating the promised 3658 * semantics of ram_block_discard_range(). 3659 * 3660 * Only warn, because it works as long as nobody else uses that 3661 * file. 3662 */ 3663 if (!qemu_ram_is_shared(rb)) { 3664 warn_report_once("%s: Discarding RAM" 3665 " in private file mappings is possibly" 3666 " dangerous, because it will modify the" 3667 " underlying file and will affect other" 3668 " users of the file", __func__); 3669 } 3670 3671 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3672 start, length); 3673 if (ret) { 3674 ret = -errno; 3675 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3676 __func__, rb->idstr, start, length, ret); 3677 goto err; 3678 } 3679 #else 3680 ret = -ENOSYS; 3681 error_report("%s: fallocate not available/file" 3682 "%s:%" PRIx64 " +%zx (%d)", 3683 __func__, rb->idstr, start, length, ret); 3684 goto err; 3685 #endif 3686 } 3687 if (need_madvise) { 3688 /* For normal RAM this causes it to be unmapped, 3689 * for shared memory it causes the local mapping to disappear 3690 * and to fall back on the file contents (which we just 3691 * fallocate'd away). 3692 */ 3693 #if defined(CONFIG_MADVISE) 3694 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3695 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3696 } else { 3697 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3698 } 3699 if (ret) { 3700 ret = -errno; 3701 error_report("%s: Failed to discard range " 3702 "%s:%" PRIx64 " +%zx (%d)", 3703 __func__, rb->idstr, start, length, ret); 3704 goto err; 3705 } 3706 #else 3707 ret = -ENOSYS; 3708 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3709 __func__, rb->idstr, start, length, ret); 3710 goto err; 3711 #endif 3712 } 3713 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3714 need_madvise, need_fallocate, ret); 3715 } else { 3716 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3717 __func__, rb->idstr, start, length, rb->max_length); 3718 } 3719 3720 err: 3721 return ret; 3722 } 3723 3724 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3725 size_t length) 3726 { 3727 int ret = -1; 3728 3729 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3730 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3731 start, length); 3732 3733 if (ret) { 3734 ret = -errno; 3735 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3736 __func__, rb->idstr, start, length, ret); 3737 } 3738 #else 3739 ret = -ENOSYS; 3740 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3741 __func__, rb->idstr, start, length, ret); 3742 #endif 3743 3744 return ret; 3745 } 3746 3747 bool ramblock_is_pmem(RAMBlock *rb) 3748 { 3749 return rb->flags & RAM_PMEM; 3750 } 3751 3752 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3753 { 3754 if (start == end - 1) { 3755 qemu_printf("\t%3d ", start); 3756 } else { 3757 qemu_printf("\t%3d..%-3d ", start, end - 1); 3758 } 3759 qemu_printf(" skip=%d ", skip); 3760 if (ptr == PHYS_MAP_NODE_NIL) { 3761 qemu_printf(" ptr=NIL"); 3762 } else if (!skip) { 3763 qemu_printf(" ptr=#%d", ptr); 3764 } else { 3765 qemu_printf(" ptr=[%d]", ptr); 3766 } 3767 qemu_printf("\n"); 3768 } 3769 3770 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3771 int128_sub((size), int128_one())) : 0) 3772 3773 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3774 { 3775 int i; 3776 3777 qemu_printf(" Dispatch\n"); 3778 qemu_printf(" Physical sections\n"); 3779 3780 for (i = 0; i < d->map.sections_nb; ++i) { 3781 MemoryRegionSection *s = d->map.sections + i; 3782 const char *names[] = { " [unassigned]", " [not dirty]", 3783 " [ROM]", " [watch]" }; 3784 3785 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3786 " %s%s%s%s%s", 3787 i, 3788 s->offset_within_address_space, 3789 s->offset_within_address_space + MR_SIZE(s->size), 3790 s->mr->name ? s->mr->name : "(noname)", 3791 i < ARRAY_SIZE(names) ? names[i] : "", 3792 s->mr == root ? " [ROOT]" : "", 3793 s == d->mru_section ? " [MRU]" : "", 3794 s->mr->is_iommu ? " [iommu]" : ""); 3795 3796 if (s->mr->alias) { 3797 qemu_printf(" alias=%s", s->mr->alias->name ? 3798 s->mr->alias->name : "noname"); 3799 } 3800 qemu_printf("\n"); 3801 } 3802 3803 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3804 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3805 for (i = 0; i < d->map.nodes_nb; ++i) { 3806 int j, jprev; 3807 PhysPageEntry prev; 3808 Node *n = d->map.nodes + i; 3809 3810 qemu_printf(" [%d]\n", i); 3811 3812 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3813 PhysPageEntry *pe = *n + j; 3814 3815 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3816 continue; 3817 } 3818 3819 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3820 3821 jprev = j; 3822 prev = *pe; 3823 } 3824 3825 if (jprev != ARRAY_SIZE(*n)) { 3826 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3827 } 3828 } 3829 } 3830 3831 /* Require any discards to work. */ 3832 static unsigned int ram_block_discard_required_cnt; 3833 /* Require only coordinated discards to work. */ 3834 static unsigned int ram_block_coordinated_discard_required_cnt; 3835 /* Disable any discards. */ 3836 static unsigned int ram_block_discard_disabled_cnt; 3837 /* Disable only uncoordinated discards. */ 3838 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3839 static QemuMutex ram_block_discard_disable_mutex; 3840 3841 static void ram_block_discard_disable_mutex_lock(void) 3842 { 3843 static gsize initialized; 3844 3845 if (g_once_init_enter(&initialized)) { 3846 qemu_mutex_init(&ram_block_discard_disable_mutex); 3847 g_once_init_leave(&initialized, 1); 3848 } 3849 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3850 } 3851 3852 static void ram_block_discard_disable_mutex_unlock(void) 3853 { 3854 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3855 } 3856 3857 int ram_block_discard_disable(bool state) 3858 { 3859 int ret = 0; 3860 3861 ram_block_discard_disable_mutex_lock(); 3862 if (!state) { 3863 ram_block_discard_disabled_cnt--; 3864 } else if (ram_block_discard_required_cnt || 3865 ram_block_coordinated_discard_required_cnt) { 3866 ret = -EBUSY; 3867 } else { 3868 ram_block_discard_disabled_cnt++; 3869 } 3870 ram_block_discard_disable_mutex_unlock(); 3871 return ret; 3872 } 3873 3874 int ram_block_uncoordinated_discard_disable(bool state) 3875 { 3876 int ret = 0; 3877 3878 ram_block_discard_disable_mutex_lock(); 3879 if (!state) { 3880 ram_block_uncoordinated_discard_disabled_cnt--; 3881 } else if (ram_block_discard_required_cnt) { 3882 ret = -EBUSY; 3883 } else { 3884 ram_block_uncoordinated_discard_disabled_cnt++; 3885 } 3886 ram_block_discard_disable_mutex_unlock(); 3887 return ret; 3888 } 3889 3890 int ram_block_discard_require(bool state) 3891 { 3892 int ret = 0; 3893 3894 ram_block_discard_disable_mutex_lock(); 3895 if (!state) { 3896 ram_block_discard_required_cnt--; 3897 } else if (ram_block_discard_disabled_cnt || 3898 ram_block_uncoordinated_discard_disabled_cnt) { 3899 ret = -EBUSY; 3900 } else { 3901 ram_block_discard_required_cnt++; 3902 } 3903 ram_block_discard_disable_mutex_unlock(); 3904 return ret; 3905 } 3906 3907 int ram_block_coordinated_discard_require(bool state) 3908 { 3909 int ret = 0; 3910 3911 ram_block_discard_disable_mutex_lock(); 3912 if (!state) { 3913 ram_block_coordinated_discard_required_cnt--; 3914 } else if (ram_block_discard_disabled_cnt) { 3915 ret = -EBUSY; 3916 } else { 3917 ram_block_coordinated_discard_required_cnt++; 3918 } 3919 ram_block_discard_disable_mutex_unlock(); 3920 return ret; 3921 } 3922 3923 bool ram_block_discard_is_disabled(void) 3924 { 3925 return qatomic_read(&ram_block_discard_disabled_cnt) || 3926 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3927 } 3928 3929 bool ram_block_discard_is_required(void) 3930 { 3931 return qatomic_read(&ram_block_discard_required_cnt) || 3932 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3933 } 3934