1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 34 #include "exec/exec-all.h" 35 #include "exec/page-protection.h" 36 #include "exec/target_page.h" 37 #include "hw/qdev-core.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/boards.h" 40 #include "sysemu/xen.h" 41 #include "sysemu/kvm.h" 42 #include "sysemu/tcg.h" 43 #include "sysemu/qtest.h" 44 #include "qemu/timer.h" 45 #include "qemu/config-file.h" 46 #include "qemu/error-report.h" 47 #include "qemu/qemu-print.h" 48 #include "qemu/log.h" 49 #include "qemu/memalign.h" 50 #include "exec/memory.h" 51 #include "exec/ioport.h" 52 #include "sysemu/dma.h" 53 #include "sysemu/hostmem.h" 54 #include "sysemu/hw_accel.h" 55 #include "sysemu/xen-mapcache.h" 56 #include "trace.h" 57 58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 59 #include <linux/falloc.h> 60 #endif 61 62 #include "qemu/rcu_queue.h" 63 #include "qemu/main-loop.h" 64 #include "exec/translate-all.h" 65 #include "sysemu/replay.h" 66 67 #include "exec/memory-internal.h" 68 #include "exec/ram_addr.h" 69 70 #include "qemu/pmem.h" 71 72 #include "migration/vmstate.h" 73 74 #include "qemu/range.h" 75 #ifndef _WIN32 76 #include "qemu/mmap-alloc.h" 77 #endif 78 79 #include "monitor/monitor.h" 80 81 #ifdef CONFIG_LIBDAXCTL 82 #include <daxctl/libdaxctl.h> 83 #endif 84 85 //#define DEBUG_SUBPAGE 86 87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 88 * are protected by the ramlist lock. 89 */ 90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 91 92 static MemoryRegion *system_memory; 93 static MemoryRegion *system_io; 94 95 AddressSpace address_space_io; 96 AddressSpace address_space_memory; 97 98 static MemoryRegion io_mem_unassigned; 99 100 typedef struct PhysPageEntry PhysPageEntry; 101 102 struct PhysPageEntry { 103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 104 uint32_t skip : 6; 105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 106 uint32_t ptr : 26; 107 }; 108 109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 110 111 /* Size of the L2 (and L3, etc) page tables. */ 112 #define ADDR_SPACE_BITS 64 113 114 #define P_L2_BITS 9 115 #define P_L2_SIZE (1 << P_L2_BITS) 116 117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 118 119 typedef PhysPageEntry Node[P_L2_SIZE]; 120 121 typedef struct PhysPageMap { 122 struct rcu_head rcu; 123 124 unsigned sections_nb; 125 unsigned sections_nb_alloc; 126 unsigned nodes_nb; 127 unsigned nodes_nb_alloc; 128 Node *nodes; 129 MemoryRegionSection *sections; 130 } PhysPageMap; 131 132 struct AddressSpaceDispatch { 133 MemoryRegionSection *mru_section; 134 /* This is a multi-level map on the physical address space. 135 * The bottom level has pointers to MemoryRegionSections. 136 */ 137 PhysPageEntry phys_map; 138 PhysPageMap map; 139 }; 140 141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 142 typedef struct subpage_t { 143 MemoryRegion iomem; 144 FlatView *fv; 145 hwaddr base; 146 uint16_t sub_section[]; 147 } subpage_t; 148 149 #define PHYS_SECTION_UNASSIGNED 0 150 151 static void io_mem_init(void); 152 static void memory_map_init(void); 153 static void tcg_log_global_after_sync(MemoryListener *listener); 154 static void tcg_commit(MemoryListener *listener); 155 156 /** 157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 158 * @cpu: the CPU whose AddressSpace this is 159 * @as: the AddressSpace itself 160 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 161 * @tcg_as_listener: listener for tracking changes to the AddressSpace 162 */ 163 typedef struct CPUAddressSpace { 164 CPUState *cpu; 165 AddressSpace *as; 166 struct AddressSpaceDispatch *memory_dispatch; 167 MemoryListener tcg_as_listener; 168 } CPUAddressSpace; 169 170 struct DirtyBitmapSnapshot { 171 ram_addr_t start; 172 ram_addr_t end; 173 unsigned long dirty[]; 174 }; 175 176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 177 { 178 static unsigned alloc_hint = 16; 179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 182 alloc_hint = map->nodes_nb_alloc; 183 } 184 } 185 186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 187 { 188 unsigned i; 189 uint32_t ret; 190 PhysPageEntry e; 191 PhysPageEntry *p; 192 193 ret = map->nodes_nb++; 194 p = map->nodes[ret]; 195 assert(ret != PHYS_MAP_NODE_NIL); 196 assert(ret != map->nodes_nb_alloc); 197 198 e.skip = leaf ? 0 : 1; 199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 200 for (i = 0; i < P_L2_SIZE; ++i) { 201 memcpy(&p[i], &e, sizeof(e)); 202 } 203 return ret; 204 } 205 206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 207 hwaddr *index, uint64_t *nb, uint16_t leaf, 208 int level) 209 { 210 PhysPageEntry *p; 211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 212 213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 214 lp->ptr = phys_map_node_alloc(map, level == 0); 215 } 216 p = map->nodes[lp->ptr]; 217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 218 219 while (*nb && lp < &p[P_L2_SIZE]) { 220 if ((*index & (step - 1)) == 0 && *nb >= step) { 221 lp->skip = 0; 222 lp->ptr = leaf; 223 *index += step; 224 *nb -= step; 225 } else { 226 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 227 } 228 ++lp; 229 } 230 } 231 232 static void phys_page_set(AddressSpaceDispatch *d, 233 hwaddr index, uint64_t nb, 234 uint16_t leaf) 235 { 236 /* Wildly overreserve - it doesn't matter much. */ 237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 238 239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 240 } 241 242 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 243 * and update our entry so we can skip it and go directly to the destination. 244 */ 245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 246 { 247 unsigned valid_ptr = P_L2_SIZE; 248 int valid = 0; 249 PhysPageEntry *p; 250 int i; 251 252 if (lp->ptr == PHYS_MAP_NODE_NIL) { 253 return; 254 } 255 256 p = nodes[lp->ptr]; 257 for (i = 0; i < P_L2_SIZE; i++) { 258 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 259 continue; 260 } 261 262 valid_ptr = i; 263 valid++; 264 if (p[i].skip) { 265 phys_page_compact(&p[i], nodes); 266 } 267 } 268 269 /* We can only compress if there's only one child. */ 270 if (valid != 1) { 271 return; 272 } 273 274 assert(valid_ptr < P_L2_SIZE); 275 276 /* Don't compress if it won't fit in the # of bits we have. */ 277 if (P_L2_LEVELS >= (1 << 6) && 278 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 279 return; 280 } 281 282 lp->ptr = p[valid_ptr].ptr; 283 if (!p[valid_ptr].skip) { 284 /* If our only child is a leaf, make this a leaf. */ 285 /* By design, we should have made this node a leaf to begin with so we 286 * should never reach here. 287 * But since it's so simple to handle this, let's do it just in case we 288 * change this rule. 289 */ 290 lp->skip = 0; 291 } else { 292 lp->skip += p[valid_ptr].skip; 293 } 294 } 295 296 void address_space_dispatch_compact(AddressSpaceDispatch *d) 297 { 298 if (d->phys_map.skip) { 299 phys_page_compact(&d->phys_map, d->map.nodes); 300 } 301 } 302 303 static inline bool section_covers_addr(const MemoryRegionSection *section, 304 hwaddr addr) 305 { 306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 307 * the section must cover the entire address space. 308 */ 309 return int128_gethi(section->size) || 310 range_covers_byte(section->offset_within_address_space, 311 int128_getlo(section->size), addr); 312 } 313 314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 315 { 316 PhysPageEntry lp = d->phys_map, *p; 317 Node *nodes = d->map.nodes; 318 MemoryRegionSection *sections = d->map.sections; 319 hwaddr index = addr >> TARGET_PAGE_BITS; 320 int i; 321 322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 323 if (lp.ptr == PHYS_MAP_NODE_NIL) { 324 return §ions[PHYS_SECTION_UNASSIGNED]; 325 } 326 p = nodes[lp.ptr]; 327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 328 } 329 330 if (section_covers_addr(§ions[lp.ptr], addr)) { 331 return §ions[lp.ptr]; 332 } else { 333 return §ions[PHYS_SECTION_UNASSIGNED]; 334 } 335 } 336 337 /* Called from RCU critical section */ 338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 339 hwaddr addr, 340 bool resolve_subpage) 341 { 342 MemoryRegionSection *section = qatomic_read(&d->mru_section); 343 subpage_t *subpage; 344 345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 346 !section_covers_addr(section, addr)) { 347 section = phys_page_find(d, addr); 348 qatomic_set(&d->mru_section, section); 349 } 350 if (resolve_subpage && section->mr->subpage) { 351 subpage = container_of(section->mr, subpage_t, iomem); 352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 353 } 354 return section; 355 } 356 357 /* Called from RCU critical section */ 358 static MemoryRegionSection * 359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 360 hwaddr *plen, bool resolve_subpage) 361 { 362 MemoryRegionSection *section; 363 MemoryRegion *mr; 364 Int128 diff; 365 366 section = address_space_lookup_region(d, addr, resolve_subpage); 367 /* Compute offset within MemoryRegionSection */ 368 addr -= section->offset_within_address_space; 369 370 /* Compute offset within MemoryRegion */ 371 *xlat = addr + section->offset_within_region; 372 373 mr = section->mr; 374 375 /* MMIO registers can be expected to perform full-width accesses based only 376 * on their address, without considering adjacent registers that could 377 * decode to completely different MemoryRegions. When such registers 378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 379 * regions overlap wildly. For this reason we cannot clamp the accesses 380 * here. 381 * 382 * If the length is small (as is the case for address_space_ldl/stl), 383 * everything works fine. If the incoming length is large, however, 384 * the caller really has to do the clamping through memory_access_size. 385 */ 386 if (memory_region_is_ram(mr)) { 387 diff = int128_sub(section->size, int128_make64(addr)); 388 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 389 } 390 return section; 391 } 392 393 /** 394 * address_space_translate_iommu - translate an address through an IOMMU 395 * memory region and then through the target address space. 396 * 397 * @iommu_mr: the IOMMU memory region that we start the translation from 398 * @addr: the address to be translated through the MMU 399 * @xlat: the translated address offset within the destination memory region. 400 * It cannot be %NULL. 401 * @plen_out: valid read/write length of the translated address. It 402 * cannot be %NULL. 403 * @page_mask_out: page mask for the translated address. This 404 * should only be meaningful for IOMMU translated 405 * addresses, since there may be huge pages that this bit 406 * would tell. It can be %NULL if we don't care about it. 407 * @is_write: whether the translation operation is for write 408 * @is_mmio: whether this can be MMIO, set true if it can 409 * @target_as: the address space targeted by the IOMMU 410 * @attrs: transaction attributes 411 * 412 * This function is called from RCU critical section. It is the common 413 * part of flatview_do_translate and address_space_translate_cached. 414 */ 415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 416 hwaddr *xlat, 417 hwaddr *plen_out, 418 hwaddr *page_mask_out, 419 bool is_write, 420 bool is_mmio, 421 AddressSpace **target_as, 422 MemTxAttrs attrs) 423 { 424 MemoryRegionSection *section; 425 hwaddr page_mask = (hwaddr)-1; 426 427 do { 428 hwaddr addr = *xlat; 429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 430 int iommu_idx = 0; 431 IOMMUTLBEntry iotlb; 432 433 if (imrc->attrs_to_index) { 434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 435 } 436 437 iotlb = imrc->translate(iommu_mr, addr, is_write ? 438 IOMMU_WO : IOMMU_RO, iommu_idx); 439 440 if (!(iotlb.perm & (1 << is_write))) { 441 goto unassigned; 442 } 443 444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 445 | (addr & iotlb.addr_mask)); 446 page_mask &= iotlb.addr_mask; 447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 448 *target_as = iotlb.target_as; 449 450 section = address_space_translate_internal( 451 address_space_to_dispatch(iotlb.target_as), addr, xlat, 452 plen_out, is_mmio); 453 454 iommu_mr = memory_region_get_iommu(section->mr); 455 } while (unlikely(iommu_mr)); 456 457 if (page_mask_out) { 458 *page_mask_out = page_mask; 459 } 460 return *section; 461 462 unassigned: 463 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 464 } 465 466 /** 467 * flatview_do_translate - translate an address in FlatView 468 * 469 * @fv: the flat view that we want to translate on 470 * @addr: the address to be translated in above address space 471 * @xlat: the translated address offset within memory region. It 472 * cannot be @NULL. 473 * @plen_out: valid read/write length of the translated address. It 474 * can be @NULL when we don't care about it. 475 * @page_mask_out: page mask for the translated address. This 476 * should only be meaningful for IOMMU translated 477 * addresses, since there may be huge pages that this bit 478 * would tell. It can be @NULL if we don't care about it. 479 * @is_write: whether the translation operation is for write 480 * @is_mmio: whether this can be MMIO, set true if it can 481 * @target_as: the address space targeted by the IOMMU 482 * @attrs: memory transaction attributes 483 * 484 * This function is called from RCU critical section 485 */ 486 static MemoryRegionSection flatview_do_translate(FlatView *fv, 487 hwaddr addr, 488 hwaddr *xlat, 489 hwaddr *plen_out, 490 hwaddr *page_mask_out, 491 bool is_write, 492 bool is_mmio, 493 AddressSpace **target_as, 494 MemTxAttrs attrs) 495 { 496 MemoryRegionSection *section; 497 IOMMUMemoryRegion *iommu_mr; 498 hwaddr plen = (hwaddr)(-1); 499 500 if (!plen_out) { 501 plen_out = &plen; 502 } 503 504 section = address_space_translate_internal( 505 flatview_to_dispatch(fv), addr, xlat, 506 plen_out, is_mmio); 507 508 iommu_mr = memory_region_get_iommu(section->mr); 509 if (unlikely(iommu_mr)) { 510 return address_space_translate_iommu(iommu_mr, xlat, 511 plen_out, page_mask_out, 512 is_write, is_mmio, 513 target_as, attrs); 514 } 515 if (page_mask_out) { 516 /* Not behind an IOMMU, use default page size. */ 517 *page_mask_out = ~TARGET_PAGE_MASK; 518 } 519 520 return *section; 521 } 522 523 /* Called from RCU critical section */ 524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 525 bool is_write, MemTxAttrs attrs) 526 { 527 MemoryRegionSection section; 528 hwaddr xlat, page_mask; 529 530 /* 531 * This can never be MMIO, and we don't really care about plen, 532 * but page mask. 533 */ 534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 535 NULL, &page_mask, is_write, false, &as, 536 attrs); 537 538 /* Illegal translation */ 539 if (section.mr == &io_mem_unassigned) { 540 goto iotlb_fail; 541 } 542 543 /* Convert memory region offset into address space offset */ 544 xlat += section.offset_within_address_space - 545 section.offset_within_region; 546 547 return (IOMMUTLBEntry) { 548 .target_as = as, 549 .iova = addr & ~page_mask, 550 .translated_addr = xlat & ~page_mask, 551 .addr_mask = page_mask, 552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 553 .perm = IOMMU_RW, 554 }; 555 556 iotlb_fail: 557 return (IOMMUTLBEntry) {0}; 558 } 559 560 /* Called from RCU critical section */ 561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 562 hwaddr *plen, bool is_write, 563 MemTxAttrs attrs) 564 { 565 MemoryRegion *mr; 566 MemoryRegionSection section; 567 AddressSpace *as = NULL; 568 569 /* This can be MMIO, so setup MMIO bit. */ 570 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 571 is_write, true, &as, attrs); 572 mr = section.mr; 573 574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 576 *plen = MIN(page, *plen); 577 } 578 579 return mr; 580 } 581 582 typedef struct TCGIOMMUNotifier { 583 IOMMUNotifier n; 584 MemoryRegion *mr; 585 CPUState *cpu; 586 int iommu_idx; 587 bool active; 588 } TCGIOMMUNotifier; 589 590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 591 { 592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 593 594 if (!notifier->active) { 595 return; 596 } 597 tlb_flush(notifier->cpu); 598 notifier->active = false; 599 /* We leave the notifier struct on the list to avoid reallocating it later. 600 * Generally the number of IOMMUs a CPU deals with will be small. 601 * In any case we can't unregister the iommu notifier from a notify 602 * callback. 603 */ 604 } 605 606 static void tcg_register_iommu_notifier(CPUState *cpu, 607 IOMMUMemoryRegion *iommu_mr, 608 int iommu_idx) 609 { 610 /* Make sure this CPU has an IOMMU notifier registered for this 611 * IOMMU/IOMMU index combination, so that we can flush its TLB 612 * when the IOMMU tells us the mappings we've cached have changed. 613 */ 614 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 615 TCGIOMMUNotifier *notifier = NULL; 616 int i; 617 618 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 621 break; 622 } 623 } 624 if (i == cpu->iommu_notifiers->len) { 625 /* Not found, add a new entry at the end of the array */ 626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 627 notifier = g_new0(TCGIOMMUNotifier, 1); 628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 629 630 notifier->mr = mr; 631 notifier->iommu_idx = iommu_idx; 632 notifier->cpu = cpu; 633 /* Rather than trying to register interest in the specific part 634 * of the iommu's address space that we've accessed and then 635 * expand it later as subsequent accesses touch more of it, we 636 * just register interest in the whole thing, on the assumption 637 * that iommu reconfiguration will be rare. 638 */ 639 iommu_notifier_init(¬ifier->n, 640 tcg_iommu_unmap_notify, 641 IOMMU_NOTIFIER_UNMAP, 642 0, 643 HWADDR_MAX, 644 iommu_idx); 645 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 646 &error_fatal); 647 } 648 649 if (!notifier->active) { 650 notifier->active = true; 651 } 652 } 653 654 void tcg_iommu_free_notifier_list(CPUState *cpu) 655 { 656 /* Destroy the CPU's notifier list */ 657 int i; 658 TCGIOMMUNotifier *notifier; 659 660 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 662 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 663 g_free(notifier); 664 } 665 g_array_free(cpu->iommu_notifiers, true); 666 } 667 668 void tcg_iommu_init_notifier_list(CPUState *cpu) 669 { 670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 671 } 672 673 /* Called from RCU critical section */ 674 MemoryRegionSection * 675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 676 hwaddr *xlat, hwaddr *plen, 677 MemTxAttrs attrs, int *prot) 678 { 679 MemoryRegionSection *section; 680 IOMMUMemoryRegion *iommu_mr; 681 IOMMUMemoryRegionClass *imrc; 682 IOMMUTLBEntry iotlb; 683 int iommu_idx; 684 hwaddr addr = orig_addr; 685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 686 687 for (;;) { 688 section = address_space_translate_internal(d, addr, &addr, plen, false); 689 690 iommu_mr = memory_region_get_iommu(section->mr); 691 if (!iommu_mr) { 692 break; 693 } 694 695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 696 697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 700 * doesn't short-cut its translation table walk. 701 */ 702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 704 | (addr & iotlb.addr_mask)); 705 /* Update the caller's prot bits to remove permissions the IOMMU 706 * is giving us a failure response for. If we get down to no 707 * permissions left at all we can give up now. 708 */ 709 if (!(iotlb.perm & IOMMU_RO)) { 710 *prot &= ~(PAGE_READ | PAGE_EXEC); 711 } 712 if (!(iotlb.perm & IOMMU_WO)) { 713 *prot &= ~PAGE_WRITE; 714 } 715 716 if (!*prot) { 717 goto translate_fail; 718 } 719 720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 721 } 722 723 assert(!memory_region_is_iommu(section->mr)); 724 *xlat = addr; 725 return section; 726 727 translate_fail: 728 /* 729 * We should be given a page-aligned address -- certainly 730 * tlb_set_page_with_attrs() does so. The page offset of xlat 731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 732 * The page portion of xlat will be logged by memory_region_access_valid() 733 * when this memory access is rejected, so use the original untranslated 734 * physical address. 735 */ 736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 737 *xlat = orig_addr; 738 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 739 } 740 741 void cpu_address_space_init(CPUState *cpu, int asidx, 742 const char *prefix, MemoryRegion *mr) 743 { 744 CPUAddressSpace *newas; 745 AddressSpace *as = g_new0(AddressSpace, 1); 746 char *as_name; 747 748 assert(mr); 749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 750 address_space_init(as, mr, as_name); 751 g_free(as_name); 752 753 /* Target code should have set num_ases before calling us */ 754 assert(asidx < cpu->num_ases); 755 756 if (asidx == 0) { 757 /* address space 0 gets the convenience alias */ 758 cpu->as = as; 759 } 760 761 /* KVM cannot currently support multiple address spaces. */ 762 assert(asidx == 0 || !kvm_enabled()); 763 764 if (!cpu->cpu_ases) { 765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 766 cpu->cpu_ases_count = cpu->num_ases; 767 } 768 769 newas = &cpu->cpu_ases[asidx]; 770 newas->cpu = cpu; 771 newas->as = as; 772 if (tcg_enabled()) { 773 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 774 newas->tcg_as_listener.commit = tcg_commit; 775 newas->tcg_as_listener.name = "tcg"; 776 memory_listener_register(&newas->tcg_as_listener, as); 777 } 778 } 779 780 void cpu_address_space_destroy(CPUState *cpu, int asidx) 781 { 782 CPUAddressSpace *cpuas; 783 784 assert(cpu->cpu_ases); 785 assert(asidx >= 0 && asidx < cpu->num_ases); 786 /* KVM cannot currently support multiple address spaces. */ 787 assert(asidx == 0 || !kvm_enabled()); 788 789 cpuas = &cpu->cpu_ases[asidx]; 790 if (tcg_enabled()) { 791 memory_listener_unregister(&cpuas->tcg_as_listener); 792 } 793 794 address_space_destroy(cpuas->as); 795 g_free_rcu(cpuas->as, rcu); 796 797 if (asidx == 0) { 798 /* reset the convenience alias for address space 0 */ 799 cpu->as = NULL; 800 } 801 802 if (--cpu->cpu_ases_count == 0) { 803 g_free(cpu->cpu_ases); 804 cpu->cpu_ases = NULL; 805 } 806 } 807 808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 809 { 810 /* Return the AddressSpace corresponding to the specified index */ 811 return cpu->cpu_ases[asidx].as; 812 } 813 814 /* Called from RCU critical section */ 815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 816 { 817 RAMBlock *block; 818 819 block = qatomic_rcu_read(&ram_list.mru_block); 820 if (block && addr - block->offset < block->max_length) { 821 return block; 822 } 823 RAMBLOCK_FOREACH(block) { 824 if (addr - block->offset < block->max_length) { 825 goto found; 826 } 827 } 828 829 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 830 abort(); 831 832 found: 833 /* It is safe to write mru_block outside the BQL. This 834 * is what happens: 835 * 836 * mru_block = xxx 837 * rcu_read_unlock() 838 * xxx removed from list 839 * rcu_read_lock() 840 * read mru_block 841 * mru_block = NULL; 842 * call_rcu(reclaim_ramblock, xxx); 843 * rcu_read_unlock() 844 * 845 * qatomic_rcu_set is not needed here. The block was already published 846 * when it was placed into the list. Here we're just making an extra 847 * copy of the pointer. 848 */ 849 ram_list.mru_block = block; 850 return block; 851 } 852 853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 854 { 855 CPUState *cpu; 856 ram_addr_t start1; 857 RAMBlock *block; 858 ram_addr_t end; 859 860 assert(tcg_enabled()); 861 end = TARGET_PAGE_ALIGN(start + length); 862 start &= TARGET_PAGE_MASK; 863 864 RCU_READ_LOCK_GUARD(); 865 block = qemu_get_ram_block(start); 866 assert(block == qemu_get_ram_block(end - 1)); 867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 868 CPU_FOREACH(cpu) { 869 tlb_reset_dirty(cpu, start1, length); 870 } 871 } 872 873 /* Note: start and end must be within the same ram block. */ 874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 875 ram_addr_t length, 876 unsigned client) 877 { 878 DirtyMemoryBlocks *blocks; 879 unsigned long end, page, start_page; 880 bool dirty = false; 881 RAMBlock *ramblock; 882 uint64_t mr_offset, mr_size; 883 884 if (length == 0) { 885 return false; 886 } 887 888 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 889 start_page = start >> TARGET_PAGE_BITS; 890 page = start_page; 891 892 WITH_RCU_READ_LOCK_GUARD() { 893 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 894 ramblock = qemu_get_ram_block(start); 895 /* Range sanity check on the ramblock */ 896 assert(start >= ramblock->offset && 897 start + length <= ramblock->offset + ramblock->used_length); 898 899 while (page < end) { 900 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 901 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 902 unsigned long num = MIN(end - page, 903 DIRTY_MEMORY_BLOCK_SIZE - offset); 904 905 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 906 offset, num); 907 page += num; 908 } 909 910 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 911 mr_size = (end - start_page) << TARGET_PAGE_BITS; 912 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 913 } 914 915 if (dirty) { 916 cpu_physical_memory_dirty_bits_cleared(start, length); 917 } 918 919 return dirty; 920 } 921 922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 923 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 924 { 925 DirtyMemoryBlocks *blocks; 926 ram_addr_t start, first, last; 927 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 928 DirtyBitmapSnapshot *snap; 929 unsigned long page, end, dest; 930 931 start = memory_region_get_ram_addr(mr); 932 /* We know we're only called for RAM MemoryRegions */ 933 assert(start != RAM_ADDR_INVALID); 934 start += offset; 935 936 first = QEMU_ALIGN_DOWN(start, align); 937 last = QEMU_ALIGN_UP(start + length, align); 938 939 snap = g_malloc0(sizeof(*snap) + 940 ((last - first) >> (TARGET_PAGE_BITS + 3))); 941 snap->start = first; 942 snap->end = last; 943 944 page = first >> TARGET_PAGE_BITS; 945 end = last >> TARGET_PAGE_BITS; 946 dest = 0; 947 948 WITH_RCU_READ_LOCK_GUARD() { 949 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 950 951 while (page < end) { 952 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 953 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 954 unsigned long num = MIN(end - page, 955 DIRTY_MEMORY_BLOCK_SIZE - ofs); 956 957 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 958 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 959 ofs >>= BITS_PER_LEVEL; 960 961 bitmap_copy_and_clear_atomic(snap->dirty + dest, 962 blocks->blocks[idx] + ofs, 963 num); 964 page += num; 965 dest += num >> BITS_PER_LEVEL; 966 } 967 } 968 969 cpu_physical_memory_dirty_bits_cleared(start, length); 970 971 memory_region_clear_dirty_bitmap(mr, offset, length); 972 973 return snap; 974 } 975 976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 977 ram_addr_t start, 978 ram_addr_t length) 979 { 980 unsigned long page, end; 981 982 assert(start >= snap->start); 983 assert(start + length <= snap->end); 984 985 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 986 page = (start - snap->start) >> TARGET_PAGE_BITS; 987 988 while (page < end) { 989 if (test_bit(page, snap->dirty)) { 990 return true; 991 } 992 page++; 993 } 994 return false; 995 } 996 997 /* Called from RCU critical section */ 998 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 999 MemoryRegionSection *section) 1000 { 1001 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1002 return section - d->map.sections; 1003 } 1004 1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1006 uint16_t section); 1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1008 1009 static uint16_t phys_section_add(PhysPageMap *map, 1010 MemoryRegionSection *section) 1011 { 1012 /* The physical section number is ORed with a page-aligned 1013 * pointer to produce the iotlb entries. Thus it should 1014 * never overflow into the page-aligned value. 1015 */ 1016 assert(map->sections_nb < TARGET_PAGE_SIZE); 1017 1018 if (map->sections_nb == map->sections_nb_alloc) { 1019 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1020 map->sections = g_renew(MemoryRegionSection, map->sections, 1021 map->sections_nb_alloc); 1022 } 1023 map->sections[map->sections_nb] = *section; 1024 memory_region_ref(section->mr); 1025 return map->sections_nb++; 1026 } 1027 1028 static void phys_section_destroy(MemoryRegion *mr) 1029 { 1030 bool have_sub_page = mr->subpage; 1031 1032 memory_region_unref(mr); 1033 1034 if (have_sub_page) { 1035 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1036 object_unref(OBJECT(&subpage->iomem)); 1037 g_free(subpage); 1038 } 1039 } 1040 1041 static void phys_sections_free(PhysPageMap *map) 1042 { 1043 while (map->sections_nb > 0) { 1044 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1045 phys_section_destroy(section->mr); 1046 } 1047 g_free(map->sections); 1048 g_free(map->nodes); 1049 } 1050 1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1052 { 1053 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1054 subpage_t *subpage; 1055 hwaddr base = section->offset_within_address_space 1056 & TARGET_PAGE_MASK; 1057 MemoryRegionSection *existing = phys_page_find(d, base); 1058 MemoryRegionSection subsection = { 1059 .offset_within_address_space = base, 1060 .size = int128_make64(TARGET_PAGE_SIZE), 1061 }; 1062 hwaddr start, end; 1063 1064 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1065 1066 if (!(existing->mr->subpage)) { 1067 subpage = subpage_init(fv, base); 1068 subsection.fv = fv; 1069 subsection.mr = &subpage->iomem; 1070 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1071 phys_section_add(&d->map, &subsection)); 1072 } else { 1073 subpage = container_of(existing->mr, subpage_t, iomem); 1074 } 1075 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1076 end = start + int128_get64(section->size) - 1; 1077 subpage_register(subpage, start, end, 1078 phys_section_add(&d->map, section)); 1079 } 1080 1081 1082 static void register_multipage(FlatView *fv, 1083 MemoryRegionSection *section) 1084 { 1085 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1086 hwaddr start_addr = section->offset_within_address_space; 1087 uint16_t section_index = phys_section_add(&d->map, section); 1088 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1089 TARGET_PAGE_BITS)); 1090 1091 assert(num_pages); 1092 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1093 } 1094 1095 /* 1096 * The range in *section* may look like this: 1097 * 1098 * |s|PPPPPPP|s| 1099 * 1100 * where s stands for subpage and P for page. 1101 */ 1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1103 { 1104 MemoryRegionSection remain = *section; 1105 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1106 1107 /* register first subpage */ 1108 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1109 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1110 - remain.offset_within_address_space; 1111 1112 MemoryRegionSection now = remain; 1113 now.size = int128_min(int128_make64(left), now.size); 1114 register_subpage(fv, &now); 1115 if (int128_eq(remain.size, now.size)) { 1116 return; 1117 } 1118 remain.size = int128_sub(remain.size, now.size); 1119 remain.offset_within_address_space += int128_get64(now.size); 1120 remain.offset_within_region += int128_get64(now.size); 1121 } 1122 1123 /* register whole pages */ 1124 if (int128_ge(remain.size, page_size)) { 1125 MemoryRegionSection now = remain; 1126 now.size = int128_and(now.size, int128_neg(page_size)); 1127 register_multipage(fv, &now); 1128 if (int128_eq(remain.size, now.size)) { 1129 return; 1130 } 1131 remain.size = int128_sub(remain.size, now.size); 1132 remain.offset_within_address_space += int128_get64(now.size); 1133 remain.offset_within_region += int128_get64(now.size); 1134 } 1135 1136 /* register last subpage */ 1137 register_subpage(fv, &remain); 1138 } 1139 1140 void qemu_flush_coalesced_mmio_buffer(void) 1141 { 1142 if (kvm_enabled()) 1143 kvm_flush_coalesced_mmio_buffer(); 1144 } 1145 1146 void qemu_mutex_lock_ramlist(void) 1147 { 1148 qemu_mutex_lock(&ram_list.mutex); 1149 } 1150 1151 void qemu_mutex_unlock_ramlist(void) 1152 { 1153 qemu_mutex_unlock(&ram_list.mutex); 1154 } 1155 1156 GString *ram_block_format(void) 1157 { 1158 RAMBlock *block; 1159 char *psize; 1160 GString *buf = g_string_new(""); 1161 1162 RCU_READ_LOCK_GUARD(); 1163 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1164 "Block Name", "PSize", "Offset", "Used", "Total", 1165 "HVA", "RO"); 1166 1167 RAMBLOCK_FOREACH(block) { 1168 psize = size_to_str(block->page_size); 1169 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1170 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1171 block->idstr, psize, 1172 (uint64_t)block->offset, 1173 (uint64_t)block->used_length, 1174 (uint64_t)block->max_length, 1175 (uint64_t)(uintptr_t)block->host, 1176 block->mr->readonly ? "ro" : "rw"); 1177 1178 g_free(psize); 1179 } 1180 1181 return buf; 1182 } 1183 1184 static int find_min_backend_pagesize(Object *obj, void *opaque) 1185 { 1186 long *hpsize_min = opaque; 1187 1188 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1189 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1190 long hpsize = host_memory_backend_pagesize(backend); 1191 1192 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1193 *hpsize_min = hpsize; 1194 } 1195 } 1196 1197 return 0; 1198 } 1199 1200 static int find_max_backend_pagesize(Object *obj, void *opaque) 1201 { 1202 long *hpsize_max = opaque; 1203 1204 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1205 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1206 long hpsize = host_memory_backend_pagesize(backend); 1207 1208 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1209 *hpsize_max = hpsize; 1210 } 1211 } 1212 1213 return 0; 1214 } 1215 1216 /* 1217 * TODO: We assume right now that all mapped host memory backends are 1218 * used as RAM, however some might be used for different purposes. 1219 */ 1220 long qemu_minrampagesize(void) 1221 { 1222 long hpsize = LONG_MAX; 1223 Object *memdev_root = object_resolve_path("/objects", NULL); 1224 1225 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1226 return hpsize; 1227 } 1228 1229 long qemu_maxrampagesize(void) 1230 { 1231 long pagesize = 0; 1232 Object *memdev_root = object_resolve_path("/objects", NULL); 1233 1234 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1235 return pagesize; 1236 } 1237 1238 #ifdef CONFIG_POSIX 1239 static int64_t get_file_size(int fd) 1240 { 1241 int64_t size; 1242 #if defined(__linux__) 1243 struct stat st; 1244 1245 if (fstat(fd, &st) < 0) { 1246 return -errno; 1247 } 1248 1249 /* Special handling for devdax character devices */ 1250 if (S_ISCHR(st.st_mode)) { 1251 g_autofree char *subsystem_path = NULL; 1252 g_autofree char *subsystem = NULL; 1253 1254 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1255 major(st.st_rdev), minor(st.st_rdev)); 1256 subsystem = g_file_read_link(subsystem_path, NULL); 1257 1258 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1259 g_autofree char *size_path = NULL; 1260 g_autofree char *size_str = NULL; 1261 1262 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1263 major(st.st_rdev), minor(st.st_rdev)); 1264 1265 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1266 return g_ascii_strtoll(size_str, NULL, 0); 1267 } 1268 } 1269 } 1270 #endif /* defined(__linux__) */ 1271 1272 /* st.st_size may be zero for special files yet lseek(2) works */ 1273 size = lseek(fd, 0, SEEK_END); 1274 if (size < 0) { 1275 return -errno; 1276 } 1277 return size; 1278 } 1279 1280 static int64_t get_file_align(int fd) 1281 { 1282 int64_t align = -1; 1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1284 struct stat st; 1285 1286 if (fstat(fd, &st) < 0) { 1287 return -errno; 1288 } 1289 1290 /* Special handling for devdax character devices */ 1291 if (S_ISCHR(st.st_mode)) { 1292 g_autofree char *path = NULL; 1293 g_autofree char *rpath = NULL; 1294 struct daxctl_ctx *ctx; 1295 struct daxctl_region *region; 1296 int rc = 0; 1297 1298 path = g_strdup_printf("/sys/dev/char/%d:%d", 1299 major(st.st_rdev), minor(st.st_rdev)); 1300 rpath = realpath(path, NULL); 1301 if (!rpath) { 1302 return -errno; 1303 } 1304 1305 rc = daxctl_new(&ctx); 1306 if (rc) { 1307 return -1; 1308 } 1309 1310 daxctl_region_foreach(ctx, region) { 1311 if (strstr(rpath, daxctl_region_get_path(region))) { 1312 align = daxctl_region_get_align(region); 1313 break; 1314 } 1315 } 1316 daxctl_unref(ctx); 1317 } 1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1319 1320 return align; 1321 } 1322 1323 static int file_ram_open(const char *path, 1324 const char *region_name, 1325 bool readonly, 1326 bool *created) 1327 { 1328 char *filename; 1329 char *sanitized_name; 1330 char *c; 1331 int fd = -1; 1332 1333 *created = false; 1334 for (;;) { 1335 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1336 if (fd >= 0) { 1337 /* 1338 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1339 * opened a directory and fail similarly to how we fail ENOENT 1340 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1341 */ 1342 if (readonly) { 1343 struct stat file_stat; 1344 1345 if (fstat(fd, &file_stat)) { 1346 close(fd); 1347 if (errno == EINTR) { 1348 continue; 1349 } 1350 return -errno; 1351 } else if (S_ISDIR(file_stat.st_mode)) { 1352 close(fd); 1353 return -EISDIR; 1354 } 1355 } 1356 /* @path names an existing file, use it */ 1357 break; 1358 } 1359 if (errno == ENOENT) { 1360 if (readonly) { 1361 /* Refuse to create new, readonly files. */ 1362 return -ENOENT; 1363 } 1364 /* @path names a file that doesn't exist, create it */ 1365 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1366 if (fd >= 0) { 1367 *created = true; 1368 break; 1369 } 1370 } else if (errno == EISDIR) { 1371 /* @path names a directory, create a file there */ 1372 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1373 sanitized_name = g_strdup(region_name); 1374 for (c = sanitized_name; *c != '\0'; c++) { 1375 if (*c == '/') { 1376 *c = '_'; 1377 } 1378 } 1379 1380 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1381 sanitized_name); 1382 g_free(sanitized_name); 1383 1384 fd = mkstemp(filename); 1385 if (fd >= 0) { 1386 unlink(filename); 1387 g_free(filename); 1388 break; 1389 } 1390 g_free(filename); 1391 } 1392 if (errno != EEXIST && errno != EINTR) { 1393 return -errno; 1394 } 1395 /* 1396 * Try again on EINTR and EEXIST. The latter happens when 1397 * something else creates the file between our two open(). 1398 */ 1399 } 1400 1401 return fd; 1402 } 1403 1404 static void *file_ram_alloc(RAMBlock *block, 1405 ram_addr_t memory, 1406 int fd, 1407 bool truncate, 1408 off_t offset, 1409 Error **errp) 1410 { 1411 uint32_t qemu_map_flags; 1412 void *area; 1413 1414 block->page_size = qemu_fd_getpagesize(fd); 1415 if (block->mr->align % block->page_size) { 1416 error_setg(errp, "alignment 0x%" PRIx64 1417 " must be multiples of page size 0x%zx", 1418 block->mr->align, block->page_size); 1419 return NULL; 1420 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1421 error_setg(errp, "alignment 0x%" PRIx64 1422 " must be a power of two", block->mr->align); 1423 return NULL; 1424 } else if (offset % block->page_size) { 1425 error_setg(errp, "offset 0x%" PRIx64 1426 " must be multiples of page size 0x%zx", 1427 offset, block->page_size); 1428 return NULL; 1429 } 1430 block->mr->align = MAX(block->page_size, block->mr->align); 1431 #if defined(__s390x__) 1432 if (kvm_enabled()) { 1433 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1434 } 1435 #endif 1436 1437 if (memory < block->page_size) { 1438 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1439 "or larger than page size 0x%zx", 1440 memory, block->page_size); 1441 return NULL; 1442 } 1443 1444 memory = ROUND_UP(memory, block->page_size); 1445 1446 /* 1447 * ftruncate is not supported by hugetlbfs in older 1448 * hosts, so don't bother bailing out on errors. 1449 * If anything goes wrong with it under other filesystems, 1450 * mmap will fail. 1451 * 1452 * Do not truncate the non-empty backend file to avoid corrupting 1453 * the existing data in the file. Disabling shrinking is not 1454 * enough. For example, the current vNVDIMM implementation stores 1455 * the guest NVDIMM labels at the end of the backend file. If the 1456 * backend file is later extended, QEMU will not be able to find 1457 * those labels. Therefore, extending the non-empty backend file 1458 * is disabled as well. 1459 */ 1460 if (truncate && ftruncate(fd, offset + memory)) { 1461 perror("ftruncate"); 1462 } 1463 1464 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1465 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1466 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1467 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1468 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1469 if (area == MAP_FAILED) { 1470 error_setg_errno(errp, errno, 1471 "unable to map backing store for guest RAM"); 1472 return NULL; 1473 } 1474 1475 block->fd = fd; 1476 block->fd_offset = offset; 1477 return area; 1478 } 1479 #endif 1480 1481 /* Allocate space within the ram_addr_t space that governs the 1482 * dirty bitmaps. 1483 * Called with the ramlist lock held. 1484 */ 1485 static ram_addr_t find_ram_offset(ram_addr_t size) 1486 { 1487 RAMBlock *block, *next_block; 1488 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1489 1490 assert(size != 0); /* it would hand out same offset multiple times */ 1491 1492 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1493 return 0; 1494 } 1495 1496 RAMBLOCK_FOREACH(block) { 1497 ram_addr_t candidate, next = RAM_ADDR_MAX; 1498 1499 /* Align blocks to start on a 'long' in the bitmap 1500 * which makes the bitmap sync'ing take the fast path. 1501 */ 1502 candidate = block->offset + block->max_length; 1503 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1504 1505 /* Search for the closest following block 1506 * and find the gap. 1507 */ 1508 RAMBLOCK_FOREACH(next_block) { 1509 if (next_block->offset >= candidate) { 1510 next = MIN(next, next_block->offset); 1511 } 1512 } 1513 1514 /* If it fits remember our place and remember the size 1515 * of gap, but keep going so that we might find a smaller 1516 * gap to fill so avoiding fragmentation. 1517 */ 1518 if (next - candidate >= size && next - candidate < mingap) { 1519 offset = candidate; 1520 mingap = next - candidate; 1521 } 1522 1523 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1524 } 1525 1526 if (offset == RAM_ADDR_MAX) { 1527 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1528 (uint64_t)size); 1529 abort(); 1530 } 1531 1532 trace_find_ram_offset(size, offset); 1533 1534 return offset; 1535 } 1536 1537 static unsigned long last_ram_page(void) 1538 { 1539 RAMBlock *block; 1540 ram_addr_t last = 0; 1541 1542 RCU_READ_LOCK_GUARD(); 1543 RAMBLOCK_FOREACH(block) { 1544 last = MAX(last, block->offset + block->max_length); 1545 } 1546 return last >> TARGET_PAGE_BITS; 1547 } 1548 1549 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1550 { 1551 int ret; 1552 1553 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1554 if (!machine_dump_guest_core(current_machine)) { 1555 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1556 if (ret) { 1557 perror("qemu_madvise"); 1558 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1559 "but dump-guest-core=off specified\n"); 1560 } 1561 } 1562 } 1563 1564 const char *qemu_ram_get_idstr(RAMBlock *rb) 1565 { 1566 return rb->idstr; 1567 } 1568 1569 void *qemu_ram_get_host_addr(RAMBlock *rb) 1570 { 1571 return rb->host; 1572 } 1573 1574 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1575 { 1576 return rb->offset; 1577 } 1578 1579 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1580 { 1581 return rb->used_length; 1582 } 1583 1584 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1585 { 1586 return rb->max_length; 1587 } 1588 1589 bool qemu_ram_is_shared(RAMBlock *rb) 1590 { 1591 return rb->flags & RAM_SHARED; 1592 } 1593 1594 bool qemu_ram_is_noreserve(RAMBlock *rb) 1595 { 1596 return rb->flags & RAM_NORESERVE; 1597 } 1598 1599 /* Note: Only set at the start of postcopy */ 1600 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1601 { 1602 return rb->flags & RAM_UF_ZEROPAGE; 1603 } 1604 1605 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1606 { 1607 rb->flags |= RAM_UF_ZEROPAGE; 1608 } 1609 1610 bool qemu_ram_is_migratable(RAMBlock *rb) 1611 { 1612 return rb->flags & RAM_MIGRATABLE; 1613 } 1614 1615 void qemu_ram_set_migratable(RAMBlock *rb) 1616 { 1617 rb->flags |= RAM_MIGRATABLE; 1618 } 1619 1620 void qemu_ram_unset_migratable(RAMBlock *rb) 1621 { 1622 rb->flags &= ~RAM_MIGRATABLE; 1623 } 1624 1625 bool qemu_ram_is_named_file(RAMBlock *rb) 1626 { 1627 return rb->flags & RAM_NAMED_FILE; 1628 } 1629 1630 int qemu_ram_get_fd(RAMBlock *rb) 1631 { 1632 return rb->fd; 1633 } 1634 1635 /* Called with the BQL held. */ 1636 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1637 { 1638 RAMBlock *block; 1639 1640 assert(new_block); 1641 assert(!new_block->idstr[0]); 1642 1643 if (dev) { 1644 char *id = qdev_get_dev_path(dev); 1645 if (id) { 1646 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1647 g_free(id); 1648 } 1649 } 1650 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1651 1652 RCU_READ_LOCK_GUARD(); 1653 RAMBLOCK_FOREACH(block) { 1654 if (block != new_block && 1655 !strcmp(block->idstr, new_block->idstr)) { 1656 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1657 new_block->idstr); 1658 abort(); 1659 } 1660 } 1661 } 1662 1663 /* Called with the BQL held. */ 1664 void qemu_ram_unset_idstr(RAMBlock *block) 1665 { 1666 /* FIXME: arch_init.c assumes that this is not called throughout 1667 * migration. Ignore the problem since hot-unplug during migration 1668 * does not work anyway. 1669 */ 1670 if (block) { 1671 memset(block->idstr, 0, sizeof(block->idstr)); 1672 } 1673 } 1674 1675 size_t qemu_ram_pagesize(RAMBlock *rb) 1676 { 1677 return rb->page_size; 1678 } 1679 1680 /* Returns the largest size of page in use */ 1681 size_t qemu_ram_pagesize_largest(void) 1682 { 1683 RAMBlock *block; 1684 size_t largest = 0; 1685 1686 RAMBLOCK_FOREACH(block) { 1687 largest = MAX(largest, qemu_ram_pagesize(block)); 1688 } 1689 1690 return largest; 1691 } 1692 1693 static int memory_try_enable_merging(void *addr, size_t len) 1694 { 1695 if (!machine_mem_merge(current_machine)) { 1696 /* disabled by the user */ 1697 return 0; 1698 } 1699 1700 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1701 } 1702 1703 /* 1704 * Resizing RAM while migrating can result in the migration being canceled. 1705 * Care has to be taken if the guest might have already detected the memory. 1706 * 1707 * As memory core doesn't know how is memory accessed, it is up to 1708 * resize callback to update device state and/or add assertions to detect 1709 * misuse, if necessary. 1710 */ 1711 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1712 { 1713 const ram_addr_t oldsize = block->used_length; 1714 const ram_addr_t unaligned_size = newsize; 1715 1716 assert(block); 1717 1718 newsize = TARGET_PAGE_ALIGN(newsize); 1719 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1720 1721 if (block->used_length == newsize) { 1722 /* 1723 * We don't have to resize the ram block (which only knows aligned 1724 * sizes), however, we have to notify if the unaligned size changed. 1725 */ 1726 if (unaligned_size != memory_region_size(block->mr)) { 1727 memory_region_set_size(block->mr, unaligned_size); 1728 if (block->resized) { 1729 block->resized(block->idstr, unaligned_size, block->host); 1730 } 1731 } 1732 return 0; 1733 } 1734 1735 if (!(block->flags & RAM_RESIZEABLE)) { 1736 error_setg_errno(errp, EINVAL, 1737 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1738 " != 0x" RAM_ADDR_FMT, block->idstr, 1739 newsize, block->used_length); 1740 return -EINVAL; 1741 } 1742 1743 if (block->max_length < newsize) { 1744 error_setg_errno(errp, EINVAL, 1745 "Size too large: %s: 0x" RAM_ADDR_FMT 1746 " > 0x" RAM_ADDR_FMT, block->idstr, 1747 newsize, block->max_length); 1748 return -EINVAL; 1749 } 1750 1751 /* Notify before modifying the ram block and touching the bitmaps. */ 1752 if (block->host) { 1753 ram_block_notify_resize(block->host, oldsize, newsize); 1754 } 1755 1756 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1757 block->used_length = newsize; 1758 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1759 DIRTY_CLIENTS_ALL); 1760 memory_region_set_size(block->mr, unaligned_size); 1761 if (block->resized) { 1762 block->resized(block->idstr, unaligned_size, block->host); 1763 } 1764 return 0; 1765 } 1766 1767 /* 1768 * Trigger sync on the given ram block for range [start, start + length] 1769 * with the backing store if one is available. 1770 * Otherwise no-op. 1771 * @Note: this is supposed to be a synchronous op. 1772 */ 1773 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1774 { 1775 /* The requested range should fit in within the block range */ 1776 g_assert((start + length) <= block->used_length); 1777 1778 #ifdef CONFIG_LIBPMEM 1779 /* The lack of support for pmem should not block the sync */ 1780 if (ramblock_is_pmem(block)) { 1781 void *addr = ramblock_ptr(block, start); 1782 pmem_persist(addr, length); 1783 return; 1784 } 1785 #endif 1786 if (block->fd >= 0) { 1787 /** 1788 * Case there is no support for PMEM or the memory has not been 1789 * specified as persistent (or is not one) - use the msync. 1790 * Less optimal but still achieves the same goal 1791 */ 1792 void *addr = ramblock_ptr(block, start); 1793 if (qemu_msync(addr, length, block->fd)) { 1794 warn_report("%s: failed to sync memory range: start: " 1795 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1796 __func__, start, length); 1797 } 1798 } 1799 } 1800 1801 /* Called with ram_list.mutex held */ 1802 static void dirty_memory_extend(ram_addr_t old_ram_size, 1803 ram_addr_t new_ram_size) 1804 { 1805 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1806 DIRTY_MEMORY_BLOCK_SIZE); 1807 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1808 DIRTY_MEMORY_BLOCK_SIZE); 1809 int i; 1810 1811 /* Only need to extend if block count increased */ 1812 if (new_num_blocks <= old_num_blocks) { 1813 return; 1814 } 1815 1816 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1817 DirtyMemoryBlocks *old_blocks; 1818 DirtyMemoryBlocks *new_blocks; 1819 int j; 1820 1821 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1822 new_blocks = g_malloc(sizeof(*new_blocks) + 1823 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1824 1825 if (old_num_blocks) { 1826 memcpy(new_blocks->blocks, old_blocks->blocks, 1827 old_num_blocks * sizeof(old_blocks->blocks[0])); 1828 } 1829 1830 for (j = old_num_blocks; j < new_num_blocks; j++) { 1831 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1832 } 1833 1834 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1835 1836 if (old_blocks) { 1837 g_free_rcu(old_blocks, rcu); 1838 } 1839 } 1840 } 1841 1842 static void ram_block_add(RAMBlock *new_block, Error **errp) 1843 { 1844 const bool noreserve = qemu_ram_is_noreserve(new_block); 1845 const bool shared = qemu_ram_is_shared(new_block); 1846 RAMBlock *block; 1847 RAMBlock *last_block = NULL; 1848 bool free_on_error = false; 1849 ram_addr_t old_ram_size, new_ram_size; 1850 Error *err = NULL; 1851 1852 old_ram_size = last_ram_page(); 1853 1854 qemu_mutex_lock_ramlist(); 1855 new_block->offset = find_ram_offset(new_block->max_length); 1856 1857 if (!new_block->host) { 1858 if (xen_enabled()) { 1859 xen_ram_alloc(new_block->offset, new_block->max_length, 1860 new_block->mr, &err); 1861 if (err) { 1862 error_propagate(errp, err); 1863 qemu_mutex_unlock_ramlist(); 1864 return; 1865 } 1866 } else { 1867 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1868 &new_block->mr->align, 1869 shared, noreserve); 1870 if (!new_block->host) { 1871 error_setg_errno(errp, errno, 1872 "cannot set up guest memory '%s'", 1873 memory_region_name(new_block->mr)); 1874 qemu_mutex_unlock_ramlist(); 1875 return; 1876 } 1877 memory_try_enable_merging(new_block->host, new_block->max_length); 1878 free_on_error = true; 1879 } 1880 } 1881 1882 if (new_block->flags & RAM_GUEST_MEMFD) { 1883 int ret; 1884 1885 assert(kvm_enabled()); 1886 assert(new_block->guest_memfd < 0); 1887 1888 ret = ram_block_discard_require(true); 1889 if (ret < 0) { 1890 error_setg_errno(errp, -ret, 1891 "cannot set up private guest memory: discard currently blocked"); 1892 error_append_hint(errp, "Are you using assigned devices?\n"); 1893 goto out_free; 1894 } 1895 1896 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1897 0, errp); 1898 if (new_block->guest_memfd < 0) { 1899 qemu_mutex_unlock_ramlist(); 1900 goto out_free; 1901 } 1902 } 1903 1904 new_ram_size = MAX(old_ram_size, 1905 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1906 if (new_ram_size > old_ram_size) { 1907 dirty_memory_extend(old_ram_size, new_ram_size); 1908 } 1909 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1910 * QLIST (which has an RCU-friendly variant) does not have insertion at 1911 * tail, so save the last element in last_block. 1912 */ 1913 RAMBLOCK_FOREACH(block) { 1914 last_block = block; 1915 if (block->max_length < new_block->max_length) { 1916 break; 1917 } 1918 } 1919 if (block) { 1920 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1921 } else if (last_block) { 1922 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1923 } else { /* list is empty */ 1924 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1925 } 1926 ram_list.mru_block = NULL; 1927 1928 /* Write list before version */ 1929 smp_wmb(); 1930 ram_list.version++; 1931 qemu_mutex_unlock_ramlist(); 1932 1933 cpu_physical_memory_set_dirty_range(new_block->offset, 1934 new_block->used_length, 1935 DIRTY_CLIENTS_ALL); 1936 1937 if (new_block->host) { 1938 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1939 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1940 /* 1941 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1942 * Configure it unless the machine is a qtest server, in which case 1943 * KVM is not used and it may be forked (eg for fuzzing purposes). 1944 */ 1945 if (!qtest_enabled()) { 1946 qemu_madvise(new_block->host, new_block->max_length, 1947 QEMU_MADV_DONTFORK); 1948 } 1949 ram_block_notify_add(new_block->host, new_block->used_length, 1950 new_block->max_length); 1951 } 1952 return; 1953 1954 out_free: 1955 if (free_on_error) { 1956 qemu_anon_ram_free(new_block->host, new_block->max_length); 1957 new_block->host = NULL; 1958 } 1959 } 1960 1961 #ifdef CONFIG_POSIX 1962 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1963 uint32_t ram_flags, int fd, off_t offset, 1964 Error **errp) 1965 { 1966 RAMBlock *new_block; 1967 Error *local_err = NULL; 1968 int64_t file_size, file_align; 1969 1970 /* Just support these ram flags by now. */ 1971 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1972 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1973 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0); 1974 1975 if (xen_enabled()) { 1976 error_setg(errp, "-mem-path not supported with Xen"); 1977 return NULL; 1978 } 1979 1980 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1981 error_setg(errp, 1982 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1983 return NULL; 1984 } 1985 1986 size = TARGET_PAGE_ALIGN(size); 1987 size = REAL_HOST_PAGE_ALIGN(size); 1988 1989 file_size = get_file_size(fd); 1990 if (file_size > offset && file_size < (offset + size)) { 1991 error_setg(errp, "backing store size 0x%" PRIx64 1992 " does not match 'size' option 0x" RAM_ADDR_FMT, 1993 file_size, size); 1994 return NULL; 1995 } 1996 1997 file_align = get_file_align(fd); 1998 if (file_align > 0 && file_align > mr->align) { 1999 error_setg(errp, "backing store align 0x%" PRIx64 2000 " is larger than 'align' option 0x%" PRIx64, 2001 file_align, mr->align); 2002 return NULL; 2003 } 2004 2005 new_block = g_malloc0(sizeof(*new_block)); 2006 new_block->mr = mr; 2007 new_block->used_length = size; 2008 new_block->max_length = size; 2009 new_block->flags = ram_flags; 2010 new_block->guest_memfd = -1; 2011 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 2012 errp); 2013 if (!new_block->host) { 2014 g_free(new_block); 2015 return NULL; 2016 } 2017 2018 ram_block_add(new_block, &local_err); 2019 if (local_err) { 2020 g_free(new_block); 2021 error_propagate(errp, local_err); 2022 return NULL; 2023 } 2024 return new_block; 2025 2026 } 2027 2028 2029 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2030 uint32_t ram_flags, const char *mem_path, 2031 off_t offset, Error **errp) 2032 { 2033 int fd; 2034 bool created; 2035 RAMBlock *block; 2036 2037 fd = file_ram_open(mem_path, memory_region_name(mr), 2038 !!(ram_flags & RAM_READONLY_FD), &created); 2039 if (fd < 0) { 2040 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2041 mem_path); 2042 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2043 fd == -EACCES) { 2044 /* 2045 * If we can open the file R/O (note: will never create a new file) 2046 * and we are dealing with a private mapping, there are still ways 2047 * to consume such files and get RAM instead of ROM. 2048 */ 2049 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2050 &created); 2051 if (fd < 0) { 2052 return NULL; 2053 } 2054 assert(!created); 2055 close(fd); 2056 error_append_hint(errp, "Consider opening the backing store" 2057 " read-only but still creating writable RAM using" 2058 " '-object memory-backend-file,readonly=on,rom=off...'" 2059 " (see \"VM templating\" documentation)\n"); 2060 } 2061 return NULL; 2062 } 2063 2064 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 2065 if (!block) { 2066 if (created) { 2067 unlink(mem_path); 2068 } 2069 close(fd); 2070 return NULL; 2071 } 2072 2073 return block; 2074 } 2075 #endif 2076 2077 static 2078 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2079 void (*resized)(const char*, 2080 uint64_t length, 2081 void *host), 2082 void *host, uint32_t ram_flags, 2083 MemoryRegion *mr, Error **errp) 2084 { 2085 RAMBlock *new_block; 2086 Error *local_err = NULL; 2087 int align; 2088 2089 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2090 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2091 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2092 2093 align = qemu_real_host_page_size(); 2094 align = MAX(align, TARGET_PAGE_SIZE); 2095 size = ROUND_UP(size, align); 2096 max_size = ROUND_UP(max_size, align); 2097 2098 new_block = g_malloc0(sizeof(*new_block)); 2099 new_block->mr = mr; 2100 new_block->resized = resized; 2101 new_block->used_length = size; 2102 new_block->max_length = max_size; 2103 assert(max_size >= size); 2104 new_block->fd = -1; 2105 new_block->guest_memfd = -1; 2106 new_block->page_size = qemu_real_host_page_size(); 2107 new_block->host = host; 2108 new_block->flags = ram_flags; 2109 ram_block_add(new_block, &local_err); 2110 if (local_err) { 2111 g_free(new_block); 2112 error_propagate(errp, local_err); 2113 return NULL; 2114 } 2115 return new_block; 2116 } 2117 2118 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2119 MemoryRegion *mr, Error **errp) 2120 { 2121 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2122 errp); 2123 } 2124 2125 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2126 MemoryRegion *mr, Error **errp) 2127 { 2128 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2129 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2130 } 2131 2132 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2133 void (*resized)(const char*, 2134 uint64_t length, 2135 void *host), 2136 MemoryRegion *mr, Error **errp) 2137 { 2138 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2139 RAM_RESIZEABLE, mr, errp); 2140 } 2141 2142 static void reclaim_ramblock(RAMBlock *block) 2143 { 2144 if (block->flags & RAM_PREALLOC) { 2145 ; 2146 } else if (xen_enabled()) { 2147 xen_invalidate_map_cache_entry(block->host); 2148 #ifndef _WIN32 2149 } else if (block->fd >= 0) { 2150 qemu_ram_munmap(block->fd, block->host, block->max_length); 2151 close(block->fd); 2152 #endif 2153 } else { 2154 qemu_anon_ram_free(block->host, block->max_length); 2155 } 2156 2157 if (block->guest_memfd >= 0) { 2158 close(block->guest_memfd); 2159 ram_block_discard_require(false); 2160 } 2161 2162 g_free(block); 2163 } 2164 2165 void qemu_ram_free(RAMBlock *block) 2166 { 2167 if (!block) { 2168 return; 2169 } 2170 2171 if (block->host) { 2172 ram_block_notify_remove(block->host, block->used_length, 2173 block->max_length); 2174 } 2175 2176 qemu_mutex_lock_ramlist(); 2177 QLIST_REMOVE_RCU(block, next); 2178 ram_list.mru_block = NULL; 2179 /* Write list before version */ 2180 smp_wmb(); 2181 ram_list.version++; 2182 call_rcu(block, reclaim_ramblock, rcu); 2183 qemu_mutex_unlock_ramlist(); 2184 } 2185 2186 #ifndef _WIN32 2187 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2188 { 2189 RAMBlock *block; 2190 ram_addr_t offset; 2191 int flags; 2192 void *area, *vaddr; 2193 int prot; 2194 2195 RAMBLOCK_FOREACH(block) { 2196 offset = addr - block->offset; 2197 if (offset < block->max_length) { 2198 vaddr = ramblock_ptr(block, offset); 2199 if (block->flags & RAM_PREALLOC) { 2200 ; 2201 } else if (xen_enabled()) { 2202 abort(); 2203 } else { 2204 flags = MAP_FIXED; 2205 flags |= block->flags & RAM_SHARED ? 2206 MAP_SHARED : MAP_PRIVATE; 2207 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2208 prot = PROT_READ; 2209 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2210 if (block->fd >= 0) { 2211 area = mmap(vaddr, length, prot, flags, block->fd, 2212 offset + block->fd_offset); 2213 } else { 2214 flags |= MAP_ANONYMOUS; 2215 area = mmap(vaddr, length, prot, flags, -1, 0); 2216 } 2217 if (area != vaddr) { 2218 error_report("Could not remap addr: " 2219 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2220 length, addr); 2221 exit(1); 2222 } 2223 memory_try_enable_merging(vaddr, length); 2224 qemu_ram_setup_dump(vaddr, length); 2225 } 2226 } 2227 } 2228 } 2229 #endif /* !_WIN32 */ 2230 2231 /* 2232 * Return a host pointer to guest's ram. 2233 * For Xen, foreign mappings get created if they don't already exist. 2234 * 2235 * @block: block for the RAM to lookup (optional and may be NULL). 2236 * @addr: address within the memory region. 2237 * @size: pointer to requested size (optional and may be NULL). 2238 * size may get modified and return a value smaller than 2239 * what was requested. 2240 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2241 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2242 * (optional and may always be set to true). 2243 * 2244 * Called within RCU critical section. 2245 */ 2246 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2247 hwaddr *size, bool lock, 2248 bool is_write) 2249 { 2250 hwaddr len = 0; 2251 2252 if (size && *size == 0) { 2253 return NULL; 2254 } 2255 2256 if (block == NULL) { 2257 block = qemu_get_ram_block(addr); 2258 addr -= block->offset; 2259 } 2260 if (size) { 2261 *size = MIN(*size, block->max_length - addr); 2262 len = *size; 2263 } 2264 2265 if (xen_enabled() && block->host == NULL) { 2266 /* We need to check if the requested address is in the RAM 2267 * because we don't want to map the entire memory in QEMU. 2268 * In that case just map the requested area. 2269 */ 2270 if (xen_mr_is_memory(block->mr)) { 2271 return xen_map_cache(block->mr, block->offset + addr, 2272 len, block->offset, 2273 lock, lock, is_write); 2274 } 2275 2276 block->host = xen_map_cache(block->mr, block->offset, 2277 block->max_length, 2278 block->offset, 2279 1, lock, is_write); 2280 } 2281 2282 return ramblock_ptr(block, addr); 2283 } 2284 2285 /* 2286 * Return a host pointer to ram allocated with qemu_ram_alloc. 2287 * This should not be used for general purpose DMA. Use address_space_map 2288 * or address_space_rw instead. For local memory (e.g. video ram) that the 2289 * device owns, use memory_region_get_ram_ptr. 2290 * 2291 * Called within RCU critical section. 2292 */ 2293 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2294 { 2295 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2296 } 2297 2298 /* Return the offset of a hostpointer within a ramblock */ 2299 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2300 { 2301 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2302 assert((uintptr_t)host >= (uintptr_t)rb->host); 2303 assert(res < rb->max_length); 2304 2305 return res; 2306 } 2307 2308 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2309 ram_addr_t *offset) 2310 { 2311 RAMBlock *block; 2312 uint8_t *host = ptr; 2313 2314 if (xen_enabled()) { 2315 ram_addr_t ram_addr; 2316 RCU_READ_LOCK_GUARD(); 2317 ram_addr = xen_ram_addr_from_mapcache(ptr); 2318 if (ram_addr == RAM_ADDR_INVALID) { 2319 return NULL; 2320 } 2321 2322 block = qemu_get_ram_block(ram_addr); 2323 if (block) { 2324 *offset = ram_addr - block->offset; 2325 } 2326 return block; 2327 } 2328 2329 RCU_READ_LOCK_GUARD(); 2330 block = qatomic_rcu_read(&ram_list.mru_block); 2331 if (block && block->host && host - block->host < block->max_length) { 2332 goto found; 2333 } 2334 2335 RAMBLOCK_FOREACH(block) { 2336 /* This case append when the block is not mapped. */ 2337 if (block->host == NULL) { 2338 continue; 2339 } 2340 if (host - block->host < block->max_length) { 2341 goto found; 2342 } 2343 } 2344 2345 return NULL; 2346 2347 found: 2348 *offset = (host - block->host); 2349 if (round_offset) { 2350 *offset &= TARGET_PAGE_MASK; 2351 } 2352 return block; 2353 } 2354 2355 /* 2356 * Finds the named RAMBlock 2357 * 2358 * name: The name of RAMBlock to find 2359 * 2360 * Returns: RAMBlock (or NULL if not found) 2361 */ 2362 RAMBlock *qemu_ram_block_by_name(const char *name) 2363 { 2364 RAMBlock *block; 2365 2366 RAMBLOCK_FOREACH(block) { 2367 if (!strcmp(name, block->idstr)) { 2368 return block; 2369 } 2370 } 2371 2372 return NULL; 2373 } 2374 2375 /* 2376 * Some of the system routines need to translate from a host pointer 2377 * (typically a TLB entry) back to a ram offset. 2378 */ 2379 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2380 { 2381 RAMBlock *block; 2382 ram_addr_t offset; 2383 2384 block = qemu_ram_block_from_host(ptr, false, &offset); 2385 if (!block) { 2386 return RAM_ADDR_INVALID; 2387 } 2388 2389 return block->offset + offset; 2390 } 2391 2392 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2393 { 2394 ram_addr_t ram_addr; 2395 2396 ram_addr = qemu_ram_addr_from_host(ptr); 2397 if (ram_addr == RAM_ADDR_INVALID) { 2398 error_report("Bad ram pointer %p", ptr); 2399 abort(); 2400 } 2401 return ram_addr; 2402 } 2403 2404 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2405 MemTxAttrs attrs, void *buf, hwaddr len); 2406 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2407 const void *buf, hwaddr len); 2408 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2409 bool is_write, MemTxAttrs attrs); 2410 2411 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2412 unsigned len, MemTxAttrs attrs) 2413 { 2414 subpage_t *subpage = opaque; 2415 uint8_t buf[8]; 2416 MemTxResult res; 2417 2418 #if defined(DEBUG_SUBPAGE) 2419 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2420 subpage, len, addr); 2421 #endif 2422 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2423 if (res) { 2424 return res; 2425 } 2426 *data = ldn_p(buf, len); 2427 return MEMTX_OK; 2428 } 2429 2430 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2431 uint64_t value, unsigned len, MemTxAttrs attrs) 2432 { 2433 subpage_t *subpage = opaque; 2434 uint8_t buf[8]; 2435 2436 #if defined(DEBUG_SUBPAGE) 2437 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2438 " value %"PRIx64"\n", 2439 __func__, subpage, len, addr, value); 2440 #endif 2441 stn_p(buf, len, value); 2442 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2443 } 2444 2445 static bool subpage_accepts(void *opaque, hwaddr addr, 2446 unsigned len, bool is_write, 2447 MemTxAttrs attrs) 2448 { 2449 subpage_t *subpage = opaque; 2450 #if defined(DEBUG_SUBPAGE) 2451 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2452 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2453 #endif 2454 2455 return flatview_access_valid(subpage->fv, addr + subpage->base, 2456 len, is_write, attrs); 2457 } 2458 2459 static const MemoryRegionOps subpage_ops = { 2460 .read_with_attrs = subpage_read, 2461 .write_with_attrs = subpage_write, 2462 .impl.min_access_size = 1, 2463 .impl.max_access_size = 8, 2464 .valid.min_access_size = 1, 2465 .valid.max_access_size = 8, 2466 .valid.accepts = subpage_accepts, 2467 .endianness = DEVICE_NATIVE_ENDIAN, 2468 }; 2469 2470 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2471 uint16_t section) 2472 { 2473 int idx, eidx; 2474 2475 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2476 return -1; 2477 idx = SUBPAGE_IDX(start); 2478 eidx = SUBPAGE_IDX(end); 2479 #if defined(DEBUG_SUBPAGE) 2480 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2481 __func__, mmio, start, end, idx, eidx, section); 2482 #endif 2483 for (; idx <= eidx; idx++) { 2484 mmio->sub_section[idx] = section; 2485 } 2486 2487 return 0; 2488 } 2489 2490 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2491 { 2492 subpage_t *mmio; 2493 2494 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2495 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2496 mmio->fv = fv; 2497 mmio->base = base; 2498 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2499 NULL, TARGET_PAGE_SIZE); 2500 mmio->iomem.subpage = true; 2501 #if defined(DEBUG_SUBPAGE) 2502 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2503 mmio, base, TARGET_PAGE_SIZE); 2504 #endif 2505 2506 return mmio; 2507 } 2508 2509 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2510 { 2511 assert(fv); 2512 MemoryRegionSection section = { 2513 .fv = fv, 2514 .mr = mr, 2515 .offset_within_address_space = 0, 2516 .offset_within_region = 0, 2517 .size = int128_2_64(), 2518 }; 2519 2520 return phys_section_add(map, §ion); 2521 } 2522 2523 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2524 hwaddr index, MemTxAttrs attrs) 2525 { 2526 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2527 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2528 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2529 int section_index = index & ~TARGET_PAGE_MASK; 2530 MemoryRegionSection *ret; 2531 2532 assert(section_index < d->map.sections_nb); 2533 ret = d->map.sections + section_index; 2534 assert(ret->mr); 2535 assert(ret->mr->ops); 2536 2537 return ret; 2538 } 2539 2540 static void io_mem_init(void) 2541 { 2542 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2543 NULL, UINT64_MAX); 2544 } 2545 2546 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2547 { 2548 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2549 uint16_t n; 2550 2551 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2552 assert(n == PHYS_SECTION_UNASSIGNED); 2553 2554 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2555 2556 return d; 2557 } 2558 2559 void address_space_dispatch_free(AddressSpaceDispatch *d) 2560 { 2561 phys_sections_free(&d->map); 2562 g_free(d); 2563 } 2564 2565 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2566 { 2567 } 2568 2569 static void tcg_log_global_after_sync(MemoryListener *listener) 2570 { 2571 CPUAddressSpace *cpuas; 2572 2573 /* Wait for the CPU to end the current TB. This avoids the following 2574 * incorrect race: 2575 * 2576 * vCPU migration 2577 * ---------------------- ------------------------- 2578 * TLB check -> slow path 2579 * notdirty_mem_write 2580 * write to RAM 2581 * mark dirty 2582 * clear dirty flag 2583 * TLB check -> fast path 2584 * read memory 2585 * write to RAM 2586 * 2587 * by pushing the migration thread's memory read after the vCPU thread has 2588 * written the memory. 2589 */ 2590 if (replay_mode == REPLAY_MODE_NONE) { 2591 /* 2592 * VGA can make calls to this function while updating the screen. 2593 * In record/replay mode this causes a deadlock, because 2594 * run_on_cpu waits for rr mutex. Therefore no races are possible 2595 * in this case and no need for making run_on_cpu when 2596 * record/replay is enabled. 2597 */ 2598 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2599 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2600 } 2601 } 2602 2603 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2604 { 2605 CPUAddressSpace *cpuas = data.host_ptr; 2606 2607 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2608 tlb_flush(cpu); 2609 } 2610 2611 static void tcg_commit(MemoryListener *listener) 2612 { 2613 CPUAddressSpace *cpuas; 2614 CPUState *cpu; 2615 2616 assert(tcg_enabled()); 2617 /* since each CPU stores ram addresses in its TLB cache, we must 2618 reset the modified entries */ 2619 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2620 cpu = cpuas->cpu; 2621 2622 /* 2623 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2624 * Otherwise we race between (1) other cpu threads and (2) ongoing 2625 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2626 * 2627 * In addition, queueing the work function will kick the cpu back to 2628 * the main loop, which will end the RCU critical section and reclaim 2629 * the memory data structures. 2630 * 2631 * That said, the listener is also called during realize, before 2632 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2633 */ 2634 if (cpu->halt_cond) { 2635 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2636 } else { 2637 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2638 } 2639 } 2640 2641 static void memory_map_init(void) 2642 { 2643 system_memory = g_malloc(sizeof(*system_memory)); 2644 2645 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2646 address_space_init(&address_space_memory, system_memory, "memory"); 2647 2648 system_io = g_malloc(sizeof(*system_io)); 2649 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2650 65536); 2651 address_space_init(&address_space_io, system_io, "I/O"); 2652 } 2653 2654 MemoryRegion *get_system_memory(void) 2655 { 2656 return system_memory; 2657 } 2658 2659 MemoryRegion *get_system_io(void) 2660 { 2661 return system_io; 2662 } 2663 2664 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2665 hwaddr length) 2666 { 2667 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2668 ram_addr_t ramaddr = memory_region_get_ram_addr(mr); 2669 2670 /* We know we're only called for RAM MemoryRegions */ 2671 assert(ramaddr != RAM_ADDR_INVALID); 2672 addr += ramaddr; 2673 2674 /* No early return if dirty_log_mask is or becomes 0, because 2675 * cpu_physical_memory_set_dirty_range will still call 2676 * xen_modified_memory. 2677 */ 2678 if (dirty_log_mask) { 2679 dirty_log_mask = 2680 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2681 } 2682 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2683 assert(tcg_enabled()); 2684 tb_invalidate_phys_range(addr, addr + length - 1); 2685 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2686 } 2687 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2688 } 2689 2690 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2691 { 2692 /* 2693 * In principle this function would work on other memory region types too, 2694 * but the ROM device use case is the only one where this operation is 2695 * necessary. Other memory regions should use the 2696 * address_space_read/write() APIs. 2697 */ 2698 assert(memory_region_is_romd(mr)); 2699 2700 invalidate_and_set_dirty(mr, addr, size); 2701 } 2702 2703 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2704 { 2705 unsigned access_size_max = mr->ops->valid.max_access_size; 2706 2707 /* Regions are assumed to support 1-4 byte accesses unless 2708 otherwise specified. */ 2709 if (access_size_max == 0) { 2710 access_size_max = 4; 2711 } 2712 2713 /* Bound the maximum access by the alignment of the address. */ 2714 if (!mr->ops->impl.unaligned) { 2715 unsigned align_size_max = addr & -addr; 2716 if (align_size_max != 0 && align_size_max < access_size_max) { 2717 access_size_max = align_size_max; 2718 } 2719 } 2720 2721 /* Don't attempt accesses larger than the maximum. */ 2722 if (l > access_size_max) { 2723 l = access_size_max; 2724 } 2725 l = pow2floor(l); 2726 2727 return l; 2728 } 2729 2730 bool prepare_mmio_access(MemoryRegion *mr) 2731 { 2732 bool release_lock = false; 2733 2734 if (!bql_locked()) { 2735 bql_lock(); 2736 release_lock = true; 2737 } 2738 if (mr->flush_coalesced_mmio) { 2739 qemu_flush_coalesced_mmio_buffer(); 2740 } 2741 2742 return release_lock; 2743 } 2744 2745 /** 2746 * flatview_access_allowed 2747 * @mr: #MemoryRegion to be accessed 2748 * @attrs: memory transaction attributes 2749 * @addr: address within that memory region 2750 * @len: the number of bytes to access 2751 * 2752 * Check if a memory transaction is allowed. 2753 * 2754 * Returns: true if transaction is allowed, false if denied. 2755 */ 2756 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2757 hwaddr addr, hwaddr len) 2758 { 2759 if (likely(!attrs.memory)) { 2760 return true; 2761 } 2762 if (memory_region_is_ram(mr)) { 2763 return true; 2764 } 2765 qemu_log_mask(LOG_GUEST_ERROR, 2766 "Invalid access to non-RAM device at " 2767 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2768 "region '%s'\n", addr, len, memory_region_name(mr)); 2769 return false; 2770 } 2771 2772 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2773 const uint8_t *buf, 2774 hwaddr len, hwaddr mr_addr, 2775 hwaddr *l, MemoryRegion *mr) 2776 { 2777 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2778 return MEMTX_ACCESS_ERROR; 2779 } 2780 2781 if (!memory_access_is_direct(mr, true)) { 2782 uint64_t val; 2783 MemTxResult result; 2784 bool release_lock = prepare_mmio_access(mr); 2785 2786 *l = memory_access_size(mr, *l, mr_addr); 2787 /* 2788 * XXX: could force current_cpu to NULL to avoid 2789 * potential bugs 2790 */ 2791 2792 /* 2793 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2794 * the buffer by following ldn_he_p(). 2795 */ 2796 #ifdef QEMU_STATIC_ANALYSIS 2797 assert((*l == 1 && len >= 1) || 2798 (*l == 2 && len >= 2) || 2799 (*l == 4 && len >= 4) || 2800 (*l == 8 && len >= 8)); 2801 #endif 2802 val = ldn_he_p(buf, *l); 2803 result = memory_region_dispatch_write(mr, mr_addr, val, 2804 size_memop(*l), attrs); 2805 if (release_lock) { 2806 bql_unlock(); 2807 } 2808 2809 return result; 2810 } else { 2811 /* RAM case */ 2812 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2813 false, true); 2814 2815 memmove(ram_ptr, buf, *l); 2816 invalidate_and_set_dirty(mr, mr_addr, *l); 2817 2818 return MEMTX_OK; 2819 } 2820 } 2821 2822 /* Called within RCU critical section. */ 2823 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2824 MemTxAttrs attrs, 2825 const void *ptr, 2826 hwaddr len, hwaddr mr_addr, 2827 hwaddr l, MemoryRegion *mr) 2828 { 2829 MemTxResult result = MEMTX_OK; 2830 const uint8_t *buf = ptr; 2831 2832 for (;;) { 2833 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2834 mr); 2835 2836 len -= l; 2837 buf += l; 2838 addr += l; 2839 2840 if (!len) { 2841 break; 2842 } 2843 2844 l = len; 2845 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2846 } 2847 2848 return result; 2849 } 2850 2851 /* Called from RCU critical section. */ 2852 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2853 const void *buf, hwaddr len) 2854 { 2855 hwaddr l; 2856 hwaddr mr_addr; 2857 MemoryRegion *mr; 2858 2859 l = len; 2860 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2861 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2862 return MEMTX_ACCESS_ERROR; 2863 } 2864 return flatview_write_continue(fv, addr, attrs, buf, len, 2865 mr_addr, l, mr); 2866 } 2867 2868 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2869 hwaddr len, hwaddr mr_addr, 2870 hwaddr *l, 2871 MemoryRegion *mr) 2872 { 2873 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2874 return MEMTX_ACCESS_ERROR; 2875 } 2876 2877 if (!memory_access_is_direct(mr, false)) { 2878 /* I/O case */ 2879 uint64_t val; 2880 MemTxResult result; 2881 bool release_lock = prepare_mmio_access(mr); 2882 2883 *l = memory_access_size(mr, *l, mr_addr); 2884 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2885 attrs); 2886 2887 /* 2888 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2889 * the buffer by following stn_he_p(). 2890 */ 2891 #ifdef QEMU_STATIC_ANALYSIS 2892 assert((*l == 1 && len >= 1) || 2893 (*l == 2 && len >= 2) || 2894 (*l == 4 && len >= 4) || 2895 (*l == 8 && len >= 8)); 2896 #endif 2897 stn_he_p(buf, *l, val); 2898 2899 if (release_lock) { 2900 bql_unlock(); 2901 } 2902 return result; 2903 } else { 2904 /* RAM case */ 2905 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2906 false, false); 2907 2908 memcpy(buf, ram_ptr, *l); 2909 2910 return MEMTX_OK; 2911 } 2912 } 2913 2914 /* Called within RCU critical section. */ 2915 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2916 MemTxAttrs attrs, void *ptr, 2917 hwaddr len, hwaddr mr_addr, hwaddr l, 2918 MemoryRegion *mr) 2919 { 2920 MemTxResult result = MEMTX_OK; 2921 uint8_t *buf = ptr; 2922 2923 fuzz_dma_read_cb(addr, len, mr); 2924 for (;;) { 2925 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2926 2927 len -= l; 2928 buf += l; 2929 addr += l; 2930 2931 if (!len) { 2932 break; 2933 } 2934 2935 l = len; 2936 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2937 } 2938 2939 return result; 2940 } 2941 2942 /* Called from RCU critical section. */ 2943 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2944 MemTxAttrs attrs, void *buf, hwaddr len) 2945 { 2946 hwaddr l; 2947 hwaddr mr_addr; 2948 MemoryRegion *mr; 2949 2950 l = len; 2951 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2952 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2953 return MEMTX_ACCESS_ERROR; 2954 } 2955 return flatview_read_continue(fv, addr, attrs, buf, len, 2956 mr_addr, l, mr); 2957 } 2958 2959 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2960 MemTxAttrs attrs, void *buf, hwaddr len) 2961 { 2962 MemTxResult result = MEMTX_OK; 2963 FlatView *fv; 2964 2965 if (len > 0) { 2966 RCU_READ_LOCK_GUARD(); 2967 fv = address_space_to_flatview(as); 2968 result = flatview_read(fv, addr, attrs, buf, len); 2969 } 2970 2971 return result; 2972 } 2973 2974 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2975 MemTxAttrs attrs, 2976 const void *buf, hwaddr len) 2977 { 2978 MemTxResult result = MEMTX_OK; 2979 FlatView *fv; 2980 2981 if (len > 0) { 2982 RCU_READ_LOCK_GUARD(); 2983 fv = address_space_to_flatview(as); 2984 result = flatview_write(fv, addr, attrs, buf, len); 2985 } 2986 2987 return result; 2988 } 2989 2990 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2991 void *buf, hwaddr len, bool is_write) 2992 { 2993 if (is_write) { 2994 return address_space_write(as, addr, attrs, buf, len); 2995 } else { 2996 return address_space_read_full(as, addr, attrs, buf, len); 2997 } 2998 } 2999 3000 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3001 uint8_t c, hwaddr len, MemTxAttrs attrs) 3002 { 3003 #define FILLBUF_SIZE 512 3004 uint8_t fillbuf[FILLBUF_SIZE]; 3005 int l; 3006 MemTxResult error = MEMTX_OK; 3007 3008 memset(fillbuf, c, FILLBUF_SIZE); 3009 while (len > 0) { 3010 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 3011 error |= address_space_write(as, addr, attrs, fillbuf, l); 3012 len -= l; 3013 addr += l; 3014 } 3015 3016 return error; 3017 } 3018 3019 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3020 hwaddr len, bool is_write) 3021 { 3022 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3023 buf, len, is_write); 3024 } 3025 3026 enum write_rom_type { 3027 WRITE_DATA, 3028 FLUSH_CACHE, 3029 }; 3030 3031 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3032 hwaddr addr, 3033 MemTxAttrs attrs, 3034 const void *ptr, 3035 hwaddr len, 3036 enum write_rom_type type) 3037 { 3038 hwaddr l; 3039 uint8_t *ram_ptr; 3040 hwaddr addr1; 3041 MemoryRegion *mr; 3042 const uint8_t *buf = ptr; 3043 3044 RCU_READ_LOCK_GUARD(); 3045 while (len > 0) { 3046 l = len; 3047 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3048 3049 if (!(memory_region_is_ram(mr) || 3050 memory_region_is_romd(mr))) { 3051 l = memory_access_size(mr, l, addr1); 3052 } else { 3053 /* ROM/RAM case */ 3054 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3055 switch (type) { 3056 case WRITE_DATA: 3057 memcpy(ram_ptr, buf, l); 3058 invalidate_and_set_dirty(mr, addr1, l); 3059 break; 3060 case FLUSH_CACHE: 3061 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3062 break; 3063 } 3064 } 3065 len -= l; 3066 buf += l; 3067 addr += l; 3068 } 3069 return MEMTX_OK; 3070 } 3071 3072 /* used for ROM loading : can write in RAM and ROM */ 3073 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3074 MemTxAttrs attrs, 3075 const void *buf, hwaddr len) 3076 { 3077 return address_space_write_rom_internal(as, addr, attrs, 3078 buf, len, WRITE_DATA); 3079 } 3080 3081 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3082 { 3083 /* 3084 * This function should do the same thing as an icache flush that was 3085 * triggered from within the guest. For TCG we are always cache coherent, 3086 * so there is no need to flush anything. For KVM / Xen we need to flush 3087 * the host's instruction cache at least. 3088 */ 3089 if (tcg_enabled()) { 3090 return; 3091 } 3092 3093 address_space_write_rom_internal(&address_space_memory, 3094 start, MEMTXATTRS_UNSPECIFIED, 3095 NULL, len, FLUSH_CACHE); 3096 } 3097 3098 static void 3099 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3100 { 3101 QLIST_REMOVE(client, link); 3102 g_free(client); 3103 } 3104 3105 static void address_space_notify_map_clients_locked(AddressSpace *as) 3106 { 3107 AddressSpaceMapClient *client; 3108 3109 while (!QLIST_EMPTY(&as->map_client_list)) { 3110 client = QLIST_FIRST(&as->map_client_list); 3111 qemu_bh_schedule(client->bh); 3112 address_space_unregister_map_client_do(client); 3113 } 3114 } 3115 3116 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3117 { 3118 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3119 3120 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3121 client->bh = bh; 3122 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3123 /* Write map_client_list before reading in_use. */ 3124 smp_mb(); 3125 if (!qatomic_read(&as->bounce.in_use)) { 3126 address_space_notify_map_clients_locked(as); 3127 } 3128 } 3129 3130 void cpu_exec_init_all(void) 3131 { 3132 qemu_mutex_init(&ram_list.mutex); 3133 /* The data structures we set up here depend on knowing the page size, 3134 * so no more changes can be made after this point. 3135 * In an ideal world, nothing we did before we had finished the 3136 * machine setup would care about the target page size, and we could 3137 * do this much later, rather than requiring board models to state 3138 * up front what their requirements are. 3139 */ 3140 finalize_target_page_bits(); 3141 io_mem_init(); 3142 memory_map_init(); 3143 } 3144 3145 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3146 { 3147 AddressSpaceMapClient *client; 3148 3149 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3150 QLIST_FOREACH(client, &as->map_client_list, link) { 3151 if (client->bh == bh) { 3152 address_space_unregister_map_client_do(client); 3153 break; 3154 } 3155 } 3156 } 3157 3158 static void address_space_notify_map_clients(AddressSpace *as) 3159 { 3160 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3161 address_space_notify_map_clients_locked(as); 3162 } 3163 3164 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3165 bool is_write, MemTxAttrs attrs) 3166 { 3167 MemoryRegion *mr; 3168 hwaddr l, xlat; 3169 3170 while (len > 0) { 3171 l = len; 3172 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3173 if (!memory_access_is_direct(mr, is_write)) { 3174 l = memory_access_size(mr, l, addr); 3175 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3176 return false; 3177 } 3178 } 3179 3180 len -= l; 3181 addr += l; 3182 } 3183 return true; 3184 } 3185 3186 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3187 hwaddr len, bool is_write, 3188 MemTxAttrs attrs) 3189 { 3190 FlatView *fv; 3191 3192 RCU_READ_LOCK_GUARD(); 3193 fv = address_space_to_flatview(as); 3194 return flatview_access_valid(fv, addr, len, is_write, attrs); 3195 } 3196 3197 static hwaddr 3198 flatview_extend_translation(FlatView *fv, hwaddr addr, 3199 hwaddr target_len, 3200 MemoryRegion *mr, hwaddr base, hwaddr len, 3201 bool is_write, MemTxAttrs attrs) 3202 { 3203 hwaddr done = 0; 3204 hwaddr xlat; 3205 MemoryRegion *this_mr; 3206 3207 for (;;) { 3208 target_len -= len; 3209 addr += len; 3210 done += len; 3211 if (target_len == 0) { 3212 return done; 3213 } 3214 3215 len = target_len; 3216 this_mr = flatview_translate(fv, addr, &xlat, 3217 &len, is_write, attrs); 3218 if (this_mr != mr || xlat != base + done) { 3219 return done; 3220 } 3221 } 3222 } 3223 3224 /* Map a physical memory region into a host virtual address. 3225 * May map a subset of the requested range, given by and returned in *plen. 3226 * May return NULL if resources needed to perform the mapping are exhausted. 3227 * Use only for reads OR writes - not for read-modify-write operations. 3228 * Use address_space_register_map_client() to know when retrying the map 3229 * operation is likely to succeed. 3230 */ 3231 void *address_space_map(AddressSpace *as, 3232 hwaddr addr, 3233 hwaddr *plen, 3234 bool is_write, 3235 MemTxAttrs attrs) 3236 { 3237 hwaddr len = *plen; 3238 hwaddr l, xlat; 3239 MemoryRegion *mr; 3240 FlatView *fv; 3241 3242 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3243 3244 if (len == 0) { 3245 return NULL; 3246 } 3247 3248 l = len; 3249 RCU_READ_LOCK_GUARD(); 3250 fv = address_space_to_flatview(as); 3251 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3252 3253 if (!memory_access_is_direct(mr, is_write)) { 3254 if (qatomic_xchg(&as->bounce.in_use, true)) { 3255 *plen = 0; 3256 return NULL; 3257 } 3258 /* Avoid unbounded allocations */ 3259 l = MIN(l, TARGET_PAGE_SIZE); 3260 as->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3261 as->bounce.addr = addr; 3262 as->bounce.len = l; 3263 3264 memory_region_ref(mr); 3265 as->bounce.mr = mr; 3266 if (!is_write) { 3267 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3268 as->bounce.buffer, l); 3269 } 3270 3271 *plen = l; 3272 return as->bounce.buffer; 3273 } 3274 3275 3276 memory_region_ref(mr); 3277 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3278 l, is_write, attrs); 3279 fuzz_dma_read_cb(addr, *plen, mr); 3280 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3281 } 3282 3283 /* Unmaps a memory region previously mapped by address_space_map(). 3284 * Will also mark the memory as dirty if is_write is true. access_len gives 3285 * the amount of memory that was actually read or written by the caller. 3286 */ 3287 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3288 bool is_write, hwaddr access_len) 3289 { 3290 if (buffer != as->bounce.buffer) { 3291 MemoryRegion *mr; 3292 ram_addr_t addr1; 3293 3294 mr = memory_region_from_host(buffer, &addr1); 3295 assert(mr != NULL); 3296 if (is_write) { 3297 invalidate_and_set_dirty(mr, addr1, access_len); 3298 } 3299 if (xen_enabled()) { 3300 xen_invalidate_map_cache_entry(buffer); 3301 } 3302 memory_region_unref(mr); 3303 return; 3304 } 3305 if (is_write) { 3306 address_space_write(as, as->bounce.addr, MEMTXATTRS_UNSPECIFIED, 3307 as->bounce.buffer, access_len); 3308 } 3309 qemu_vfree(as->bounce.buffer); 3310 as->bounce.buffer = NULL; 3311 memory_region_unref(as->bounce.mr); 3312 /* Clear in_use before reading map_client_list. */ 3313 qatomic_set_mb(&as->bounce.in_use, false); 3314 address_space_notify_map_clients(as); 3315 } 3316 3317 void *cpu_physical_memory_map(hwaddr addr, 3318 hwaddr *plen, 3319 bool is_write) 3320 { 3321 return address_space_map(&address_space_memory, addr, plen, is_write, 3322 MEMTXATTRS_UNSPECIFIED); 3323 } 3324 3325 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3326 bool is_write, hwaddr access_len) 3327 { 3328 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3329 } 3330 3331 #define ARG1_DECL AddressSpace *as 3332 #define ARG1 as 3333 #define SUFFIX 3334 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3335 #define RCU_READ_LOCK(...) rcu_read_lock() 3336 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3337 #include "memory_ldst.c.inc" 3338 3339 int64_t address_space_cache_init(MemoryRegionCache *cache, 3340 AddressSpace *as, 3341 hwaddr addr, 3342 hwaddr len, 3343 bool is_write) 3344 { 3345 AddressSpaceDispatch *d; 3346 hwaddr l; 3347 MemoryRegion *mr; 3348 Int128 diff; 3349 3350 assert(len > 0); 3351 3352 l = len; 3353 cache->fv = address_space_get_flatview(as); 3354 d = flatview_to_dispatch(cache->fv); 3355 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3356 3357 /* 3358 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3359 * Take that into account to compute how many bytes are there between 3360 * cache->xlat and the end of the section. 3361 */ 3362 diff = int128_sub(cache->mrs.size, 3363 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3364 l = int128_get64(int128_min(diff, int128_make64(l))); 3365 3366 mr = cache->mrs.mr; 3367 memory_region_ref(mr); 3368 if (memory_access_is_direct(mr, is_write)) { 3369 /* We don't care about the memory attributes here as we're only 3370 * doing this if we found actual RAM, which behaves the same 3371 * regardless of attributes; so UNSPECIFIED is fine. 3372 */ 3373 l = flatview_extend_translation(cache->fv, addr, len, mr, 3374 cache->xlat, l, is_write, 3375 MEMTXATTRS_UNSPECIFIED); 3376 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3377 is_write); 3378 } else { 3379 cache->ptr = NULL; 3380 } 3381 3382 cache->len = l; 3383 cache->is_write = is_write; 3384 return l; 3385 } 3386 3387 void address_space_cache_invalidate(MemoryRegionCache *cache, 3388 hwaddr addr, 3389 hwaddr access_len) 3390 { 3391 assert(cache->is_write); 3392 if (likely(cache->ptr)) { 3393 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3394 } 3395 } 3396 3397 void address_space_cache_destroy(MemoryRegionCache *cache) 3398 { 3399 if (!cache->mrs.mr) { 3400 return; 3401 } 3402 3403 if (xen_enabled()) { 3404 xen_invalidate_map_cache_entry(cache->ptr); 3405 } 3406 memory_region_unref(cache->mrs.mr); 3407 flatview_unref(cache->fv); 3408 cache->mrs.mr = NULL; 3409 cache->fv = NULL; 3410 } 3411 3412 /* Called from RCU critical section. This function has the same 3413 * semantics as address_space_translate, but it only works on a 3414 * predefined range of a MemoryRegion that was mapped with 3415 * address_space_cache_init. 3416 */ 3417 static inline MemoryRegion *address_space_translate_cached( 3418 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3419 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3420 { 3421 MemoryRegionSection section; 3422 MemoryRegion *mr; 3423 IOMMUMemoryRegion *iommu_mr; 3424 AddressSpace *target_as; 3425 3426 assert(!cache->ptr); 3427 *xlat = addr + cache->xlat; 3428 3429 mr = cache->mrs.mr; 3430 iommu_mr = memory_region_get_iommu(mr); 3431 if (!iommu_mr) { 3432 /* MMIO region. */ 3433 return mr; 3434 } 3435 3436 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3437 NULL, is_write, true, 3438 &target_as, attrs); 3439 return section.mr; 3440 } 3441 3442 /* Called within RCU critical section. */ 3443 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3444 const void *ptr, 3445 hwaddr len, 3446 hwaddr mr_addr, 3447 hwaddr l, 3448 MemoryRegion *mr) 3449 { 3450 MemTxResult result = MEMTX_OK; 3451 const uint8_t *buf = ptr; 3452 3453 for (;;) { 3454 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3455 mr); 3456 3457 len -= l; 3458 buf += l; 3459 mr_addr += l; 3460 3461 if (!len) { 3462 break; 3463 } 3464 3465 l = len; 3466 } 3467 3468 return result; 3469 } 3470 3471 /* Called within RCU critical section. */ 3472 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3473 void *ptr, hwaddr len, 3474 hwaddr mr_addr, hwaddr l, 3475 MemoryRegion *mr) 3476 { 3477 MemTxResult result = MEMTX_OK; 3478 uint8_t *buf = ptr; 3479 3480 for (;;) { 3481 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3482 len -= l; 3483 buf += l; 3484 mr_addr += l; 3485 3486 if (!len) { 3487 break; 3488 } 3489 l = len; 3490 } 3491 3492 return result; 3493 } 3494 3495 /* Called from RCU critical section. address_space_read_cached uses this 3496 * out of line function when the target is an MMIO or IOMMU region. 3497 */ 3498 MemTxResult 3499 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3500 void *buf, hwaddr len) 3501 { 3502 hwaddr mr_addr, l; 3503 MemoryRegion *mr; 3504 3505 l = len; 3506 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3507 MEMTXATTRS_UNSPECIFIED); 3508 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3509 buf, len, mr_addr, l, mr); 3510 } 3511 3512 /* Called from RCU critical section. address_space_write_cached uses this 3513 * out of line function when the target is an MMIO or IOMMU region. 3514 */ 3515 MemTxResult 3516 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3517 const void *buf, hwaddr len) 3518 { 3519 hwaddr mr_addr, l; 3520 MemoryRegion *mr; 3521 3522 l = len; 3523 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3524 MEMTXATTRS_UNSPECIFIED); 3525 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3526 buf, len, mr_addr, l, mr); 3527 } 3528 3529 #define ARG1_DECL MemoryRegionCache *cache 3530 #define ARG1 cache 3531 #define SUFFIX _cached_slow 3532 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3533 #define RCU_READ_LOCK() ((void)0) 3534 #define RCU_READ_UNLOCK() ((void)0) 3535 #include "memory_ldst.c.inc" 3536 3537 /* virtual memory access for debug (includes writing to ROM) */ 3538 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3539 void *ptr, size_t len, bool is_write) 3540 { 3541 hwaddr phys_addr; 3542 vaddr l, page; 3543 uint8_t *buf = ptr; 3544 3545 cpu_synchronize_state(cpu); 3546 while (len > 0) { 3547 int asidx; 3548 MemTxAttrs attrs; 3549 MemTxResult res; 3550 3551 page = addr & TARGET_PAGE_MASK; 3552 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3553 asidx = cpu_asidx_from_attrs(cpu, attrs); 3554 /* if no physical page mapped, return an error */ 3555 if (phys_addr == -1) 3556 return -1; 3557 l = (page + TARGET_PAGE_SIZE) - addr; 3558 if (l > len) 3559 l = len; 3560 phys_addr += (addr & ~TARGET_PAGE_MASK); 3561 if (is_write) { 3562 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3563 attrs, buf, l); 3564 } else { 3565 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3566 attrs, buf, l); 3567 } 3568 if (res != MEMTX_OK) { 3569 return -1; 3570 } 3571 len -= l; 3572 buf += l; 3573 addr += l; 3574 } 3575 return 0; 3576 } 3577 3578 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3579 { 3580 MemoryRegion*mr; 3581 hwaddr l = 1; 3582 3583 RCU_READ_LOCK_GUARD(); 3584 mr = address_space_translate(&address_space_memory, 3585 phys_addr, &phys_addr, &l, false, 3586 MEMTXATTRS_UNSPECIFIED); 3587 3588 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3589 } 3590 3591 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3592 { 3593 RAMBlock *block; 3594 int ret = 0; 3595 3596 RCU_READ_LOCK_GUARD(); 3597 RAMBLOCK_FOREACH(block) { 3598 ret = func(block, opaque); 3599 if (ret) { 3600 break; 3601 } 3602 } 3603 return ret; 3604 } 3605 3606 /* 3607 * Unmap pages of memory from start to start+length such that 3608 * they a) read as 0, b) Trigger whatever fault mechanism 3609 * the OS provides for postcopy. 3610 * The pages must be unmapped by the end of the function. 3611 * Returns: 0 on success, none-0 on failure 3612 * 3613 */ 3614 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3615 { 3616 int ret = -1; 3617 3618 uint8_t *host_startaddr = rb->host + start; 3619 3620 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3621 error_report("%s: Unaligned start address: %p", 3622 __func__, host_startaddr); 3623 goto err; 3624 } 3625 3626 if ((start + length) <= rb->max_length) { 3627 bool need_madvise, need_fallocate; 3628 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3629 error_report("%s: Unaligned length: %zx", __func__, length); 3630 goto err; 3631 } 3632 3633 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3634 3635 /* The logic here is messy; 3636 * madvise DONTNEED fails for hugepages 3637 * fallocate works on hugepages and shmem 3638 * shared anonymous memory requires madvise REMOVE 3639 */ 3640 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3641 need_fallocate = rb->fd != -1; 3642 if (need_fallocate) { 3643 /* For a file, this causes the area of the file to be zero'd 3644 * if read, and for hugetlbfs also causes it to be unmapped 3645 * so a userfault will trigger. 3646 */ 3647 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3648 /* 3649 * fallocate() will fail with readonly files. Let's print a 3650 * proper error message. 3651 */ 3652 if (rb->flags & RAM_READONLY_FD) { 3653 error_report("%s: Discarding RAM with readonly files is not" 3654 " supported", __func__); 3655 goto err; 3656 3657 } 3658 /* 3659 * We'll discard data from the actual file, even though we only 3660 * have a MAP_PRIVATE mapping, possibly messing with other 3661 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3662 * change that behavior whithout violating the promised 3663 * semantics of ram_block_discard_range(). 3664 * 3665 * Only warn, because it works as long as nobody else uses that 3666 * file. 3667 */ 3668 if (!qemu_ram_is_shared(rb)) { 3669 warn_report_once("%s: Discarding RAM" 3670 " in private file mappings is possibly" 3671 " dangerous, because it will modify the" 3672 " underlying file and will affect other" 3673 " users of the file", __func__); 3674 } 3675 3676 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3677 start, length); 3678 if (ret) { 3679 ret = -errno; 3680 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3681 __func__, rb->idstr, start, length, ret); 3682 goto err; 3683 } 3684 #else 3685 ret = -ENOSYS; 3686 error_report("%s: fallocate not available/file" 3687 "%s:%" PRIx64 " +%zx (%d)", 3688 __func__, rb->idstr, start, length, ret); 3689 goto err; 3690 #endif 3691 } 3692 if (need_madvise) { 3693 /* For normal RAM this causes it to be unmapped, 3694 * for shared memory it causes the local mapping to disappear 3695 * and to fall back on the file contents (which we just 3696 * fallocate'd away). 3697 */ 3698 #if defined(CONFIG_MADVISE) 3699 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3700 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3701 } else { 3702 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3703 } 3704 if (ret) { 3705 ret = -errno; 3706 error_report("%s: Failed to discard range " 3707 "%s:%" PRIx64 " +%zx (%d)", 3708 __func__, rb->idstr, start, length, ret); 3709 goto err; 3710 } 3711 #else 3712 ret = -ENOSYS; 3713 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3714 __func__, rb->idstr, start, length, ret); 3715 goto err; 3716 #endif 3717 } 3718 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3719 need_madvise, need_fallocate, ret); 3720 } else { 3721 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3722 __func__, rb->idstr, start, length, rb->max_length); 3723 } 3724 3725 err: 3726 return ret; 3727 } 3728 3729 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3730 size_t length) 3731 { 3732 int ret = -1; 3733 3734 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3735 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3736 start, length); 3737 3738 if (ret) { 3739 ret = -errno; 3740 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3741 __func__, rb->idstr, start, length, ret); 3742 } 3743 #else 3744 ret = -ENOSYS; 3745 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3746 __func__, rb->idstr, start, length, ret); 3747 #endif 3748 3749 return ret; 3750 } 3751 3752 bool ramblock_is_pmem(RAMBlock *rb) 3753 { 3754 return rb->flags & RAM_PMEM; 3755 } 3756 3757 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3758 { 3759 if (start == end - 1) { 3760 qemu_printf("\t%3d ", start); 3761 } else { 3762 qemu_printf("\t%3d..%-3d ", start, end - 1); 3763 } 3764 qemu_printf(" skip=%d ", skip); 3765 if (ptr == PHYS_MAP_NODE_NIL) { 3766 qemu_printf(" ptr=NIL"); 3767 } else if (!skip) { 3768 qemu_printf(" ptr=#%d", ptr); 3769 } else { 3770 qemu_printf(" ptr=[%d]", ptr); 3771 } 3772 qemu_printf("\n"); 3773 } 3774 3775 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3776 int128_sub((size), int128_one())) : 0) 3777 3778 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3779 { 3780 int i; 3781 3782 qemu_printf(" Dispatch\n"); 3783 qemu_printf(" Physical sections\n"); 3784 3785 for (i = 0; i < d->map.sections_nb; ++i) { 3786 MemoryRegionSection *s = d->map.sections + i; 3787 const char *names[] = { " [unassigned]", " [not dirty]", 3788 " [ROM]", " [watch]" }; 3789 3790 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3791 " %s%s%s%s%s", 3792 i, 3793 s->offset_within_address_space, 3794 s->offset_within_address_space + MR_SIZE(s->size), 3795 s->mr->name ? s->mr->name : "(noname)", 3796 i < ARRAY_SIZE(names) ? names[i] : "", 3797 s->mr == root ? " [ROOT]" : "", 3798 s == d->mru_section ? " [MRU]" : "", 3799 s->mr->is_iommu ? " [iommu]" : ""); 3800 3801 if (s->mr->alias) { 3802 qemu_printf(" alias=%s", s->mr->alias->name ? 3803 s->mr->alias->name : "noname"); 3804 } 3805 qemu_printf("\n"); 3806 } 3807 3808 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3809 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3810 for (i = 0; i < d->map.nodes_nb; ++i) { 3811 int j, jprev; 3812 PhysPageEntry prev; 3813 Node *n = d->map.nodes + i; 3814 3815 qemu_printf(" [%d]\n", i); 3816 3817 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3818 PhysPageEntry *pe = *n + j; 3819 3820 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3821 continue; 3822 } 3823 3824 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3825 3826 jprev = j; 3827 prev = *pe; 3828 } 3829 3830 if (jprev != ARRAY_SIZE(*n)) { 3831 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3832 } 3833 } 3834 } 3835 3836 /* Require any discards to work. */ 3837 static unsigned int ram_block_discard_required_cnt; 3838 /* Require only coordinated discards to work. */ 3839 static unsigned int ram_block_coordinated_discard_required_cnt; 3840 /* Disable any discards. */ 3841 static unsigned int ram_block_discard_disabled_cnt; 3842 /* Disable only uncoordinated discards. */ 3843 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3844 static QemuMutex ram_block_discard_disable_mutex; 3845 3846 static void ram_block_discard_disable_mutex_lock(void) 3847 { 3848 static gsize initialized; 3849 3850 if (g_once_init_enter(&initialized)) { 3851 qemu_mutex_init(&ram_block_discard_disable_mutex); 3852 g_once_init_leave(&initialized, 1); 3853 } 3854 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3855 } 3856 3857 static void ram_block_discard_disable_mutex_unlock(void) 3858 { 3859 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3860 } 3861 3862 int ram_block_discard_disable(bool state) 3863 { 3864 int ret = 0; 3865 3866 ram_block_discard_disable_mutex_lock(); 3867 if (!state) { 3868 ram_block_discard_disabled_cnt--; 3869 } else if (ram_block_discard_required_cnt || 3870 ram_block_coordinated_discard_required_cnt) { 3871 ret = -EBUSY; 3872 } else { 3873 ram_block_discard_disabled_cnt++; 3874 } 3875 ram_block_discard_disable_mutex_unlock(); 3876 return ret; 3877 } 3878 3879 int ram_block_uncoordinated_discard_disable(bool state) 3880 { 3881 int ret = 0; 3882 3883 ram_block_discard_disable_mutex_lock(); 3884 if (!state) { 3885 ram_block_uncoordinated_discard_disabled_cnt--; 3886 } else if (ram_block_discard_required_cnt) { 3887 ret = -EBUSY; 3888 } else { 3889 ram_block_uncoordinated_discard_disabled_cnt++; 3890 } 3891 ram_block_discard_disable_mutex_unlock(); 3892 return ret; 3893 } 3894 3895 int ram_block_discard_require(bool state) 3896 { 3897 int ret = 0; 3898 3899 ram_block_discard_disable_mutex_lock(); 3900 if (!state) { 3901 ram_block_discard_required_cnt--; 3902 } else if (ram_block_discard_disabled_cnt || 3903 ram_block_uncoordinated_discard_disabled_cnt) { 3904 ret = -EBUSY; 3905 } else { 3906 ram_block_discard_required_cnt++; 3907 } 3908 ram_block_discard_disable_mutex_unlock(); 3909 return ret; 3910 } 3911 3912 int ram_block_coordinated_discard_require(bool state) 3913 { 3914 int ret = 0; 3915 3916 ram_block_discard_disable_mutex_lock(); 3917 if (!state) { 3918 ram_block_coordinated_discard_required_cnt--; 3919 } else if (ram_block_discard_disabled_cnt) { 3920 ret = -EBUSY; 3921 } else { 3922 ram_block_coordinated_discard_required_cnt++; 3923 } 3924 ram_block_discard_disable_mutex_unlock(); 3925 return ret; 3926 } 3927 3928 bool ram_block_discard_is_disabled(void) 3929 { 3930 return qatomic_read(&ram_block_discard_disabled_cnt) || 3931 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3932 } 3933 3934 bool ram_block_discard_is_required(void) 3935 { 3936 return qatomic_read(&ram_block_discard_required_cnt) || 3937 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3938 } 3939