xref: /openbmc/qemu/system/physmem.c (revision 05caa062)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29 
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace.h"
57 
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
61 
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
66 
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
69 
70 #include "qemu/pmem.h"
71 
72 #include "migration/vmstate.h"
73 
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
78 
79 #include "monitor/monitor.h"
80 
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
84 
85 //#define DEBUG_SUBPAGE
86 
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
88  * are protected by the ramlist lock.
89  */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91 
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94 
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97 
98 static MemoryRegion io_mem_unassigned;
99 
100 typedef struct PhysPageEntry PhysPageEntry;
101 
102 struct PhysPageEntry {
103     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104     uint32_t skip : 6;
105      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106     uint32_t ptr : 26;
107 };
108 
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110 
111 /* Size of the L2 (and L3, etc) page tables.  */
112 #define ADDR_SPACE_BITS 64
113 
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
116 
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118 
119 typedef PhysPageEntry Node[P_L2_SIZE];
120 
121 typedef struct PhysPageMap {
122     struct rcu_head rcu;
123 
124     unsigned sections_nb;
125     unsigned sections_nb_alloc;
126     unsigned nodes_nb;
127     unsigned nodes_nb_alloc;
128     Node *nodes;
129     MemoryRegionSection *sections;
130 } PhysPageMap;
131 
132 struct AddressSpaceDispatch {
133     MemoryRegionSection *mru_section;
134     /* This is a multi-level map on the physical address space.
135      * The bottom level has pointers to MemoryRegionSections.
136      */
137     PhysPageEntry phys_map;
138     PhysPageMap map;
139 };
140 
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143     MemoryRegion iomem;
144     FlatView *fv;
145     hwaddr base;
146     uint16_t sub_section[];
147 } subpage_t;
148 
149 #define PHYS_SECTION_UNASSIGNED 0
150 
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
155 
156 /**
157  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158  * @cpu: the CPU whose AddressSpace this is
159  * @as: the AddressSpace itself
160  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161  * @tcg_as_listener: listener for tracking changes to the AddressSpace
162  */
163 typedef struct CPUAddressSpace {
164     CPUState *cpu;
165     AddressSpace *as;
166     struct AddressSpaceDispatch *memory_dispatch;
167     MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
169 
170 struct DirtyBitmapSnapshot {
171     ram_addr_t start;
172     ram_addr_t end;
173     unsigned long dirty[];
174 };
175 
176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177 {
178     static unsigned alloc_hint = 16;
179     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182         alloc_hint = map->nodes_nb_alloc;
183     }
184 }
185 
186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187 {
188     unsigned i;
189     uint32_t ret;
190     PhysPageEntry e;
191     PhysPageEntry *p;
192 
193     ret = map->nodes_nb++;
194     p = map->nodes[ret];
195     assert(ret != PHYS_MAP_NODE_NIL);
196     assert(ret != map->nodes_nb_alloc);
197 
198     e.skip = leaf ? 0 : 1;
199     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200     for (i = 0; i < P_L2_SIZE; ++i) {
201         memcpy(&p[i], &e, sizeof(e));
202     }
203     return ret;
204 }
205 
206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
208                                 int level)
209 {
210     PhysPageEntry *p;
211     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212 
213     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214         lp->ptr = phys_map_node_alloc(map, level == 0);
215     }
216     p = map->nodes[lp->ptr];
217     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218 
219     while (*nb && lp < &p[P_L2_SIZE]) {
220         if ((*index & (step - 1)) == 0 && *nb >= step) {
221             lp->skip = 0;
222             lp->ptr = leaf;
223             *index += step;
224             *nb -= step;
225         } else {
226             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227         }
228         ++lp;
229     }
230 }
231 
232 static void phys_page_set(AddressSpaceDispatch *d,
233                           hwaddr index, uint64_t nb,
234                           uint16_t leaf)
235 {
236     /* Wildly overreserve - it doesn't matter much. */
237     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238 
239     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 }
241 
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243  * and update our entry so we can skip it and go directly to the destination.
244  */
245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246 {
247     unsigned valid_ptr = P_L2_SIZE;
248     int valid = 0;
249     PhysPageEntry *p;
250     int i;
251 
252     if (lp->ptr == PHYS_MAP_NODE_NIL) {
253         return;
254     }
255 
256     p = nodes[lp->ptr];
257     for (i = 0; i < P_L2_SIZE; i++) {
258         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259             continue;
260         }
261 
262         valid_ptr = i;
263         valid++;
264         if (p[i].skip) {
265             phys_page_compact(&p[i], nodes);
266         }
267     }
268 
269     /* We can only compress if there's only one child. */
270     if (valid != 1) {
271         return;
272     }
273 
274     assert(valid_ptr < P_L2_SIZE);
275 
276     /* Don't compress if it won't fit in the # of bits we have. */
277     if (P_L2_LEVELS >= (1 << 6) &&
278         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279         return;
280     }
281 
282     lp->ptr = p[valid_ptr].ptr;
283     if (!p[valid_ptr].skip) {
284         /* If our only child is a leaf, make this a leaf. */
285         /* By design, we should have made this node a leaf to begin with so we
286          * should never reach here.
287          * But since it's so simple to handle this, let's do it just in case we
288          * change this rule.
289          */
290         lp->skip = 0;
291     } else {
292         lp->skip += p[valid_ptr].skip;
293     }
294 }
295 
296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
297 {
298     if (d->phys_map.skip) {
299         phys_page_compact(&d->phys_map, d->map.nodes);
300     }
301 }
302 
303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304                                        hwaddr addr)
305 {
306     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307      * the section must cover the entire address space.
308      */
309     return int128_gethi(section->size) ||
310            range_covers_byte(section->offset_within_address_space,
311                              int128_getlo(section->size), addr);
312 }
313 
314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315 {
316     PhysPageEntry lp = d->phys_map, *p;
317     Node *nodes = d->map.nodes;
318     MemoryRegionSection *sections = d->map.sections;
319     hwaddr index = addr >> TARGET_PAGE_BITS;
320     int i;
321 
322     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323         if (lp.ptr == PHYS_MAP_NODE_NIL) {
324             return &sections[PHYS_SECTION_UNASSIGNED];
325         }
326         p = nodes[lp.ptr];
327         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328     }
329 
330     if (section_covers_addr(&sections[lp.ptr], addr)) {
331         return &sections[lp.ptr];
332     } else {
333         return &sections[PHYS_SECTION_UNASSIGNED];
334     }
335 }
336 
337 /* Called from RCU critical section */
338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339                                                         hwaddr addr,
340                                                         bool resolve_subpage)
341 {
342     MemoryRegionSection *section = qatomic_read(&d->mru_section);
343     subpage_t *subpage;
344 
345     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346         !section_covers_addr(section, addr)) {
347         section = phys_page_find(d, addr);
348         qatomic_set(&d->mru_section, section);
349     }
350     if (resolve_subpage && section->mr->subpage) {
351         subpage = container_of(section->mr, subpage_t, iomem);
352         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353     }
354     return section;
355 }
356 
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360                                  hwaddr *plen, bool resolve_subpage)
361 {
362     MemoryRegionSection *section;
363     MemoryRegion *mr;
364     Int128 diff;
365 
366     section = address_space_lookup_region(d, addr, resolve_subpage);
367     /* Compute offset within MemoryRegionSection */
368     addr -= section->offset_within_address_space;
369 
370     /* Compute offset within MemoryRegion */
371     *xlat = addr + section->offset_within_region;
372 
373     mr = section->mr;
374 
375     /* MMIO registers can be expected to perform full-width accesses based only
376      * on their address, without considering adjacent registers that could
377      * decode to completely different MemoryRegions.  When such registers
378      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379      * regions overlap wildly.  For this reason we cannot clamp the accesses
380      * here.
381      *
382      * If the length is small (as is the case for address_space_ldl/stl),
383      * everything works fine.  If the incoming length is large, however,
384      * the caller really has to do the clamping through memory_access_size.
385      */
386     if (memory_region_is_ram(mr)) {
387         diff = int128_sub(section->size, int128_make64(addr));
388         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389     }
390     return section;
391 }
392 
393 /**
394  * address_space_translate_iommu - translate an address through an IOMMU
395  * memory region and then through the target address space.
396  *
397  * @iommu_mr: the IOMMU memory region that we start the translation from
398  * @addr: the address to be translated through the MMU
399  * @xlat: the translated address offset within the destination memory region.
400  *        It cannot be %NULL.
401  * @plen_out: valid read/write length of the translated address. It
402  *            cannot be %NULL.
403  * @page_mask_out: page mask for the translated address. This
404  *            should only be meaningful for IOMMU translated
405  *            addresses, since there may be huge pages that this bit
406  *            would tell. It can be %NULL if we don't care about it.
407  * @is_write: whether the translation operation is for write
408  * @is_mmio: whether this can be MMIO, set true if it can
409  * @target_as: the address space targeted by the IOMMU
410  * @attrs: transaction attributes
411  *
412  * This function is called from RCU critical section.  It is the common
413  * part of flatview_do_translate and address_space_translate_cached.
414  */
415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416                                                          hwaddr *xlat,
417                                                          hwaddr *plen_out,
418                                                          hwaddr *page_mask_out,
419                                                          bool is_write,
420                                                          bool is_mmio,
421                                                          AddressSpace **target_as,
422                                                          MemTxAttrs attrs)
423 {
424     MemoryRegionSection *section;
425     hwaddr page_mask = (hwaddr)-1;
426 
427     do {
428         hwaddr addr = *xlat;
429         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430         int iommu_idx = 0;
431         IOMMUTLBEntry iotlb;
432 
433         if (imrc->attrs_to_index) {
434             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435         }
436 
437         iotlb = imrc->translate(iommu_mr, addr, is_write ?
438                                 IOMMU_WO : IOMMU_RO, iommu_idx);
439 
440         if (!(iotlb.perm & (1 << is_write))) {
441             goto unassigned;
442         }
443 
444         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445                 | (addr & iotlb.addr_mask));
446         page_mask &= iotlb.addr_mask;
447         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448         *target_as = iotlb.target_as;
449 
450         section = address_space_translate_internal(
451                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452                 plen_out, is_mmio);
453 
454         iommu_mr = memory_region_get_iommu(section->mr);
455     } while (unlikely(iommu_mr));
456 
457     if (page_mask_out) {
458         *page_mask_out = page_mask;
459     }
460     return *section;
461 
462 unassigned:
463     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 }
465 
466 /**
467  * flatview_do_translate - translate an address in FlatView
468  *
469  * @fv: the flat view that we want to translate on
470  * @addr: the address to be translated in above address space
471  * @xlat: the translated address offset within memory region. It
472  *        cannot be @NULL.
473  * @plen_out: valid read/write length of the translated address. It
474  *            can be @NULL when we don't care about it.
475  * @page_mask_out: page mask for the translated address. This
476  *            should only be meaningful for IOMMU translated
477  *            addresses, since there may be huge pages that this bit
478  *            would tell. It can be @NULL if we don't care about it.
479  * @is_write: whether the translation operation is for write
480  * @is_mmio: whether this can be MMIO, set true if it can
481  * @target_as: the address space targeted by the IOMMU
482  * @attrs: memory transaction attributes
483  *
484  * This function is called from RCU critical section
485  */
486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487                                                  hwaddr addr,
488                                                  hwaddr *xlat,
489                                                  hwaddr *plen_out,
490                                                  hwaddr *page_mask_out,
491                                                  bool is_write,
492                                                  bool is_mmio,
493                                                  AddressSpace **target_as,
494                                                  MemTxAttrs attrs)
495 {
496     MemoryRegionSection *section;
497     IOMMUMemoryRegion *iommu_mr;
498     hwaddr plen = (hwaddr)(-1);
499 
500     if (!plen_out) {
501         plen_out = &plen;
502     }
503 
504     section = address_space_translate_internal(
505             flatview_to_dispatch(fv), addr, xlat,
506             plen_out, is_mmio);
507 
508     iommu_mr = memory_region_get_iommu(section->mr);
509     if (unlikely(iommu_mr)) {
510         return address_space_translate_iommu(iommu_mr, xlat,
511                                              plen_out, page_mask_out,
512                                              is_write, is_mmio,
513                                              target_as, attrs);
514     }
515     if (page_mask_out) {
516         /* Not behind an IOMMU, use default page size. */
517         *page_mask_out = ~TARGET_PAGE_MASK;
518     }
519 
520     return *section;
521 }
522 
523 /* Called from RCU critical section */
524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525                                             bool is_write, MemTxAttrs attrs)
526 {
527     MemoryRegionSection section;
528     hwaddr xlat, page_mask;
529 
530     /*
531      * This can never be MMIO, and we don't really care about plen,
532      * but page mask.
533      */
534     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535                                     NULL, &page_mask, is_write, false, &as,
536                                     attrs);
537 
538     /* Illegal translation */
539     if (section.mr == &io_mem_unassigned) {
540         goto iotlb_fail;
541     }
542 
543     /* Convert memory region offset into address space offset */
544     xlat += section.offset_within_address_space -
545         section.offset_within_region;
546 
547     return (IOMMUTLBEntry) {
548         .target_as = as,
549         .iova = addr & ~page_mask,
550         .translated_addr = xlat & ~page_mask,
551         .addr_mask = page_mask,
552         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553         .perm = IOMMU_RW,
554     };
555 
556 iotlb_fail:
557     return (IOMMUTLBEntry) {0};
558 }
559 
560 /* Called from RCU critical section */
561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562                                  hwaddr *plen, bool is_write,
563                                  MemTxAttrs attrs)
564 {
565     MemoryRegion *mr;
566     MemoryRegionSection section;
567     AddressSpace *as = NULL;
568 
569     /* This can be MMIO, so setup MMIO bit. */
570     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571                                     is_write, true, &as, attrs);
572     mr = section.mr;
573 
574     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576         *plen = MIN(page, *plen);
577     }
578 
579     return mr;
580 }
581 
582 typedef struct TCGIOMMUNotifier {
583     IOMMUNotifier n;
584     MemoryRegion *mr;
585     CPUState *cpu;
586     int iommu_idx;
587     bool active;
588 } TCGIOMMUNotifier;
589 
590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591 {
592     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593 
594     if (!notifier->active) {
595         return;
596     }
597     tlb_flush(notifier->cpu);
598     notifier->active = false;
599     /* We leave the notifier struct on the list to avoid reallocating it later.
600      * Generally the number of IOMMUs a CPU deals with will be small.
601      * In any case we can't unregister the iommu notifier from a notify
602      * callback.
603      */
604 }
605 
606 static void tcg_register_iommu_notifier(CPUState *cpu,
607                                         IOMMUMemoryRegion *iommu_mr,
608                                         int iommu_idx)
609 {
610     /* Make sure this CPU has an IOMMU notifier registered for this
611      * IOMMU/IOMMU index combination, so that we can flush its TLB
612      * when the IOMMU tells us the mappings we've cached have changed.
613      */
614     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615     TCGIOMMUNotifier *notifier = NULL;
616     int i;
617 
618     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621             break;
622         }
623     }
624     if (i == cpu->iommu_notifiers->len) {
625         /* Not found, add a new entry at the end of the array */
626         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627         notifier = g_new0(TCGIOMMUNotifier, 1);
628         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629 
630         notifier->mr = mr;
631         notifier->iommu_idx = iommu_idx;
632         notifier->cpu = cpu;
633         /* Rather than trying to register interest in the specific part
634          * of the iommu's address space that we've accessed and then
635          * expand it later as subsequent accesses touch more of it, we
636          * just register interest in the whole thing, on the assumption
637          * that iommu reconfiguration will be rare.
638          */
639         iommu_notifier_init(&notifier->n,
640                             tcg_iommu_unmap_notify,
641                             IOMMU_NOTIFIER_UNMAP,
642                             0,
643                             HWADDR_MAX,
644                             iommu_idx);
645         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
646                                               &error_fatal);
647     }
648 
649     if (!notifier->active) {
650         notifier->active = true;
651     }
652 }
653 
654 void tcg_iommu_free_notifier_list(CPUState *cpu)
655 {
656     /* Destroy the CPU's notifier list */
657     int i;
658     TCGIOMMUNotifier *notifier;
659 
660     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
663         g_free(notifier);
664     }
665     g_array_free(cpu->iommu_notifiers, true);
666 }
667 
668 void tcg_iommu_init_notifier_list(CPUState *cpu)
669 {
670     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 }
672 
673 /* Called from RCU critical section */
674 MemoryRegionSection *
675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676                                   hwaddr *xlat, hwaddr *plen,
677                                   MemTxAttrs attrs, int *prot)
678 {
679     MemoryRegionSection *section;
680     IOMMUMemoryRegion *iommu_mr;
681     IOMMUMemoryRegionClass *imrc;
682     IOMMUTLBEntry iotlb;
683     int iommu_idx;
684     hwaddr addr = orig_addr;
685     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686 
687     for (;;) {
688         section = address_space_translate_internal(d, addr, &addr, plen, false);
689 
690         iommu_mr = memory_region_get_iommu(section->mr);
691         if (!iommu_mr) {
692             break;
693         }
694 
695         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696 
697         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700          * doesn't short-cut its translation table walk.
701          */
702         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704                 | (addr & iotlb.addr_mask));
705         /* Update the caller's prot bits to remove permissions the IOMMU
706          * is giving us a failure response for. If we get down to no
707          * permissions left at all we can give up now.
708          */
709         if (!(iotlb.perm & IOMMU_RO)) {
710             *prot &= ~(PAGE_READ | PAGE_EXEC);
711         }
712         if (!(iotlb.perm & IOMMU_WO)) {
713             *prot &= ~PAGE_WRITE;
714         }
715 
716         if (!*prot) {
717             goto translate_fail;
718         }
719 
720         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721     }
722 
723     assert(!memory_region_is_iommu(section->mr));
724     *xlat = addr;
725     return section;
726 
727 translate_fail:
728     /*
729      * We should be given a page-aligned address -- certainly
730      * tlb_set_page_with_attrs() does so.  The page offset of xlat
731      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732      * The page portion of xlat will be logged by memory_region_access_valid()
733      * when this memory access is rejected, so use the original untranslated
734      * physical address.
735      */
736     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737     *xlat = orig_addr;
738     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 }
740 
741 void cpu_address_space_init(CPUState *cpu, int asidx,
742                             const char *prefix, MemoryRegion *mr)
743 {
744     CPUAddressSpace *newas;
745     AddressSpace *as = g_new0(AddressSpace, 1);
746     char *as_name;
747 
748     assert(mr);
749     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750     address_space_init(as, mr, as_name);
751     g_free(as_name);
752 
753     /* Target code should have set num_ases before calling us */
754     assert(asidx < cpu->num_ases);
755 
756     if (asidx == 0) {
757         /* address space 0 gets the convenience alias */
758         cpu->as = as;
759     }
760 
761     /* KVM cannot currently support multiple address spaces. */
762     assert(asidx == 0 || !kvm_enabled());
763 
764     if (!cpu->cpu_ases) {
765         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766         cpu->cpu_ases_count = cpu->num_ases;
767     }
768 
769     newas = &cpu->cpu_ases[asidx];
770     newas->cpu = cpu;
771     newas->as = as;
772     if (tcg_enabled()) {
773         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
774         newas->tcg_as_listener.commit = tcg_commit;
775         newas->tcg_as_listener.name = "tcg";
776         memory_listener_register(&newas->tcg_as_listener, as);
777     }
778 }
779 
780 void cpu_address_space_destroy(CPUState *cpu, int asidx)
781 {
782     CPUAddressSpace *cpuas;
783 
784     assert(cpu->cpu_ases);
785     assert(asidx >= 0 && asidx < cpu->num_ases);
786     /* KVM cannot currently support multiple address spaces. */
787     assert(asidx == 0 || !kvm_enabled());
788 
789     cpuas = &cpu->cpu_ases[asidx];
790     if (tcg_enabled()) {
791         memory_listener_unregister(&cpuas->tcg_as_listener);
792     }
793 
794     address_space_destroy(cpuas->as);
795     g_free_rcu(cpuas->as, rcu);
796 
797     if (asidx == 0) {
798         /* reset the convenience alias for address space 0 */
799         cpu->as = NULL;
800     }
801 
802     if (--cpu->cpu_ases_count == 0) {
803         g_free(cpu->cpu_ases);
804         cpu->cpu_ases = NULL;
805     }
806 }
807 
808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
809 {
810     /* Return the AddressSpace corresponding to the specified index */
811     return cpu->cpu_ases[asidx].as;
812 }
813 
814 /* Called from RCU critical section */
815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
816 {
817     RAMBlock *block;
818 
819     block = qatomic_rcu_read(&ram_list.mru_block);
820     if (block && addr - block->offset < block->max_length) {
821         return block;
822     }
823     RAMBLOCK_FOREACH(block) {
824         if (addr - block->offset < block->max_length) {
825             goto found;
826         }
827     }
828 
829     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
830     abort();
831 
832 found:
833     /* It is safe to write mru_block outside the BQL.  This
834      * is what happens:
835      *
836      *     mru_block = xxx
837      *     rcu_read_unlock()
838      *                                        xxx removed from list
839      *                  rcu_read_lock()
840      *                  read mru_block
841      *                                        mru_block = NULL;
842      *                                        call_rcu(reclaim_ramblock, xxx);
843      *                  rcu_read_unlock()
844      *
845      * qatomic_rcu_set is not needed here.  The block was already published
846      * when it was placed into the list.  Here we're just making an extra
847      * copy of the pointer.
848      */
849     ram_list.mru_block = block;
850     return block;
851 }
852 
853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
854 {
855     CPUState *cpu;
856     ram_addr_t start1;
857     RAMBlock *block;
858     ram_addr_t end;
859 
860     assert(tcg_enabled());
861     end = TARGET_PAGE_ALIGN(start + length);
862     start &= TARGET_PAGE_MASK;
863 
864     RCU_READ_LOCK_GUARD();
865     block = qemu_get_ram_block(start);
866     assert(block == qemu_get_ram_block(end - 1));
867     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868     CPU_FOREACH(cpu) {
869         tlb_reset_dirty(cpu, start1, length);
870     }
871 }
872 
873 /* Note: start and end must be within the same ram block.  */
874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
875                                               ram_addr_t length,
876                                               unsigned client)
877 {
878     DirtyMemoryBlocks *blocks;
879     unsigned long end, page, start_page;
880     bool dirty = false;
881     RAMBlock *ramblock;
882     uint64_t mr_offset, mr_size;
883 
884     if (length == 0) {
885         return false;
886     }
887 
888     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
889     start_page = start >> TARGET_PAGE_BITS;
890     page = start_page;
891 
892     WITH_RCU_READ_LOCK_GUARD() {
893         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
894         ramblock = qemu_get_ram_block(start);
895         /* Range sanity check on the ramblock */
896         assert(start >= ramblock->offset &&
897                start + length <= ramblock->offset + ramblock->used_length);
898 
899         while (page < end) {
900             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
901             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
902             unsigned long num = MIN(end - page,
903                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
904 
905             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
906                                                   offset, num);
907             page += num;
908         }
909 
910         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
911         mr_size = (end - start_page) << TARGET_PAGE_BITS;
912         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
913     }
914 
915     if (dirty) {
916         cpu_physical_memory_dirty_bits_cleared(start, length);
917     }
918 
919     return dirty;
920 }
921 
922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
923     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
924 {
925     DirtyMemoryBlocks *blocks;
926     ram_addr_t start, first, last;
927     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
928     DirtyBitmapSnapshot *snap;
929     unsigned long page, end, dest;
930 
931     start = memory_region_get_ram_addr(mr);
932     /* We know we're only called for RAM MemoryRegions */
933     assert(start != RAM_ADDR_INVALID);
934     start += offset;
935 
936     first = QEMU_ALIGN_DOWN(start, align);
937     last  = QEMU_ALIGN_UP(start + length, align);
938 
939     snap = g_malloc0(sizeof(*snap) +
940                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
941     snap->start = first;
942     snap->end   = last;
943 
944     page = first >> TARGET_PAGE_BITS;
945     end  = last  >> TARGET_PAGE_BITS;
946     dest = 0;
947 
948     WITH_RCU_READ_LOCK_GUARD() {
949         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
950 
951         while (page < end) {
952             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
953             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
954             unsigned long num = MIN(end - page,
955                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
956 
957             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
958             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
959             ofs >>= BITS_PER_LEVEL;
960 
961             bitmap_copy_and_clear_atomic(snap->dirty + dest,
962                                          blocks->blocks[idx] + ofs,
963                                          num);
964             page += num;
965             dest += num >> BITS_PER_LEVEL;
966         }
967     }
968 
969     cpu_physical_memory_dirty_bits_cleared(start, length);
970 
971     memory_region_clear_dirty_bitmap(mr, offset, length);
972 
973     return snap;
974 }
975 
976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
977                                             ram_addr_t start,
978                                             ram_addr_t length)
979 {
980     unsigned long page, end;
981 
982     assert(start >= snap->start);
983     assert(start + length <= snap->end);
984 
985     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
986     page = (start - snap->start) >> TARGET_PAGE_BITS;
987 
988     while (page < end) {
989         if (test_bit(page, snap->dirty)) {
990             return true;
991         }
992         page++;
993     }
994     return false;
995 }
996 
997 /* Called from RCU critical section */
998 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
999                                        MemoryRegionSection *section)
1000 {
1001     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1002     return section - d->map.sections;
1003 }
1004 
1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1006                             uint16_t section);
1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1008 
1009 static uint16_t phys_section_add(PhysPageMap *map,
1010                                  MemoryRegionSection *section)
1011 {
1012     /* The physical section number is ORed with a page-aligned
1013      * pointer to produce the iotlb entries.  Thus it should
1014      * never overflow into the page-aligned value.
1015      */
1016     assert(map->sections_nb < TARGET_PAGE_SIZE);
1017 
1018     if (map->sections_nb == map->sections_nb_alloc) {
1019         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1020         map->sections = g_renew(MemoryRegionSection, map->sections,
1021                                 map->sections_nb_alloc);
1022     }
1023     map->sections[map->sections_nb] = *section;
1024     memory_region_ref(section->mr);
1025     return map->sections_nb++;
1026 }
1027 
1028 static void phys_section_destroy(MemoryRegion *mr)
1029 {
1030     bool have_sub_page = mr->subpage;
1031 
1032     memory_region_unref(mr);
1033 
1034     if (have_sub_page) {
1035         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1036         object_unref(OBJECT(&subpage->iomem));
1037         g_free(subpage);
1038     }
1039 }
1040 
1041 static void phys_sections_free(PhysPageMap *map)
1042 {
1043     while (map->sections_nb > 0) {
1044         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1045         phys_section_destroy(section->mr);
1046     }
1047     g_free(map->sections);
1048     g_free(map->nodes);
1049 }
1050 
1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1052 {
1053     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1054     subpage_t *subpage;
1055     hwaddr base = section->offset_within_address_space
1056         & TARGET_PAGE_MASK;
1057     MemoryRegionSection *existing = phys_page_find(d, base);
1058     MemoryRegionSection subsection = {
1059         .offset_within_address_space = base,
1060         .size = int128_make64(TARGET_PAGE_SIZE),
1061     };
1062     hwaddr start, end;
1063 
1064     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1065 
1066     if (!(existing->mr->subpage)) {
1067         subpage = subpage_init(fv, base);
1068         subsection.fv = fv;
1069         subsection.mr = &subpage->iomem;
1070         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1071                       phys_section_add(&d->map, &subsection));
1072     } else {
1073         subpage = container_of(existing->mr, subpage_t, iomem);
1074     }
1075     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1076     end = start + int128_get64(section->size) - 1;
1077     subpage_register(subpage, start, end,
1078                      phys_section_add(&d->map, section));
1079 }
1080 
1081 
1082 static void register_multipage(FlatView *fv,
1083                                MemoryRegionSection *section)
1084 {
1085     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1086     hwaddr start_addr = section->offset_within_address_space;
1087     uint16_t section_index = phys_section_add(&d->map, section);
1088     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1089                                                     TARGET_PAGE_BITS));
1090 
1091     assert(num_pages);
1092     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1093 }
1094 
1095 /*
1096  * The range in *section* may look like this:
1097  *
1098  *      |s|PPPPPPP|s|
1099  *
1100  * where s stands for subpage and P for page.
1101  */
1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1103 {
1104     MemoryRegionSection remain = *section;
1105     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1106 
1107     /* register first subpage */
1108     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1109         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1110                         - remain.offset_within_address_space;
1111 
1112         MemoryRegionSection now = remain;
1113         now.size = int128_min(int128_make64(left), now.size);
1114         register_subpage(fv, &now);
1115         if (int128_eq(remain.size, now.size)) {
1116             return;
1117         }
1118         remain.size = int128_sub(remain.size, now.size);
1119         remain.offset_within_address_space += int128_get64(now.size);
1120         remain.offset_within_region += int128_get64(now.size);
1121     }
1122 
1123     /* register whole pages */
1124     if (int128_ge(remain.size, page_size)) {
1125         MemoryRegionSection now = remain;
1126         now.size = int128_and(now.size, int128_neg(page_size));
1127         register_multipage(fv, &now);
1128         if (int128_eq(remain.size, now.size)) {
1129             return;
1130         }
1131         remain.size = int128_sub(remain.size, now.size);
1132         remain.offset_within_address_space += int128_get64(now.size);
1133         remain.offset_within_region += int128_get64(now.size);
1134     }
1135 
1136     /* register last subpage */
1137     register_subpage(fv, &remain);
1138 }
1139 
1140 void qemu_flush_coalesced_mmio_buffer(void)
1141 {
1142     if (kvm_enabled())
1143         kvm_flush_coalesced_mmio_buffer();
1144 }
1145 
1146 void qemu_mutex_lock_ramlist(void)
1147 {
1148     qemu_mutex_lock(&ram_list.mutex);
1149 }
1150 
1151 void qemu_mutex_unlock_ramlist(void)
1152 {
1153     qemu_mutex_unlock(&ram_list.mutex);
1154 }
1155 
1156 GString *ram_block_format(void)
1157 {
1158     RAMBlock *block;
1159     char *psize;
1160     GString *buf = g_string_new("");
1161 
1162     RCU_READ_LOCK_GUARD();
1163     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1164                            "Block Name", "PSize", "Offset", "Used", "Total",
1165                            "HVA", "RO");
1166 
1167     RAMBLOCK_FOREACH(block) {
1168         psize = size_to_str(block->page_size);
1169         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1170                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1171                                block->idstr, psize,
1172                                (uint64_t)block->offset,
1173                                (uint64_t)block->used_length,
1174                                (uint64_t)block->max_length,
1175                                (uint64_t)(uintptr_t)block->host,
1176                                block->mr->readonly ? "ro" : "rw");
1177 
1178         g_free(psize);
1179     }
1180 
1181     return buf;
1182 }
1183 
1184 static int find_min_backend_pagesize(Object *obj, void *opaque)
1185 {
1186     long *hpsize_min = opaque;
1187 
1188     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1189         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1190         long hpsize = host_memory_backend_pagesize(backend);
1191 
1192         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1193             *hpsize_min = hpsize;
1194         }
1195     }
1196 
1197     return 0;
1198 }
1199 
1200 static int find_max_backend_pagesize(Object *obj, void *opaque)
1201 {
1202     long *hpsize_max = opaque;
1203 
1204     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1205         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1206         long hpsize = host_memory_backend_pagesize(backend);
1207 
1208         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1209             *hpsize_max = hpsize;
1210         }
1211     }
1212 
1213     return 0;
1214 }
1215 
1216 /*
1217  * TODO: We assume right now that all mapped host memory backends are
1218  * used as RAM, however some might be used for different purposes.
1219  */
1220 long qemu_minrampagesize(void)
1221 {
1222     long hpsize = LONG_MAX;
1223     Object *memdev_root = object_resolve_path("/objects", NULL);
1224 
1225     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1226     return hpsize;
1227 }
1228 
1229 long qemu_maxrampagesize(void)
1230 {
1231     long pagesize = 0;
1232     Object *memdev_root = object_resolve_path("/objects", NULL);
1233 
1234     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1235     return pagesize;
1236 }
1237 
1238 #ifdef CONFIG_POSIX
1239 static int64_t get_file_size(int fd)
1240 {
1241     int64_t size;
1242 #if defined(__linux__)
1243     struct stat st;
1244 
1245     if (fstat(fd, &st) < 0) {
1246         return -errno;
1247     }
1248 
1249     /* Special handling for devdax character devices */
1250     if (S_ISCHR(st.st_mode)) {
1251         g_autofree char *subsystem_path = NULL;
1252         g_autofree char *subsystem = NULL;
1253 
1254         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1255                                          major(st.st_rdev), minor(st.st_rdev));
1256         subsystem = g_file_read_link(subsystem_path, NULL);
1257 
1258         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1259             g_autofree char *size_path = NULL;
1260             g_autofree char *size_str = NULL;
1261 
1262             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1263                                     major(st.st_rdev), minor(st.st_rdev));
1264 
1265             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1266                 return g_ascii_strtoll(size_str, NULL, 0);
1267             }
1268         }
1269     }
1270 #endif /* defined(__linux__) */
1271 
1272     /* st.st_size may be zero for special files yet lseek(2) works */
1273     size = lseek(fd, 0, SEEK_END);
1274     if (size < 0) {
1275         return -errno;
1276     }
1277     return size;
1278 }
1279 
1280 static int64_t get_file_align(int fd)
1281 {
1282     int64_t align = -1;
1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1284     struct stat st;
1285 
1286     if (fstat(fd, &st) < 0) {
1287         return -errno;
1288     }
1289 
1290     /* Special handling for devdax character devices */
1291     if (S_ISCHR(st.st_mode)) {
1292         g_autofree char *path = NULL;
1293         g_autofree char *rpath = NULL;
1294         struct daxctl_ctx *ctx;
1295         struct daxctl_region *region;
1296         int rc = 0;
1297 
1298         path = g_strdup_printf("/sys/dev/char/%d:%d",
1299                     major(st.st_rdev), minor(st.st_rdev));
1300         rpath = realpath(path, NULL);
1301         if (!rpath) {
1302             return -errno;
1303         }
1304 
1305         rc = daxctl_new(&ctx);
1306         if (rc) {
1307             return -1;
1308         }
1309 
1310         daxctl_region_foreach(ctx, region) {
1311             if (strstr(rpath, daxctl_region_get_path(region))) {
1312                 align = daxctl_region_get_align(region);
1313                 break;
1314             }
1315         }
1316         daxctl_unref(ctx);
1317     }
1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1319 
1320     return align;
1321 }
1322 
1323 static int file_ram_open(const char *path,
1324                          const char *region_name,
1325                          bool readonly,
1326                          bool *created)
1327 {
1328     char *filename;
1329     char *sanitized_name;
1330     char *c;
1331     int fd = -1;
1332 
1333     *created = false;
1334     for (;;) {
1335         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1336         if (fd >= 0) {
1337             /*
1338              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1339              * opened a directory and fail similarly to how we fail ENOENT
1340              * in readonly mode. Note that mkstemp() would imply O_RDWR.
1341              */
1342             if (readonly) {
1343                 struct stat file_stat;
1344 
1345                 if (fstat(fd, &file_stat)) {
1346                     close(fd);
1347                     if (errno == EINTR) {
1348                         continue;
1349                     }
1350                     return -errno;
1351                 } else if (S_ISDIR(file_stat.st_mode)) {
1352                     close(fd);
1353                     return -EISDIR;
1354                 }
1355             }
1356             /* @path names an existing file, use it */
1357             break;
1358         }
1359         if (errno == ENOENT) {
1360             if (readonly) {
1361                 /* Refuse to create new, readonly files. */
1362                 return -ENOENT;
1363             }
1364             /* @path names a file that doesn't exist, create it */
1365             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1366             if (fd >= 0) {
1367                 *created = true;
1368                 break;
1369             }
1370         } else if (errno == EISDIR) {
1371             /* @path names a directory, create a file there */
1372             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1373             sanitized_name = g_strdup(region_name);
1374             for (c = sanitized_name; *c != '\0'; c++) {
1375                 if (*c == '/') {
1376                     *c = '_';
1377                 }
1378             }
1379 
1380             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1381                                        sanitized_name);
1382             g_free(sanitized_name);
1383 
1384             fd = mkstemp(filename);
1385             if (fd >= 0) {
1386                 unlink(filename);
1387                 g_free(filename);
1388                 break;
1389             }
1390             g_free(filename);
1391         }
1392         if (errno != EEXIST && errno != EINTR) {
1393             return -errno;
1394         }
1395         /*
1396          * Try again on EINTR and EEXIST.  The latter happens when
1397          * something else creates the file between our two open().
1398          */
1399     }
1400 
1401     return fd;
1402 }
1403 
1404 static void *file_ram_alloc(RAMBlock *block,
1405                             ram_addr_t memory,
1406                             int fd,
1407                             bool truncate,
1408                             off_t offset,
1409                             Error **errp)
1410 {
1411     uint32_t qemu_map_flags;
1412     void *area;
1413 
1414     block->page_size = qemu_fd_getpagesize(fd);
1415     if (block->mr->align % block->page_size) {
1416         error_setg(errp, "alignment 0x%" PRIx64
1417                    " must be multiples of page size 0x%zx",
1418                    block->mr->align, block->page_size);
1419         return NULL;
1420     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1421         error_setg(errp, "alignment 0x%" PRIx64
1422                    " must be a power of two", block->mr->align);
1423         return NULL;
1424     } else if (offset % block->page_size) {
1425         error_setg(errp, "offset 0x%" PRIx64
1426                    " must be multiples of page size 0x%zx",
1427                    offset, block->page_size);
1428         return NULL;
1429     }
1430     block->mr->align = MAX(block->page_size, block->mr->align);
1431 #if defined(__s390x__)
1432     if (kvm_enabled()) {
1433         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1434     }
1435 #endif
1436 
1437     if (memory < block->page_size) {
1438         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1439                    "or larger than page size 0x%zx",
1440                    memory, block->page_size);
1441         return NULL;
1442     }
1443 
1444     memory = ROUND_UP(memory, block->page_size);
1445 
1446     /*
1447      * ftruncate is not supported by hugetlbfs in older
1448      * hosts, so don't bother bailing out on errors.
1449      * If anything goes wrong with it under other filesystems,
1450      * mmap will fail.
1451      *
1452      * Do not truncate the non-empty backend file to avoid corrupting
1453      * the existing data in the file. Disabling shrinking is not
1454      * enough. For example, the current vNVDIMM implementation stores
1455      * the guest NVDIMM labels at the end of the backend file. If the
1456      * backend file is later extended, QEMU will not be able to find
1457      * those labels. Therefore, extending the non-empty backend file
1458      * is disabled as well.
1459      */
1460     if (truncate && ftruncate(fd, offset + memory)) {
1461         perror("ftruncate");
1462     }
1463 
1464     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1465     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1466     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1467     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1468     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1469     if (area == MAP_FAILED) {
1470         error_setg_errno(errp, errno,
1471                          "unable to map backing store for guest RAM");
1472         return NULL;
1473     }
1474 
1475     block->fd = fd;
1476     block->fd_offset = offset;
1477     return area;
1478 }
1479 #endif
1480 
1481 /* Allocate space within the ram_addr_t space that governs the
1482  * dirty bitmaps.
1483  * Called with the ramlist lock held.
1484  */
1485 static ram_addr_t find_ram_offset(ram_addr_t size)
1486 {
1487     RAMBlock *block, *next_block;
1488     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1489 
1490     assert(size != 0); /* it would hand out same offset multiple times */
1491 
1492     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1493         return 0;
1494     }
1495 
1496     RAMBLOCK_FOREACH(block) {
1497         ram_addr_t candidate, next = RAM_ADDR_MAX;
1498 
1499         /* Align blocks to start on a 'long' in the bitmap
1500          * which makes the bitmap sync'ing take the fast path.
1501          */
1502         candidate = block->offset + block->max_length;
1503         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1504 
1505         /* Search for the closest following block
1506          * and find the gap.
1507          */
1508         RAMBLOCK_FOREACH(next_block) {
1509             if (next_block->offset >= candidate) {
1510                 next = MIN(next, next_block->offset);
1511             }
1512         }
1513 
1514         /* If it fits remember our place and remember the size
1515          * of gap, but keep going so that we might find a smaller
1516          * gap to fill so avoiding fragmentation.
1517          */
1518         if (next - candidate >= size && next - candidate < mingap) {
1519             offset = candidate;
1520             mingap = next - candidate;
1521         }
1522 
1523         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1524     }
1525 
1526     if (offset == RAM_ADDR_MAX) {
1527         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1528                 (uint64_t)size);
1529         abort();
1530     }
1531 
1532     trace_find_ram_offset(size, offset);
1533 
1534     return offset;
1535 }
1536 
1537 static unsigned long last_ram_page(void)
1538 {
1539     RAMBlock *block;
1540     ram_addr_t last = 0;
1541 
1542     RCU_READ_LOCK_GUARD();
1543     RAMBLOCK_FOREACH(block) {
1544         last = MAX(last, block->offset + block->max_length);
1545     }
1546     return last >> TARGET_PAGE_BITS;
1547 }
1548 
1549 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1550 {
1551     int ret;
1552 
1553     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1554     if (!machine_dump_guest_core(current_machine)) {
1555         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1556         if (ret) {
1557             perror("qemu_madvise");
1558             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1559                             "but dump-guest-core=off specified\n");
1560         }
1561     }
1562 }
1563 
1564 const char *qemu_ram_get_idstr(RAMBlock *rb)
1565 {
1566     return rb->idstr;
1567 }
1568 
1569 void *qemu_ram_get_host_addr(RAMBlock *rb)
1570 {
1571     return rb->host;
1572 }
1573 
1574 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1575 {
1576     return rb->offset;
1577 }
1578 
1579 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1580 {
1581     return rb->used_length;
1582 }
1583 
1584 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1585 {
1586     return rb->max_length;
1587 }
1588 
1589 bool qemu_ram_is_shared(RAMBlock *rb)
1590 {
1591     return rb->flags & RAM_SHARED;
1592 }
1593 
1594 bool qemu_ram_is_noreserve(RAMBlock *rb)
1595 {
1596     return rb->flags & RAM_NORESERVE;
1597 }
1598 
1599 /* Note: Only set at the start of postcopy */
1600 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1601 {
1602     return rb->flags & RAM_UF_ZEROPAGE;
1603 }
1604 
1605 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1606 {
1607     rb->flags |= RAM_UF_ZEROPAGE;
1608 }
1609 
1610 bool qemu_ram_is_migratable(RAMBlock *rb)
1611 {
1612     return rb->flags & RAM_MIGRATABLE;
1613 }
1614 
1615 void qemu_ram_set_migratable(RAMBlock *rb)
1616 {
1617     rb->flags |= RAM_MIGRATABLE;
1618 }
1619 
1620 void qemu_ram_unset_migratable(RAMBlock *rb)
1621 {
1622     rb->flags &= ~RAM_MIGRATABLE;
1623 }
1624 
1625 bool qemu_ram_is_named_file(RAMBlock *rb)
1626 {
1627     return rb->flags & RAM_NAMED_FILE;
1628 }
1629 
1630 int qemu_ram_get_fd(RAMBlock *rb)
1631 {
1632     return rb->fd;
1633 }
1634 
1635 /* Called with the BQL held.  */
1636 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1637 {
1638     RAMBlock *block;
1639 
1640     assert(new_block);
1641     assert(!new_block->idstr[0]);
1642 
1643     if (dev) {
1644         char *id = qdev_get_dev_path(dev);
1645         if (id) {
1646             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1647             g_free(id);
1648         }
1649     }
1650     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1651 
1652     RCU_READ_LOCK_GUARD();
1653     RAMBLOCK_FOREACH(block) {
1654         if (block != new_block &&
1655             !strcmp(block->idstr, new_block->idstr)) {
1656             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1657                     new_block->idstr);
1658             abort();
1659         }
1660     }
1661 }
1662 
1663 /* Called with the BQL held.  */
1664 void qemu_ram_unset_idstr(RAMBlock *block)
1665 {
1666     /* FIXME: arch_init.c assumes that this is not called throughout
1667      * migration.  Ignore the problem since hot-unplug during migration
1668      * does not work anyway.
1669      */
1670     if (block) {
1671         memset(block->idstr, 0, sizeof(block->idstr));
1672     }
1673 }
1674 
1675 size_t qemu_ram_pagesize(RAMBlock *rb)
1676 {
1677     return rb->page_size;
1678 }
1679 
1680 /* Returns the largest size of page in use */
1681 size_t qemu_ram_pagesize_largest(void)
1682 {
1683     RAMBlock *block;
1684     size_t largest = 0;
1685 
1686     RAMBLOCK_FOREACH(block) {
1687         largest = MAX(largest, qemu_ram_pagesize(block));
1688     }
1689 
1690     return largest;
1691 }
1692 
1693 static int memory_try_enable_merging(void *addr, size_t len)
1694 {
1695     if (!machine_mem_merge(current_machine)) {
1696         /* disabled by the user */
1697         return 0;
1698     }
1699 
1700     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1701 }
1702 
1703 /*
1704  * Resizing RAM while migrating can result in the migration being canceled.
1705  * Care has to be taken if the guest might have already detected the memory.
1706  *
1707  * As memory core doesn't know how is memory accessed, it is up to
1708  * resize callback to update device state and/or add assertions to detect
1709  * misuse, if necessary.
1710  */
1711 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1712 {
1713     const ram_addr_t oldsize = block->used_length;
1714     const ram_addr_t unaligned_size = newsize;
1715 
1716     assert(block);
1717 
1718     newsize = TARGET_PAGE_ALIGN(newsize);
1719     newsize = REAL_HOST_PAGE_ALIGN(newsize);
1720 
1721     if (block->used_length == newsize) {
1722         /*
1723          * We don't have to resize the ram block (which only knows aligned
1724          * sizes), however, we have to notify if the unaligned size changed.
1725          */
1726         if (unaligned_size != memory_region_size(block->mr)) {
1727             memory_region_set_size(block->mr, unaligned_size);
1728             if (block->resized) {
1729                 block->resized(block->idstr, unaligned_size, block->host);
1730             }
1731         }
1732         return 0;
1733     }
1734 
1735     if (!(block->flags & RAM_RESIZEABLE)) {
1736         error_setg_errno(errp, EINVAL,
1737                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1738                          " != 0x" RAM_ADDR_FMT, block->idstr,
1739                          newsize, block->used_length);
1740         return -EINVAL;
1741     }
1742 
1743     if (block->max_length < newsize) {
1744         error_setg_errno(errp, EINVAL,
1745                          "Size too large: %s: 0x" RAM_ADDR_FMT
1746                          " > 0x" RAM_ADDR_FMT, block->idstr,
1747                          newsize, block->max_length);
1748         return -EINVAL;
1749     }
1750 
1751     /* Notify before modifying the ram block and touching the bitmaps. */
1752     if (block->host) {
1753         ram_block_notify_resize(block->host, oldsize, newsize);
1754     }
1755 
1756     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1757     block->used_length = newsize;
1758     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1759                                         DIRTY_CLIENTS_ALL);
1760     memory_region_set_size(block->mr, unaligned_size);
1761     if (block->resized) {
1762         block->resized(block->idstr, unaligned_size, block->host);
1763     }
1764     return 0;
1765 }
1766 
1767 /*
1768  * Trigger sync on the given ram block for range [start, start + length]
1769  * with the backing store if one is available.
1770  * Otherwise no-op.
1771  * @Note: this is supposed to be a synchronous op.
1772  */
1773 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1774 {
1775     /* The requested range should fit in within the block range */
1776     g_assert((start + length) <= block->used_length);
1777 
1778 #ifdef CONFIG_LIBPMEM
1779     /* The lack of support for pmem should not block the sync */
1780     if (ramblock_is_pmem(block)) {
1781         void *addr = ramblock_ptr(block, start);
1782         pmem_persist(addr, length);
1783         return;
1784     }
1785 #endif
1786     if (block->fd >= 0) {
1787         /**
1788          * Case there is no support for PMEM or the memory has not been
1789          * specified as persistent (or is not one) - use the msync.
1790          * Less optimal but still achieves the same goal
1791          */
1792         void *addr = ramblock_ptr(block, start);
1793         if (qemu_msync(addr, length, block->fd)) {
1794             warn_report("%s: failed to sync memory range: start: "
1795                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1796                     __func__, start, length);
1797         }
1798     }
1799 }
1800 
1801 /* Called with ram_list.mutex held */
1802 static void dirty_memory_extend(ram_addr_t old_ram_size,
1803                                 ram_addr_t new_ram_size)
1804 {
1805     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1806                                              DIRTY_MEMORY_BLOCK_SIZE);
1807     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1808                                              DIRTY_MEMORY_BLOCK_SIZE);
1809     int i;
1810 
1811     /* Only need to extend if block count increased */
1812     if (new_num_blocks <= old_num_blocks) {
1813         return;
1814     }
1815 
1816     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1817         DirtyMemoryBlocks *old_blocks;
1818         DirtyMemoryBlocks *new_blocks;
1819         int j;
1820 
1821         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1822         new_blocks = g_malloc(sizeof(*new_blocks) +
1823                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1824 
1825         if (old_num_blocks) {
1826             memcpy(new_blocks->blocks, old_blocks->blocks,
1827                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1828         }
1829 
1830         for (j = old_num_blocks; j < new_num_blocks; j++) {
1831             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1832         }
1833 
1834         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1835 
1836         if (old_blocks) {
1837             g_free_rcu(old_blocks, rcu);
1838         }
1839     }
1840 }
1841 
1842 static void ram_block_add(RAMBlock *new_block, Error **errp)
1843 {
1844     const bool noreserve = qemu_ram_is_noreserve(new_block);
1845     const bool shared = qemu_ram_is_shared(new_block);
1846     RAMBlock *block;
1847     RAMBlock *last_block = NULL;
1848     bool free_on_error = false;
1849     ram_addr_t old_ram_size, new_ram_size;
1850     Error *err = NULL;
1851 
1852     old_ram_size = last_ram_page();
1853 
1854     qemu_mutex_lock_ramlist();
1855     new_block->offset = find_ram_offset(new_block->max_length);
1856 
1857     if (!new_block->host) {
1858         if (xen_enabled()) {
1859             xen_ram_alloc(new_block->offset, new_block->max_length,
1860                           new_block->mr, &err);
1861             if (err) {
1862                 error_propagate(errp, err);
1863                 qemu_mutex_unlock_ramlist();
1864                 return;
1865             }
1866         } else {
1867             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1868                                                   &new_block->mr->align,
1869                                                   shared, noreserve);
1870             if (!new_block->host) {
1871                 error_setg_errno(errp, errno,
1872                                  "cannot set up guest memory '%s'",
1873                                  memory_region_name(new_block->mr));
1874                 qemu_mutex_unlock_ramlist();
1875                 return;
1876             }
1877             memory_try_enable_merging(new_block->host, new_block->max_length);
1878             free_on_error = true;
1879         }
1880     }
1881 
1882     if (new_block->flags & RAM_GUEST_MEMFD) {
1883         int ret;
1884 
1885         assert(kvm_enabled());
1886         assert(new_block->guest_memfd < 0);
1887 
1888         ret = ram_block_discard_require(true);
1889         if (ret < 0) {
1890             error_setg_errno(errp, -ret,
1891                              "cannot set up private guest memory: discard currently blocked");
1892             error_append_hint(errp, "Are you using assigned devices?\n");
1893             goto out_free;
1894         }
1895 
1896         new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1897                                                         0, errp);
1898         if (new_block->guest_memfd < 0) {
1899             qemu_mutex_unlock_ramlist();
1900             goto out_free;
1901         }
1902     }
1903 
1904     new_ram_size = MAX(old_ram_size,
1905               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1906     if (new_ram_size > old_ram_size) {
1907         dirty_memory_extend(old_ram_size, new_ram_size);
1908     }
1909     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1910      * QLIST (which has an RCU-friendly variant) does not have insertion at
1911      * tail, so save the last element in last_block.
1912      */
1913     RAMBLOCK_FOREACH(block) {
1914         last_block = block;
1915         if (block->max_length < new_block->max_length) {
1916             break;
1917         }
1918     }
1919     if (block) {
1920         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1921     } else if (last_block) {
1922         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1923     } else { /* list is empty */
1924         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1925     }
1926     ram_list.mru_block = NULL;
1927 
1928     /* Write list before version */
1929     smp_wmb();
1930     ram_list.version++;
1931     qemu_mutex_unlock_ramlist();
1932 
1933     cpu_physical_memory_set_dirty_range(new_block->offset,
1934                                         new_block->used_length,
1935                                         DIRTY_CLIENTS_ALL);
1936 
1937     if (new_block->host) {
1938         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1939         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1940         /*
1941          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1942          * Configure it unless the machine is a qtest server, in which case
1943          * KVM is not used and it may be forked (eg for fuzzing purposes).
1944          */
1945         if (!qtest_enabled()) {
1946             qemu_madvise(new_block->host, new_block->max_length,
1947                          QEMU_MADV_DONTFORK);
1948         }
1949         ram_block_notify_add(new_block->host, new_block->used_length,
1950                              new_block->max_length);
1951     }
1952     return;
1953 
1954 out_free:
1955     if (free_on_error) {
1956         qemu_anon_ram_free(new_block->host, new_block->max_length);
1957         new_block->host = NULL;
1958     }
1959 }
1960 
1961 #ifdef CONFIG_POSIX
1962 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1963                                  uint32_t ram_flags, int fd, off_t offset,
1964                                  Error **errp)
1965 {
1966     RAMBlock *new_block;
1967     Error *local_err = NULL;
1968     int64_t file_size, file_align;
1969 
1970     /* Just support these ram flags by now. */
1971     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1972                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1973                           RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1974 
1975     if (xen_enabled()) {
1976         error_setg(errp, "-mem-path not supported with Xen");
1977         return NULL;
1978     }
1979 
1980     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1981         error_setg(errp,
1982                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1983         return NULL;
1984     }
1985 
1986     size = TARGET_PAGE_ALIGN(size);
1987     size = REAL_HOST_PAGE_ALIGN(size);
1988 
1989     file_size = get_file_size(fd);
1990     if (file_size > offset && file_size < (offset + size)) {
1991         error_setg(errp, "backing store size 0x%" PRIx64
1992                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1993                    file_size, size);
1994         return NULL;
1995     }
1996 
1997     file_align = get_file_align(fd);
1998     if (file_align > 0 && file_align > mr->align) {
1999         error_setg(errp, "backing store align 0x%" PRIx64
2000                    " is larger than 'align' option 0x%" PRIx64,
2001                    file_align, mr->align);
2002         return NULL;
2003     }
2004 
2005     new_block = g_malloc0(sizeof(*new_block));
2006     new_block->mr = mr;
2007     new_block->used_length = size;
2008     new_block->max_length = size;
2009     new_block->flags = ram_flags;
2010     new_block->guest_memfd = -1;
2011     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
2012                                      errp);
2013     if (!new_block->host) {
2014         g_free(new_block);
2015         return NULL;
2016     }
2017 
2018     ram_block_add(new_block, &local_err);
2019     if (local_err) {
2020         g_free(new_block);
2021         error_propagate(errp, local_err);
2022         return NULL;
2023     }
2024     return new_block;
2025 
2026 }
2027 
2028 
2029 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2030                                    uint32_t ram_flags, const char *mem_path,
2031                                    off_t offset, Error **errp)
2032 {
2033     int fd;
2034     bool created;
2035     RAMBlock *block;
2036 
2037     fd = file_ram_open(mem_path, memory_region_name(mr),
2038                        !!(ram_flags & RAM_READONLY_FD), &created);
2039     if (fd < 0) {
2040         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2041                          mem_path);
2042         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2043             fd == -EACCES) {
2044             /*
2045              * If we can open the file R/O (note: will never create a new file)
2046              * and we are dealing with a private mapping, there are still ways
2047              * to consume such files and get RAM instead of ROM.
2048              */
2049             fd = file_ram_open(mem_path, memory_region_name(mr), true,
2050                                &created);
2051             if (fd < 0) {
2052                 return NULL;
2053             }
2054             assert(!created);
2055             close(fd);
2056             error_append_hint(errp, "Consider opening the backing store"
2057                 " read-only but still creating writable RAM using"
2058                 " '-object memory-backend-file,readonly=on,rom=off...'"
2059                 " (see \"VM templating\" documentation)\n");
2060         }
2061         return NULL;
2062     }
2063 
2064     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2065     if (!block) {
2066         if (created) {
2067             unlink(mem_path);
2068         }
2069         close(fd);
2070         return NULL;
2071     }
2072 
2073     return block;
2074 }
2075 #endif
2076 
2077 static
2078 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2079                                   void (*resized)(const char*,
2080                                                   uint64_t length,
2081                                                   void *host),
2082                                   void *host, uint32_t ram_flags,
2083                                   MemoryRegion *mr, Error **errp)
2084 {
2085     RAMBlock *new_block;
2086     Error *local_err = NULL;
2087     int align;
2088 
2089     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2090                           RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2091     assert(!host ^ (ram_flags & RAM_PREALLOC));
2092 
2093     align = qemu_real_host_page_size();
2094     align = MAX(align, TARGET_PAGE_SIZE);
2095     size = ROUND_UP(size, align);
2096     max_size = ROUND_UP(max_size, align);
2097 
2098     new_block = g_malloc0(sizeof(*new_block));
2099     new_block->mr = mr;
2100     new_block->resized = resized;
2101     new_block->used_length = size;
2102     new_block->max_length = max_size;
2103     assert(max_size >= size);
2104     new_block->fd = -1;
2105     new_block->guest_memfd = -1;
2106     new_block->page_size = qemu_real_host_page_size();
2107     new_block->host = host;
2108     new_block->flags = ram_flags;
2109     ram_block_add(new_block, &local_err);
2110     if (local_err) {
2111         g_free(new_block);
2112         error_propagate(errp, local_err);
2113         return NULL;
2114     }
2115     return new_block;
2116 }
2117 
2118 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2119                                    MemoryRegion *mr, Error **errp)
2120 {
2121     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2122                                    errp);
2123 }
2124 
2125 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2126                          MemoryRegion *mr, Error **errp)
2127 {
2128     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2129     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2130 }
2131 
2132 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2133                                      void (*resized)(const char*,
2134                                                      uint64_t length,
2135                                                      void *host),
2136                                      MemoryRegion *mr, Error **errp)
2137 {
2138     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2139                                    RAM_RESIZEABLE, mr, errp);
2140 }
2141 
2142 static void reclaim_ramblock(RAMBlock *block)
2143 {
2144     if (block->flags & RAM_PREALLOC) {
2145         ;
2146     } else if (xen_enabled()) {
2147         xen_invalidate_map_cache_entry(block->host);
2148 #ifndef _WIN32
2149     } else if (block->fd >= 0) {
2150         qemu_ram_munmap(block->fd, block->host, block->max_length);
2151         close(block->fd);
2152 #endif
2153     } else {
2154         qemu_anon_ram_free(block->host, block->max_length);
2155     }
2156 
2157     if (block->guest_memfd >= 0) {
2158         close(block->guest_memfd);
2159         ram_block_discard_require(false);
2160     }
2161 
2162     g_free(block);
2163 }
2164 
2165 void qemu_ram_free(RAMBlock *block)
2166 {
2167     if (!block) {
2168         return;
2169     }
2170 
2171     if (block->host) {
2172         ram_block_notify_remove(block->host, block->used_length,
2173                                 block->max_length);
2174     }
2175 
2176     qemu_mutex_lock_ramlist();
2177     QLIST_REMOVE_RCU(block, next);
2178     ram_list.mru_block = NULL;
2179     /* Write list before version */
2180     smp_wmb();
2181     ram_list.version++;
2182     call_rcu(block, reclaim_ramblock, rcu);
2183     qemu_mutex_unlock_ramlist();
2184 }
2185 
2186 #ifndef _WIN32
2187 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2188 {
2189     RAMBlock *block;
2190     ram_addr_t offset;
2191     int flags;
2192     void *area, *vaddr;
2193     int prot;
2194 
2195     RAMBLOCK_FOREACH(block) {
2196         offset = addr - block->offset;
2197         if (offset < block->max_length) {
2198             vaddr = ramblock_ptr(block, offset);
2199             if (block->flags & RAM_PREALLOC) {
2200                 ;
2201             } else if (xen_enabled()) {
2202                 abort();
2203             } else {
2204                 flags = MAP_FIXED;
2205                 flags |= block->flags & RAM_SHARED ?
2206                          MAP_SHARED : MAP_PRIVATE;
2207                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2208                 prot = PROT_READ;
2209                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2210                 if (block->fd >= 0) {
2211                     area = mmap(vaddr, length, prot, flags, block->fd,
2212                                 offset + block->fd_offset);
2213                 } else {
2214                     flags |= MAP_ANONYMOUS;
2215                     area = mmap(vaddr, length, prot, flags, -1, 0);
2216                 }
2217                 if (area != vaddr) {
2218                     error_report("Could not remap addr: "
2219                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2220                                  length, addr);
2221                     exit(1);
2222                 }
2223                 memory_try_enable_merging(vaddr, length);
2224                 qemu_ram_setup_dump(vaddr, length);
2225             }
2226         }
2227     }
2228 }
2229 #endif /* !_WIN32 */
2230 
2231 /*
2232  * Return a host pointer to guest's ram.
2233  * For Xen, foreign mappings get created if they don't already exist.
2234  *
2235  * @block: block for the RAM to lookup (optional and may be NULL).
2236  * @addr: address within the memory region.
2237  * @size: pointer to requested size (optional and may be NULL).
2238  *        size may get modified and return a value smaller than
2239  *        what was requested.
2240  * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2241  * @is_write: hint wether to map RW or RO in the xen-mapcache.
2242  *            (optional and may always be set to true).
2243  *
2244  * Called within RCU critical section.
2245  */
2246 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2247                                  hwaddr *size, bool lock,
2248                                  bool is_write)
2249 {
2250     hwaddr len = 0;
2251 
2252     if (size && *size == 0) {
2253         return NULL;
2254     }
2255 
2256     if (block == NULL) {
2257         block = qemu_get_ram_block(addr);
2258         addr -= block->offset;
2259     }
2260     if (size) {
2261         *size = MIN(*size, block->max_length - addr);
2262         len = *size;
2263     }
2264 
2265     if (xen_enabled() && block->host == NULL) {
2266         /* We need to check if the requested address is in the RAM
2267          * because we don't want to map the entire memory in QEMU.
2268          * In that case just map the requested area.
2269          */
2270         if (xen_mr_is_memory(block->mr)) {
2271             return xen_map_cache(block->mr, block->offset + addr,
2272                                  len, block->offset,
2273                                  lock, lock, is_write);
2274         }
2275 
2276         block->host = xen_map_cache(block->mr, block->offset,
2277                                     block->max_length,
2278                                     block->offset,
2279                                     1, lock, is_write);
2280     }
2281 
2282     return ramblock_ptr(block, addr);
2283 }
2284 
2285 /*
2286  * Return a host pointer to ram allocated with qemu_ram_alloc.
2287  * This should not be used for general purpose DMA.  Use address_space_map
2288  * or address_space_rw instead. For local memory (e.g. video ram) that the
2289  * device owns, use memory_region_get_ram_ptr.
2290  *
2291  * Called within RCU critical section.
2292  */
2293 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2294 {
2295     return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2296 }
2297 
2298 /* Return the offset of a hostpointer within a ramblock */
2299 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2300 {
2301     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2302     assert((uintptr_t)host >= (uintptr_t)rb->host);
2303     assert(res < rb->max_length);
2304 
2305     return res;
2306 }
2307 
2308 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2309                                    ram_addr_t *offset)
2310 {
2311     RAMBlock *block;
2312     uint8_t *host = ptr;
2313 
2314     if (xen_enabled()) {
2315         ram_addr_t ram_addr;
2316         RCU_READ_LOCK_GUARD();
2317         ram_addr = xen_ram_addr_from_mapcache(ptr);
2318         if (ram_addr == RAM_ADDR_INVALID) {
2319             return NULL;
2320         }
2321 
2322         block = qemu_get_ram_block(ram_addr);
2323         if (block) {
2324             *offset = ram_addr - block->offset;
2325         }
2326         return block;
2327     }
2328 
2329     RCU_READ_LOCK_GUARD();
2330     block = qatomic_rcu_read(&ram_list.mru_block);
2331     if (block && block->host && host - block->host < block->max_length) {
2332         goto found;
2333     }
2334 
2335     RAMBLOCK_FOREACH(block) {
2336         /* This case append when the block is not mapped. */
2337         if (block->host == NULL) {
2338             continue;
2339         }
2340         if (host - block->host < block->max_length) {
2341             goto found;
2342         }
2343     }
2344 
2345     return NULL;
2346 
2347 found:
2348     *offset = (host - block->host);
2349     if (round_offset) {
2350         *offset &= TARGET_PAGE_MASK;
2351     }
2352     return block;
2353 }
2354 
2355 /*
2356  * Finds the named RAMBlock
2357  *
2358  * name: The name of RAMBlock to find
2359  *
2360  * Returns: RAMBlock (or NULL if not found)
2361  */
2362 RAMBlock *qemu_ram_block_by_name(const char *name)
2363 {
2364     RAMBlock *block;
2365 
2366     RAMBLOCK_FOREACH(block) {
2367         if (!strcmp(name, block->idstr)) {
2368             return block;
2369         }
2370     }
2371 
2372     return NULL;
2373 }
2374 
2375 /*
2376  * Some of the system routines need to translate from a host pointer
2377  * (typically a TLB entry) back to a ram offset.
2378  */
2379 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2380 {
2381     RAMBlock *block;
2382     ram_addr_t offset;
2383 
2384     block = qemu_ram_block_from_host(ptr, false, &offset);
2385     if (!block) {
2386         return RAM_ADDR_INVALID;
2387     }
2388 
2389     return block->offset + offset;
2390 }
2391 
2392 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2393 {
2394     ram_addr_t ram_addr;
2395 
2396     ram_addr = qemu_ram_addr_from_host(ptr);
2397     if (ram_addr == RAM_ADDR_INVALID) {
2398         error_report("Bad ram pointer %p", ptr);
2399         abort();
2400     }
2401     return ram_addr;
2402 }
2403 
2404 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2405                                  MemTxAttrs attrs, void *buf, hwaddr len);
2406 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2407                                   const void *buf, hwaddr len);
2408 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2409                                   bool is_write, MemTxAttrs attrs);
2410 
2411 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2412                                 unsigned len, MemTxAttrs attrs)
2413 {
2414     subpage_t *subpage = opaque;
2415     uint8_t buf[8];
2416     MemTxResult res;
2417 
2418 #if defined(DEBUG_SUBPAGE)
2419     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2420            subpage, len, addr);
2421 #endif
2422     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2423     if (res) {
2424         return res;
2425     }
2426     *data = ldn_p(buf, len);
2427     return MEMTX_OK;
2428 }
2429 
2430 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2431                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2432 {
2433     subpage_t *subpage = opaque;
2434     uint8_t buf[8];
2435 
2436 #if defined(DEBUG_SUBPAGE)
2437     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2438            " value %"PRIx64"\n",
2439            __func__, subpage, len, addr, value);
2440 #endif
2441     stn_p(buf, len, value);
2442     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2443 }
2444 
2445 static bool subpage_accepts(void *opaque, hwaddr addr,
2446                             unsigned len, bool is_write,
2447                             MemTxAttrs attrs)
2448 {
2449     subpage_t *subpage = opaque;
2450 #if defined(DEBUG_SUBPAGE)
2451     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2452            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2453 #endif
2454 
2455     return flatview_access_valid(subpage->fv, addr + subpage->base,
2456                                  len, is_write, attrs);
2457 }
2458 
2459 static const MemoryRegionOps subpage_ops = {
2460     .read_with_attrs = subpage_read,
2461     .write_with_attrs = subpage_write,
2462     .impl.min_access_size = 1,
2463     .impl.max_access_size = 8,
2464     .valid.min_access_size = 1,
2465     .valid.max_access_size = 8,
2466     .valid.accepts = subpage_accepts,
2467     .endianness = DEVICE_NATIVE_ENDIAN,
2468 };
2469 
2470 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2471                             uint16_t section)
2472 {
2473     int idx, eidx;
2474 
2475     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2476         return -1;
2477     idx = SUBPAGE_IDX(start);
2478     eidx = SUBPAGE_IDX(end);
2479 #if defined(DEBUG_SUBPAGE)
2480     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2481            __func__, mmio, start, end, idx, eidx, section);
2482 #endif
2483     for (; idx <= eidx; idx++) {
2484         mmio->sub_section[idx] = section;
2485     }
2486 
2487     return 0;
2488 }
2489 
2490 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2491 {
2492     subpage_t *mmio;
2493 
2494     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2495     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2496     mmio->fv = fv;
2497     mmio->base = base;
2498     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2499                           NULL, TARGET_PAGE_SIZE);
2500     mmio->iomem.subpage = true;
2501 #if defined(DEBUG_SUBPAGE)
2502     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2503            mmio, base, TARGET_PAGE_SIZE);
2504 #endif
2505 
2506     return mmio;
2507 }
2508 
2509 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2510 {
2511     assert(fv);
2512     MemoryRegionSection section = {
2513         .fv = fv,
2514         .mr = mr,
2515         .offset_within_address_space = 0,
2516         .offset_within_region = 0,
2517         .size = int128_2_64(),
2518     };
2519 
2520     return phys_section_add(map, &section);
2521 }
2522 
2523 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2524                                       hwaddr index, MemTxAttrs attrs)
2525 {
2526     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2527     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2528     AddressSpaceDispatch *d = cpuas->memory_dispatch;
2529     int section_index = index & ~TARGET_PAGE_MASK;
2530     MemoryRegionSection *ret;
2531 
2532     assert(section_index < d->map.sections_nb);
2533     ret = d->map.sections + section_index;
2534     assert(ret->mr);
2535     assert(ret->mr->ops);
2536 
2537     return ret;
2538 }
2539 
2540 static void io_mem_init(void)
2541 {
2542     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2543                           NULL, UINT64_MAX);
2544 }
2545 
2546 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2547 {
2548     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2549     uint16_t n;
2550 
2551     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2552     assert(n == PHYS_SECTION_UNASSIGNED);
2553 
2554     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2555 
2556     return d;
2557 }
2558 
2559 void address_space_dispatch_free(AddressSpaceDispatch *d)
2560 {
2561     phys_sections_free(&d->map);
2562     g_free(d);
2563 }
2564 
2565 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2566 {
2567 }
2568 
2569 static void tcg_log_global_after_sync(MemoryListener *listener)
2570 {
2571     CPUAddressSpace *cpuas;
2572 
2573     /* Wait for the CPU to end the current TB.  This avoids the following
2574      * incorrect race:
2575      *
2576      *      vCPU                         migration
2577      *      ----------------------       -------------------------
2578      *      TLB check -> slow path
2579      *        notdirty_mem_write
2580      *          write to RAM
2581      *          mark dirty
2582      *                                   clear dirty flag
2583      *      TLB check -> fast path
2584      *                                   read memory
2585      *        write to RAM
2586      *
2587      * by pushing the migration thread's memory read after the vCPU thread has
2588      * written the memory.
2589      */
2590     if (replay_mode == REPLAY_MODE_NONE) {
2591         /*
2592          * VGA can make calls to this function while updating the screen.
2593          * In record/replay mode this causes a deadlock, because
2594          * run_on_cpu waits for rr mutex. Therefore no races are possible
2595          * in this case and no need for making run_on_cpu when
2596          * record/replay is enabled.
2597          */
2598         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2599         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2600     }
2601 }
2602 
2603 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2604 {
2605     CPUAddressSpace *cpuas = data.host_ptr;
2606 
2607     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2608     tlb_flush(cpu);
2609 }
2610 
2611 static void tcg_commit(MemoryListener *listener)
2612 {
2613     CPUAddressSpace *cpuas;
2614     CPUState *cpu;
2615 
2616     assert(tcg_enabled());
2617     /* since each CPU stores ram addresses in its TLB cache, we must
2618        reset the modified entries */
2619     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2620     cpu = cpuas->cpu;
2621 
2622     /*
2623      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2624      * Otherwise we race between (1) other cpu threads and (2) ongoing
2625      * i/o for the current cpu thread, with data cached by mmu_lookup().
2626      *
2627      * In addition, queueing the work function will kick the cpu back to
2628      * the main loop, which will end the RCU critical section and reclaim
2629      * the memory data structures.
2630      *
2631      * That said, the listener is also called during realize, before
2632      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2633      */
2634     if (cpu->halt_cond) {
2635         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2636     } else {
2637         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2638     }
2639 }
2640 
2641 static void memory_map_init(void)
2642 {
2643     system_memory = g_malloc(sizeof(*system_memory));
2644 
2645     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2646     address_space_init(&address_space_memory, system_memory, "memory");
2647 
2648     system_io = g_malloc(sizeof(*system_io));
2649     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2650                           65536);
2651     address_space_init(&address_space_io, system_io, "I/O");
2652 }
2653 
2654 MemoryRegion *get_system_memory(void)
2655 {
2656     return system_memory;
2657 }
2658 
2659 MemoryRegion *get_system_io(void)
2660 {
2661     return system_io;
2662 }
2663 
2664 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2665                                      hwaddr length)
2666 {
2667     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2668     ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2669 
2670     /* We know we're only called for RAM MemoryRegions */
2671     assert(ramaddr != RAM_ADDR_INVALID);
2672     addr += ramaddr;
2673 
2674     /* No early return if dirty_log_mask is or becomes 0, because
2675      * cpu_physical_memory_set_dirty_range will still call
2676      * xen_modified_memory.
2677      */
2678     if (dirty_log_mask) {
2679         dirty_log_mask =
2680             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2681     }
2682     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2683         assert(tcg_enabled());
2684         tb_invalidate_phys_range(addr, addr + length - 1);
2685         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2686     }
2687     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2688 }
2689 
2690 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2691 {
2692     /*
2693      * In principle this function would work on other memory region types too,
2694      * but the ROM device use case is the only one where this operation is
2695      * necessary.  Other memory regions should use the
2696      * address_space_read/write() APIs.
2697      */
2698     assert(memory_region_is_romd(mr));
2699 
2700     invalidate_and_set_dirty(mr, addr, size);
2701 }
2702 
2703 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2704 {
2705     unsigned access_size_max = mr->ops->valid.max_access_size;
2706 
2707     /* Regions are assumed to support 1-4 byte accesses unless
2708        otherwise specified.  */
2709     if (access_size_max == 0) {
2710         access_size_max = 4;
2711     }
2712 
2713     /* Bound the maximum access by the alignment of the address.  */
2714     if (!mr->ops->impl.unaligned) {
2715         unsigned align_size_max = addr & -addr;
2716         if (align_size_max != 0 && align_size_max < access_size_max) {
2717             access_size_max = align_size_max;
2718         }
2719     }
2720 
2721     /* Don't attempt accesses larger than the maximum.  */
2722     if (l > access_size_max) {
2723         l = access_size_max;
2724     }
2725     l = pow2floor(l);
2726 
2727     return l;
2728 }
2729 
2730 bool prepare_mmio_access(MemoryRegion *mr)
2731 {
2732     bool release_lock = false;
2733 
2734     if (!bql_locked()) {
2735         bql_lock();
2736         release_lock = true;
2737     }
2738     if (mr->flush_coalesced_mmio) {
2739         qemu_flush_coalesced_mmio_buffer();
2740     }
2741 
2742     return release_lock;
2743 }
2744 
2745 /**
2746  * flatview_access_allowed
2747  * @mr: #MemoryRegion to be accessed
2748  * @attrs: memory transaction attributes
2749  * @addr: address within that memory region
2750  * @len: the number of bytes to access
2751  *
2752  * Check if a memory transaction is allowed.
2753  *
2754  * Returns: true if transaction is allowed, false if denied.
2755  */
2756 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2757                                     hwaddr addr, hwaddr len)
2758 {
2759     if (likely(!attrs.memory)) {
2760         return true;
2761     }
2762     if (memory_region_is_ram(mr)) {
2763         return true;
2764     }
2765     qemu_log_mask(LOG_GUEST_ERROR,
2766                   "Invalid access to non-RAM device at "
2767                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2768                   "region '%s'\n", addr, len, memory_region_name(mr));
2769     return false;
2770 }
2771 
2772 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2773                                                 const uint8_t *buf,
2774                                                 hwaddr len, hwaddr mr_addr,
2775                                                 hwaddr *l, MemoryRegion *mr)
2776 {
2777     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2778         return MEMTX_ACCESS_ERROR;
2779     }
2780 
2781     if (!memory_access_is_direct(mr, true)) {
2782         uint64_t val;
2783         MemTxResult result;
2784         bool release_lock = prepare_mmio_access(mr);
2785 
2786         *l = memory_access_size(mr, *l, mr_addr);
2787         /*
2788          * XXX: could force current_cpu to NULL to avoid
2789          * potential bugs
2790          */
2791 
2792         /*
2793          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2794          * the buffer by following ldn_he_p().
2795          */
2796 #ifdef QEMU_STATIC_ANALYSIS
2797         assert((*l == 1 && len >= 1) ||
2798                (*l == 2 && len >= 2) ||
2799                (*l == 4 && len >= 4) ||
2800                (*l == 8 && len >= 8));
2801 #endif
2802         val = ldn_he_p(buf, *l);
2803         result = memory_region_dispatch_write(mr, mr_addr, val,
2804                                               size_memop(*l), attrs);
2805         if (release_lock) {
2806             bql_unlock();
2807         }
2808 
2809         return result;
2810     } else {
2811         /* RAM case */
2812         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2813                                                false, true);
2814 
2815         memmove(ram_ptr, buf, *l);
2816         invalidate_and_set_dirty(mr, mr_addr, *l);
2817 
2818         return MEMTX_OK;
2819     }
2820 }
2821 
2822 /* Called within RCU critical section.  */
2823 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2824                                            MemTxAttrs attrs,
2825                                            const void *ptr,
2826                                            hwaddr len, hwaddr mr_addr,
2827                                            hwaddr l, MemoryRegion *mr)
2828 {
2829     MemTxResult result = MEMTX_OK;
2830     const uint8_t *buf = ptr;
2831 
2832     for (;;) {
2833         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2834                                                mr);
2835 
2836         len -= l;
2837         buf += l;
2838         addr += l;
2839 
2840         if (!len) {
2841             break;
2842         }
2843 
2844         l = len;
2845         mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2846     }
2847 
2848     return result;
2849 }
2850 
2851 /* Called from RCU critical section.  */
2852 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2853                                   const void *buf, hwaddr len)
2854 {
2855     hwaddr l;
2856     hwaddr mr_addr;
2857     MemoryRegion *mr;
2858 
2859     l = len;
2860     mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2861     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2862         return MEMTX_ACCESS_ERROR;
2863     }
2864     return flatview_write_continue(fv, addr, attrs, buf, len,
2865                                    mr_addr, l, mr);
2866 }
2867 
2868 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2869                                                hwaddr len, hwaddr mr_addr,
2870                                                hwaddr *l,
2871                                                MemoryRegion *mr)
2872 {
2873     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2874         return MEMTX_ACCESS_ERROR;
2875     }
2876 
2877     if (!memory_access_is_direct(mr, false)) {
2878         /* I/O case */
2879         uint64_t val;
2880         MemTxResult result;
2881         bool release_lock = prepare_mmio_access(mr);
2882 
2883         *l = memory_access_size(mr, *l, mr_addr);
2884         result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2885                                              attrs);
2886 
2887         /*
2888          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2889          * the buffer by following stn_he_p().
2890          */
2891 #ifdef QEMU_STATIC_ANALYSIS
2892         assert((*l == 1 && len >= 1) ||
2893                (*l == 2 && len >= 2) ||
2894                (*l == 4 && len >= 4) ||
2895                (*l == 8 && len >= 8));
2896 #endif
2897         stn_he_p(buf, *l, val);
2898 
2899         if (release_lock) {
2900             bql_unlock();
2901         }
2902         return result;
2903     } else {
2904         /* RAM case */
2905         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2906                                                false, false);
2907 
2908         memcpy(buf, ram_ptr, *l);
2909 
2910         return MEMTX_OK;
2911     }
2912 }
2913 
2914 /* Called within RCU critical section.  */
2915 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2916                                    MemTxAttrs attrs, void *ptr,
2917                                    hwaddr len, hwaddr mr_addr, hwaddr l,
2918                                    MemoryRegion *mr)
2919 {
2920     MemTxResult result = MEMTX_OK;
2921     uint8_t *buf = ptr;
2922 
2923     fuzz_dma_read_cb(addr, len, mr);
2924     for (;;) {
2925         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2926 
2927         len -= l;
2928         buf += l;
2929         addr += l;
2930 
2931         if (!len) {
2932             break;
2933         }
2934 
2935         l = len;
2936         mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2937     }
2938 
2939     return result;
2940 }
2941 
2942 /* Called from RCU critical section.  */
2943 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2944                                  MemTxAttrs attrs, void *buf, hwaddr len)
2945 {
2946     hwaddr l;
2947     hwaddr mr_addr;
2948     MemoryRegion *mr;
2949 
2950     l = len;
2951     mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2952     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2953         return MEMTX_ACCESS_ERROR;
2954     }
2955     return flatview_read_continue(fv, addr, attrs, buf, len,
2956                                   mr_addr, l, mr);
2957 }
2958 
2959 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2960                                     MemTxAttrs attrs, void *buf, hwaddr len)
2961 {
2962     MemTxResult result = MEMTX_OK;
2963     FlatView *fv;
2964 
2965     if (len > 0) {
2966         RCU_READ_LOCK_GUARD();
2967         fv = address_space_to_flatview(as);
2968         result = flatview_read(fv, addr, attrs, buf, len);
2969     }
2970 
2971     return result;
2972 }
2973 
2974 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2975                                 MemTxAttrs attrs,
2976                                 const void *buf, hwaddr len)
2977 {
2978     MemTxResult result = MEMTX_OK;
2979     FlatView *fv;
2980 
2981     if (len > 0) {
2982         RCU_READ_LOCK_GUARD();
2983         fv = address_space_to_flatview(as);
2984         result = flatview_write(fv, addr, attrs, buf, len);
2985     }
2986 
2987     return result;
2988 }
2989 
2990 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2991                              void *buf, hwaddr len, bool is_write)
2992 {
2993     if (is_write) {
2994         return address_space_write(as, addr, attrs, buf, len);
2995     } else {
2996         return address_space_read_full(as, addr, attrs, buf, len);
2997     }
2998 }
2999 
3000 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3001                               uint8_t c, hwaddr len, MemTxAttrs attrs)
3002 {
3003 #define FILLBUF_SIZE 512
3004     uint8_t fillbuf[FILLBUF_SIZE];
3005     int l;
3006     MemTxResult error = MEMTX_OK;
3007 
3008     memset(fillbuf, c, FILLBUF_SIZE);
3009     while (len > 0) {
3010         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3011         error |= address_space_write(as, addr, attrs, fillbuf, l);
3012         len -= l;
3013         addr += l;
3014     }
3015 
3016     return error;
3017 }
3018 
3019 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3020                             hwaddr len, bool is_write)
3021 {
3022     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3023                      buf, len, is_write);
3024 }
3025 
3026 enum write_rom_type {
3027     WRITE_DATA,
3028     FLUSH_CACHE,
3029 };
3030 
3031 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3032                                                            hwaddr addr,
3033                                                            MemTxAttrs attrs,
3034                                                            const void *ptr,
3035                                                            hwaddr len,
3036                                                            enum write_rom_type type)
3037 {
3038     hwaddr l;
3039     uint8_t *ram_ptr;
3040     hwaddr addr1;
3041     MemoryRegion *mr;
3042     const uint8_t *buf = ptr;
3043 
3044     RCU_READ_LOCK_GUARD();
3045     while (len > 0) {
3046         l = len;
3047         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3048 
3049         if (!(memory_region_is_ram(mr) ||
3050               memory_region_is_romd(mr))) {
3051             l = memory_access_size(mr, l, addr1);
3052         } else {
3053             /* ROM/RAM case */
3054             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3055             switch (type) {
3056             case WRITE_DATA:
3057                 memcpy(ram_ptr, buf, l);
3058                 invalidate_and_set_dirty(mr, addr1, l);
3059                 break;
3060             case FLUSH_CACHE:
3061                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3062                 break;
3063             }
3064         }
3065         len -= l;
3066         buf += l;
3067         addr += l;
3068     }
3069     return MEMTX_OK;
3070 }
3071 
3072 /* used for ROM loading : can write in RAM and ROM */
3073 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3074                                     MemTxAttrs attrs,
3075                                     const void *buf, hwaddr len)
3076 {
3077     return address_space_write_rom_internal(as, addr, attrs,
3078                                             buf, len, WRITE_DATA);
3079 }
3080 
3081 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3082 {
3083     /*
3084      * This function should do the same thing as an icache flush that was
3085      * triggered from within the guest. For TCG we are always cache coherent,
3086      * so there is no need to flush anything. For KVM / Xen we need to flush
3087      * the host's instruction cache at least.
3088      */
3089     if (tcg_enabled()) {
3090         return;
3091     }
3092 
3093     address_space_write_rom_internal(&address_space_memory,
3094                                      start, MEMTXATTRS_UNSPECIFIED,
3095                                      NULL, len, FLUSH_CACHE);
3096 }
3097 
3098 static void
3099 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3100 {
3101     QLIST_REMOVE(client, link);
3102     g_free(client);
3103 }
3104 
3105 static void address_space_notify_map_clients_locked(AddressSpace *as)
3106 {
3107     AddressSpaceMapClient *client;
3108 
3109     while (!QLIST_EMPTY(&as->map_client_list)) {
3110         client = QLIST_FIRST(&as->map_client_list);
3111         qemu_bh_schedule(client->bh);
3112         address_space_unregister_map_client_do(client);
3113     }
3114 }
3115 
3116 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3117 {
3118     AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3119 
3120     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3121     client->bh = bh;
3122     QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3123     /* Write map_client_list before reading in_use.  */
3124     smp_mb();
3125     if (!qatomic_read(&as->bounce.in_use)) {
3126         address_space_notify_map_clients_locked(as);
3127     }
3128 }
3129 
3130 void cpu_exec_init_all(void)
3131 {
3132     qemu_mutex_init(&ram_list.mutex);
3133     /* The data structures we set up here depend on knowing the page size,
3134      * so no more changes can be made after this point.
3135      * In an ideal world, nothing we did before we had finished the
3136      * machine setup would care about the target page size, and we could
3137      * do this much later, rather than requiring board models to state
3138      * up front what their requirements are.
3139      */
3140     finalize_target_page_bits();
3141     io_mem_init();
3142     memory_map_init();
3143 }
3144 
3145 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3146 {
3147     AddressSpaceMapClient *client;
3148 
3149     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3150     QLIST_FOREACH(client, &as->map_client_list, link) {
3151         if (client->bh == bh) {
3152             address_space_unregister_map_client_do(client);
3153             break;
3154         }
3155     }
3156 }
3157 
3158 static void address_space_notify_map_clients(AddressSpace *as)
3159 {
3160     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3161     address_space_notify_map_clients_locked(as);
3162 }
3163 
3164 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3165                                   bool is_write, MemTxAttrs attrs)
3166 {
3167     MemoryRegion *mr;
3168     hwaddr l, xlat;
3169 
3170     while (len > 0) {
3171         l = len;
3172         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3173         if (!memory_access_is_direct(mr, is_write)) {
3174             l = memory_access_size(mr, l, addr);
3175             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3176                 return false;
3177             }
3178         }
3179 
3180         len -= l;
3181         addr += l;
3182     }
3183     return true;
3184 }
3185 
3186 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3187                                 hwaddr len, bool is_write,
3188                                 MemTxAttrs attrs)
3189 {
3190     FlatView *fv;
3191 
3192     RCU_READ_LOCK_GUARD();
3193     fv = address_space_to_flatview(as);
3194     return flatview_access_valid(fv, addr, len, is_write, attrs);
3195 }
3196 
3197 static hwaddr
3198 flatview_extend_translation(FlatView *fv, hwaddr addr,
3199                             hwaddr target_len,
3200                             MemoryRegion *mr, hwaddr base, hwaddr len,
3201                             bool is_write, MemTxAttrs attrs)
3202 {
3203     hwaddr done = 0;
3204     hwaddr xlat;
3205     MemoryRegion *this_mr;
3206 
3207     for (;;) {
3208         target_len -= len;
3209         addr += len;
3210         done += len;
3211         if (target_len == 0) {
3212             return done;
3213         }
3214 
3215         len = target_len;
3216         this_mr = flatview_translate(fv, addr, &xlat,
3217                                      &len, is_write, attrs);
3218         if (this_mr != mr || xlat != base + done) {
3219             return done;
3220         }
3221     }
3222 }
3223 
3224 /* Map a physical memory region into a host virtual address.
3225  * May map a subset of the requested range, given by and returned in *plen.
3226  * May return NULL if resources needed to perform the mapping are exhausted.
3227  * Use only for reads OR writes - not for read-modify-write operations.
3228  * Use address_space_register_map_client() to know when retrying the map
3229  * operation is likely to succeed.
3230  */
3231 void *address_space_map(AddressSpace *as,
3232                         hwaddr addr,
3233                         hwaddr *plen,
3234                         bool is_write,
3235                         MemTxAttrs attrs)
3236 {
3237     hwaddr len = *plen;
3238     hwaddr l, xlat;
3239     MemoryRegion *mr;
3240     FlatView *fv;
3241 
3242     trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3243 
3244     if (len == 0) {
3245         return NULL;
3246     }
3247 
3248     l = len;
3249     RCU_READ_LOCK_GUARD();
3250     fv = address_space_to_flatview(as);
3251     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3252 
3253     if (!memory_access_is_direct(mr, is_write)) {
3254         if (qatomic_xchg(&as->bounce.in_use, true)) {
3255             *plen = 0;
3256             return NULL;
3257         }
3258         /* Avoid unbounded allocations */
3259         l = MIN(l, TARGET_PAGE_SIZE);
3260         as->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3261         as->bounce.addr = addr;
3262         as->bounce.len = l;
3263 
3264         memory_region_ref(mr);
3265         as->bounce.mr = mr;
3266         if (!is_write) {
3267             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3268                           as->bounce.buffer, l);
3269         }
3270 
3271         *plen = l;
3272         return as->bounce.buffer;
3273     }
3274 
3275 
3276     memory_region_ref(mr);
3277     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3278                                         l, is_write, attrs);
3279     fuzz_dma_read_cb(addr, *plen, mr);
3280     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3281 }
3282 
3283 /* Unmaps a memory region previously mapped by address_space_map().
3284  * Will also mark the memory as dirty if is_write is true.  access_len gives
3285  * the amount of memory that was actually read or written by the caller.
3286  */
3287 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3288                          bool is_write, hwaddr access_len)
3289 {
3290     if (buffer != as->bounce.buffer) {
3291         MemoryRegion *mr;
3292         ram_addr_t addr1;
3293 
3294         mr = memory_region_from_host(buffer, &addr1);
3295         assert(mr != NULL);
3296         if (is_write) {
3297             invalidate_and_set_dirty(mr, addr1, access_len);
3298         }
3299         if (xen_enabled()) {
3300             xen_invalidate_map_cache_entry(buffer);
3301         }
3302         memory_region_unref(mr);
3303         return;
3304     }
3305     if (is_write) {
3306         address_space_write(as, as->bounce.addr, MEMTXATTRS_UNSPECIFIED,
3307                             as->bounce.buffer, access_len);
3308     }
3309     qemu_vfree(as->bounce.buffer);
3310     as->bounce.buffer = NULL;
3311     memory_region_unref(as->bounce.mr);
3312     /* Clear in_use before reading map_client_list.  */
3313     qatomic_set_mb(&as->bounce.in_use, false);
3314     address_space_notify_map_clients(as);
3315 }
3316 
3317 void *cpu_physical_memory_map(hwaddr addr,
3318                               hwaddr *plen,
3319                               bool is_write)
3320 {
3321     return address_space_map(&address_space_memory, addr, plen, is_write,
3322                              MEMTXATTRS_UNSPECIFIED);
3323 }
3324 
3325 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3326                                bool is_write, hwaddr access_len)
3327 {
3328     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3329 }
3330 
3331 #define ARG1_DECL                AddressSpace *as
3332 #define ARG1                     as
3333 #define SUFFIX
3334 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3335 #define RCU_READ_LOCK(...)       rcu_read_lock()
3336 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3337 #include "memory_ldst.c.inc"
3338 
3339 int64_t address_space_cache_init(MemoryRegionCache *cache,
3340                                  AddressSpace *as,
3341                                  hwaddr addr,
3342                                  hwaddr len,
3343                                  bool is_write)
3344 {
3345     AddressSpaceDispatch *d;
3346     hwaddr l;
3347     MemoryRegion *mr;
3348     Int128 diff;
3349 
3350     assert(len > 0);
3351 
3352     l = len;
3353     cache->fv = address_space_get_flatview(as);
3354     d = flatview_to_dispatch(cache->fv);
3355     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3356 
3357     /*
3358      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3359      * Take that into account to compute how many bytes are there between
3360      * cache->xlat and the end of the section.
3361      */
3362     diff = int128_sub(cache->mrs.size,
3363                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3364     l = int128_get64(int128_min(diff, int128_make64(l)));
3365 
3366     mr = cache->mrs.mr;
3367     memory_region_ref(mr);
3368     if (memory_access_is_direct(mr, is_write)) {
3369         /* We don't care about the memory attributes here as we're only
3370          * doing this if we found actual RAM, which behaves the same
3371          * regardless of attributes; so UNSPECIFIED is fine.
3372          */
3373         l = flatview_extend_translation(cache->fv, addr, len, mr,
3374                                         cache->xlat, l, is_write,
3375                                         MEMTXATTRS_UNSPECIFIED);
3376         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3377                                          is_write);
3378     } else {
3379         cache->ptr = NULL;
3380     }
3381 
3382     cache->len = l;
3383     cache->is_write = is_write;
3384     return l;
3385 }
3386 
3387 void address_space_cache_invalidate(MemoryRegionCache *cache,
3388                                     hwaddr addr,
3389                                     hwaddr access_len)
3390 {
3391     assert(cache->is_write);
3392     if (likely(cache->ptr)) {
3393         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3394     }
3395 }
3396 
3397 void address_space_cache_destroy(MemoryRegionCache *cache)
3398 {
3399     if (!cache->mrs.mr) {
3400         return;
3401     }
3402 
3403     if (xen_enabled()) {
3404         xen_invalidate_map_cache_entry(cache->ptr);
3405     }
3406     memory_region_unref(cache->mrs.mr);
3407     flatview_unref(cache->fv);
3408     cache->mrs.mr = NULL;
3409     cache->fv = NULL;
3410 }
3411 
3412 /* Called from RCU critical section.  This function has the same
3413  * semantics as address_space_translate, but it only works on a
3414  * predefined range of a MemoryRegion that was mapped with
3415  * address_space_cache_init.
3416  */
3417 static inline MemoryRegion *address_space_translate_cached(
3418     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3419     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3420 {
3421     MemoryRegionSection section;
3422     MemoryRegion *mr;
3423     IOMMUMemoryRegion *iommu_mr;
3424     AddressSpace *target_as;
3425 
3426     assert(!cache->ptr);
3427     *xlat = addr + cache->xlat;
3428 
3429     mr = cache->mrs.mr;
3430     iommu_mr = memory_region_get_iommu(mr);
3431     if (!iommu_mr) {
3432         /* MMIO region.  */
3433         return mr;
3434     }
3435 
3436     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3437                                             NULL, is_write, true,
3438                                             &target_as, attrs);
3439     return section.mr;
3440 }
3441 
3442 /* Called within RCU critical section.  */
3443 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3444                                                        const void *ptr,
3445                                                        hwaddr len,
3446                                                        hwaddr mr_addr,
3447                                                        hwaddr l,
3448                                                        MemoryRegion *mr)
3449 {
3450     MemTxResult result = MEMTX_OK;
3451     const uint8_t *buf = ptr;
3452 
3453     for (;;) {
3454         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3455                                                mr);
3456 
3457         len -= l;
3458         buf += l;
3459         mr_addr += l;
3460 
3461         if (!len) {
3462             break;
3463         }
3464 
3465         l = len;
3466     }
3467 
3468     return result;
3469 }
3470 
3471 /* Called within RCU critical section.  */
3472 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3473                                                       void *ptr, hwaddr len,
3474                                                       hwaddr mr_addr, hwaddr l,
3475                                                       MemoryRegion *mr)
3476 {
3477     MemTxResult result = MEMTX_OK;
3478     uint8_t *buf = ptr;
3479 
3480     for (;;) {
3481         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3482         len -= l;
3483         buf += l;
3484         mr_addr += l;
3485 
3486         if (!len) {
3487             break;
3488         }
3489         l = len;
3490     }
3491 
3492     return result;
3493 }
3494 
3495 /* Called from RCU critical section. address_space_read_cached uses this
3496  * out of line function when the target is an MMIO or IOMMU region.
3497  */
3498 MemTxResult
3499 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3500                                    void *buf, hwaddr len)
3501 {
3502     hwaddr mr_addr, l;
3503     MemoryRegion *mr;
3504 
3505     l = len;
3506     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3507                                         MEMTXATTRS_UNSPECIFIED);
3508     return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3509                                               buf, len, mr_addr, l, mr);
3510 }
3511 
3512 /* Called from RCU critical section. address_space_write_cached uses this
3513  * out of line function when the target is an MMIO or IOMMU region.
3514  */
3515 MemTxResult
3516 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3517                                     const void *buf, hwaddr len)
3518 {
3519     hwaddr mr_addr, l;
3520     MemoryRegion *mr;
3521 
3522     l = len;
3523     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3524                                         MEMTXATTRS_UNSPECIFIED);
3525     return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3526                                                buf, len, mr_addr, l, mr);
3527 }
3528 
3529 #define ARG1_DECL                MemoryRegionCache *cache
3530 #define ARG1                     cache
3531 #define SUFFIX                   _cached_slow
3532 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3533 #define RCU_READ_LOCK()          ((void)0)
3534 #define RCU_READ_UNLOCK()        ((void)0)
3535 #include "memory_ldst.c.inc"
3536 
3537 /* virtual memory access for debug (includes writing to ROM) */
3538 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3539                         void *ptr, size_t len, bool is_write)
3540 {
3541     hwaddr phys_addr;
3542     vaddr l, page;
3543     uint8_t *buf = ptr;
3544 
3545     cpu_synchronize_state(cpu);
3546     while (len > 0) {
3547         int asidx;
3548         MemTxAttrs attrs;
3549         MemTxResult res;
3550 
3551         page = addr & TARGET_PAGE_MASK;
3552         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3553         asidx = cpu_asidx_from_attrs(cpu, attrs);
3554         /* if no physical page mapped, return an error */
3555         if (phys_addr == -1)
3556             return -1;
3557         l = (page + TARGET_PAGE_SIZE) - addr;
3558         if (l > len)
3559             l = len;
3560         phys_addr += (addr & ~TARGET_PAGE_MASK);
3561         if (is_write) {
3562             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3563                                           attrs, buf, l);
3564         } else {
3565             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3566                                      attrs, buf, l);
3567         }
3568         if (res != MEMTX_OK) {
3569             return -1;
3570         }
3571         len -= l;
3572         buf += l;
3573         addr += l;
3574     }
3575     return 0;
3576 }
3577 
3578 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3579 {
3580     MemoryRegion*mr;
3581     hwaddr l = 1;
3582 
3583     RCU_READ_LOCK_GUARD();
3584     mr = address_space_translate(&address_space_memory,
3585                                  phys_addr, &phys_addr, &l, false,
3586                                  MEMTXATTRS_UNSPECIFIED);
3587 
3588     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3589 }
3590 
3591 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3592 {
3593     RAMBlock *block;
3594     int ret = 0;
3595 
3596     RCU_READ_LOCK_GUARD();
3597     RAMBLOCK_FOREACH(block) {
3598         ret = func(block, opaque);
3599         if (ret) {
3600             break;
3601         }
3602     }
3603     return ret;
3604 }
3605 
3606 /*
3607  * Unmap pages of memory from start to start+length such that
3608  * they a) read as 0, b) Trigger whatever fault mechanism
3609  * the OS provides for postcopy.
3610  * The pages must be unmapped by the end of the function.
3611  * Returns: 0 on success, none-0 on failure
3612  *
3613  */
3614 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3615 {
3616     int ret = -1;
3617 
3618     uint8_t *host_startaddr = rb->host + start;
3619 
3620     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3621         error_report("%s: Unaligned start address: %p",
3622                      __func__, host_startaddr);
3623         goto err;
3624     }
3625 
3626     if ((start + length) <= rb->max_length) {
3627         bool need_madvise, need_fallocate;
3628         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3629             error_report("%s: Unaligned length: %zx", __func__, length);
3630             goto err;
3631         }
3632 
3633         errno = ENOTSUP; /* If we are missing MADVISE etc */
3634 
3635         /* The logic here is messy;
3636          *    madvise DONTNEED fails for hugepages
3637          *    fallocate works on hugepages and shmem
3638          *    shared anonymous memory requires madvise REMOVE
3639          */
3640         need_madvise = (rb->page_size == qemu_real_host_page_size());
3641         need_fallocate = rb->fd != -1;
3642         if (need_fallocate) {
3643             /* For a file, this causes the area of the file to be zero'd
3644              * if read, and for hugetlbfs also causes it to be unmapped
3645              * so a userfault will trigger.
3646              */
3647 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3648             /*
3649              * fallocate() will fail with readonly files. Let's print a
3650              * proper error message.
3651              */
3652             if (rb->flags & RAM_READONLY_FD) {
3653                 error_report("%s: Discarding RAM with readonly files is not"
3654                              " supported", __func__);
3655                 goto err;
3656 
3657             }
3658             /*
3659              * We'll discard data from the actual file, even though we only
3660              * have a MAP_PRIVATE mapping, possibly messing with other
3661              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3662              * change that behavior whithout violating the promised
3663              * semantics of ram_block_discard_range().
3664              *
3665              * Only warn, because it works as long as nobody else uses that
3666              * file.
3667              */
3668             if (!qemu_ram_is_shared(rb)) {
3669                 warn_report_once("%s: Discarding RAM"
3670                                  " in private file mappings is possibly"
3671                                  " dangerous, because it will modify the"
3672                                  " underlying file and will affect other"
3673                                  " users of the file", __func__);
3674             }
3675 
3676             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3677                             start, length);
3678             if (ret) {
3679                 ret = -errno;
3680                 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3681                              __func__, rb->idstr, start, length, ret);
3682                 goto err;
3683             }
3684 #else
3685             ret = -ENOSYS;
3686             error_report("%s: fallocate not available/file"
3687                          "%s:%" PRIx64 " +%zx (%d)",
3688                          __func__, rb->idstr, start, length, ret);
3689             goto err;
3690 #endif
3691         }
3692         if (need_madvise) {
3693             /* For normal RAM this causes it to be unmapped,
3694              * for shared memory it causes the local mapping to disappear
3695              * and to fall back on the file contents (which we just
3696              * fallocate'd away).
3697              */
3698 #if defined(CONFIG_MADVISE)
3699             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3700                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3701             } else {
3702                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3703             }
3704             if (ret) {
3705                 ret = -errno;
3706                 error_report("%s: Failed to discard range "
3707                              "%s:%" PRIx64 " +%zx (%d)",
3708                              __func__, rb->idstr, start, length, ret);
3709                 goto err;
3710             }
3711 #else
3712             ret = -ENOSYS;
3713             error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3714                          __func__, rb->idstr, start, length, ret);
3715             goto err;
3716 #endif
3717         }
3718         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3719                                       need_madvise, need_fallocate, ret);
3720     } else {
3721         error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3722                      __func__, rb->idstr, start, length, rb->max_length);
3723     }
3724 
3725 err:
3726     return ret;
3727 }
3728 
3729 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3730                                         size_t length)
3731 {
3732     int ret = -1;
3733 
3734 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3735     ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3736                     start, length);
3737 
3738     if (ret) {
3739         ret = -errno;
3740         error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3741                      __func__, rb->idstr, start, length, ret);
3742     }
3743 #else
3744     ret = -ENOSYS;
3745     error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3746                  __func__, rb->idstr, start, length, ret);
3747 #endif
3748 
3749     return ret;
3750 }
3751 
3752 bool ramblock_is_pmem(RAMBlock *rb)
3753 {
3754     return rb->flags & RAM_PMEM;
3755 }
3756 
3757 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3758 {
3759     if (start == end - 1) {
3760         qemu_printf("\t%3d      ", start);
3761     } else {
3762         qemu_printf("\t%3d..%-3d ", start, end - 1);
3763     }
3764     qemu_printf(" skip=%d ", skip);
3765     if (ptr == PHYS_MAP_NODE_NIL) {
3766         qemu_printf(" ptr=NIL");
3767     } else if (!skip) {
3768         qemu_printf(" ptr=#%d", ptr);
3769     } else {
3770         qemu_printf(" ptr=[%d]", ptr);
3771     }
3772     qemu_printf("\n");
3773 }
3774 
3775 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3776                            int128_sub((size), int128_one())) : 0)
3777 
3778 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3779 {
3780     int i;
3781 
3782     qemu_printf("  Dispatch\n");
3783     qemu_printf("    Physical sections\n");
3784 
3785     for (i = 0; i < d->map.sections_nb; ++i) {
3786         MemoryRegionSection *s = d->map.sections + i;
3787         const char *names[] = { " [unassigned]", " [not dirty]",
3788                                 " [ROM]", " [watch]" };
3789 
3790         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3791                     " %s%s%s%s%s",
3792             i,
3793             s->offset_within_address_space,
3794             s->offset_within_address_space + MR_SIZE(s->size),
3795             s->mr->name ? s->mr->name : "(noname)",
3796             i < ARRAY_SIZE(names) ? names[i] : "",
3797             s->mr == root ? " [ROOT]" : "",
3798             s == d->mru_section ? " [MRU]" : "",
3799             s->mr->is_iommu ? " [iommu]" : "");
3800 
3801         if (s->mr->alias) {
3802             qemu_printf(" alias=%s", s->mr->alias->name ?
3803                     s->mr->alias->name : "noname");
3804         }
3805         qemu_printf("\n");
3806     }
3807 
3808     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3809                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3810     for (i = 0; i < d->map.nodes_nb; ++i) {
3811         int j, jprev;
3812         PhysPageEntry prev;
3813         Node *n = d->map.nodes + i;
3814 
3815         qemu_printf("      [%d]\n", i);
3816 
3817         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3818             PhysPageEntry *pe = *n + j;
3819 
3820             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3821                 continue;
3822             }
3823 
3824             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3825 
3826             jprev = j;
3827             prev = *pe;
3828         }
3829 
3830         if (jprev != ARRAY_SIZE(*n)) {
3831             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3832         }
3833     }
3834 }
3835 
3836 /* Require any discards to work. */
3837 static unsigned int ram_block_discard_required_cnt;
3838 /* Require only coordinated discards to work. */
3839 static unsigned int ram_block_coordinated_discard_required_cnt;
3840 /* Disable any discards. */
3841 static unsigned int ram_block_discard_disabled_cnt;
3842 /* Disable only uncoordinated discards. */
3843 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3844 static QemuMutex ram_block_discard_disable_mutex;
3845 
3846 static void ram_block_discard_disable_mutex_lock(void)
3847 {
3848     static gsize initialized;
3849 
3850     if (g_once_init_enter(&initialized)) {
3851         qemu_mutex_init(&ram_block_discard_disable_mutex);
3852         g_once_init_leave(&initialized, 1);
3853     }
3854     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3855 }
3856 
3857 static void ram_block_discard_disable_mutex_unlock(void)
3858 {
3859     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3860 }
3861 
3862 int ram_block_discard_disable(bool state)
3863 {
3864     int ret = 0;
3865 
3866     ram_block_discard_disable_mutex_lock();
3867     if (!state) {
3868         ram_block_discard_disabled_cnt--;
3869     } else if (ram_block_discard_required_cnt ||
3870                ram_block_coordinated_discard_required_cnt) {
3871         ret = -EBUSY;
3872     } else {
3873         ram_block_discard_disabled_cnt++;
3874     }
3875     ram_block_discard_disable_mutex_unlock();
3876     return ret;
3877 }
3878 
3879 int ram_block_uncoordinated_discard_disable(bool state)
3880 {
3881     int ret = 0;
3882 
3883     ram_block_discard_disable_mutex_lock();
3884     if (!state) {
3885         ram_block_uncoordinated_discard_disabled_cnt--;
3886     } else if (ram_block_discard_required_cnt) {
3887         ret = -EBUSY;
3888     } else {
3889         ram_block_uncoordinated_discard_disabled_cnt++;
3890     }
3891     ram_block_discard_disable_mutex_unlock();
3892     return ret;
3893 }
3894 
3895 int ram_block_discard_require(bool state)
3896 {
3897     int ret = 0;
3898 
3899     ram_block_discard_disable_mutex_lock();
3900     if (!state) {
3901         ram_block_discard_required_cnt--;
3902     } else if (ram_block_discard_disabled_cnt ||
3903                ram_block_uncoordinated_discard_disabled_cnt) {
3904         ret = -EBUSY;
3905     } else {
3906         ram_block_discard_required_cnt++;
3907     }
3908     ram_block_discard_disable_mutex_unlock();
3909     return ret;
3910 }
3911 
3912 int ram_block_coordinated_discard_require(bool state)
3913 {
3914     int ret = 0;
3915 
3916     ram_block_discard_disable_mutex_lock();
3917     if (!state) {
3918         ram_block_coordinated_discard_required_cnt--;
3919     } else if (ram_block_discard_disabled_cnt) {
3920         ret = -EBUSY;
3921     } else {
3922         ram_block_coordinated_discard_required_cnt++;
3923     }
3924     ram_block_discard_disable_mutex_unlock();
3925     return ret;
3926 }
3927 
3928 bool ram_block_discard_is_disabled(void)
3929 {
3930     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3931            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3932 }
3933 
3934 bool ram_block_discard_is_required(void)
3935 {
3936     return qatomic_read(&ram_block_discard_required_cnt) ||
3937            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3938 }
3939